JP2016015184A - Magnetic disk substrate polishing liquid composition - Google Patents

Magnetic disk substrate polishing liquid composition Download PDF

Info

Publication number
JP2016015184A
JP2016015184A JP2014135359A JP2014135359A JP2016015184A JP 2016015184 A JP2016015184 A JP 2016015184A JP 2014135359 A JP2014135359 A JP 2014135359A JP 2014135359 A JP2014135359 A JP 2014135359A JP 2016015184 A JP2016015184 A JP 2016015184A
Authority
JP
Japan
Prior art keywords
polishing
silica particles
less
spherical silica
magnetic disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014135359A
Other languages
Japanese (ja)
Other versions
JP6316680B2 (en
Inventor
陽介 内野
Yosuke Uchino
陽介 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2014135359A priority Critical patent/JP6316680B2/en
Publication of JP2016015184A publication Critical patent/JP2016015184A/en
Application granted granted Critical
Publication of JP6316680B2 publication Critical patent/JP6316680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic disk substrate polishing liquid composition capable of reducing long period defect of a roughly polished substrate surface.SOLUTION: In one aspect, a magnetic disk substrate polishing agent composition includes non-spherical silica particles, a nitrogen-containing compound, acid, oxidant, and water, and is characterized in that (1) the non-spherical silica particle is in the form of two or more particles aggregated or fused, (2) the non-spherical silica particle has a ΔCV value of more than 0.0% and less than 10%, (3) a ratio (D1/D2) of volume average particle diameter (D1) obtained by a dynamic light scattering method to specific surface conversion particle diameter (D2) by a BET method, of the non-spherical silica particle, is 2.00 or more and 4.00 or less, (4) the nitrogen-containing compound is aliphatic amine compound or alicyclic amine compound that contains two to five nitrogen atoms in molecule, (5) the acid is selected from the group consisting of phosphoric acids, phosphonic acid, organic phosphonic acid, and a combination thereof, and (6) pH is 1.4 or more and 2.5 or less.

Description

本開示は、磁気ディスク基板用研磨液組成物、磁気ディスク基板の研磨方法、及び、磁気ディスク基板の製造方法に関する。   The present disclosure relates to a polishing composition for a magnetic disk substrate, a method for polishing a magnetic disk substrate, and a method for manufacturing a magnetic disk substrate.

近年、磁気ディスクドライブは小型化・大容量化が進み、高記録密度化が求められている。そこで、高記録密度磁気信号の検出感度を向上させる必要があり、磁気ヘッドの浮上高さをより低下し、単位記録面積を縮小する技術開発が進められている。磁気ディスク基板は、磁気ヘッドの低浮上化と記録面積の確保に対応するため、平滑性及び平坦性の向上(表面粗さ、うねり、端面ダレの低減)や表面欠陥低減(残留砥粒、スクラッチ、突起、ピット等の低減)が厳しく要求されている。このような要求に対して、より平滑で、傷が少ないといった表面品質向上と生産性の向上を両立させる観点から、ハードディスク基板の製造方法においては、2段階以上の研磨工程を有する多段研磨方式が採用されることが多い。一般に、多段研磨方式の最終研磨工程、即ち、仕上げ研磨工程では、表面粗さの低減、スクラッチ、突起、ピット等の傷の低減という要求を満たすために、コロイダルシリカ粒子を含む仕上げ用研磨液組成物が使用され、仕上げ研磨工程より前の研磨工程(粗研磨工程ともいう)では、生産性向上の観点から、アルミナ粒子を含む研磨液組成物が使用される。しかしながら、アルミナ粒子を砥粒として使用した場合、アルミナ粒子の基板への突き刺さりによって、メディア・ドライブの欠陥を引き起こすことがある。   In recent years, magnetic disk drives have been reduced in size and capacity, and high recording density has been demanded. Therefore, it is necessary to improve the detection sensitivity of high recording density magnetic signals, and technical development is underway to reduce the flying height of the magnetic head and reduce the unit recording area. The magnetic disk substrate is designed to improve the smoothness and flatness (reduction of surface roughness, waviness and edge sag) and to reduce surface defects (residual abrasive grains and scratches) in order to reduce the flying height of the magnetic head and ensure the recording area. , Reduction of protrusions, pits, etc.) is strictly demanded. From the viewpoint of achieving both improvement in surface quality and productivity, such as smoother and less scratches, such a requirement, the hard disk substrate manufacturing method includes a multi-stage polishing method having two or more polishing steps. Often adopted. In general, in the final polishing step of the multi-stage polishing method, that is, the final polishing step, a polishing composition for finishing that contains colloidal silica particles in order to satisfy the requirements of reducing surface roughness and scratches such as scratches, protrusions, and pits. In the polishing step (also referred to as rough polishing step) prior to the final polishing step, a polishing liquid composition containing alumina particles is used from the viewpoint of improving productivity. However, when alumina particles are used as the abrasive, media drive defects may be caused by the piercing of the alumina particles into the substrate.

そこで、アルミナ粒子を含まず、シリカ粒子を砥粒とした研磨液組成物を粗研磨工程に用いることで、基板への粒子の突き刺さりの低減を可能とする磁気ディスク基板の製造方法が提案されている(特許文献1)。   Therefore, a method of manufacturing a magnetic disk substrate that can reduce the sticking of particles to the substrate by using a polishing composition containing no alumina particles and using silica particles as abrasive grains in the rough polishing step has been proposed. (Patent Document 1).

一方で、研磨液組成物の添加剤としてアミン化合物を添加することによる、ガラスハードディスク基板の研磨における清浄性及び循環研磨における耐久性の向上(特許文献2)や、突起欠陥及びスクラッチの低減(特許文献3)も試みられている。また、研磨液組成物の酸として、リン酸やホスホン酸が使用されることもある(特許文献4及び5)。   On the other hand, by adding an amine compound as an additive of the polishing liquid composition, improvement in cleanliness in glass hard disk substrate polishing and durability in cyclic polishing (Patent Document 2), reduction of protrusion defects and scratches (patent) Reference 3) has also been attempted. Moreover, phosphoric acid and phosphonic acid may be used as the acid of the polishing composition (Patent Documents 4 and 5).

Ni−Pめっきアルミナ合金基板を用いた磁気ディスク基板の表面欠陥として、PED(polish-enhanced defects)がある。PEDはNi−Pめっき皮膜形成時の腐食ピットなどに起因する(特許文献6)。PEDは、グラインド傷とともに磁気ディスク基板の「長周期欠陥」とも呼ばれる。   As a surface defect of a magnetic disk substrate using a Ni-P plated alumina alloy substrate, there is PED (polish-enhanced defects). PED is caused by corrosion pits at the time of Ni-P plating film formation (Patent Document 6). PED is also called “long-period defect” of a magnetic disk substrate together with a grind scratch.

特開2014−29754号公報JP 2014-29754 A 特開2012−12569号公報JP 2012-12469 A 特開2011−131346号公報JP 2011-131346 A 特開2003−147337号公報JP 2003-147337 A 特開2008−166329号公報JP 2008-166329 A 特表2012−46712号公報Special table 2012-46712 gazette

磁気ディスク基板の研磨工程においてアルミナ粒子を使用しない粗研磨工程及び仕上げ研磨工程を採用すれば、残留アルミナ(例えば、アルミナ付着、アルミナ突き刺さり)を無くすことができるから突起欠陥が低減する。しかし、アルミナ粒子に換えてシリカ粒子で粗研磨工程を行う場合、長周期欠陥が除去できないという問題が新たに発生することが見出された。なお、アルミナ粒子で粗研磨工程を行う場合には、一般に、長周期欠陥の問題は起らない。長周期欠陥の除去率は基板収率と相関性が高いため、粗研磨において長周期欠陥の除去率のより一層の向上が望まれる。   If a rough polishing process and a final polishing process that do not use alumina particles are employed in the polishing process of the magnetic disk substrate, residual alumina (for example, alumina adhesion, alumina sticking) can be eliminated, thereby reducing projection defects. However, it has been found that when a rough polishing process is performed with silica particles instead of alumina particles, a problem that long-period defects cannot be removed newly occurs. In the case of performing the rough polishing process with alumina particles, the problem of long-period defects generally does not occur. Since the removal rate of long-period defects is highly correlated with the substrate yield, further improvement in the removal rate of long-period defects is desired in rough polishing.

特許文献1は、所定のパラメータで規定される非球状シリカ粒子を砥粒として粗研磨を行えば、実質的にアルミナ粒子を含まない場合であっても、粗研磨の研磨時間を大幅に長期化することなく粗研磨後の長波長うねりを低減できることを開示する。しかしながら、長周期欠陥については、より一層の除去率の向上が望まれる。   Patent Document 1 discloses that if rough polishing is performed using non-spherical silica particles defined by predetermined parameters as abrasive grains, the polishing time for rough polishing is greatly prolonged even when alumina particles are substantially not included. Disclosed is that long-wave waviness after rough polishing can be reduced without doing so. However, for long-period defects, further improvement in removal rate is desired.

そこで、本開示は、一又は複数の実施形態において、非球状シリカ粒子を砥粒とする粗研磨において、粗研磨における研磨速度を大きく損ねることなく、粗研磨後の基板表面の長周期欠陥を低減できる磁気ディスク基板用研磨液組成物を提供する。   Therefore, in one or a plurality of embodiments, the present disclosure reduces long-period defects on the substrate surface after rough polishing without significantly impairing the polishing speed in rough polishing using non-spherical silica particles as abrasive grains. Provided is a polishing composition for a magnetic disk substrate.

本開示は、一又は複数の実施形態において、非球状シリカ粒子A、窒素含有化合物、酸、酸化剤及び水を含む磁気ディスク基板用研磨剤組成物であって、
(1)前記非球状シリカ粒子Aが2つ以上の粒子が凝集又は融着した形状であり、
(2)前記非球状シリカ粒子AのΔCV値が0.0%を超え10%未満であり、
ここで、ΔCV値は、動的光散乱法による検出角30°における散乱強度分布に基づく標準偏差を前記散乱強度分布に基づく平均粒径で除して100を掛けた値(CV30)と、検出角90°における散乱強度分布に基づく標準偏差を前記散乱強度分布に基づく平均粒径で除して100を掛けた値(CV90)との差の値(ΔCV=CV30−CV90)であり、
(3)前記非球状シリカ粒子Aの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の比(D1/D2)が、2.00以上4.00以下であり、
(4)前記窒素含有化合物が分子内の窒素含有数が2〜5である脂肪族アミン化合物又は脂環式アミン化合物であり、
(5)前記酸が、リン酸類、ホスホン酸、有機ホスホン酸、及びこれらの組み合わせからなる群から選択され、
(6)pHが1.4以上2.5以下である、磁気ディスク基板用研磨剤組成物に関する。
In one or a plurality of embodiments, the present disclosure is an abrasive composition for a magnetic disk substrate containing non-spherical silica particles A, a nitrogen-containing compound, an acid, an oxidizing agent, and water,
(1) The non-spherical silica particle A has a shape in which two or more particles are aggregated or fused,
(2) The ΔCV value of the non-spherical silica particles A is more than 0.0% and less than 10%,
Here, the ΔCV value is obtained by dividing the standard deviation based on the scattering intensity distribution at a detection angle of 30 ° by the dynamic light scattering method by the average particle diameter based on the scattering intensity distribution and multiplying by 100 (CV30). The difference (ΔCV = CV30−CV90) from the value obtained by dividing the standard deviation based on the scattering intensity distribution at an angle of 90 ° by the average particle diameter based on the scattering intensity distribution and multiplying by 100 (CV90),
(3) The ratio (D1 / D2) of the volume average particle diameter (D1) by the dynamic light scattering method of the non-spherical silica particles A to the specific surface area equivalent particle diameter (D2) by the BET method is 2.00 or more. 00 or less,
(4) The nitrogen-containing compound is an aliphatic amine compound or an alicyclic amine compound having a nitrogen content in the molecule of 2 to 5,
(5) the acid is selected from the group consisting of phosphoric acids, phosphonic acids, organic phosphonic acids, and combinations thereof;
(6) The present invention relates to a magnetic disk substrate abrasive composition having a pH of 1.4 or more and 2.5 or less.

本開示は、その他の態様において、
(1)本開示に係る研磨液組成物を用いて被研磨基板の研磨対象面を研磨する工程、
(2)工程(1)で得られた基板を洗浄する工程、及び、
(3)シリカ粒子を含有する研磨液組成物を用いて工程(2)で得られた基板の研磨対象面研磨対象面を研磨する工程を有し、
前記工程(1)と(3)は別の研磨機で行う、磁気ディスク基板の研磨方法/製造方法に関する。
In another aspect, the present disclosure provides:
(1) The process of grind | polishing the grinding | polishing target surface of a to-be-polished board | substrate using the polishing liquid composition which concerns on this indication,
(2) a step of cleaning the substrate obtained in step (1), and
(3) It has the process of grind | polishing the grinding | polishing object surface grinding | polishing object surface of the board | substrate obtained by process (2) using the polishing liquid composition containing a silica particle,
The steps (1) and (3) relate to a magnetic disk substrate polishing method / manufacturing method performed by another polishing machine.

本開示に係る研磨液組成物は、アルミナ粒子を使用しない場合には粗研磨後及び仕上げ研磨後の突起欠陥を大幅に低減できる。また、本開示に係る研磨液組成物によれば、一又は複数の実施形態において、粗研磨における研磨速度を大きく損ねることなく、粗研磨後の基板表面の長周期欠陥を低減できるという効果が奏されうる。   The polishing composition according to the present disclosure can significantly reduce the protrusion defects after rough polishing and after final polishing when alumina particles are not used. In addition, according to the polishing liquid composition according to the present disclosure, in one or a plurality of embodiments, there is an effect that long-period defects on the substrate surface after rough polishing can be reduced without greatly impairing the polishing rate in rough polishing. Can be done.

図1は、異形型コロイダルシリカ砥粒の電子顕微鏡(TEM)観察写真の一例である。FIG. 1 is an example of an electron microscope (TEM) observation photograph of deformed colloidal silica abrasive grains. 図2は、金平糖型コロイダルシリカ砥粒の電子顕微鏡(TEM)観察写真の一例である。FIG. 2 is an example of an electron microscope (TEM) observation photograph of a confetti-type colloidal silica abrasive grain. 図3は、体積粒度分布を示すグラフである。FIG. 3 is a graph showing the volume particle size distribution. 図4は、長周期欠陥(PED)を有する基板表面を光干渉型表面形状測定機で計測した結果の一例である。FIG. 4 is an example of a result obtained by measuring a substrate surface having a long-period defect (PED) with an optical interference type surface shape measuring machine. 図5は、研磨システムの一実施形態を説明する図である。FIG. 5 is a diagram illustrating an embodiment of a polishing system.

本開示は、所定の非球状シリカ粒子を砥粒として含有する研磨液組成物を用いた粗研磨工程において、該研磨液組成物に所定窒素含有化合物及び所定の酸(リン酸又はホスホン酸)を添加すると、長周期欠陥の除去率が向上し、また、研磨速度を大きく損ねることがないという知見に基づく。一般に、磁気ディスク基板の製造において、長周期欠陥が低減できれば基板収率が向上する。よって、本開示によれば、一又は複数の実施形態において、磁気ディスク基板の製造において、生産性を維持しつつ、基板収率を向上できる。   The present disclosure relates to a rough polishing step using a polishing liquid composition containing predetermined non-spherical silica particles as abrasive grains, and a predetermined nitrogen-containing compound and a predetermined acid (phosphoric acid or phosphonic acid) are added to the polishing liquid composition. The addition is based on the knowledge that the removal rate of long-period defects is improved and the polishing rate is not greatly impaired. Generally, in the manufacture of a magnetic disk substrate, if long-period defects can be reduced, the substrate yield is improved. Therefore, according to the present disclosure, in one or a plurality of embodiments, the substrate yield can be improved while maintaining the productivity in the manufacture of the magnetic disk substrate.

所定の非球状シリカ粒子と所定窒素含有化合物及び所定の酸との組合せで長周期欠陥の除去率が向上するメカニズムの詳細は明らかではないが、以下のように推察される。すなわち、所定の窒素含有化合物が、シリカ粒子と基板(例えば、Ni−Pめっきアルミニウム合金基板)の双方に結合し、シリカ粒子の基板への吸着性を向上させる。これにより、シリカ粒子の基板への接触頻度が上昇して研磨速度が向上し、長周期欠陥の除去率が向上すると考えられる。さらに、リン酸又はホスホン酸が存在することで、リン酸又はホスホン酸の腐食抑制効果により、少ない研磨量で長周期欠陥、とりわけ、PEDの低減効率が向上すると考えられる。特に本開示では、特定形状のシリカ粒子を用いることで表面欠陥の抑制と腐食抑制の効果が相乗的に働き基板の欠陥抑制が優れたものとなる。但し、本開示はこれらのメカニズムに限定して解釈されなくてもよい。   Although the details of the mechanism by which the removal rate of long-period defects is improved by a combination of a predetermined non-spherical silica particle, a predetermined nitrogen-containing compound, and a predetermined acid are not clear, it is presumed as follows. That is, the predetermined nitrogen-containing compound is bonded to both the silica particles and the substrate (for example, a Ni—P plated aluminum alloy substrate), and improves the adsorptivity of the silica particles to the substrate. Thereby, the contact frequency of the silica particles to the substrate is increased, the polishing rate is improved, and the removal rate of long-period defects is considered to be improved. Furthermore, the presence of phosphoric acid or phosphonic acid is considered to improve the reduction efficiency of long-period defects, particularly PED, with a small amount of polishing due to the corrosion inhibiting effect of phosphoric acid or phosphonic acid. In particular, in the present disclosure, by using silica particles having a specific shape, the effect of suppressing surface defects and the effect of suppressing corrosion work synergistically, and the substrate is excellent in suppressing defects. However, the present disclosure need not be construed as being limited to these mechanisms.

すなわち、本開示は一態様において、非球状シリカ粒子A、窒素含有化合物、酸、酸化剤及び水を含む磁気ディスク基板用研磨剤組成物であって、
(1)前記非球状シリカ粒子Aが2つ以上の粒子が凝集又は融着した形状であり、
(2)前記非球状シリカ粒子AのΔCV値が0.0%を超え10%未満であり、
ここで、ΔCV値は、動的光散乱法による検出角30°における散乱強度分布に基づく標準偏差を前記散乱強度分布に基づく平均粒径で除して100を掛けた値(CV30)と、検出角90°における散乱強度分布に基づく標準偏差を前記散乱強度分布に基づく平均粒径で除して100を掛けた値(CV90)との差の値(ΔCV=CV30−CV90)であり、
(3)前記非球状シリカ粒子Aの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の比(D1/D2)が、2.00以上4.00以下であり、
(4)前記窒素含有化合物が、分子内の窒素含有数が2〜5である脂肪族アミン化合物又は脂環式アミン化合物であり、
(5)前記酸が、リン酸類、ホスホン酸、有機ホスホン酸、及びこれらの組み合わせからなる群から選択され、
(6)pHが1.4以上2.5以下である、磁気ディスク基板用研磨剤組成物(以下、「本開示に係る研磨液組成物」ともいう)に関する。本開示に係る研磨液組成物によれば、一又は複数の実施形態において、粗研磨における研磨速度を大きく損ねることなく、粗研磨後及び仕上げ研磨後の突起欠陥を大幅に低減でき、かつ、粗研磨後の基板表面の長周期欠陥を低減できるという効果が奏されうる。
That is, in one aspect, the present disclosure is an abrasive composition for a magnetic disk substrate containing non-spherical silica particles A, a nitrogen-containing compound, an acid, an oxidizing agent, and water,
(1) The non-spherical silica particle A has a shape in which two or more particles are aggregated or fused,
(2) The ΔCV value of the non-spherical silica particles A is more than 0.0% and less than 10%,
Here, the ΔCV value is obtained by dividing the standard deviation based on the scattering intensity distribution at a detection angle of 30 ° by the dynamic light scattering method by the average particle diameter based on the scattering intensity distribution and multiplying by 100 (CV30). The difference (ΔCV = CV30−CV90) from the value obtained by dividing the standard deviation based on the scattering intensity distribution at an angle of 90 ° by the average particle diameter based on the scattering intensity distribution and multiplying by 100 (CV90),
(3) The ratio (D1 / D2) of the volume average particle diameter (D1) by the dynamic light scattering method of the non-spherical silica particles A to the specific surface area equivalent particle diameter (D2) by the BET method is 2.00 or more. 00 or less,
(4) The nitrogen-containing compound is an aliphatic amine compound or an alicyclic amine compound having a nitrogen content number of 2 to 5 in the molecule,
(5) the acid is selected from the group consisting of phosphoric acids, phosphonic acids, organic phosphonic acids, and combinations thereof;
(6) The present invention relates to a magnetic disk substrate abrasive composition (hereinafter also referred to as “a polishing composition according to the present disclosure”) having a pH of 1.4 or more and 2.5 or less. According to the polishing composition according to the present disclosure, in one or a plurality of embodiments, protrusion defects after rough polishing and after final polishing can be greatly reduced without greatly impairing the polishing rate in rough polishing, and rough polishing can be performed. An effect that long-period defects on the substrate surface after polishing can be reduced can be achieved.

本開示において「長周期欠陥」とは、Ni−Pめっきアルミ基板の製造工程で発生するグラインド傷及びPED(polish enhanced defect)を含む。グラインド傷は、めっき前のアルミ基板をグラインドする工程(グラインド工程)における砥石の削り痕をいう。また、PEDは、アルミナ基板にめっき成膜する工程におけるアニール工程において基板表面に付着した水や異物に起因するアニール不足の部分をいい、研磨時に基板表面の浅い凹み状の欠陥として発生する。長周期欠陥は、一又は複数の実施形態において、実施例に記載の測定器を用いて測定できる。   In the present disclosure, the “long-period defect” includes a grind scratch and a PED (polish enhanced defect) generated in the manufacturing process of the Ni—P plated aluminum substrate. Grind scratches refer to grinding marks on a grindstone in a process of grinding an aluminum substrate before plating (grinding process). PED refers to a portion of insufficient annealing caused by water or foreign matter adhering to the substrate surface in the annealing step in the plating process on the alumina substrate, and occurs as a shallow dent defect on the substrate surface during polishing. In one or a plurality of embodiments, the long-period defect can be measured using the measuring device described in the examples.

[非球状シリカ粒子A]
本開示に係る研磨液組成物は、非球状シリカ粒子Aを含有する。非球状シリカ粒子のシリカとしては、コロイダルシリカ、フュームドシリカ、表面修飾したシリカ等が挙げられる。研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、コロイダルシリカが好ましく、下記の特定の形状をもったコロイダルシリカがより好ましい。また、非球状シリカ粒子は、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、火炎溶融法やゾルゲル法で製造されたものでも構わないが、水ガラス法(水ガラスを原料とする粒子成長法)で製造されたシリカ粒子であることが好ましい。
[Non-spherical silica particles A]
The polishing liquid composition according to the present disclosure contains non-spherical silica particles A. Examples of the non-spherical silica particles include colloidal silica, fumed silica, and surface-modified silica. From the viewpoint of reducing long-period defects without significantly degrading the polishing rate, colloidal silica is preferable, and colloidal silica having the following specific shape is more preferable. In addition, the non-spherical silica particles may be produced by a flame melting method or a sol-gel method from the viewpoint of reducing long-period defects without significantly reducing the polishing rate. Silica particles produced by a particle growth method) are preferred.

[非球状シリカ粒子Aの形状]
非球状シリカ粒子Aの形状は、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、複数の粒子(例えば、2以上の粒子)が凝集又は融着した形状である。非球状シリカ粒子Aは、一又は複数の実施形態において、同様の観点から、金平糖型のシリカ粒子A1、異形型のシリカ粒子A2、及び異形かつ金平糖型のシリカ粒子A3からなる群から選択される少なくとも1種類のシリカ粒子であることが好ましく、異形型のシリカ粒子A2がより好ましい。
[Shape of non-spherical silica particle A]
The shape of the non-spherical silica particles A is a shape in which a plurality of particles (for example, two or more particles) are aggregated or fused from the viewpoint of reducing long-period defects without significantly impairing the polishing rate. In one or a plurality of embodiments, the non-spherical silica particles A are selected from the group consisting of confetti-type silica particles A1, deformed-type silica particles A2, and deformed and confetti-type silica particles A3. At least one type of silica particles is preferable, and irregular-shaped silica particles A2 are more preferable.

本開示において、金平糖型のシリカ粒子A1は、一又は複数の実施形態において、球状の粒子表面に特異な疣状突起を有するシリカ粒子をいう(図2参照)。シリカ粒子A1は、一又は複数の実施形態において、最も小さいシリカ粒子の粒径を基準にして、粒径が5倍以上異なる2つ以上の粒子が凝集又は融着した形状である。好ましくは該小さい粒子が該大きな粒子に一部埋没した状態である。なお、前記粒径は、電子顕微鏡(TEMなど)観察画像において1つの粒子内で測定される円相当径、すなわち、粒子の投影面積と同じ面積の等価円の長径として求められうる。シリカ粒子A2及びシリカ粒子A3における粒径も同様に求めることができる。   In the present disclosure, the gold-peeled silica particle A1 refers to a silica particle having unique hook-shaped protrusions on the surface of a spherical particle in one or a plurality of embodiments (see FIG. 2). In one or a plurality of embodiments, the silica particle A1 has a shape in which two or more particles different in particle size by 5 times or more are aggregated or fused on the basis of the particle size of the smallest silica particle. Preferably, the small particles are partially embedded in the large particles. The particle diameter can be obtained as the equivalent circle diameter measured in one particle in an electron microscope (TEM or the like) observation image, that is, the major axis of an equivalent circle having the same area as the projected area of the particle. The particle diameter in silica particle A2 and silica particle A3 can be similarly determined.

本開示において、異形型のシリカ粒子A2は、2つ以上の粒子、好ましくは2〜10個の粒子が凝集又は融着した形状のシリカ粒子をいう(図1参照)。シリカ粒子A2は、一又は複数の実施形態において、最も小さいシリカ粒子の粒径を基準にして、粒径が1.5倍以内の2つ以上の粒子が凝集又は融着した形状である。   In the present disclosure, the irregular-shaped silica particle A2 refers to a silica particle having a shape in which two or more particles, preferably 2 to 10 particles are aggregated or fused (see FIG. 1). In one or a plurality of embodiments, the silica particle A2 has a shape in which two or more particles having a particle size of 1.5 times or less are aggregated or fused on the basis of the particle size of the smallest silica particle.

本開示において、異形かつ金平糖型のシリカ粒子A3は、2つ以上の粒子が凝集又は融着した形状の粒子いう。シリカ粒子A3は、一又は複数の実施形態において、粒径が1.5倍以内の2つ以上の粒子が凝集又は融着した粒子に、さらに、凝集又は融着した前記粒子の最も小さいシリカ粒子の粒径を基準にして粒径が1/5以下の小さな粒子が凝集又は融着した形状である。   In the present disclosure, odd-shaped and confetti-type silica particles A3 are particles having a shape in which two or more particles are aggregated or fused. In one or a plurality of embodiments, the silica particle A3 is a particle obtained by agglomerating or fusing two or more particles having a particle size of 1.5 times or less, and further having the smallest agglomerated or fused silica particle. In this shape, small particles having a particle size of 1/5 or less are aggregated or fused.

非球状シリカ粒子Aは、一又は複数の実施形態において、シリカ粒子A1、A2、A3のいずれか1つ、シリカ粒子A1、A2、A3のいずれか2つ、又は、シリカ粒子A1、A2、及びA3のすべてを含む。非球状シリカ粒子Aにおけるシリカ粒子A1、A2、及びA3の合計が占める割合(質量比)は、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、50質量%以上が好ましく、より好ましくは70質量%以上、更に好ましくは80質量%以上、更により好ましくは90質量%以上又は実質的に100質量%である。   In one or more embodiments, the non-spherical silica particle A is any one of the silica particles A1, A2, and A3, any two of the silica particles A1, A2, and A3, or the silica particles A1, A2, and Includes all of A3. The ratio (mass ratio) occupied by the total of silica particles A1, A2, and A3 in non-spherical silica particles A is preferably 50% by mass or more from the viewpoint of reducing long-period defects without significantly impairing the polishing rate. Preferably they are 70 mass% or more, More preferably, they are 80 mass% or more, More preferably, they are 90 mass% or more or substantially 100 mass%.

[非球状シリカ粒子AのΔCV値]
非球状シリカ粒子Aは、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、ΔCV値が0.0%より上であることが好ましく、より好ましくは0.2%以上、更に好ましくは0.3%以上、更により好ましくは0.4%以上である。また、非球状シリカ粒子Aは、一又は複数の実施形態において、同様の観点から、ΔCV値が10.0%未満であることが好ましく、より好ましくは8.0%以下、更に好ましくは7.0%以下、更により好ましくは4.0%以下である。また、非球状シリカ粒子Aは、一又は複数の実施形態において、同様の観点から、0.0%より上10.0%未満が好ましく、より好ましくは0.2%以上8.0%以下、更にこのましくは0.3%以上7.0%以下、更により好ましくは0.4%以上4.0%以下である。
[ΔCV value of non-spherical silica particle A]
In one or a plurality of embodiments, the non-spherical silica particles A preferably have a ΔCV value of more than 0.0%, more preferably from the viewpoint of suppressing a decrease in polishing rate and improving a long-period defect removal rate. It is 0.2% or more, more preferably 0.3% or more, still more preferably 0.4% or more. In one or more embodiments, the non-spherical silica particles A preferably have a ΔCV value of less than 10.0%, more preferably 8.0% or less, and still more preferably 7. 0% or less, still more preferably 4.0% or less. Further, in one or a plurality of embodiments, the non-spherical silica particles A are preferably from 0.0% to less than 10.0%, more preferably from 0.2% to 8.0%, from the same viewpoint. Furthermore, it is preferably 0.3% or more and 7.0% or less, and more preferably 0.4% or more and 4.0% or less.

本開示においてシリカ粒子のΔCV値は、動的光散乱法により検出角30°(前方散乱)の散乱強度分布に基づき測定される粒径の標準偏差を、動的光散乱により検出角30°の散乱強度分布に基づき測定される平均粒径で除して100を掛けた変動係数の値(CV30)と、動的光散乱法により検出角90°(側方散乱)の散乱強度分布に基づき測定される粒径の標準偏差を、動的光散乱により検出角90°の散乱強度分布に基づき測定される平均粒径で除して100を掛けた変動係数の値(CV90)との差(ΔCV=CV30−CV90)をいい、動的光散乱法により測定される散乱強度分布の角度依存性を示す値をいう。ΔCV値は、具体的に実施例に記載の方法により測定することができる。   In the present disclosure, the ΔCV value of the silica particles is the standard deviation of the particle diameter measured based on the scattering intensity distribution at the detection angle of 30 ° (forward scattering) by the dynamic light scattering method, and the detection angle of 30 ° by the dynamic light scattering. Measured based on the coefficient of variation (CV30) multiplied by 100 divided by the average particle size measured based on the scattering intensity distribution and the scattering intensity distribution at a detection angle of 90 ° (side scattering) by the dynamic light scattering method. The difference (ΔCV) from the value of the coefficient of variation (CV90) multiplied by 100 by dividing the standard deviation of the measured particle diameter by the average particle diameter measured based on the scattering intensity distribution at a detection angle of 90 ° by dynamic light scattering = CV30−CV90), which is a value indicating the angular dependence of the scattering intensity distribution measured by the dynamic light scattering method. The ΔCV value can be specifically measured by the method described in the examples.

本発明者は、非球状シリカ粒子の特徴を示す方法として上記記載の平均粒径(D1)、及び動的光散乱法によって測定された平均粒径(D1)とBET法による比表面積換算粒径(D2)との比(D1/D2)を用いて表す従来の見方だけでは、そのシリカ粒子の研磨性能を表すことはできないと考えた。本発明者のさらなる検討によれば、非球状シリカ粒子の系全体(バルク)での状態を知る手段としてΔCV値が有効であり、これらのパラメータに着目することで、従来では知りえなかった研磨速度の低下を抑制し、長周期欠陥の除去率が向上し、突起欠陥を低減できる非球状シリカの範囲を正確に規定することができることを見出した。すなわち、非球状シリカ粒子は、その異形度によってΔCV値が異なり、ΔCV値は、非球状シリカ粒子の異形度を示す指標となりうる。例えば、非球状シリカ粒子の異形度が高くなると擬似的な多重散乱(自己散乱)が起きやすくなり、動的光散乱法により測定される散乱強度分布の角度依存性が小さくなりΔCV値が小さくなる。   The present inventor, as a method for showing the characteristics of non-spherical silica particles, the average particle size (D1) described above, the average particle size (D1) measured by the dynamic light scattering method and the specific surface area converted particle size by the BET method It was thought that the polishing performance of the silica particles could not be expressed only by the conventional view expressed using the ratio (D1 / D2) to (D2). According to further studies by the present inventors, the ΔCV value is effective as a means for knowing the state of the entire system (bulk) of non-spherical silica particles, and by focusing on these parameters, polishing that has not been known in the past It has been found that the reduction in speed is suppressed, the removal rate of long-period defects is improved, and the range of non-spherical silica that can reduce protrusion defects can be accurately defined. That is, the non-spherical silica particles have different ΔCV values depending on the degree of irregularity, and the ΔCV value can be an index indicating the degree of irregularity of the non-spherical silica particles. For example, when the degree of irregularity of non-spherical silica particles increases, pseudo multiple scattering (self-scattering) is likely to occur, and the angle dependency of the scattering intensity distribution measured by the dynamic light scattering method decreases and the ΔCV value decreases. .

本開示において「散乱強度分布」とは、動的光散乱法(DLS:Dynamic Light Scattering)又は準弾性光散乱(QLS:Quasielastic Light Scattering)により求められるサブミクロン以下の粒子の3つの粒度分布(散乱強度、体積換算、個数換算)のうち散乱強度の粒径分布のことをいう。   In this disclosure, “scattering intensity distribution” means three particle size distributions (scattering) of sub-micron or less particles determined by dynamic light scattering (DLS) or quasielastic light scattering (QLS). The particle size distribution of the scattering intensity among the intensity, volume conversion, and number conversion.

[非球状シリカ粒子Aの動的光散乱法による体積平均粒径(D1)]
非球状シリカ粒子Aの体積平均粒径(D1)は、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、一又は複数の実施形態において、120.0nm以上300.0nm未満が好ましい。非球状シリカ粒子Aの体積平均粒径(D1)は、一又は複数の実施形態において、同様の観点から、120.0nm以上が好ましく、より好ましくは150.0nm以上、更に好ましくは160.0nm以上、更により好ましくは170.0nm以上、更により好ましくは180.0nm以上、更により好ましくは190.0nm以上であり、更により好ましくは200.0nm以上である。非球状シリカ粒子Aの体積平均粒径(D1)は、一又は複数の実施形態において、同様の観点から、300.0nm未満が好ましく、より好ましくは260.0nm未満、更に好ましくは250.0nm未満、更により好ましくは220.0nm未満、更により好ましくは210.0nm未満である。また、非球状シリカ粒子Aの体積平均粒径(D1)は、一又は複数の実施形態において、同様の観点から、好ましくは120.0nm以上260.0nm未満、より好ましくは150.0nm以上260.0nm未満、更に好ましくは160.0nm以上260.0nm未満、更により好ましくは170.0nm以上260.0nm未満、更により好ましくは180.0nm以上250.0nm未満、更により好ましくは190.0nm以上220.0nm未満、更により好ましくは200.0nm以上210.0nm未満である。
[Volume average particle diameter of non-spherical silica particle A by dynamic light scattering method (D1)]
The volume average particle diameter (D1) of the non-spherical silica particles A is preferably 120.0 nm or more and less than 300.0 nm in one or a plurality of embodiments from the viewpoint of suppressing a decrease in polishing rate and improving a long-period defect removal rate. . In one or a plurality of embodiments, the volume average particle diameter (D1) of the non-spherical silica particles A is preferably 120.0 nm or more, more preferably 150.0 nm or more, and further preferably 160.0 nm or more, from the same viewpoint. Even more preferably, it is 170.0 nm or more, still more preferably 180.0 nm or more, still more preferably 190.0 nm or more, and even more preferably 200.0 nm or more. In one or a plurality of embodiments, the volume average particle diameter (D1) of the non-spherical silica particles A is preferably less than 300.0 nm, more preferably less than 260.0 nm, and still more preferably less than 250.0 nm, from the same viewpoint. Even more preferably less than 220.0 nm, even more preferably less than 210.0 nm. Moreover, the volume average particle diameter (D1) of the non-spherical silica particles A is preferably 120.0 nm or more and less than 260.0 nm, more preferably 150.0 nm or more and 260.nm or more, from the same viewpoint in one or more embodiments. Less than 0 nm, more preferably from 160.0 nm to less than 260.0 nm, even more preferably from 170.0 nm to less than 260.0 nm, even more preferably from 180.0 nm to less than 250.0 nm, even more preferably from 190.0 nm to 220 nm It is less than 0.0 nm, and more preferably 200.0 nm or more and less than 210.0 nm.

本開示においてシリカ粒子の体積平均粒径(D1)は、動的光散乱法により測定される散乱強度分布に基づく平均粒径をいい、特に言及のない場合、シリカ粒子の平均粒径とは、動的光散乱法において検出角90°で測定される散乱強度分布に基づく平均粒径をいう。本開示におけるシリカ粒子の体積平均粒径(D1)は、具体的には実施例に記載の方法により得ることができる。   In the present disclosure, the volume average particle diameter (D1) of silica particles refers to an average particle diameter based on a scattering intensity distribution measured by a dynamic light scattering method, and unless otherwise specified, the average particle diameter of silica particles is The average particle diameter based on the scattering intensity distribution measured at a detection angle of 90 ° in the dynamic light scattering method. The volume average particle diameter (D1) of the silica particles in the present disclosure can be specifically obtained by the method described in the examples.

[非球状シリカ粒子Aの粒径比(D1/D2)]
非球状シリカ粒子Aの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の比(D1/D2)は、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、2.00以上が好ましく、より好ましくは2.50以上、更に好ましくは3.00以上、更により好ましくは3.50以上である。粒径比(D1/D2)は、一又は複数の実施形態において、同様の観点から、4.00以下が好ましく、より好ましくは3.90以下、更に好ましくは3.80以下である。また、非球状シリカ粒子Aの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の比(D1/D2)は、一又は複数の実施形態において、同様の観点から、2.00以上4.00以下が好ましく、より好ましくは2.50以上3.90以下、更に好ましくは3.00以上3.90以下、更により好ましくは3.50以上3.80以下である。
[Particle size ratio of non-spherical silica particles A (D1 / D2)]
The ratio (D1 / D2) of the volume average particle diameter (D1) of the non-spherical silica particles A by the dynamic light scattering method and the specific surface area equivalent particle diameter (D2) by the BET method is determined by the polishing rate in one or a plurality of embodiments. From the viewpoint of suppressing the decrease in the length and improving the long-period defect removal rate, it is preferably 2.00 or more, more preferably 2.50 or more, still more preferably 3.00 or more, and even more preferably 3.50 or more. In one or a plurality of embodiments, the particle size ratio (D1 / D2) is preferably 4.00 or less, more preferably 3.90 or less, and further preferably 3.80 or less from the same viewpoint. Moreover, the ratio (D1 / D2) of the volume average particle diameter (D1) of the non-spherical silica particles A by the dynamic light scattering method and the specific surface area converted particle diameter (D2) by the BET method is, in one or more embodiments, From the same viewpoint, it is preferably 2.00 or more and 4.00 or less, more preferably 2.50 or more and 3.90 or less, still more preferably 3.00 or more and 3.90 or less, and even more preferably 3.50 or more and 3. 80 or less.

なお、本開示においてシリカ粒子の比表面積換算粒径(D2)は、窒素吸着法(BET法)により測定された比表面積Sm2/gからD2=2720/S[nm]の式によって与えられる。 In the present disclosure, the specific surface area equivalent particle diameter (D2) of the silica particles is given by the formula of D2 = 2720 / S [nm] from the specific surface area Sm 2 / g measured by the nitrogen adsorption method (BET method).

動的光散乱法によって測定された体積平均粒径(D1)とBET法による比表面積換算粒径(D2)との比(D1/D2)は、シリカ粒子Aの異形度合いを意味し得る。一般的に動的光散乱法によって測定された体積平均粒径(D1)は、異形粒子の場合、長方向での光散乱を検出して処理を行うため、長方向と短方向の長さを考慮して異形度合いが大きいほど大きな数値となり、BET法による比表面積換算粒径(D2)は、求まる粒子の体積をベースとして球換算で表されるため、D1に比べると小さな数値となる。研磨速度の観点から比(D1/D2)は、上述の範囲のなかでも大きいことが好ましい。   The ratio (D1 / D2) of the volume average particle diameter (D1) measured by the dynamic light scattering method and the specific surface area converted particle diameter (D2) by the BET method may mean the degree of deformation of the silica particles A. In general, the volume average particle diameter (D1) measured by the dynamic light scattering method is to detect the light scattering in the long direction in the case of irregularly shaped particles. Considering this, the larger the degree of deformation, the larger the numerical value, and the specific surface area equivalent particle diameter (D2) by the BET method is expressed in terms of a sphere based on the volume of the obtained particle, and is a smaller numerical value than D1. From the viewpoint of the polishing rate, the ratio (D1 / D2) is preferably large in the above range.

[非球状シリカ粒子AのCV90]
非球状シリカ粒子AのCV90は、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、20.0%以上が好ましく、より好ましくは25.0%以上、更に好ましくは27.0%以上であり、及び/又は、同様に、40.0%以下が好ましく、より好ましくは38.0%以下、更に好ましくは35.0%以下、更により好ましくは32.0%以下である。また、非球状シリカ粒子AのCV90は、一又は複数の実施形態において、同様の観点から、好ましくは20.0%以上40.0%以下であって、より好ましくは25.0%以上38.0%以下、更に好ましくは21.0%以上35.0%以下、更により好ましくは27.0%以上32.0%以下である。
[CV90 of non-spherical silica particle A]
In one or a plurality of embodiments, the CV90 of the non-spherical silica particles A is preferably 20.0% or more, more preferably 25.0% or more, from the viewpoint of suppressing a decrease in polishing rate and improving the long-period defect removal rate. More preferably, it is 27.0% or more, and / or, similarly, 40.0% or less is preferable, more preferably 38.0% or less, still more preferably 35.0% or less, and still more preferably 32. 0.0% or less. In one or a plurality of embodiments, the CV90 of the non-spherical silica particles A is preferably 20.0% or more and 40.0% or less, more preferably 25.0% or more and 38.38. It is 0% or less, more preferably 21.0% or more and 35.0% or less, still more preferably 27.0% or more and 32.0% or less.

本開示においてシリカ粒子のCV90は、動的光散乱法において散乱強度分布に基づく標準偏差を平均粒径で除して100を掛けた変動係数の値であって、検出角90°(側方散乱)で測定されるCV値をいう。シリカ粒子AのCV90は、具体的には実施例に記載の方法により得ることができる。   In the present disclosure, CV90 of silica particles is a coefficient of variation obtained by dividing the standard deviation based on the scattering intensity distribution by the average particle diameter and multiplying by 100 in the dynamic light scattering method, and has a detection angle of 90 ° (side scatter). ) Is the CV value measured. Specifically, CV90 of silica particles A can be obtained by the method described in the examples.

[非球状シリカ粒子AのCV30]
非球状シリカ粒子AのCV30は、上記CV90で示された範囲と同様に好ましい範囲となる。要はΔCV値(=CV90−CV30)との関係を保つ範囲で適宜設定され
る。
[CV30 of non-spherical silica particle A]
The CV30 of the non-spherical silica particles A is a preferable range similar to the range indicated by the CV90. In short, it is appropriately set within a range that maintains the relationship with the ΔCV value (= CV90−CV30).

[研磨液組成物中の非球状シリカ粒子Aの含有量]
研磨液組成物に含まれる非球状シリカ粒子Aの含有量は、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上が更に好ましく、2質量%以上が更により好ましい。また、該含有量は、経済性の観点から、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下が更に好ましく、15質量%以下が更により好ましい。研磨液組成物に含まれる非球状シリカ粒子Aの含有量は、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点並びに経済性の観点から、0.1質量%以上30質量%以下が好ましく、0.5質量%以上25質量%以下がより好ましく、1質量%以上20質量%以下が更に好ましく、2質量%以上15質量%以下が更により好ましい。
[Content of non-spherical silica particles A in the polishing composition]
In one or a plurality of embodiments, the content of the non-spherical silica particles A contained in the polishing composition is preferably 0.1% by mass or more from the viewpoint of suppressing a decrease in polishing rate and improving a long-period defect removal rate. 0.5 mass% or more is more preferable, 1 mass% or more is still more preferable, and 2 mass% or more is still more preferable. In addition, the content is preferably 30% by mass or less, more preferably 25% by mass or less, still more preferably 20% by mass or less, and still more preferably 15% by mass or less from the viewpoint of economy. In one or a plurality of embodiments, the content of the non-spherical silica particles A contained in the polishing composition is 0.1 from the viewpoint of suppressing the decrease in polishing rate, improving the long-period defect removal rate, and economically. The mass is preferably from 30% by mass to 30% by mass, more preferably from 0.5% by mass to 25% by mass, further preferably from 1% by mass to 20% by mass, and still more preferably from 2% by mass to 15% by mass.

[非球状シリカ粒子Aの製造方法]
シリカ粒子Aは、粗研磨における研磨速度の低下抑制及び長周期欠陥除去率並びに粗研磨及び仕上げ研磨後の突起欠陥低減の観点から、火炎溶融法やゾルゲル法、及び粉砕法で製造されたものでなく、水ガラス法(珪酸アルカリ水溶液を出発原料とする粒子成長法)により製造されたシリカ粒子であることが好ましい。なお、非球状シリカ粒子Aの使用形態としては、スラリー状であることが好ましい。
[Method for producing non-spherical silica particle A]
Silica particles A are manufactured by the flame melting method, the sol-gel method, and the pulverization method from the viewpoint of suppressing the decrease in the polishing rate in the rough polishing, removing the long-period defects, and reducing the protrusion defects after the rough polishing and the final polishing. The silica particles are preferably produced by the water glass method (particle growth method using an alkali silicate aqueous solution as a starting material). In addition, as a usage form of the non-spherical silica particles A, a slurry form is preferable.

シリカ粒子は、通常、1)10質量%未満の3号珪酸ソーダと種粒子(小粒径シリカ)の混合液(シード液)を反応槽に入れ、60℃以上に加熱し、2)そこに3号珪酸ソーダを陽イオン交換樹脂に通した酸性の活性珪酸水溶液とアルカリ(アルカリ金属または第4級アンモニウム)とを滴下してpHを一定にして球状の粒子を成長させ、3)熟成後に蒸発法や限外ろ過法で濃縮することで得られる(特開昭47−1964、特公平1−23412、特公平4−55125、特公平4−55127)。しかし、同じ製造プロセスで少し工程を変えると非球状シリカ粒子Aの製造が可能であることが多く報告されている。たとえば、活性珪酸は非常に不安定なため意図的にCaやMgなどの多価金属イオンを添加すると細長い形状のシリカゾルを製造できる。更に、反応物の温度(水の沸点を越えると蒸発し気液界面でシリカが乾燥)、反応物のpH(9以下ではシリカ粒子の連結が起きやすい)、反応物のSiO2/M2O(Mはアルカリ金属または第4級アンモニウム)、及びモル比(30〜60で非球状シリカを選択的に生成)などを変えることで非球状シリカが製造できる(特公平8−5657、特許2803134、特開2003−133267、特開2006−80406、特開2007−153671、特開2009−137791、特開2009−149493、特開2011−16702)。ただし、シリカ粒子Aの製造方法はこれらに限定されて解釈されない。 Silica particles are usually 1) a mixture (seed solution) of less than 10% by weight of No. 3 sodium silicate and seed particles (small-size silica) is put in a reaction vessel and heated to 60 ° C. or higher. 2) Spherical particles are grown by dropping an acidic active silicic acid aqueous solution obtained by passing No. 3 silicate through a cation exchange resin and an alkali (alkali metal or quaternary ammonium) to keep the pH constant, and 3) evaporating after aging. It is obtained by concentrating by a method or an ultrafiltration method (Japanese Patent Application Laid-Open No. 47-1964, Japanese Patent Publication No. 1-223412, Japanese Patent Publication No. 4-55125, Japanese Patent Publication No. 4-55127). However, it is often reported that non-spherical silica particles A can be produced if the steps are slightly changed in the same production process. For example, activated silicic acid is very unstable, and when a polyvalent metal ion such as Ca or Mg is intentionally added, an elongated silica sol can be produced. Furthermore, the temperature of the reaction product (evaporates when the boiling point of water is exceeded and the silica is dried at the gas-liquid interface), the pH of the reaction product (silica particles are likely to be linked below 9), and the reaction product SiO 2 / M 2 O. (M is an alkali metal or quaternary ammonium), and non-spherical silica can be produced by changing the molar ratio (selectively producing non-spherical silica at 30 to 60) (Japanese Patent Publication No. 8-5657, Patent 2803134, JP-A-2003-133267, JP-A-2006-80406, JP-A-2007-153671, JP-A-2009-137791, JP-A-2009-149493, JP-A-2011-16702). However, the manufacturing method of the silica particle A is limited to these and is not interpreted.

また、非球状シリカ粒子Aの粒径分布を調整する方法は、特に限定されないが、その製造段階における粒子の成長過程で新たな核となる粒子を加えることにより所望の粒径分布を持たせる方法や、異なる粒径分布を有する2種類以上のシリカ粒子を混合して所望の粒径分布を持たせる方法等が挙げられる。   The method of adjusting the particle size distribution of the non-spherical silica particles A is not particularly limited, but a method of giving a desired particle size distribution by adding particles as new nuclei in the process of particle growth in the production stage. Alternatively, a method of mixing two or more types of silica particles having different particle size distributions to have a desired particle size distribution can be used.

[球状シリカ粒子B]
本開示に係る研磨液組成物は、一又は複数の実施形態において、砥粒として更に球状シリカ粒子Bを含有してもよい。一又は複数の実施形態において、球状シリカ粒子Bは、コロイダルシリカ、フュームドシリカ、表面修飾したシリカ等が挙げられる。研磨速度の低下抑制及び長周期欠陥除去率の向上並びに突起欠陥の低減の観点から、コロイダルシリカが好ましい。
[Spherical silica particles B]
In one or a plurality of embodiments, the polishing liquid composition according to the present disclosure may further contain spherical silica particles B as abrasive grains. In one or more embodiments, examples of the spherical silica particles B include colloidal silica, fumed silica, and surface-modified silica. Colloidal silica is preferable from the viewpoints of suppressing a decrease in polishing rate, improving the long-period defect removal rate, and reducing protrusion defects.

本開示において「球状シリカ粒子」は、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、真球に近い球形状の粒子を用いうるが、球形度が0.9〜1.1ならば十分使用できる。「球状シリカ粒子」は、一又は複数の実施形態において、一般的に市販されているコロイダルシリカが該当し得る。   In the present disclosure, the “spherical silica particle” may be a spherical particle close to a true sphere in one or a plurality of embodiments from the viewpoint of suppressing a decrease in polishing rate and improving a long-period defect removal rate. If it is 0.9-1.1, it can fully be used. The “spherical silica particles” may correspond to generally commercially available colloidal silica in one or more embodiments.

球状シリカ粒子Bは、一又は複数の実施形態において、1種類の球状シリカ粒子であってもよく、2種類又はそれ以上の球状シリカ粒子の組み合わせであってもよい。球状シリカ粒子Bが、2種類又はそれ以上の球状シリカ粒子の組み合わせの場合、一又は複数の実施形態において、それぞれの球状シリカ粒子は、本開示に記載される「球状シリカ粒子B」の要件を満たす。球状シリカ粒子Bは、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、粒径が異なる2種又はそれ以上の粒子を用いることが好ましい。   In one or a plurality of embodiments, the spherical silica particle B may be one type of spherical silica particle or a combination of two or more types of spherical silica particles. When the spherical silica particles B are a combination of two or more types of spherical silica particles, in one or more embodiments, each spherical silica particle meets the requirements for “spherical silica particles B” described in this disclosure. Fulfill. In one or a plurality of embodiments, the spherical silica particles B are preferably two or more types having different particle diameters from the viewpoint of suppressing a decrease in polishing rate and improving a long-period defect removal rate.

[球状シリカ粒子Bの動的光散乱法による体積平均粒径(D1)]
球状シリカ粒子Bの体積平均粒径(D1)は、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から6.0nm以上40.0nm以下が好ましい。球状シリカ粒子Bの体積平均粒径(D1)は、一又は複数の実施形態において、同様の観点から、好ましくは6.0nm以上であって、より好ましくは7.0nm以上である。球状シリカ粒子Bの体積平均粒径(D1)は、一又は複数の実施形態において、同様の観点から、好ましくは40.0nm以下であって、より好ましくは35.0nm以下、更に好ましくは30.0nm以下である。また、球状シリカ粒子Bの体積平均粒径(D1)は、一又は複数の実施形態において、同様の観点から、好ましくは6.0nm以上40.0nm以下であって、より好ましくは6.0nm以上35.0nm以下、更に好ましくは7.0nm以上30.0nm以下である。
[Volume average particle diameter of spherical silica particle B by dynamic light scattering method (D1)]
In one or a plurality of embodiments, the volume average particle diameter (D1) of the spherical silica particles B is preferably 6.0 nm or more and 40.0 nm or less from the viewpoint of suppressing a decrease in polishing rate and improving a long-period defect removal rate. In one or a plurality of embodiments, the volume average particle diameter (D1) of the spherical silica particles B is preferably 6.0 nm or more, and more preferably 7.0 nm or more, from the same viewpoint. In one or a plurality of embodiments, the volume average particle diameter (D1) of the spherical silica particles B is preferably 40.0 nm or less, more preferably 35.0 nm or less, still more preferably 30. 0 nm or less. Further, the volume average particle diameter (D1) of the spherical silica particles B is preferably 6.0 nm or more and 40.0 nm or less, more preferably 6.0 nm or more, from the same viewpoint in one or more embodiments. It is 35.0 nm or less, more preferably 7.0 nm or more and 30.0 nm or less.

[球状シリカ粒子Bの粒径比(D1/D2)]
球状シリカ粒子Bの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の比(D1/D2)は、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、1.00以上が好ましく、より好ましくは1.10以上、更に好ましくは1.15以上である。球状シリカ粒子Bの粒径比(D1/D2)は、一又は複数の実施形態において、同様の観点から、1.50以下が好ましく、より好ましくは1.40以下、更に好ましくは1.30以下である。また、球状シリカ粒子Bの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の比(D1/D2)は、一又は複数の実施形態において、同様の観点から、1.00以上1.50以下であって、好ましくは1.10以上1.40以下、より好ましくは1.15以上1.30以下である。
[Particle size ratio of spherical silica particles B (D1 / D2)]
The ratio (D1 / D2) of the volume average particle diameter (D1) obtained by the dynamic light scattering method of the spherical silica particles B and the specific surface area converted particle size (D2) obtained by the BET method is the polishing rate in one or more embodiments. From the viewpoint of suppressing the decrease and improving the long-period defect removal rate, it is preferably 1.00 or more, more preferably 1.10 or more, and still more preferably 1.15 or more. In one or a plurality of embodiments, the particle diameter ratio (D1 / D2) of the spherical silica particles B is preferably 1.50 or less, more preferably 1.40 or less, and still more preferably 1.30 or less, from the same viewpoint. It is. Moreover, the ratio (D1 / D2) of the volume average particle diameter (D1) of the spherical silica particles B by the dynamic light scattering method and the specific surface area equivalent particle diameter (D2) by the BET method is the same in one or a plurality of embodiments. From this point of view, it is 1.00 or more and 1.50 or less, preferably 1.10 or more and 1.40 or less, more preferably 1.15 or more and 1.30 or less.

[研磨液組成物中の球状シリカ粒子Bの含有量]
研磨液組成物に含まれる球状シリカ粒子Bの含有量は、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、0.2質量%以上が更により好ましい。また、該含有量は、経済性の観点から、3質量%以下が好ましく、2.5質量%以下がより好ましく、2質量%以下が更に好ましく、1.5質量%以下が更により好ましい。
[Content of spherical silica particles B in polishing liquid composition]
In one or more embodiments, the content of the spherical silica particles B contained in the polishing liquid composition is preferably 0.01% by mass or more from the viewpoint of suppressing the reduction in polishing rate and improving the long-period defect removal rate. 0.05 mass% or more is more preferable, 0.1 mass% or more is still more preferable, and 0.2 mass% or more is still more preferable. In addition, the content is preferably 3% by mass or less, more preferably 2.5% by mass or less, still more preferably 2% by mass or less, and even more preferably 1.5% by mass or less from the viewpoint of economy.

[球状シリカ粒子Bの製造方法]
球状シリカ粒子Bは、粗研磨における研磨速度の低下抑制及び長周期欠陥除去率並びに粗研磨及び仕上げ研磨後の突起欠陥低減の観点から、火炎溶融法やゾルゲル法、及び粉砕法で製造されたものでなく、珪酸アルカリ水溶液を出発原料とする粒子成長法により製造されたシリカ粒子であることが好ましい。なお、球状シリカ粒子Bの使用形態としては、スラリー状であることが好ましい。
[Method for producing spherical silica particle B]
Spherical silica particles B are produced by the flame melting method, the sol-gel method, and the pulverization method from the viewpoint of suppressing the decrease in the polishing rate in the rough polishing, removing the long-period defects, and reducing the protrusion defects after the rough polishing and the final polishing. Rather, silica particles produced by a particle growth method using an alkali silicate aqueous solution as a starting material are preferable. In addition, as a usage form of the spherical silica particles B, a slurry form is preferable.

[非球状シリカ粒子Aと球状シリカ粒子Bとの体積粒度分布の重なり頻度]
本開示に係る研磨液組成物中の非球状シリカ粒子Aと球状シリカ粒子Bの体積粒度分布の重なり頻度の合計は、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、0%以上40%以下が好ましく、より好ましくは10%以上38%以下、更に好ましくは15%以上36%以下、更により好ましくは20%以上35%以下である。なお、非球状シリカ粒子Aと球状シリカ粒子Bの体積粒度分布の重なり頻度は、具体的には実施例に記載の方法により得ることができる。これは、異なる大きさのシリカ粒子混合物内において空隙率及びその空隙に存在する小さい粒子が適切なバランスをとることにより上記効果が発生するものと推察される。
[Frequency of volume particle size distribution of non-spherical silica particles A and spherical silica particles B]
The total overlap frequency of the volume particle size distributions of the non-spherical silica particles A and the spherical silica particles B in the polishing liquid composition according to the present disclosure is the reduction in the polishing rate and the long-period defect removal rate in one or more embodiments. From the viewpoint of improvement, it is preferably 0% or more and 40% or less, more preferably 10% or more and 38% or less, still more preferably 15% or more and 36% or less, and even more preferably 20% or more and 35% or less. In addition, the overlapping frequency of the volume particle size distribution of the non-spherical silica particles A and the spherical silica particles B can be specifically obtained by the method described in the examples. This is presumed that the above-mentioned effect occurs when the porosity and the small particles present in the voids have an appropriate balance in the silica particle mixture having different sizes.

[研磨液組成物中の非球状シリカ粒子Aと球状シリカ粒子Bの質量比]
本開示に係る研磨液組成物中の非球状シリカ粒子Aと球状シリカ粒子Bの含有量の質量比(A/B)は、一又は複数の実施形態において、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、好ましくは80/20以上であって、より好ましくは85/15以上、更に好ましくは90/10以上である。非球状シリカ粒子Aと球状シリカ粒子Bの含有量の質量比(A/B)は、一又は複数の実施形態において、同様の観点から、好ましくは99/1以下であって、より好ましくは95/5以下、更に好ましくは96/4以下である。なお、球状シリカ粒子Bが2種類又はそれ以上の球状シリカ粒子の組み合わせの場合、球状シリカ粒子Bの含有量はそれらの合計の含有量をいう。非球状シリカ粒子Aの含有量も同様である。
[Mass ratio of non-spherical silica particles A and spherical silica particles B in the polishing composition]
The mass ratio (A / B) of the content of the non-spherical silica particles A and the spherical silica particles B in the polishing liquid composition according to the present disclosure is such that, in one or a plurality of embodiments, the polishing rate is reduced and long-period defects are suppressed. From the viewpoint of improving the removal rate, it is preferably 80/20 or more, more preferably 85/15 or more, and further preferably 90/10 or more. In one or more embodiments, the mass ratio (A / B) of the content of the non-spherical silica particles A and the spherical silica particles B is preferably 99/1 or less, more preferably 95, in the same viewpoint. / 5 or less, more preferably 96/4 or less. In addition, when the spherical silica particle B is a combination of two or more types of spherical silica particles, the content of the spherical silica particles B refers to the total content thereof. The same applies to the content of non-spherical silica particles A.

[研磨液組成物中のその他のシリカ粒子の含有量]
本開示に係る研磨液組成物の一又は複数の実施形態において、研磨液組成物が非球状シリカ粒子A及び球状シリカ粒子B以外にシリカ粒子を含有する場合、研磨液組成物におけるシリカ粒子全体に対する非球状シリカ粒子Aと球状シリカ粒子Bの合計の質量比は、研磨速度の低下抑制及び長周期欠陥除去率の向上の観点から、好ましくは98.0質量%を超え、より好ましくは98.5質量%以上、更に好ましくは99.0質量%以上、更により好ましくは99.5質量%以上、更により好ましくは99.8質量%以上であり、更により好ましくは実質的に100質量%である。
[Content of Other Silica Particles in Polishing Liquid Composition]
In one or more embodiments of the polishing liquid composition according to the present disclosure, when the polishing liquid composition contains silica particles in addition to the non-spherical silica particles A and the spherical silica particles B, the entire silica particles in the polishing liquid composition are used. The total mass ratio of the non-spherical silica particles A and the spherical silica particles B is preferably more than 98.0% by mass, more preferably 98.5, from the viewpoint of suppressing a decrease in the polishing rate and improving the long-period defect removal rate. % By mass or more, more preferably 99.0% by mass or more, still more preferably 99.5% by mass or more, still more preferably 99.8% by mass or more, and even more preferably substantially 100% by mass. .

[窒素含有化合物]
本開示に係る研磨液組成物は、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、窒素含有化合物を含有する。窒素含有化合物は、一又は複数の実施形態において、同様の観点から、分子内の窒素含有数が2〜5である脂肪族アミン化合物又は脂環式アミン化合物である。本開示に係る研磨液組成物は、一又は複数の実施形態において、2種類以上の、脂肪族アミン化合物、又は、脂環式アミン化合物、又は、脂肪族アミン化合物及び脂環式アミン化合物を含有してもよい。
[Nitrogen-containing compounds]
The polishing liquid composition according to the present disclosure contains a nitrogen-containing compound from the viewpoint of reducing long-period defects without significantly impairing the polishing rate. In one or a plurality of embodiments, the nitrogen-containing compound is an aliphatic amine compound or an alicyclic amine compound having a nitrogen content number of 2 to 5 in the molecule from the same viewpoint. In one or a plurality of embodiments, the polishing composition according to the present disclosure contains two or more types of aliphatic amine compounds, or alicyclic amine compounds, or aliphatic amine compounds and alicyclic amine compounds. May be.

窒素含有化合物の分子内の窒素原子数は、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、2〜5個であって、好ましくは2〜4個である。窒素含有化合物の分子内の炭素原子数は、一又は複数の実施形態において、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、好ましくは2〜8個であって、より好ましくは4〜8個である。窒素含有化合物は、一又は複数の実施形態において、臭気及び/又は沸点を考慮した作業性の観点から、ヒドロキシ基を有してもよい。また、窒素含有化合物の分子量は、一又は複数の実施形態において、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、60以上500以下が好ましく、より好ましくは60以上300以下、更に好ましくは60以上150以下、更により好ましくは60以上135以下である。   The number of nitrogen atoms in the molecule of the nitrogen-containing compound is 2 to 5 and preferably 2 to 4 from the viewpoint of reducing long-period defects without significantly impairing the polishing rate. In one or a plurality of embodiments, the number of carbon atoms in the molecule of the nitrogen-containing compound is preferably 2 to 8, more preferably from the viewpoint of reducing long-period defects without significantly impairing the polishing rate. There are 4-8. In one or a plurality of embodiments, the nitrogen-containing compound may have a hydroxy group from the viewpoint of workability in consideration of odor and / or boiling point. In addition, in one or a plurality of embodiments, the molecular weight of the nitrogen-containing compound is preferably 60 or more and 500 or less, more preferably 60 or more and 300 or less, more preferably from the viewpoint of reducing long-period defects without significantly impairing the polishing rate. Preferably they are 60 or more and 150 or less, More preferably, they are 60 or more and 135 or less.

脂肪族アミン化合物としては、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、エチレンジアミン、N,N,N',N'−テトラメチルエチレンジアミン、1,2−ジアミノプロパン、1,3−ジアミノプロパン、1,4−ジアミノブタン、ヘキサメチレンジアミン、3−(ジエチルアミノ)プロピルアミン、3−(ジブチルアミノ)プロピルアミン、3−(メチルアミノ)プロピルアミン、3−(ジメチルアミノ)プロピルアミン、N−アミノエチルエタノールアミン、N-(2-アミノエチル)ジエタノールアミン、N−アミノエチルイソプロパノールアミン、N−アミノエチル−N−メチルエタノールアミン、ジエチレントリアミン、トリエチレンテトラミン、及びテトラエチレンペンタミンが好ましく、エチレンジアミン、N,N,N',N'−テトラメチルエチレンジアミン、1,2-ジアミノプロパン、1,3−ジアミノプロパン、1,4−ジアミノブタン、ヘキサメチレンジアミン、3−(ジエチルアミノ)プロピルアミン、3−(ジブチルアミノ)プロピルアミン、3−(メチルアミノ)プロピルアミン、3−(ジメチルアミノ)プロピルアミン、N−アミノエチルエタノールアミン、N-(2-アミノエチル)ジエタノールアミン、N−アミノエチルイソプロパノールアミン、N−アミノエチル−N−メチルエタノールアミン、ジエチレントリアミン、及びトリエチレンテトラミンがより好ましく、N−アミノエチルエタノールアミン、ジエチレントリアミン、及びトリエチレンテトラミンが更に好ましい。   Examples of the aliphatic amine compound include ethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, 1,2-diaminopropane, 1,3 from the viewpoint of reducing long-period defects without significantly reducing the polishing rate. -Diaminopropane, 1,4-diaminobutane, hexamethylenediamine, 3- (diethylamino) propylamine, 3- (dibutylamino) propylamine, 3- (methylamino) propylamine, 3- (dimethylamino) propylamine, N-aminoethylethanolamine, N- (2-aminoethyl) diethanolamine, N-aminoethylisopropanolamine, N-aminoethyl-N-methylethanolamine, diethylenetriamine, triethylenetetramine, and tetraethylenepentamine are preferred, ethylenediamine , , N, N ′, N′-tetramethylethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane, hexamethylenediamine, 3- (diethylamino) propylamine, 3- (dibutyl Amino) propylamine, 3- (methylamino) propylamine, 3- (dimethylamino) propylamine, N-aminoethylethanolamine, N- (2-aminoethyl) diethanolamine, N-aminoethylisopropanolamine, N-amino Ethyl-N-methylethanolamine, diethylenetriamine, and triethylenetetramine are more preferable, and N-aminoethylethanolamine, diethylenetriamine, and triethylenetetramine are still more preferable.

前記脂環式アミン化合物は、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、ピペラジン、2−メチルピペラジン、2、5−ジメチルピペラジン、1−アミノ−4−メチルピペラジン、N−メチルピペラジン、1−(2−アミノエチル)ピペラジン、及びヒドロキシエチルピペラジン、ピペラジン−1,4−ビスエタノールが好ましく、ピペラジン、2−メチルピペラジン、2、5−ジメチルピペラジン、N−メチルピペラジン、及びヒドロキシエチルピペラジンがより好ましく、ピペラジンが更に好ましい。   From the viewpoint of reducing long-period defects without significantly reducing the polishing rate, the alicyclic amine compound is piperazine, 2-methylpiperazine, 2,5-dimethylpiperazine, 1-amino-4-methylpiperazine, N- Preferred are methylpiperazine, 1- (2-aminoethyl) piperazine, and hydroxyethylpiperazine, piperazine-1,4-bisethanol, piperazine, 2-methylpiperazine, 2,5-dimethylpiperazine, N-methylpiperazine, and hydroxy Ethyl piperazine is more preferred, and piperazine is even more preferred.

本開示に係る研磨液組成物における、窒素含有化合物の含有量は、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、0.0025質量%以上が好ましく、0.005質量%以上がより好ましく、0.01質量%以上が更に好ましい。また、本開示に係る研磨液組成物における窒素含有化合物の含有量は、同様の観点から、1.0質量%以下が好ましく、0.30質量%以下がより好ましく、0.20質量%以下が更に好ましく、0.15質量%以下が更により好ましく、0.10質量%以下が更により好ましい。また、本開示に係る研磨液組成物における窒素含有化合物の含有量は、同様の観点から、0.0025質量%以上1.0質量%以下が好ましく、0.005質量%以上0.20質量%以下がより好ましく、0.01質量%以上0.15質量%以下が更に好ましく、0.001質量%以上0.10質量%以下が更により好ましい。   The content of the nitrogen-containing compound in the polishing liquid composition according to the present disclosure is preferably 0.0025% by mass or more, and 0.005% by mass or more from the viewpoint of reducing long-period defects without significantly impairing the polishing rate. Is more preferable, and 0.01 mass% or more is still more preferable. Further, from the same viewpoint, the content of the nitrogen-containing compound in the polishing composition according to the present disclosure is preferably 1.0% by mass or less, more preferably 0.30% by mass or less, and 0.20% by mass or less. More preferably, 0.15 mass% or less is still more preferable, and 0.10 mass% or less is still more preferable. Moreover, 0.0025 mass% or more and 1.0 mass% or less are preferable from the same viewpoint, and content of the nitrogen-containing compound in the polishing liquid composition which concerns on this indication is 0.005 mass% or more and 0.20 mass%. The following is more preferable, 0.01 mass% or more and 0.15 mass% or less is still more preferable, and 0.001 mass% or more and 0.10 mass% or less is still more preferable.

また、本開示に係る研磨液組成物における、シリカ粒子と窒素含有化合物との含有量比[シリカ粒子の含有量(質量%)/含窒素化合物の含有量(質量%)]は、一又は複数の実施形態において、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、0.1以上5000以下が好ましく、より好ましくは1以上4000以下、更に好ましくは5以上2400以下、更により好ましくは40以上1200以下、更により好ましくは60以上600以下である。   In the polishing composition according to the present disclosure, the content ratio of silica particles to nitrogen-containing compound [the content of silica particles (% by mass) / the content of nitrogen-containing compound (% by mass)] is one or more. In the embodiment, from the viewpoint of reducing long-period defects without significantly impairing the polishing rate, it is preferably 0.1 or more and 5000 or less, more preferably 1 or more and 4000 or less, further preferably 5 or more and 2400 or less, and even more preferably. Is 40 or more and 1200 or less, and more preferably 60 or more and 600 or less.

[酸]
本開示に係る研磨液組成物は、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、リン酸類、ホスホン酸、有機ホスホン酸、及びこれらの組み合わせからなる群から選択される酸を含有する。本開示に係る研磨液組成物における酸の使用は、酸及び又はその塩の使用を含む。
[acid]
The polishing composition according to the present disclosure includes an acid selected from the group consisting of phosphoric acids, phosphonic acids, organic phosphonic acids, and combinations thereof from the viewpoint of reducing long-period defects without significantly impairing the polishing rate. contains. The use of the acid in the polishing composition according to the present disclosure includes the use of an acid and / or a salt thereof.

本開示において「リン酸類」は、リン酸、及び、リン酸骨格を持つ他の類似化合物群をいう。前記類似化合物群としては、一又は複数の実施形態において、ピロリン酸が挙げられる。本開示において、特に説明のない場合「リン酸」は、一又は複数の実施形態において、無機リン酸が挙げられる。本開示において、特に説明のない場合「ホスホン酸」は、一又は複数の実施形態において、無機ホスホン酸が挙げられる。   In the present disclosure, “phosphoric acids” refers to phosphoric acid and other similar compounds having a phosphoric acid skeleton. In one or a plurality of embodiments, pyrophosphoric acid is mentioned as the group of similar compounds. In the present disclosure, unless otherwise specified, “phosphoric acid” includes, in one or more embodiments, inorganic phosphoric acid. In the present disclosure, unless otherwise specified, “phosphonic acid” includes, in one or more embodiments, inorganic phosphonic acid.

本開示において「有機ホスホン酸」は、一又は複数の実施形態において、2−アミノエチルホスホン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸(HEDP)、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン−1,1−ジホスホン酸、エタン−1,1,2−トリホスホン酸、エタン−1−ヒドロキシ−1,1,2−トリホスホン酸、エタン−1,2−ジカルボキシ−1,2−ジホスホン酸、メタンヒドロキシホスホン酸、2−ホスホノブタン−1,2−ジカルボン酸、1−ホスホノブタン−2,3,4−トリカルボン酸、α−メチルホスホノコハク酸、及びこれらの組み合わせが挙げられる。   In the present disclosure, “organic phosphonic acid” means, in one or more embodiments, 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP), aminotri (methylenephosphonic acid), ethylenediaminetetra ( Methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), ethane-1,1-diphosphonic acid, ethane-1,1,2-triphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid, ethane- 1,2-dicarboxy-1,2-diphosphonic acid, methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane-2,3,4-tricarboxylic acid, α-methylphosphonosuccinic acid , And combinations thereof.

リン酸類、ホスホン酸、有機ホスホン酸、及びこれらの塩は単独で又は2種以上を混合して用いてもよい。   Phosphoric acids, phosphonic acids, organic phosphonic acids, and salts thereof may be used alone or in admixture of two or more.

本開示に係る研磨液組成物の酸としては、一又は複数の実施形態において、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、リン酸、又はHEDPが好ましい。   As the acid of the polishing composition according to the present disclosure, in one or a plurality of embodiments, phosphoric acid or HEDP is preferable from the viewpoint of reducing long-period defects without significantly impairing the polishing rate.

これらの酸の塩を用いる場合は、特に限定はなく、具体的には、金属、アンモニウム、アルキルアンモニウム等が挙げられる。上記金属の具体例としては、周期律表(長周期型)1A、1B、2A、2B、3A、3B、4A、6A、7A又は8族に属する金属が挙げられる。   When these acid salts are used, there is no particular limitation, and specific examples include metals, ammonium, alkylammonium and the like. Specific examples of the metal include metals belonging to the periodic table (long-period type) 1A, 1B, 2A, 2B, 3A, 3B, 4A, 6A, 7A, or Group 8.

本開示に係る研磨液組成物中における前記酸の含有量は、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、0.001質量%以上5質量%以下が好ましく、より好ましくは0.01質量%以上4質量%以下、更に好ましくは0.05質量%以上3質量%以下、更により好ましくは0.1質量%以上2質量%以下である。   The content of the acid in the polishing liquid composition according to the present disclosure is preferably 0.001% by mass or more and 5% by mass or less, more preferably, from the viewpoint of reducing long-period defects without significantly impairing the polishing rate. It is 0.01 mass% or more and 4 mass% or less, More preferably, it is 0.05 mass% or more and 3 mass% or less, More preferably, it is 0.1 mass% or more and 2 mass% or less.

本開示に係る研磨液組成物は、その効果を損なわない範囲で、一又は複数の実施形態において、リン酸類、ホスホン酸、及び有機ホスホン酸とは異なる酸を含んでもよい。   The polishing liquid composition according to the present disclosure may contain an acid different from phosphoric acids, phosphonic acid, and organic phosphonic acid in one or more embodiments as long as the effect thereof is not impaired.

[酸化剤]
本開示に係る研磨液組成物は、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、酸化剤を含有する。酸化剤としては、同様の観点から、過酸化物、過マンガン酸又はその塩、クロム酸又はその塩、ペルオキソ酸又はその塩、酸素酸又はその塩等が挙げられる。これらの中でも、過酸化水素、硝酸鉄(III)、過酢酸、ペルオキソ二硫酸アンモニウム、硫酸鉄(III)及び硫酸アンモニウム鉄(III)等が好ましく、研磨速度向上の観点、表面に金属イオンが付着せず汎用に使用され安価であるという観点から、過酸化水素がより好ましい。これらの酸化剤は、単独で又は2種以上を混合して使用してもよい。
[Oxidant]
The polishing liquid composition according to the present disclosure contains an oxidizing agent from the viewpoint of reducing long-period defects without significantly impairing the polishing rate. Examples of the oxidizing agent include peroxide, permanganic acid or a salt thereof, chromic acid or a salt thereof, peroxo acid or a salt thereof, oxygen acid or a salt thereof from the same viewpoint. Among these, hydrogen peroxide, iron nitrate (III), peracetic acid, ammonium peroxodisulfate, iron sulfate (III), and ammonium iron sulfate (III) are preferable, and metal ions do not adhere to the surface from the viewpoint of improving the polishing rate. From the viewpoint of being used for general purposes and inexpensive, hydrogen peroxide is more preferable. These oxidizing agents may be used alone or in admixture of two or more.

本開示に係る研磨液組成物中における前記酸化剤の含有量は、研磨速度向上の観点から、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、更に好ましくは0.1質量%以上であり、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、好ましくは4質量%以下、より好ましくは2質量%以下、更に好ましくは1.5質量%以下である。また、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、上記含有量は、好ましくは0.01質量%以上4質量%以下、より好ましくは0.05質量%以上2質量%以下、更に好ましくは0.1質量%以上1.5質量%以下である。   The content of the oxidizing agent in the polishing composition according to the present disclosure is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and still more preferably 0.1% from the viewpoint of improving the polishing rate. From the viewpoint of reducing long-period defects without significantly impairing the polishing rate, it is preferably 4% by mass or less, more preferably 2% by mass or less, and still more preferably 1.5% by mass or less. In addition, from the viewpoint of reducing long-period defects without significantly impairing the polishing rate, the content is preferably 0.01% by mass or more and 4% by mass or less, more preferably 0.05% by mass or more and 2% by mass or less. More preferably, it is 0.1 mass% or more and 1.5 mass% or less.

[その他の成分]
本開示に係る研磨液組成物には、必要に応じて他の成分を配合することができる。他の成分としては、増粘剤、分散剤、防錆剤、塩基性物質、研磨速度向上剤、界面活性剤、高分子化合物等が挙げられる。本開示に係る研磨液組成物中のこれら他の任意成分の含有量は、本開示の効果を損なわない範囲で配合されることが好ましく、配合される場合、10質量%以下が好ましく、5質量%以下がより好ましい。
[Other ingredients]
In the polishing composition according to the present disclosure, other components can be blended as necessary. Examples of other components include thickeners, dispersants, rust inhibitors, basic substances, polishing rate improvers, surfactants, and polymer compounds. The content of these other optional components in the polishing liquid composition according to the present disclosure is preferably blended within a range that does not impair the effects of the present disclosure. % Or less is more preferable.

[水]
本開示に係る研磨液組成物は、媒体として水を含有する。水としては、蒸留水、イオン交換水、純水及び超純水等が使用され得る。本開示に係る研磨液組成物中の水の含有量は、研磨液組成物の取扱いが容易になるため、61質量%以上99質量%以下が好ましく、より好ましくは70質量%以上98質量%以下、更に好ましくは80質量%以上97質量%以下、更により好ましくは85質量%以上97質量%以下である。
[water]
The polishing liquid composition according to the present disclosure contains water as a medium. As water, distilled water, ion-exchanged water, pure water, ultrapure water, or the like can be used. The content of water in the polishing liquid composition according to the present disclosure is preferably 61% by mass or more and 99% by mass or less, more preferably 70% by mass or more and 98% by mass or less, because handling of the polishing liquid composition becomes easy. More preferably, it is 80 mass% or more and 97 mass% or less, More preferably, it is 85 mass% or more and 97 mass% or less.

[アルミナ砥粒]
本開示に係る研磨液組成物は、突起欠陥低減の観点からアルミナ砥粒を実質的に含まないことが好ましい。本開示において「アルミナ砥粒を実質的に含まない」とは、一又は複数の実施形態において、アルミナ粒子を含まないこと、砥粒として機能する量のアルミナ粒子を含まないこと、又は、研磨結果に影響を与える量のアルミナ粒子を含まないこと、を含みうる。具体的なアルミナ粒子の含有量は、特に限定されるわけではないが、砥粒全体として5質量%以下が好ましく、2質量%以下がより好ましく、1質量%以下が更に好ましく、実質的に0%であることが更により好ましい。
[Alumina abrasive]
The polishing liquid composition according to the present disclosure preferably does not substantially contain alumina abrasive grains from the viewpoint of reducing protrusion defects. In the present disclosure, “substantially free of alumina abrasive grains” means that in one or a plurality of embodiments, it does not contain alumina particles, does not contain alumina particles in an amount that functions as abrasive grains, or polishing results. Not including an amount of alumina particles that affects the amount of alumina particles. The specific content of alumina particles is not particularly limited, but is preferably 5% by mass or less, more preferably 2% by mass or less, still more preferably 1% by mass or less, and substantially 0% as a whole. % Is even more preferred.

[pH]
本開示に係る研磨液組成物のpHは、研磨速度を大幅に損なうことなく長周期欠陥を低減する観点から、前述の酸や公知のpH調整剤を用いて、pH1.4以上pH2.5以下に調整することが好ましく、より好ましくはpH1.4以上pH2.3以下、更に好ましくはpH1.4以上pH2.1以下、更により好ましくはpH1.4以上pH1.9以下、更により好ましくはpH1.5以上pH1.7以下である。なお、上記のpHは、25℃における研磨液組成物のpHであり、pHメータを用いて測定でき、電極の研磨液組成物への浸漬後2分後の数値である。
[PH]
The pH of the polishing composition according to the present disclosure is pH 1.4 or more and pH 2.5 or less using the above-mentioned acid or a known pH adjuster from the viewpoint of reducing long-period defects without significantly impairing the polishing rate. More preferably, the pH is adjusted to 1.4 to pH 2.3, more preferably pH 1.4 to pH 2.1, still more preferably pH 1.4 to pH 1.9, still more preferably pH 1. It is 5 or more and pH 1.7 or less. In addition, said pH is pH of polishing liquid composition in 25 degreeC, can be measured using a pH meter, and is a numerical value 2 minutes after immersion in the polishing liquid composition of an electrode.

[研磨液組成物の調製方法]
本開示に係る研磨液組成物は、例えば、非球状シリカ粒子A、前述の酸、前述の酸化剤、前述の窒素含有化合物、及び水と、更に所望により、球状シリカ粒子B及び他の成分とを公知の方法で混合することにより調製できる。なお、本開示において「研磨液組成物中における含有成分の含有量」とは、研磨液組成物を研磨に使用する時点での前記成分の含有量をいう。したがって、本開示の研磨液組成物が濃縮物として作製された場合には、前記成分の含有量はその濃縮分だけ高くなりうる。前記混合は、特に制限されず、ホモミキサー、ホモジナイザー、超音波分散機及び湿式ボールミル等の撹拌機等を用いて行うことができる。
[Method for preparing polishing liquid composition]
The polishing composition according to the present disclosure includes, for example, non-spherical silica particles A, the above-described acid, the above-described oxidizing agent, the above-described nitrogen-containing compound, and water, and, if desired, the spherical silica particles B and other components. Can be prepared by mixing by a known method. In addition, in this indication, "content of the content component in polishing liquid composition" means content of the said component at the time of using polishing liquid composition for grinding | polishing. Therefore, when the polishing liquid composition of the present disclosure is prepared as a concentrate, the content of the components can be increased by the concentration. The mixing is not particularly limited, and can be performed using a homomixer, a homogenizer, an ultrasonic disperser, a stirrer such as a wet ball mill, or the like.

したがって、本開示は、その他の態様において、本開示に係る研磨液組成物の製造方法であって、(1)ΔCV値が0.0%を超え10%未満、かつ、D1/D2が2.00以上4.00以下である非球状シリカ粒子Aと、(2)選択的に、前記非球状シリカ粒子Aと体積粒度分布の重なり頻度の合計が0%以上40%以下であり、かつ、動的光散乱法による体積平均粒径(D1)が6.0nm以上40.0nm以下である球状シリカ粒子Bと、(3)分子内の窒素含有数が2〜5である脂肪族又は脂環式アミン化合物と、(4)リン酸類、ホスホン酸、有機ホスホン酸、及びこれらの塩、並びにこれらの組み合わせからなる群から選択される酸と、(5)酸化剤と、(6)水とを混合することを含む製造方法に関する。それぞれの成分の含有量は、上述のとおりとすることができる。前記製造方法は、研磨液組成物のpHをpH1.4以上pH2.5以下、又は上述の範囲のpHとなるように調整することを含んでもよい。   Accordingly, in another aspect, the present disclosure is a method for producing a polishing liquid composition according to the present disclosure. (1) The ΔCV value is more than 0.0% and less than 10%, and D1 / D2 is 2. Nonspherical silica particles A that are 00 or more and 4.00 or less, and (2) optionally, the sum of the overlapping frequencies of the nonspherical silica particles A and the volume particle size distribution is 0% or more and 40% or less; And spherical silica particles B having a volume average particle diameter (D1) of 6.0 nm or more and 40.0 nm or less by dynamic light scattering method, and (3) aliphatic or alicyclic having a nitrogen content of 2 to 5 in the molecule An amine compound, (4) an acid selected from the group consisting of phosphoric acids, phosphonic acids, organic phosphonic acids, and salts thereof, and combinations thereof; (5) an oxidizing agent; and (6) water. The present invention relates to a manufacturing method including: The content of each component can be as described above. The manufacturing method may include adjusting the pH of the polishing composition so as to be pH 1.4 or higher and pH 2.5 or lower, or a pH in the above range.

[被研磨基板]
本開示に係る研磨液組成物を用いて粗研磨される被研磨基板としては、磁気ディスク基板又は磁気ディスク基板に用いられる基板であり、例えば、Ni−Pめっきされたアルミニウム合金基板や、珪酸ガラス、アルミノ珪酸ガラス、結晶化ガラス、強化ガラス等のガラス基板が挙げられる。中でも、本開示で使用される被研磨基板としては、強度と扱いやすさの観点からNi−Pめっきアルミニウム合金基板が好ましい。上記被研磨基板の形状には特に制限はなく、例えば、ディスク状、プレート状、スラブ状、プリズム状等の平面部を有する形状や、レンズ等の曲面部を有する形状であればよい。中でも、ディスク状の被研磨基板が適している。ディスク状の被研磨基板の場合、その外径は例えば2〜95mm程度であり、その厚みは例えば0.5〜2mm程度である。
[Polished substrate]
As a substrate to be polished roughly using the polishing composition according to the present disclosure, a magnetic disk substrate or a substrate used for a magnetic disk substrate, for example, an Ni-P plated aluminum alloy substrate, silicate glass, or the like is used. And glass substrates such as aluminosilicate glass, crystallized glass, and tempered glass. Especially, as a to-be-polished board | substrate used by this indication, a Ni-P plating aluminum alloy board | substrate is preferable from a viewpoint of intensity | strength and ease of handling. There is no restriction | limiting in particular in the shape of the said to-be-polished substrate, For example, what is necessary is just the shape which has planar parts, such as a disk shape, plate shape, slab shape, prism shape, and the shape which has curved surface parts, such as a lens. Of these, a disk-shaped substrate to be polished is suitable. In the case of a disk-shaped substrate to be polished, the outer diameter is, for example, about 2 to 95 mm, and the thickness is, for example, about 0.5 to 2 mm.

[磁気ディスク基板の製造方法]
一般に、磁気ディスクは、精研削工程を経たガラス基板や、Ni−Pメッキ工程を経たアルミニウム合金基板が、粗研磨工程、仕上げ研磨工程を経て研磨され、記録部形成工程にて磁気ディスク化されて製造される。本開示に係る研磨液組成物、一又は複数の実施形態において、下記(1)〜(3)の工程を有する磁気ディスク基板の研磨方法及び/又は製造方法に用いられうる。したがって、本開示は、一態様において、下記(1)〜(3)の工程を有する磁気ディスク基板の製造方法に関する。
(1)粗研磨工程:本開示に係る研磨液組成物を用いて被研磨基板の研磨対象面を研磨する工程、
(2)洗浄工程:工程(1)で得られた基板を洗浄する工程、及び、
(3)仕上げ研磨:シリカ粒子Cを含有する研磨液組成物(以下、「仕上げ研磨用研磨液組成物」ともいう)を用いて工程(2)で得られた基板の研磨対象面を研磨する工程であって、前記工程(1)と(3)は別の研磨機で行う工程。
[Method of manufacturing magnetic disk substrate]
Generally, a magnetic disk is obtained by polishing a glass substrate that has undergone a fine grinding process or an aluminum alloy substrate that has undergone a Ni-P plating process through a rough polishing process and a final polishing process, and forming a magnetic disk in a recording part forming process. Manufactured. In one or a plurality of embodiments, the polishing liquid composition according to the present disclosure can be used in a polishing method and / or a manufacturing method of a magnetic disk substrate having the following steps (1) to (3). Accordingly, in one aspect, the present disclosure relates to a method for manufacturing a magnetic disk substrate having the following steps (1) to (3).
(1) Rough polishing step: a step of polishing a polishing target surface of a substrate to be polished using the polishing composition according to the present disclosure;
(2) Cleaning step: a step of cleaning the substrate obtained in step (1), and
(3) Final polishing: The surface to be polished of the substrate obtained in step (2) is polished using a polishing liquid composition containing silica particles C (hereinafter also referred to as “polishing liquid composition for final polishing”). It is a process, Comprising: The said process (1) and (3) is a process performed with another grinding machine.

[工程(1):粗研磨工程]
工程(1)は、一又は複数の実施形態において、シリカ粒子A及び水を含む本開示に係る研磨液組成物を被研磨基板の研磨対象面に供給し、前記研磨対象面に研磨パッドを接触させ、前記研磨パッド及び前記被研磨基板の少なくとも一方を動かして前記研磨対象面を研磨する工程である。工程(1)で使用される研磨機としては、特に限定されず、磁気ディスク基板研磨用の公知の研磨機が使用できる。
[Step (1): Rough polishing step]
In one or a plurality of embodiments, the step (1) supplies the polishing composition according to the present disclosure containing the silica particles A and water to the polishing target surface of the substrate to be polished, and contacts the polishing pad with the polishing target surface. And polishing the surface to be polished by moving at least one of the polishing pad and the substrate to be polished. The polishing machine used in the step (1) is not particularly limited, and a known polishing machine for polishing a magnetic disk substrate can be used.

[工程(1)における本開示に係る研磨液組成物を研磨機へ供給する方法]
本開示に係る研磨液組成物を研磨機へ供給する方法としては、例えばポンプ等を用いて連続的に供給を行う方法が挙げられる。本開示に係る研磨液組成物を研磨機へ供給する際は、全ての成分を含んだ1液で供給する方法の他、本開示に係る研磨液組成物の保存安定性等を考慮して、複数の配合用成分液に分け、2液以上で供給することもできる。後者の場合、例えば供給配管中又は被研磨基板上で、上記複数の配合用成分液が混合され、本開示に係る研磨液組成物となる。
[Method for Supplying Polishing Liquid Composition According to Present Disclosure in Step (1) to Polishing Machine]
As a method of supplying the polishing composition according to the present disclosure to a polishing machine, for example, a method of continuously supplying using a pump or the like can be mentioned. When supplying the polishing liquid composition according to the present disclosure to a polishing machine, in addition to the method of supplying a single liquid containing all components, considering the storage stability of the polishing liquid composition according to the present disclosure, It can also be divided into a plurality of blending component liquids and supplied in two or more liquids. In the latter case, for example, the plurality of compounding component liquids are mixed in the supply pipe or on the substrate to be polished to obtain the polishing liquid composition according to the present disclosure.

[工程(2):洗浄工程]
工程(2)は、工程(1)で得られた基板を洗浄する工程である。工程(2)は、一又は複数の実施形態において、工程(1)の粗研磨が施された基板を、洗浄剤組成物を用いて洗浄する工程である。工程(2)における洗浄方法は、特に限定されないが、一又は複数の実施形態において、工程(1)で得られた基板を洗浄剤組成物に浸漬する方法、及び、洗浄剤組成物を射出して工程(1)で得られた基板の表面上に洗浄剤組成物を供給する方法が挙げられる。
[Step (2): Cleaning step]
Step (2) is a step of cleaning the substrate obtained in step (1). Step (2) is a step of cleaning the substrate that has been subjected to the rough polishing in step (1) with a cleaning composition in one or more embodiments. The cleaning method in the step (2) is not particularly limited, but in one or a plurality of embodiments, a method of immersing the substrate obtained in the step (1) in the cleaning composition, and injecting the cleaning composition. And a method of supplying a cleaning composition onto the surface of the substrate obtained in step (1).

[工程(2)の洗浄剤組成物]
工程(2)の洗浄剤組成物としては、一又は複数の実施形態において、アルカリ剤、水、及び必要に応じて各種添加剤を含有するものが使用できる。
[Cleaning composition in step (2)]
As a cleaning composition of a process (2), in one or some embodiment, what contains an alkali agent, water, and various additives as needed can be used.

[アルカリ剤]
前記洗浄剤組成物で使用されるアルカリ剤は、無機アルカリ剤及び有機アルカリ剤のいずれであってもよい。無機アルカリ剤としては、例えば、アンモニア、水酸化カリウム、及び水酸化ナトリウム等が挙げられる。有機アルカリ剤としては、例えば、ヒドロキシアルキルアミン、テトラメチルアンモニウムハイドロオキサイド、及びコリンからなる群より選ばれる一種以上が挙げられる。これらのアルカリ剤は、単独で用いてもよく、二種以上を混合して用いてもよい。洗浄剤組成物の基板上の残留物の分散性の向上、保存安定性の向上の観点から、前記アルカリ剤としては、水酸化カリウム、水酸化ナトリウム、モノエタノールアミン、メチルジエタノールアミン、及びアミノエチルエタノールアミンからなる群から選ばれる少なくとも1種が好ましく、水酸化カリウム及び水酸化ナトリウムからなる群から選ばれる少なくとも1種がより好ましい。
[Alkaline agent]
The alkaline agent used in the cleaning composition may be either an inorganic alkaline agent or an organic alkaline agent. Examples of the inorganic alkaline agent include ammonia, potassium hydroxide, and sodium hydroxide. Examples of the organic alkali agent include one or more selected from the group consisting of hydroxyalkylamine, tetramethylammonium hydroxide, and choline. These alkaline agents may be used alone or in combination of two or more. From the viewpoint of improving the dispersibility of the residue on the substrate of the cleaning composition and improving the storage stability, the alkaline agent includes potassium hydroxide, sodium hydroxide, monoethanolamine, methyldiethanolamine, and aminoethylethanol. At least one selected from the group consisting of amines is preferred, and at least one selected from the group consisting of potassium hydroxide and sodium hydroxide is more preferred.

[洗浄剤組成物中の各種添加剤]
洗浄剤組成物には、アルカリ剤以外に、非イオン界面活性剤、キレート剤、エーテルカルボキシレートもしくは脂肪酸、アニオン性界面活性剤、水溶性高分子、消泡剤(成分に該当する界面活性剤は除く。)、アルコール類、防腐剤、酸化防止剤等が含まれていてもよい。
[Various additives in cleaning composition]
In addition to alkaline agents, the detergent composition includes nonionic surfactants, chelating agents, ether carboxylates or fatty acids, anionic surfactants, water-soluble polymers, antifoaming agents (surfactants corresponding to ingredients are Except alcohol), preservatives, antioxidants, and the like.

[工程(3):仕上げ研磨工程]
工程(3)は、仕上げ研磨用研磨液組成物を工程(2)で得られた基板の研磨対象面に供給し、前記研磨対象面に研磨パッドを接触させ、前記研磨パッド及び/又は前記被研磨基板を動かして前記研磨対象面を研磨する工程である。工程(3)で使用される研磨機は、突起欠陥低減の観点、及び、その他の表面欠陥を効率よく低減するため粗研磨とポア径の異なるパッドを使用する観点から、工程(1)で用いた研磨機とは別の研磨機である。
[Step (3): Final polishing step]
In the step (3), the polishing composition for final polishing is supplied to the surface to be polished of the substrate obtained in the step (2), the polishing pad is brought into contact with the surface to be polished, and the polishing pad and / or the substrate to be polished is supplied. In this step, the polishing substrate is moved to polish the surface to be polished. The polishing machine used in step (3) is used in step (1) from the viewpoint of reducing protrusion defects and using pads having different pore diameters from rough polishing in order to efficiently reduce other surface defects. This polishing machine is different from the polishing machine used.

本態様の磁気ディスク基板の製造方法は、工程(1)の粗研磨工程、工程(2)の洗浄工程、及び、工程(3)の仕上げ研磨工程を含むことにより、粗研磨の研磨速度を大幅に損なうことなく長周期欠陥が低減され、仕上げ研磨後の突起欠陥が低減された基板を効率的に製造することができる。   The method of manufacturing a magnetic disk substrate of this aspect greatly increases the polishing rate of rough polishing by including the rough polishing step of step (1), the cleaning step of step (2), and the final polishing step of step (3). Thus, it is possible to efficiently manufacture a substrate in which long-period defects are reduced without loss, and protrusion defects after finish polishing are reduced.

[工程(3):仕上げ研磨用研磨液組成物]
工程(3)で使用される仕上げ研磨用研磨液組成物は、仕上げ研磨後の突起欠陥低減の観点から砥粒としてシリカ粒子Cを含有する。使用されるシリカ粒子Cは、仕上げ研磨後の長波長うねり低減の観点から、好ましくはコロイダルシリカである。また、仕上げ研磨用研磨液組成物は、仕上げ研磨後の突起欠陥を低減する観点から、アルミナ砥粒を実質的に含まないことが好ましい。前記シリカ粒子は、一又は複数の実施形態において、球状である。
[Step (3): Polishing liquid composition for finish polishing]
The polishing composition for finish polishing used in the step (3) contains silica particles C as abrasive grains from the viewpoint of reducing protrusion defects after finish polishing. The silica particles C used are preferably colloidal silica from the viewpoint of reducing long wavelength waviness after finish polishing. Moreover, it is preferable that the polishing liquid composition for final polishing does not contain an alumina abrasive grain substantially from a viewpoint of reducing the projection defect after final polishing. The silica particles are spherical in one or more embodiments.

仕上げ研磨用研磨液組成物に用いられるシリカ粒子Cの平均粒子径(D50)は、仕上げ研磨後の突起欠陥を低減する観点から、5nm以上50nm以下が好ましく、より好ましくは10nm以上45nm以下、更に好ましくは15nm以上40nm以下、更により好ましくは20nm以上35nm以下である。また、前記シリカ粒子Cの平均粒子径(D50)は、仕上げ研磨後の突起欠陥を低減する観点から、非球状シリカ粒子Aの平均粒子径(D50)より小さいことが好ましい。なお、該平均粒子径は、実施例に記載の方法により求めることができる。   The average particle diameter (D50) of the silica particles C used in the polishing composition for finish polishing is preferably 5 nm or more and 50 nm or less, more preferably 10 nm or more and 45 nm or less, more preferably from the viewpoint of reducing protrusion defects after finish polishing. Preferably they are 15 nm or more and 40 nm or less, More preferably, they are 20 nm or more and 35 nm or less. Further, the average particle diameter (D50) of the silica particles C is preferably smaller than the average particle diameter (D50) of the non-spherical silica particles A from the viewpoint of reducing protrusion defects after finish polishing. In addition, this average particle diameter can be calculated | required by the method as described in an Example.

また、前記シリカ粒子Cの粒子径の標準偏差は、仕上げ研磨後の突起欠陥を低減する観点から、5nm以上40nm以下が好ましく、より好ましくは10nm以上35nm以下、更に好ましくは15nm以上30nm以下である。なお、該標準偏差は実施例に記載の方法により求めることができる。   Further, the standard deviation of the particle diameter of the silica particles C is preferably 5 nm or more and 40 nm or less, more preferably 10 nm or more and 35 nm or less, and further preferably 15 nm or more and 30 nm or less, from the viewpoint of reducing protrusion defects after finish polishing. . In addition, this standard deviation can be calculated | required by the method as described in an Example.

仕上げ研磨用研磨液組成物に含まれるシリカ粒子Cの含有量は、仕上げ研磨後の長波長うねり及び突起欠陥を低減する観点から、0.5質量%以上20質量%以下が好ましく、1.0質量%以上15質量%以下がより好ましく、3.0質量%以上13質量%以下が更に好ましく、4.0質量%以上10質量%以下が更により好ましい。   The content of the silica particles C contained in the polishing composition for finish polishing is preferably 0.5% by mass or more and 20% by mass or less from the viewpoint of reducing long wavelength waviness and protrusion defects after finish polishing. The mass% is more preferably 15% by mass or less, still more preferably 3.0% by mass or more and 13% by mass or less, and still more preferably 4.0% by mass or more and 10% by mass or less.

仕上げ研磨用研磨液組成物は、仕上げ研磨後の長波長うねり及び突起欠陥を低減する観点から、複素環芳香族化合物、多価アミン化合物、及びアニオン性基を有する高分子から選ばれる1種以上を含有することが好ましく、2種以上含有することがより好ましく、複素環芳香族化合物、多価アミン化合物、及びアニオン性基を有する高分子を含有することが更に好ましい。   The polishing composition for finish polishing is one or more selected from a heterocyclic aromatic compound, a polyvalent amine compound, and a polymer having an anionic group from the viewpoint of reducing long-wave waviness and protrusion defects after finish polishing. It is preferable to contain 2 or more types, and it is more preferable to contain a heterocyclic aromatic compound, a polyvalent amine compound, and a polymer having an anionic group.

仕上げ研磨用研磨液組成物は、研磨速度を向上する観点から、酸、酸化剤を含有することが好ましい。酸、酸化剤の好ましい使用態様については、前述の本開示に係る研磨液組成物の場合と同様である。また、仕上げ研磨用研磨液組成物に用いられる水、仕上げ研磨用研磨液組成物のpH及び調製方法については、前述の本開示に係る研磨液組成物の場合と同様である。   The polishing composition for finish polishing preferably contains an acid and an oxidizing agent from the viewpoint of improving the polishing rate. About the preferable usage aspect of an acid and an oxidizing agent, it is the same as that of the case of the polishing liquid composition which concerns on the above-mentioned this indication. Further, the water used for the polishing composition for finish polishing, the pH of the polishing composition for finish polishing and the preparation method thereof are the same as those of the polishing composition according to the present disclosure described above.

また、工程(3)における仕上げ研磨用研磨液組成物の供給速度及び仕上げ研磨用研磨液組成物を研磨機へ供給する方法については、前述の本開示に係る研磨液組成物の場合と同様である。   Further, the supply rate of the polishing composition for finish polishing and the method for supplying the polishing composition for finish polishing to the polishing machine in the step (3) are the same as those of the polishing composition according to the present disclosure described above. is there.

本開示の製造方法によれば、一又は複数の実施形態において、粗研磨において研磨速度を大幅に損なうことなく長周期欠陥を低減できるから、突起欠陥が低減された磁気ディスク基板を高い基板収率で、生産性よく製造できるという効果が奏されうる。   According to the manufacturing method of the present disclosure, in one or a plurality of embodiments, since long-period defects can be reduced without significantly impairing the polishing rate in rough polishing, a magnetic disk substrate with reduced protrusion defects can be obtained with a high substrate yield. Thus, the effect of being able to manufacture with high productivity can be achieved.

[研磨方法]
本開示は、その他の態様として、上述した工程(1)、工程(2)、工程(3)を有する研磨方法に関する。工程(1)〜(3)における被研磨基板、本開示に係る研磨液組成物、非球状シリカ粒子A、仕上げ研磨用研磨液組成物及びそのシリカ粒子C、研磨方法及び条件、洗浄剤組成物、並びに洗浄方法については、上述の本開示に係る磁気ディスク基板の製造方法と同様とすることができる。
[Polishing method]
As another aspect, the present disclosure relates to a polishing method having the above-described step (1), step (2), and step (3). Polished substrate in steps (1) to (3), polishing liquid composition according to the present disclosure, non-spherical silica particles A, polishing liquid composition for final polishing and its silica particles C, polishing method and conditions, cleaning composition The cleaning method can be the same as the method for manufacturing the magnetic disk substrate according to the present disclosure described above.

本開示は、更にその他の態様として、下記(1)〜(3)の工程を有し、下記工程(1)と下記工程(3)とは別の研磨機で行う磁気ディスク基板の研磨方法に関する。工程(1)〜(3)における被研磨基板、研磨パッド、本開示に係る研磨液組成物、仕上げ研磨用研磨液組成物及びそのシリカ粒子、研磨方法及び条件、洗浄剤組成物、並びに洗浄方法については、上述の本開示の磁気ディスク基板の製造方法と同様とすることができる。
(1)本開示に係る研磨液組成物を用い、被研磨基板(好ましくはNi−Pめっきアルミニウム合金基板)の研磨対象面を研磨する工程。
(2)工程(1)で得られた基板を洗浄する工程。
(3)シリカ粒子C及び水を含有する仕上げ研磨用研磨液組成物を工程(2)で得られた基板の研磨対象面に供給し、前記研磨対象面に研磨パッドを接触させ、前記研磨パッド及び前記被研磨基板の少なくとも一方を動かして前記研磨対象面を研磨する工程。
As another aspect, the present disclosure relates to a method for polishing a magnetic disk substrate that includes the following steps (1) to (3) and is performed by a polishing machine different from the following step (1) and the following step (3). . Polished substrate, polishing pad, polishing liquid composition according to the present disclosure, polishing liquid composition for final polishing and its silica particles, polishing method and conditions, cleaning composition, and cleaning method in steps (1) to (3) The above may be the same as the method for manufacturing a magnetic disk substrate of the present disclosure described above.
(1) The process of grind | polishing the grinding | polishing target surface of a to-be-polished board | substrate (preferably Ni-P plating aluminum alloy board | substrate) using the polishing liquid composition which concerns on this indication.
(2) A step of cleaning the substrate obtained in step (1).
(3) A polishing composition for final polishing containing silica particles C and water is supplied to the surface to be polished of the substrate obtained in step (2), and the polishing pad is brought into contact with the surface to be polished, and the polishing pad And a step of polishing the surface to be polished by moving at least one of the substrates to be polished.

本開示の研磨方法を使用することにより、一又は複数の実施形態において、粗研磨において研磨速度を大幅に損なうことなく長周期欠陥を低減できるから、突起欠陥が低減された磁気ディスク基板を高い基板収率で、生産性よく製造できるという効果が奏されうる。   By using the polishing method of the present disclosure, in one or a plurality of embodiments, it is possible to reduce long-period defects without significantly reducing the polishing rate in rough polishing, so that a magnetic disk substrate with reduced protrusion defects is a high substrate. The effect that it can manufacture with sufficient productivity with a yield can be show | played.

本発明にかかる磁気ディスク基板の製造方法及び研磨方法は、一又は複数の実施形態において、図5に示すような、本開示に係る研磨液組成物を用いて被研磨基板の研磨する第一の研磨機と、前記第一研磨機で研磨した基板を洗浄する洗浄ユニットと、研磨液組成物Bを用いて洗浄後の基板を研磨する第二の研磨機とを備える磁気ディスク基板の研磨システムにより行うことができる。したがって、本発明は、一態様において、本開示に係る研磨液組成物を用いて被研磨基板の研磨する第一の研磨機と、前記第一研磨機で研磨した基板を洗浄する洗浄ユニットと、仕上げ研磨用研磨液組成物を用いて洗浄後の基板を研磨する第二の研磨機とを備える磁気ディスク基板の研磨システムに関する。本開示に係る研磨液組成物及び仕上げ研磨用研磨液組成物は前述のとおりであり、被研磨基板、各研磨機で使用される研磨パッド、研磨方法及び条件、洗浄剤組成物、並びに洗浄方法については、上述の本開示に係る磁気ディスク基板の製造方法と同様とすることができる。   In one or a plurality of embodiments, a method for manufacturing a magnetic disk substrate and a polishing method according to the present invention include a first method for polishing a substrate to be polished using a polishing liquid composition according to the present disclosure as shown in FIG. A magnetic disk substrate polishing system comprising: a polishing machine; a cleaning unit that cleans the substrate polished by the first polishing machine; and a second polishing machine that polishes the cleaned substrate using the polishing composition B It can be carried out. Therefore, the present invention, in one aspect, a first polishing machine for polishing a substrate to be polished using the polishing composition according to the present disclosure, a cleaning unit for cleaning the substrate polished by the first polishing machine, The present invention relates to a magnetic disk substrate polishing system including a second polishing machine that polishes a substrate after cleaning using a polishing composition for final polishing. The polishing liquid composition and the polishing liquid composition for finish polishing according to the present disclosure are as described above. The substrate to be polished, the polishing pad used in each polishing machine, the polishing method and conditions, the cleaning composition, and the cleaning method Can be the same as the above-described method for manufacturing a magnetic disk substrate according to the present disclosure.

本開示は更に以下の一又は複数の実施形態に関する。   The present disclosure further relates to one or more of the following embodiments.

<1> 非球状シリカ粒子A、窒素含有化合物、酸、酸化剤及び水を含む磁気ディスク基板用研磨剤組成物であって、
(1)前記非球状シリカ粒子Aが2つ以上の粒子が凝集又は融着した形状であり、
(2)前記非球状シリカ粒子AのΔCV値が0.0%を超え10%未満であり、
ここで、ΔCV値は、動的光散乱法による検出角30°における散乱強度分布に基づく標準偏差を前記散乱強度分布に基づく平均粒径で除して100を掛けた値(CV30)と、検出角90°における散乱強度分布に基づく標準偏差を前記散乱強度分布に基づく平均粒径で除して100を掛けた値(CV90)との差の値(ΔCV=CV30−CV90)であり、
(3)前記非球状シリカ粒子Aの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の比(D1/D2)が2.00以上4.00以下であり、
(4)前記窒素含有化合物が分子内の窒素含有数が2〜5である脂肪族アミン化合物又は脂環式アミン化合物であり、
(5)前記酸が、リン酸類、ホスホン酸、有機ホスホン酸、及びこれらの組み合わせからなる群から選択され、
(6)pHが1.4〜2.5である、磁気ディスク基板用研磨剤組成物。
<1> A polishing composition for a magnetic disk substrate comprising non-spherical silica particles A, a nitrogen-containing compound, an acid, an oxidizing agent and water,
(1) The non-spherical silica particle A has a shape in which two or more particles are aggregated or fused,
(2) The ΔCV value of the non-spherical silica particles A is more than 0.0% and less than 10%,
Here, the ΔCV value is obtained by dividing the standard deviation based on the scattering intensity distribution at a detection angle of 30 ° by the dynamic light scattering method by the average particle diameter based on the scattering intensity distribution and multiplying by 100 (CV30). The difference (ΔCV = CV30−CV90) from the value obtained by dividing the standard deviation based on the scattering intensity distribution at an angle of 90 ° by the average particle diameter based on the scattering intensity distribution and multiplying by 100 (CV90),
(3) The ratio (D1 / D2) of the volume average particle diameter (D1) by the dynamic light scattering method of the non-spherical silica particles A to the specific surface area equivalent particle size (D2) by the BET method is 2.00 or more and 4.00. And
(4) The nitrogen-containing compound is an aliphatic amine compound or an alicyclic amine compound having a nitrogen content in the molecule of 2 to 5,
(5) the acid is selected from the group consisting of phosphoric acids, phosphonic acids, organic phosphonic acids, and combinations thereof;
(6) A polishing composition for a magnetic disk substrate having a pH of 1.4 to 2.5.

<2> 前記非球状シリカ粒子Aが、金平糖型のシリカ粒子A1、異形型のシリカ粒子A2、異形かつ金平糖型のシリカ粒子A3、及びこれらの組み合わせからなる群から選択される、<1>記載の磁気ディスク基板用研磨液組成物。
<3> 前記非球状シリカ粒子AのΔCV値が、好ましくは0.0%より上、より好ましくは0.2%以上、更に好ましくは0.3%以上、更により好ましくは0.4%以上である、<1>又は<2>に記載の磁気ディスク基板用研磨液組成物。
<4> 前記非球状シリカ粒子AのΔCV値が、10.0%未満であることが好ましく、より好ましくは8.0%以下、更に好ましくは7.0%以下、更により好ましくは4.0%以下である、<1>から<3>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<5> 前記非球状シリカ粒子AのΔCV値が、好ましくは0.0%より上10.0%未満が好ましく、より好ましくは0.2%以上8.0%以下、更にこのましくは0.3%以上7.0%以下、更により好ましくは0.4%以上4.0%以下である、<1>から<4>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<6> 前記非球状シリカ粒子Aの体積平均粒径(D1)が、好ましくは120.0nm以上、より好ましくは150.0nm以上、更に好ましくは160.0nm以上、更により好ましくは170.0nm以上、更により好ましくは180.0nm以上、更により好ましくは190.0nm以上、更により好ましくは200.0nm以上である、<1>から<5>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<7> 前記非球状シリカ粒子Aの体積平均粒径(D1)が、好ましくは300.0nm未満、より好ましくは260.0nm未満、更に好ましくは250.0nm未満、更により好ましくは220.0nm未満、更により好ましくは210.0nm未満である、<1>から<6>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<8> 前記非球状シリカ粒子Aの体積平均粒径(D1)が、好ましくは120.0nm以上300.0nm未満、より好ましくは120.0nm以上260.0nm未満、更に好ましくは150.0nm以上260.0nm未満、更により好ましくは160.0nm以上260.0nm未満、更により好ましくは170.0nm以上260.0nm未満、更により好ましくは180.0nm以上250.0nm未満、更により好ましくは190.0nm以上220.0nm未満、更により好ましくは200.0nm以上210.0nm未満である、<1>から<7>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<9> 前記非球状シリカ粒子Aの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の比(D1/D2)が、好ましくは2.00以上、より好ましくは2.50以上、更に好ましくは3.00以上、更により好ましくは3.50以上である、<1>から<8>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<10> 前記非球状シリカ粒子Aの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の比(D1/D2)が、好ましくは4.00以下、より好ましくは3.90以下、更に好ましくは3.80以下である、<1>から<9>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<11> 前記非球状シリカ粒子Aの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の比(D1/D2)が、好ましくは2.00以上4.00以下、より好ましくは2.50以上3.90以下、更に好ましくは3.00以上3.90以下、更により好ましくは3.50以上3.80以下である、<1>から<10>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<12> 前記非球状シリカ粒子AのCV90は、好ましくは20.0%以上、より好ましくは25.0%以上、更に好ましくは27.0%以上である、<1>から<11>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<13> 前記非球状シリカ粒子AのCV90は、好ましくは40.0%以下、より好ましくは38.0%以下、更に好ましくは35.0%以下、更により好ましくは32.0%以下である、<1>から<12>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<14> 前記非球状シリカ粒子AのCV90は、好ましくは20.0%以上40.0%以下であって、より好ましくは25.0%以上38.0%以下、更に好ましくは21.0%以上35.0%以下、更により好ましくは27.0%以上32.0%以下である、<1>から<13>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<15> 前記研磨液組成物に含まれる非球状シリカ粒子Aの含有量が、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1質量%以上、更により好ましは2質量%以上である、<1>から<14>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<16> 前記研磨液組成物に含まれる非球状シリカ粒子Aの含有量が、好ましくは30質量%以下、より好ましくは25質量%以下、更に好ましくは20質量%以下、更により好ましくは15質量%以下である、<1>から<15>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<17> 前記研磨液組成物に含まれる非球状シリカ粒子Aの含有量が、好ましくは0.1質量%以上30質量%以下、より好ましくは0.5質量%以上25質量%以下、更に好ましくは1質量%以上20質量%以下、更により好ましくは2質量%以上15質量%以下である、<1>から<16>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<18> 前記非球状シリカ粒子Aが、水ガラスを原料とする粒子成長法により製造されたシリカ粒子である、<1>から<17>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<19> 更に、球状シリカ粒子Bを含み、前記球状シリカ粒子Bは、前記非球状シリカ粒子Aと体積粒度分布の重なり頻度の合計が0%以上40%以下であり、かつ、動的光散乱法による体積平均粒径(D1)が6.0nm以上40.0nm以下であり、前記研磨液組成物における前記非球状シリカ粒子Aと前記球状シリカ粒子Bとの質量比(A/B)が80/20以上99/1以下であり、かつ、研磨液組成物におけるシリカ粒子全体に対する非球状シリカ粒子Aと球状シリカ粒子Bの合計の質量比が、98.0質量%を超える、<1>から<18>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<20> 前記球状シリカ粒子Bの体積平均粒径(D1)が、好ましくは6.0nm以上であって、より好ましくは7.0nm以上である、<19>に記載の磁気ディスク基板用研磨液組成物。
<21> 前記球状シリカ粒子Bの体積平均粒径(D1)が、好ましくは40.0nm以下、より好ましくは35.0nm以下、更に好ましくは30.0nm以下である、<19>又は<20>に記載の磁気ディスク基板用研磨液組成物。
<22> 前記球状シリカ粒子Bの体積平均粒径(D1)が、好ましくは6.0nm以上40.0nm以下、より好ましくは6.0nm以上35.0nm以下、更に好ましくは7.0nm以上30.0nm以下である、<19>から<21>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<23> 前記球状シリカ粒子Bの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の比(D1/D2)が、好ましくは1.00以上、より好ましくは1.10以上、更に好ましくは1.15以上である、<19>から<22>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<24> 前記球状シリカ粒子Bの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の比(D1/D2)が、好ましくは1.50以下、より好ましくは1.40以下、更に好ましくは1.30以下である、<19>から<23>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<25> 前記球状シリカ粒子Bの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の比(D1/D2)が、好ましくは1.00以上1.50以下、好ましくは1.10以上1.40以下、より好ましくは1.15以上1.30以下である、<19>から<24>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<26> 前記研磨液組成物に含まれる球状シリカ粒子Bの含有量が、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、更に好ましくは0.1質量%以上、更により好ましくは0.2質量%以上である、<19>から<25>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<27> 前記研磨液組成物に含まれる球状シリカ粒子Bの含有量が、好ましくは3質量%以下、より好ましくは2.5質量%以下、更に好ましくは2質量%以下、更により好ましくは1.5質量%以下である、<19>から<26>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<28> 前記研磨液組成物中の非球状シリカ粒子Aと球状シリカ粒子Bの体積粒度分布の重なり頻度の合計が、好ましくは0%以上40%以下、より好ましくは10%以上38%以下、更に好ましくは15%以上36%以下、更により好ましくは20%以上35%以下である、<19>から<27>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<29> 前記研磨液組成物中の非球状シリカ粒子Aと球状シリカ粒子Bの含有量の質量比(A/B)が、好ましくは80/20以上、より好ましくは85/15以上、更に好ましくは90/10以上である、<19>から<28>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<30> 前記研磨液組成物中の非球状シリカ粒子Aと球状シリカ粒子Bの体積粒度分布の重なり頻度の合計が、好ましくは99/1以下、より好ましくは95/5以下、更に好ましくは96/4以下である、<19>から<29>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<31> 前記研磨液組成物におけるシリカ粒子全体に対する非球状シリカ粒子Aの質量比、又は、非球状シリカ粒子Aと球状シリカ粒子Bの合計の質量比が、好ましくは98.0質量%を超え、より好ましくは98.5質量%以上、更に好ましくは99.0質量%以上、更により好ましくは99.5質量%以上、更により好ましくは99.8質量%以上であり、更により好ましくは実質的に100質量%である、<1>から<30>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<32> 前記窒素含有化合物における窒素含有化合物の分子内の窒素原子数が、好ましくは2〜4個である、<1>から<31>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<33> 前記窒素含有化合物における炭素原子数が、好ましくは2〜8、より好ましくは4〜8個である、<1>から<32>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<34> 前記窒素含有化合物の分子量が、好ましくは60以上500以下、より好ましくは60以上300以下、更に好ましくは60以上150以下、更により好ましくは60以上135以下である、<1>から<33>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<35> 前記研磨液組成物における、窒素含有化合物の含有量が、好ましくは0.0025質量%以上、より好ましくは0.005質量%以上、更に好ましくは0.01質量%以上である、<1>から<34>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<36> 前記研磨液組成物における、窒素含有化合物の含有量が、好ましくは1.0質量%以下、より好ましくは0.30質量%以下、更に好ましくは0.20質量%以下、更により好ましくは0.15質量%以下、更により好ましくは0.10質量%以下である、<1>から<35>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<37> 前記研磨液組成物における、窒素含有化合物の含有量が、好ましくは0.0025質量%以上1.0質量%以下、より好ましくは0.005質量%以上0.20質量%以下、更に好ましくは0.01質量%以上0.15質量%以下、更により好ましくは0.001質量%以上0.10質量%以下である、<1>から<36>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<38> 前記研磨液組成物における、シリカ粒子と窒素含有化合物との含有量比[シリカ粒子の含有量(質量%)/含窒素化合物の含有量(質量%)]が、好ましくは0.1以上5000以下、より好ましくは1以上4000以下、更に好ましくは5以上2400以下、更により好ましくは40以上1200以下、更により好ましくは60以上600以下である、<1>から<37>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<39> 前記研磨液組成物における前記酸の含有量が、好ましくは0.001質量%以上5質量%以下、より好ましくは0.01質量%以上4質量%以下、更に好ましくは0.05質量%以上3質量%以下、更により好ましくは0.1質量%以上2質量%以下である、<1>から<38>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<40> 前記研磨液組成物が、アルミナ粒子を実質含まない、<1>から<39>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<41> 前記研磨液組成物のpHが、好ましくはpH1.4以上pH2.5以下、より好ましくはpH1.4以上pH2.3以下、更に好ましくはpH1.4以上pH2.1以下、更により好ましくはpH1.4以上pH1.9以下、更により好ましくはpH1.5以上pH1.7以下である、<1>から<40>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<42> 前記研磨液組成物の研磨対象が、Ni−Pめっきアルミニウム合金基板である、<1>から<41>のいずれかに記載の磁気ディスク基板用研磨液組成物。
<43> (1)<1>から<42>のいずれかに記載の研磨液組成物を用いて被研磨基板の研磨対象面を研磨する工程、(2)工程(1)で得られた基板を洗浄する工程、及び、(3)工程(2)で得られた基板を、シリカ粒子を含有する研磨液組成物を用いて研磨対象面を研磨する工程を有し、前記工程(1)と(3)を別の研磨機で行う、磁気ディスク基板の研磨方法。
<44> (1)<1>から<42>のいずれかに記載の研磨液組成物を用いて被研磨基板の研磨対象面を研磨する工程、(2)工程(1)で得られた基板を洗浄する工程、及び、(3)工程(2)で得られた基板を、シリカ粒子を含有する研磨液組成物を用いて研磨対象面を研磨する工程を有し、前記工程(1)と(3)を別の研磨機で行う、磁気ディスク基板の製造方法。
<2> The description of <1>, wherein the non-spherical silica particles A are selected from the group consisting of confetti-type silica particles A1, deformed-type silica particles A2, deformed and confetti-type silica particles A3, and combinations thereof. A polishing composition for a magnetic disk substrate.
<3> The ΔCV value of the non-spherical silica particles A is preferably more than 0.0%, more preferably 0.2% or more, still more preferably 0.3% or more, and even more preferably 0.4% or more. The polishing composition for a magnetic disk substrate according to <1> or <2>.
<4> The non-spherical silica particles A preferably have a ΔCV value of less than 10.0%, more preferably 8.0% or less, still more preferably 7.0% or less, and even more preferably 4.0. % Polishing composition for magnetic disk substrates according to any one of <1> to <3>.
<5> The ΔCV value of the non-spherical silica particles A is preferably more than 0.0% and less than 10.0%, more preferably 0.2% or more and 8.0% or less, and more preferably 0. The polishing composition for a magnetic disk substrate according to any one of <1> to <4>, which is from 0.3% to 7.0%, and even more preferably from 0.4% to 4.0%.
<6> The volume average particle diameter (D1) of the non-spherical silica particles A is preferably 120.0 nm or more, more preferably 150.0 nm or more, still more preferably 160.0 nm or more, and even more preferably 170.0 nm or more. More preferably, the polishing composition for a magnetic disk substrate according to any one of <1> to <5>, which is more preferably 180.0 nm or more, still more preferably 190.0 nm or more, and still more preferably 200.0 nm or more. object.
<7> The volume average particle diameter (D1) of the non-spherical silica particles A is preferably less than 300.0 nm, more preferably less than 260.0 nm, still more preferably less than 250.0 nm, and even more preferably less than 220.0 nm. The polishing composition for a magnetic disk substrate according to any one of <1> to <6>, which is even more preferably less than 210.0 nm.
<8> The volume average particle diameter (D1) of the non-spherical silica particles A is preferably 120.0 nm or more and less than 300.0 nm, more preferably 120.0 nm or more and less than 260.0 nm, and further preferably 150.0 nm or more and 260. Less than 0.0 nm, even more preferably from 160.0 nm to less than 260.0 nm, even more preferably from 170.0 nm to less than 260.0 nm, even more preferably from 180.0 nm to less than 250.0 nm, even more preferably 190.0 nm The polishing composition for a magnetic disk substrate according to any one of <1> to <7>, which is at least 220.0 nm and more preferably at least 200.0 nm and less than 210.0 nm.
<9> The ratio (D1 / D2) of the volume average particle diameter (D1) by the dynamic light scattering method of the non-spherical silica particles A to the specific surface area equivalent particle diameter (D2) by the BET method is preferably 2.00 or more. The polishing composition for a magnetic disk substrate according to any one of <1> to <8>, more preferably 2.50 or more, still more preferably 3.00 or more, and even more preferably 3.50 or more.
<10> The ratio (D1 / D2) of the volume average particle diameter (D1) by the dynamic light scattering method of the non-spherical silica particles A to the specific surface area equivalent particle diameter (D2) by the BET method is preferably 4.00 or less. The polishing composition for a magnetic disk substrate according to any one of <1> to <9>, more preferably 3.90 or less, and still more preferably 3.80 or less.
<11> The ratio (D1 / D2) of the volume average particle diameter (D1) by the dynamic light scattering method of the non-spherical silica particles A to the specific surface area equivalent particle diameter (D2) by the BET method is preferably 2.00 or more. 4.00 or less, more preferably 2.50 or more and 3.90 or less, still more preferably 3.00 or more and 3.90 or less, and even more preferably 3.50 or more and 3.80 or less, <1> to <10 > The polishing composition for a magnetic disk substrate according to any one of the above.
<12> The CV90 of the non-spherical silica particles A is preferably 20.0% or more, more preferably 25.0% or more, and further preferably 27.0% or more, any one of <1> to <11> A polishing composition for a magnetic disk substrate according to claim 1.
<13> The CV90 of the non-spherical silica particles A is preferably 40.0% or less, more preferably 38.0% or less, still more preferably 35.0% or less, and even more preferably 32.0% or less. <1> to <12> The polishing composition for magnetic disk substrates according to any one of <12>.
<14> The CV90 of the non-spherical silica particles A is preferably 20.0% or more and 40.0% or less, more preferably 25.0% or more and 38.0% or less, and further preferably 21.0%. The polishing composition for a magnetic disk substrate according to any one of <1> to <13>, which is 35.0% or less, more preferably 27.0% or more and 32.0% or less.
<15> The content of non-spherical silica particles A contained in the polishing composition is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, still more preferably 1% by mass or more, and even more. The polishing composition for a magnetic disk substrate according to any one of <1> to <14>, which is preferably 2% by mass or more.
<16> The content of non-spherical silica particles A contained in the polishing composition is preferably 30% by mass or less, more preferably 25% by mass or less, still more preferably 20% by mass or less, and even more preferably 15% by mass. % Of the polishing composition for a magnetic disk substrate according to any one of <1> to <15>.
<17> The content of the non-spherical silica particles A contained in the polishing composition is preferably 0.1% by mass to 30% by mass, more preferably 0.5% by mass to 25% by mass, and still more preferably. Is a polishing liquid composition for a magnetic disk substrate according to any one of <1> to <16>, which is 1% by mass or more and 20% by mass or less, and more preferably 2% by mass or more and 15% by mass or less.
<18> The polishing composition for a magnetic disk substrate according to any one of <1> to <17>, wherein the non-spherical silica particles A are silica particles produced by a particle growth method using water glass as a raw material. .
<19> Furthermore, spherical silica particles B are included, and the spherical silica particles B have a total overlapping frequency of the non-spherical silica particles A and the volume particle size distribution of 0% to 40%, and dynamic light scattering The volume average particle diameter (D1) by the method is 6.0 nm or more and 40.0 nm or less, and the mass ratio (A / B) of the non-spherical silica particles A and the spherical silica particles B in the polishing composition is 80. / 20 or more and 99/1 or less, and the total mass ratio of the non-spherical silica particles A and the spherical silica particles B to the entire silica particles in the polishing composition exceeds 98.0% by mass, from <1><18> The polishing composition for a magnetic disk substrate according to any one of the above.
<20> The polishing liquid for a magnetic disk substrate according to <19>, wherein the spherical silica particles B have a volume average particle diameter (D1) of preferably 6.0 nm or more, and more preferably 7.0 nm or more. Composition.
<21> The volume average particle diameter (D1) of the spherical silica particles B is preferably 40.0 nm or less, more preferably 35.0 nm or less, still more preferably 30.0 nm or less, <19> or <20> 2. A polishing liquid composition for a magnetic disk substrate according to 1.
<22> The volume average particle diameter (D1) of the spherical silica particles B is preferably from 6.0 nm to 40.0 nm, more preferably from 6.0 nm to 35.0 nm, still more preferably from 7.0 nm to 30. The polishing composition for a magnetic disk substrate according to any one of <19> to <21>, which is 0 nm or less.
<23> The ratio (D1 / D2) of the volume average particle diameter (D1) by the dynamic light scattering method of the spherical silica particles B and the specific surface area equivalent particle diameter (D2) by the BET method is preferably 1.00 or more, The polishing composition for a magnetic disk substrate according to any one of <19> to <22>, more preferably 1.10 or more, and still more preferably 1.15 or more.
<24> The ratio (D1 / D2) of the volume average particle diameter (D1) by the dynamic light scattering method of the spherical silica particles B and the specific surface area equivalent particle diameter (D2) by the BET method is preferably 1.50 or less, The polishing composition for a magnetic disk substrate according to any one of <19> to <23>, more preferably 1.40 or less, and still more preferably 1.30 or less.
<25> The ratio (D1 / D2) of the volume average particle diameter (D1) by the dynamic light scattering method of the spherical silica particles B to the specific surface area equivalent particle diameter (D2) by the BET method is preferably 1.00 or more and 1 .50 or less, preferably 1.10 or more and 1.40 or less, more preferably 1.15 or more and 1.30 or less, the polishing composition for a magnetic disk substrate according to any one of <19> to <24> .
<26> The content of the spherical silica particles B contained in the polishing composition is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and further preferably 0.1% by mass or more. The polishing composition for a magnetic disk substrate according to any one of <19> to <25>, more preferably 0.2% by mass or more.
<27> The content of the spherical silica particles B contained in the polishing composition is preferably 3% by mass or less, more preferably 2.5% by mass or less, still more preferably 2% by mass or less, and still more preferably 1%. The polishing composition for a magnetic disk substrate according to any one of <19> to <26>, which is 5% by mass or less.
<28> The total overlap frequency of the volume particle size distribution of the non-spherical silica particles A and the spherical silica particles B in the polishing composition is preferably 0% or more and 40% or less, more preferably 10% or more and 38% or less. The polishing composition for a magnetic disk substrate according to any one of <19> to <27>, more preferably 15% to 36%, and still more preferably 20% to 35%.
<29> The mass ratio (A / B) of the content of non-spherical silica particles A and spherical silica particles B in the polishing composition is preferably 80/20 or more, more preferably 85/15 or more, and still more preferably. The polishing composition for a magnetic disk substrate according to any one of <19> to <28>, wherein is 90/10 or more.
<30> The total overlap frequency of the volume particle size distributions of the non-spherical silica particles A and the spherical silica particles B in the polishing composition is preferably 99/1 or less, more preferably 95/5 or less, and still more preferably 96. The polishing composition for a magnetic disk substrate according to any one of <19> to <29>, which is / 4 or less.
<31> The mass ratio of the non-spherical silica particles A to the entire silica particles in the polishing liquid composition or the total mass ratio of the non-spherical silica particles A and the spherical silica particles B is preferably more than 98.0% by mass. More preferably 98.5% by mass or more, still more preferably 99.0% by mass or more, still more preferably 99.5% by mass or more, still more preferably 99.8% by mass or more, and still more preferably substantially The polishing composition for a magnetic disk substrate according to any one of <1> to <30>, which is 100% by mass.
<32> The polishing composition for a magnetic disk substrate according to any one of <1> to <31>, wherein the number of nitrogen atoms in the molecule of the nitrogen-containing compound in the nitrogen-containing compound is preferably 2 to 4. .
<33> The polishing composition for a magnetic disk substrate according to any one of <1> to <32>, wherein the number of carbon atoms in the nitrogen-containing compound is preferably 2 to 8, more preferably 4 to 8. .
<34> The molecular weight of the nitrogen-containing compound is preferably 60 or more and 500 or less, more preferably 60 or more and 300 or less, still more preferably 60 or more and 150 or less, and even more preferably 60 or more and 135 or less, <1> to <33> A polishing liquid composition for a magnetic disk substrate according to any one of 33).
<35> The content of the nitrogen-containing compound in the polishing composition is preferably 0.0025% by mass or more, more preferably 0.005% by mass or more, and still more preferably 0.01% by mass or more. The polishing composition for a magnetic disk substrate according to any one of <1> to <34>.
<36> The content of the nitrogen-containing compound in the polishing composition is preferably 1.0% by mass or less, more preferably 0.30% by mass or less, still more preferably 0.20% by mass or less, and still more preferably. The polishing composition for a magnetic disk substrate according to any one of <1> to <35>, wherein is 0.15% by mass or less, and still more preferably 0.10% by mass or less.
<37> The content of the nitrogen-containing compound in the polishing composition is preferably 0.0025% by mass to 1.0% by mass, more preferably 0.005% by mass to 0.20% by mass, and further The magnetic disk substrate according to any one of <1> to <36>, which is preferably 0.01% by mass or more and 0.15% by mass or less, and more preferably 0.001% by mass or more and 0.10% by mass or less. Polishing liquid composition.
<38> The content ratio of the silica particles and the nitrogen-containing compound [content of silica particles (% by mass) / content of nitrogen-containing compound (% by mass)] in the polishing composition is preferably 0.1. Any one of <1> to <37>, which is 5000 or more, more preferably 1 or more and 4000 or less, further preferably 5 or more and 2400 or less, still more preferably 40 or more and 1200 or less, and even more preferably 60 or more and 600 or less. 2. A polishing liquid composition for a magnetic disk substrate according to 1.
<39> The content of the acid in the polishing composition is preferably 0.001% by mass to 5% by mass, more preferably 0.01% by mass to 4% by mass, and still more preferably 0.05% by mass. The polishing composition for a magnetic disk substrate according to any one of <1> to <38>, wherein the polishing composition is from 1% to 3% by weight, and more preferably from 0.1% to 2% by weight.
<40> The polishing composition for a magnetic disk substrate according to any one of <1> to <39>, wherein the polishing composition contains substantially no alumina particles.
<41> The polishing composition preferably has a pH of 1.4 to 2.5, more preferably 1.4 to 2.3, still more preferably 1.4 to 2.1, and even more preferably. The polishing composition for a magnetic disk substrate according to any one of <1> to <40>, wherein pH is from 1.4 to 1.9, and even more preferably from 1.5 to 1.7.
<42> The polishing composition for a magnetic disk substrate according to any one of <1> to <41>, wherein the polishing target of the polishing composition is a Ni—P plated aluminum alloy substrate.
<43> (1) A step of polishing a surface to be polished of a substrate to be polished using the polishing composition according to any one of <1> to <42>, (2) A substrate obtained in step (1) And (3) polishing the surface of the substrate obtained by the step (2) using a polishing composition containing silica particles, the step (1) and A method of polishing a magnetic disk substrate, wherein (3) is performed by another polishing machine.
<44> (1) A step of polishing a surface to be polished of a substrate to be polished using the polishing composition according to any one of <1> to <42>, (2) A substrate obtained in step (1) And (3) polishing the surface of the substrate obtained by the step (2) using a polishing composition containing silica particles, the step (1) and A method of manufacturing a magnetic disk substrate, wherein (3) is performed by another polishing machine.

以下、実施例により本開示をさらに詳細に説明するが、これらは例示的なものであって、本開示はこれら実施例に制限されるものではない。   Hereinafter, the present disclosure will be described in more detail by way of examples. However, these examples are illustrative, and the present disclosure is not limited to these examples.

下記のとおりに工程(1)に用いる本開示に係る研磨液組成物A及び工程(3)に用いる研磨液組成物Bを調製し、工程(1)〜(3)を含む下記の条件の被研磨基板の研磨を行った。研磨液組成物の調製方法、使用した添加剤、各パラメータの測定方法、研磨条件(研磨方法)及び評価方法は以下のとおりである。   The polishing liquid composition A according to the present disclosure used in the step (1) and the polishing liquid composition B used in the step (3) are prepared as described below, and the following conditions including the steps (1) to (3) are satisfied. The polishing substrate was polished. The preparation method of the polishing liquid composition, the additive used, the measurement method of each parameter, the polishing conditions (polishing method) and the evaluation method are as follows.

1.研磨液組成物の調製
[工程(1)(粗研磨)に用いる研磨液組成物Aの調製]
表1のシリカ砥粒(コロイダルシリカ粒子)、下記添加剤(アミン)、表3の酸、過酸化水素、及び水を用い、工程(1)に用いる研磨液組成物Aを調製した(実施例1〜9、比較例1〜9)(表3)。研磨液組成物Aにおける各成分の含有量は、コロイダルシリカ粒子:6質量%、添加剤0.03質量%、酸:1.0−2.0質量%、過酸化水素:1.0質量%とした。本開示に係る研磨液組成物のpHは0.9−2.3であった。なお、表1のシリカ砥粒のコロイダルシリカ粒子は水ガラス法で製造されたものである。pHは、pHメータを用いて測定した(東亜ディーケーケー社製)。電極を研磨液組成物へ浸漬して2分後の数値を採用した(以下、同様)。
1. Preparation of polishing liquid composition
[Preparation of polishing liquid composition A used in step (1) (rough polishing)]
Polishing liquid composition A used for a process (1) was prepared using the silica abrasive grain (colloidal silica particle) of Table 1, the following additive (amine), the acid of Table 3, hydrogen peroxide, and water (Example) 1-9, Comparative Examples 1-9) (Table 3). The content of each component in the polishing liquid composition A was as follows: colloidal silica particles: 6% by mass, additive: 0.03% by mass, acid: 1.0-2.0% by mass, hydrogen peroxide: 1.0% by mass It was. The pH of the polishing composition according to the present disclosure was 0.9-2.3. In addition, the colloidal silica particle of the silica abrasive grain of Table 1 was manufactured by the water glass method. The pH was measured using a pH meter (manufactured by TOA DK Corporation). The numerical value after 2 minutes of immersing the electrode in the polishing composition was adopted (hereinafter the same).

表1のシリカ砥粒のタイプは、一又は複数の実施形態において、透過型電子顕微鏡(TEM)の観察写真及びそれを用いた分析で判別されうる分類である。
「異形型シリカ粒子」とは、2つ以上の粒子が凝集又は融着したような形状の非球状シリカ粒子をいう。異形型シリカ粒子は、一又は複数の実施形態において、粒径が1.5倍以内の2つ以上の粒子が凝集又は融着した形状の粒子をいう。
「金平糖型シリカ粒子」とは、球状の粒子表面に特異な疣状突起を有する非球状シリカ粒子をいう。金平糖型シリカ粒子は、一又は複数の実施形態において、粒径が5倍以上異なる2つ以上の粒子が凝集又は融着した形状の粒子をいう。
異形型コロイダルシリカ砥粒の電子顕微鏡(TEM)観察写真の一例を図1に、金平糖型コロイダルシリカ砥粒の電子顕微鏡(TEM)観察写真の一例を図2に示す。
「球状シリカ粒子」とは、真球に近い球形状の粒子(一般的に市販されているコロイダルシリカ)をいう。
なお、シリカ粒子の粒径は、電子顕微鏡(TEM)観察画像において1つの粒子内で測定される円相当径、すなわち、粒子の投影面積と同じ面積の等価円の長径として求められる粒径である。
The types of silica abrasive grains in Table 1 are classifications that can be distinguished by a transmission electron microscope (TEM) observation photograph and analysis using the same in one or a plurality of embodiments.
“Atypical silica particles” refers to non-spherical silica particles having a shape in which two or more particles are aggregated or fused. In one or a plurality of embodiments, the irregular-shaped silica particles refer to particles having a shape in which two or more particles having a particle size of 1.5 times or less are aggregated or fused.
“Konpeira type silica particles” refers to non-spherical silica particles having unique ridges on the surface of the spherical particles. In one or a plurality of embodiments, the confetti type silica particles refer to particles having a shape in which two or more particles different in particle size by 5 times or more are aggregated or fused.
An example of an electron microscope (TEM) observation photograph of an irregular-shaped colloidal silica abrasive grain is shown in FIG. 1, and an example of an electron microscope (TEM) observation photograph of a confetti-type colloidal silica abrasive grain is shown in FIG.
“Spherical silica particles” refers to spherical particles (generally commercially available colloidal silica) that are nearly spherical.
The particle size of the silica particles is a particle size obtained as an equivalent circle diameter measured within one particle in an electron microscope (TEM) observation image, that is, a major axis of an equivalent circle having the same area as the projected area of the particle. .

本開示に係る研磨液組成物に使用した添加剤である有機アミンは以下のとおり。
AEEA:N−(β―アミノエチル)エタノールアミン(分子量104.5、窒素原子数2、炭素原子数4):実施例1,6,8,9、比較例6,7
HEP:N−(2−ヒドロキシエチル)ピペラジン(分子量130.19、窒素原子数2、炭素原子数6):実施例2
DETA:ジエチレントリアミン(分子量103.17、窒素原子数3、炭素原子数4):実施例3
TETA:トリエチレンテトラミン(分子量146.23、窒素原子数4、炭素原子数6):実施例4、比較例8,9
TEPA:テトラエチレンペンタミン(分子量189.3、窒素原子数5、炭素原子数8):実施例5
PEI:ポリエチレンイミン(分子量600):比較例4,5
添加アミンなし:比較例1〜3
The organic amine that is the additive used in the polishing composition according to the present disclosure is as follows.
AEEA: N- (β-aminoethyl) ethanolamine (molecular weight 104.5, nitrogen atom number 2, carbon atom number 4): Examples 1, 6, 8, 9 and Comparative Examples 6, 7
HEP: N- (2-hydroxyethyl) piperazine (molecular weight 130.19, 2 nitrogen atoms, 6 carbon atoms): Example 2
DETA: Diethylenetriamine (molecular weight 103.17, nitrogen atom number 3, carbon atom number 4): Example 3
TETA: triethylenetetramine (molecular weight 146.23, number of nitrogen atoms 4, number of carbon atoms 6): Example 4 and Comparative Examples 8 and 9
TEPA: Tetraethylenepentamine (molecular weight 189.3, 5 nitrogen atoms, 8 carbon atoms): Example 5
PEI: Polyethyleneimine (molecular weight 600): Comparative Examples 4 and 5
No added amine: Comparative Examples 1-3

[工程(3)(仕上げ研磨)に用いる研磨液組成物Bの調製]
表2のコロイダルシリカ粒子(砥粒i)、硫酸、過酸化水素、及び水を用い、研磨液組成物Bを調製した。研磨液組成物Bにおける各成分の含有量は、コロイダルシリカ粒子:5.0質量%、硫酸:0.5質量%、過酸化水素:0.5質量%とした。研磨液組成物BのpHは1.4であった。この研磨組成物Bを実施例1〜18、参考例/比較例1〜13の研磨における工程(3)で使用した。
[Preparation of polishing liquid composition B used in step (3) (finish polishing)]
Polishing liquid composition B was prepared using the colloidal silica particle (abrasive grain i) of Table 2, sulfuric acid, hydrogen peroxide, and water. The content of each component in the polishing liquid composition B was colloidal silica particles: 5.0% by mass, sulfuric acid: 0.5% by mass, and hydrogen peroxide: 0.5% by mass. The pH of the polishing composition B was 1.4. This polishing composition B was used in the step (3) in polishing of Examples 1 to 18 and Reference Examples / Comparative Examples 1 to 13.

尚、砥粒iは、水ガラス法で作られた球状粒子である。 The abrasive grains i are spherical particles made by the water glass method.

2.各パラメータの測定方法
[動的光散乱法で測定される砥粒a〜fの体積平均粒径(D1)及びCV90]
砥粒、硫酸、過酸化水素をイオン交換水に添加し、これらを混合することにより、標準試料を作製した。標準試料中における砥粒、硫酸、過酸化水素の含有量は、それぞれ0.1〜5.0質量%、0.2〜0.4質量%、0.2〜0.4質量%であり、用いるシリカ砥粒のタイプに合わせて適宜調整を行った。この標準試料を大塚電子社製動的光散乱装置DLS−6500により、同メーカーが添付した説明書に従って、200回積算した際の検出角90°におけるMarquardt法によって得られる散乱強度分布の面積が全体の50%となる粒径を求め、シリカ粒子の体積平均粒径(D1)とした。また、検出角90°におけるシリカ粒子のCV値(CV90)を、上記測定法に従って測定した散乱強度分布における標準偏差を前記体積平均粒径で除して100をかけた値として算出した。
2. Measuring method of each parameter [Volume average particle diameter (D1) and CV90 of abrasive grains a to f measured by dynamic light scattering method]
A standard sample was prepared by adding abrasive grains, sulfuric acid, and hydrogen peroxide to ion-exchanged water and mixing them. The contents of abrasive grains, sulfuric acid, and hydrogen peroxide in the standard sample are 0.1 to 5.0 mass%, 0.2 to 0.4 mass%, and 0.2 to 0.4 mass%, respectively. Adjustments were made as appropriate according to the type of silica abrasive used. The area of the scattering intensity distribution obtained by the Marquardt method at a detection angle of 90 ° when this standard sample is integrated 200 times according to the instructions attached by the manufacturer using the dynamic light scattering device DLS-6500 manufactured by Otsuka Electronics Co., Ltd. Was determined as the volume average particle diameter (D1) of the silica particles. Further, the CV value (CV90) of the silica particles at a detection angle of 90 ° was calculated as a value obtained by dividing the standard deviation in the scattering intensity distribution measured according to the above measurement method by the volume average particle diameter and multiplying by 100.

[ΔCV値]
上記CV90の測定法と同様に、検出角30°におけるシリカ粒子のCV値(CV30)を測定し、CV30からCV90を引いた値を求め、シリカ粒子A又はBのΔCV値とした。
(DLS−6500の測定条件)
検出角90°
Sampling time :2−10(μm)で適宜調整
Correlation Channel :256−512(ch)で適宜調整
Correlation Method :TI
Sampling temprature :25.0℃
検出角30°
Sampling time :4−20(μm)で適宜調整
Correlation Channel :512−2048(ch)で適宜調整
Correlation Method :TI
Sampling temprature :25℃
[ΔCV value]
In the same manner as the CV90 measurement method, the CV value (CV30) of the silica particles at a detection angle of 30 ° was measured, and a value obtained by subtracting CV90 from CV30 was obtained to obtain the ΔCV value of silica particles A or B.
(Measurement conditions for DLS-6500)
Detection angle 90 °
Sampling time: 2-10 (μm) as appropriate Correlation Channel: 256-512 (ch) as appropriate Correlation Method: TI
Sampling temperature: 25.0 ° C
Detection angle 30 °
Sampling time: Adjusted appropriately at 4-20 (μm) Correlation Channel: Adjusted appropriately at 512-2048 (ch) Correlation Method: TI
Sampling temperature: 25 ° C

[砥粒a〜fのBET法による比表面積換算粒径(D2)の測定]
砥粒の比表面積は、下記の[前処理]をした後、測定サンプル約0.1gを測定セルに小数点以下4桁まで精量し、比表面積の測定直前に110℃の雰囲気下で30分間乾燥した後、比表面積測定装置(マイクロメリティック自動比表面積測定装置「フローソーブIII2305」(島津製作所製))を用いて窒素吸着法(BET法)により測定した。
[Measurement of specific surface area equivalent particle diameter (D2) of abrasive grains a to f by BET method]
The specific surface area of the abrasive grains is subjected to the following [pretreatment], and then approximately 0.1 g of a measurement sample is precisely weighed to 4 digits after the decimal point in a measurement cell, and immediately under the measurement at 110 ° C. for 30 minutes immediately before the measurement of the specific surface area. After drying, the surface area was measured by a nitrogen adsorption method (BET method) using a specific surface area measuring device (micromeritic automatic specific surface area measuring device “Flowsorb III2305” (manufactured by Shimadzu Corporation)).

[シリカ砥粒のD10、D50、及びD90]
シリカ砥粒をイオン交換水で1%分散液に希釈し、下記測定装置内に投入し、平均粒子径を測定した。
測定機器 :マルバーン ゼータサイザー ナノ「Nano S」
測定条件 :サンプル量 1.5mL
:レーザー He―Ne、3.0mW、633nm
:散乱光検出角 173°
得られた体積分布粒径の累積体積頻度が10%、50%及び90%となる粒径を、それぞれ、D10、D50(体積平均粒子径)、及びD90とした。
[D10, D50, and D90 of silica abrasive grains]
Silica abrasive grains were diluted to 1% dispersion with ion-exchanged water, put into the following measuring apparatus, and the average particle diameter was measured.
Measuring equipment: Malvern Zetasizer Nano “Nano S”
Measurement conditions: Sample volume 1.5 mL
: Laser He-Ne, 3.0 mW, 633 nm
: Scattered light detection angle 173 °
The particle sizes at which the cumulative volume frequency of the obtained volume distribution particle size was 10%, 50%, and 90% were defined as D10, D50 (volume average particle size), and D90, respectively.

[シリカ粒子の体積粒度分布の重なり頻度の合計]
シリカ砥粒のD10、D50、及びD90と同様の測定法により得られたシリカ粒子成分(砥粒a〜d)のそれぞれの体積粒度分布を得た。実施例7〜9で使用する砥粒の組み合わせ(表3)において重なった粒径範囲の累積体積頻度の合計を全シリカ粒子成分の累積体積頻度(2成分混合系では200、3成分混合系では300)で除して100をかけた値を重なり頻度[%]として算出した。実施例8における砥粒の組み合わせの体積粒度分布を重ねたグラフの一例を図3に示す。
[Total overlap frequency of volume particle size distribution of silica particles]
Each volume particle size distribution of the silica particle component (abrasive grains a to d) obtained by the same measurement method as D10, D50, and D90 of the silica abrasive grains was obtained. In the combination of abrasive grains used in Examples 7 to 9 (Table 3), the sum of the cumulative volume frequencies of the overlapping particle diameter ranges is the cumulative volume frequency of all silica particle components (200 for the two-component mixed system, 200 for the three-component mixed system). The value obtained by dividing by 300) and multiplying by 100 was calculated as the overlap frequency [%]. An example of a graph in which the volume particle size distribution of the combination of abrasive grains in Example 8 is superimposed is shown in FIG.

[シリカ砥粒の形状]
シリカ砥粒を日本電子製透過型電子顕微鏡(TEM)(商品名「JEM−2000FX」、80kV、1〜5万倍)で観察した写真をパソコンにスキャナで画像データとして取込み、解析ソフト「WinROOF(Ver.3.6)」(販売元:三谷商事)を用いて1000〜2000個のシリカ粒子データについて形状を観察した。
[Shape of silica abrasive grains]
A photograph obtained by observing silica abrasive grains with a transmission electron microscope (TEM) manufactured by JEOL (trade name “JEM-2000FX”, 80 kV, 1 to 50,000 times) is captured as image data with a scanner on a personal computer, and analysis software “WinROOF ( Ver. 3.6) ”(distributor: Mitani), the shape of 1000 to 2000 silica particle data was observed.

[砥粒の平均二次粒子径の測定]
0.5%ポイズ530(花王社製)水溶液を分散媒として、下記測定装置内に投入し、続いて透過率が75〜95%になるようにサンプルを投入し、その後、5分間超音波を掛けた後、粒径を測定した。
測定機器 :堀場製作所製 レーザー回折/散乱式粒度分布測定装置 LA920
循環強度 :4
超音波強度:4
[Measurement of average secondary particle diameter of abrasive grains]
A 0.5% poise 530 (manufactured by Kao Corporation) aqueous solution is used as a dispersion medium, and the sample is introduced so that the transmittance is 75 to 95%, followed by ultrasonication for 5 minutes. After application, the particle size was measured.
Measuring instrument: Laser diffraction / scattering particle size distribution measuring device LA920 manufactured by Horiba, Ltd.
Circulation strength: 4
Ultrasonic intensity: 4

3.研磨条件
被研磨基板の研磨を工程(1)〜(3)に従い行った。各工程の条件を以下に示す。なお、工程(3)は、工程(1)で使用した研磨機とは別個の研磨機で行った。
[被研磨基板]
被研磨基板は、Ni−Pメッキされたアルミニウム合金基板を用いた。なお、この被研磨基板は、厚み1.27mm、直径95mmであった。
3. Polishing conditions Polishing of the substrate to be polished was performed according to steps (1) to (3). The conditions for each step are shown below. Step (3) was performed with a polishing machine separate from the polishing machine used in step (1).
[Polished substrate]
The substrate to be polished was an aluminum alloy substrate plated with Ni-P. The substrate to be polished had a thickness of 1.27 mm and a diameter of 95 mm.

[工程(1):粗研磨]
研磨機:両面研磨機(9B型両面研磨機、スピードファム社製)
研磨液:研磨液組成物
研磨パッド:スエードタイプ(発泡層:ポリウレタンエラストマー)、
厚み0.82−1.26mm
平均気孔径20−30μm (Filwel、Fujibo社製)
定盤回転数:35rpm
研磨荷重:9.8kPa(設定値)
研磨液供給量:100mL/分(0.076mL/(cm2・分))
研磨時間:5分
研磨量:0.1〜1.6mg/cm2
投入した基板の枚数:10枚
[Step (1): Rough polishing]
Polishing machine: Double-side polishing machine (9B-type double-side polishing machine, manufactured by Speed Fam Co.)
Polishing liquid: Polishing liquid composition Polishing pad: Suede type (foam layer: polyurethane elastomer),
Thickness 0.82-1.26mm
Average pore diameter 20-30 μm (Filwel, manufactured by Fujibo)
Plate rotation speed: 35 rpm
Polishing load: 9.8 kPa (set value)
Polishing liquid supply amount: 100 mL / min (0.076 mL / (cm 2 · min))
Polishing time: 5 minutes Polishing amount: 0.1 to 1.6 mg / cm 2
Number of substrates loaded: 10

[工程(2):洗浄]
工程(1)で得られた基板を、下記条件で洗浄した。
1. 0.1質量%のKOH水溶液からなるpH12のアルカリ性洗浄剤組成物の入った槽内に、工程(1)で得られた基板を5分間浸漬する。
2. 浸漬後の基板を、イオン交換水で20秒間すすぎを行う。
3. すすぎ後の基板を洗浄ブラシがセットされたスクラブ洗浄ユニットに移送し洗浄する。
[Step (2): Cleaning]
The substrate obtained in the step (1) was washed under the following conditions.
1. The substrate obtained in the step (1) is immersed for 5 minutes in a tank containing a pH 12 alkaline detergent composition made of 0.1 mass% KOH aqueous solution.
2. The substrate after immersion is rinsed with ion exchange water for 20 seconds.
3. The rinsed substrate is transferred to a scrub cleaning unit in which a cleaning brush is set and cleaned.

[工程(3):仕上げ研磨]
研磨機:両面研磨機(9B型両面研磨機、スピードファム社製)、工程(1)で使用した研磨機とは別個の研磨機
研磨液:研磨液組成物B
研磨パッド:スエードタイプ(発泡層:ポリウレタンエラストマー)、厚み0.9mm、平均気孔径5μm(Fujibo社製)
定盤回転数:40rpm
研磨荷重:9.8kPa
研磨液供給量:100mL/分(0.076mL/(cm2・分))
研磨時間:2分
研磨量:0.04〜0.10mg/(cm2・分)
投入した基板の枚数:10枚
工程(3)後に、洗浄を行った。洗浄条件は、前記工程(2)と同条件で行った。
[Step (3): Final polishing]
Polishing machine: Double-side polishing machine (9B type double-side polishing machine, manufactured by Speedfam Co., Ltd.), polishing machine separate from the polishing machine used in step (1): Polishing liquid composition B
Polishing pad: Suede type (foam layer: polyurethane elastomer), thickness 0.9mm, average pore diameter 5μm (Fujibo)
Plate rotation speed: 40 rpm
Polishing load: 9.8 kPa
Polishing liquid supply amount: 100 mL / min (0.076 mL / (cm 2 · min))
Polishing time: 2 minutes Polishing amount: 0.04 to 0.10 mg / (cm 2 · min)
Number of loaded substrates: 10 sheets After the step (3), cleaning was performed. The washing conditions were the same as in the above step (2).

4.評価方法
[工程(1)の研磨速度の測定方法及び評価]
研磨前後の各基板の重さを計り(Sartorius社製、「BP−210S」)を用いて測定し、下記式に導入することにより研磨量を求め、比較例1を100とした研磨速度の相対値を算出した。その結果を、表3〜5に示す。
重量減少量(g)={研磨前の重量(g)−研磨後の重量(g)}
研磨量(μm)=重量減少量(g)/基板片面面積(mm2)/2/Ni−Pメッキ密度(g/cm3)×106
(基板片面面積は、6597mm2、Ni−Pメッキ密度8.4g/cm3として算出)
4). Evaluation method [Measurement method and evaluation of polishing rate in step (1)]
Weighing each substrate before and after polishing (measured by Sartorius, “BP-210S”) and measuring the amount of polishing by introducing it into the following formula. The value was calculated. The results are shown in Tables 3-5.
Weight reduction (g) = {weight before polishing (g) −weight after polishing (g)}
Polishing amount (μm) = weight reduction amount (g) / substrate single-sided area (mm 2 ) / 2 / Ni—P plating density (g / cm 3 ) × 10 6
(The substrate single-sided area is calculated as 6597 mm 2 and Ni-P plating density 8.4 g / cm 3 )

[工程(1)後の基板表面の長周期欠陥(PED)の評価方法]
工程(1)の研磨後の10枚の基板の両面(計20点)について、下記の条件で測定し発生率(%)を求めた。図4に示す様に基板表面に確認できる小さな斑点がPEDであり、基板表面にそれが1点でも目視で確認できた場合、その面は長周期欠陥有りとみなした。
長周期欠陥発生率(%)
=(長周期欠陥が発生している基板面の数/20)×100
長周期欠陥発生率を下記基準で5段階評価した。すなわち、値が大きいほど長周期欠陥の発生率が低いことを意味する。その結果を、表3に示す。
[評価基準]
長周期欠陥発生率:評価
10%以下 :5「極めて発生が抑制され、基板収率向上が期待できる」
10%越20%以下:4「実生産可能」
20%越30%以下:3「実生産には改良が必要」
30%越50%以下:2「基板収率が大幅に低下する」
50%以上 :1「実生産には程遠い(一般的なシリカ砥粒を用いた場合と同じレベル)」
[測定機器]
光干渉型表面形状測定機:OptiFLAT III(KLA Tencor社製)
Radius Inside/Out:14.87mm/47.83mm
Center X/Y:55.44mm/53.38mm
Low Cutoff:2.5mm
Inner Mask:18.50mm、Outer Mask:45.5mm
Long Period:2.5mm、Wa Correction:0.9、Rn Correction:1.0
No Zernike Terms:8
[Method for Evaluating Long-Period Defect (PED) on Substrate Surface After Step (1)]
About both surfaces (20 points in total) of the 10 substrates after the polishing in the step (1), the occurrence rate (%) was determined under the following conditions. As shown in FIG. 4, when a small spot that can be confirmed on the surface of the substrate is PED, and even one point can be visually confirmed on the surface of the substrate, the surface is regarded as having a long-period defect.
Long-period defect rate (%)
= (Number of substrate surfaces on which long-period defects are generated / 20) × 100
The long-period defect occurrence rate was evaluated in five stages according to the following criteria. That is, the larger the value, the lower the occurrence rate of long-period defects. The results are shown in Table 3.
[Evaluation criteria]
Long-period defect occurrence rate: Evaluation: 10% or less: 5 “Generation is extremely suppressed and improvement in substrate yield can be expected”
10% over 20%: 4 “actual production possible”
20% over 30%: 3 “Improvement is required for actual production”
30% over 50%: 2 “Substrate yield is greatly reduced”
50% or more: 1 “far from actual production (same level as when using ordinary silica abrasive grains)”
[measuring equipment]
Optical interference type surface profile measuring machine: OptiFLAT III (manufactured by KLA Tencor)
Radius Inside / Out: 14.87mm / 47.83mm
Center X / Y: 55.44mm / 53.38mm
Low Cutoff: 2.5mm
Inner Mask: 18.50mm, Outer Mask: 45.5mm
Long Period: 2.5mm, Wa Correction: 0.9, Rn Correction: 1.0
No Zernike Terms: 8

[工程(3)後の突起欠陥の評価方法]
測定機器:OSA7100(KLA Tencor社製)
評価:研磨液組成物Bを用いて研磨を行い、その後、無作為に4枚を選択し、各々の基板を10000rpmにてレーザーを照射して砥粒突き刺さり数を測定した。その4枚の基板の各々両面にある砥粒突き刺さり数(個)の合計を8で除して、基板面当たりの砥粒突き刺さり数(突起欠陥数)(比較例1を100とした相対値)を算出した。突起欠陥数の相対値、及び、突起欠陥数を下記基準で評価した結果を、表3に示す。
[評価基準]
突起欠陥数(相対値):評価
95未満 :A「極めて発生が抑制され、基板収率向上が期待できる」
95以上110未満 :B「実生産可能」
110以上125未満:C「実生産には改良が必要」
125以上 :D「基板収率が大幅に低下する」
[Method for evaluating protrusion defect after step (3)]
Measuring instrument: OSA7100 (manufactured by KLA Tencor)
Evaluation: Polishing was performed using the polishing composition B, and then 4 pieces were selected at random, and each substrate was irradiated with a laser at 10000 rpm to measure the number of abrasive sticks. Divide the total number of abrasive sticks (pieces) on both surfaces of each of the four substrates by 8 to obtain the number of abrasive sticks per board surface (number of protrusion defects) (relative value with Comparative Example 1 as 100). Was calculated. Table 3 shows the relative values of the number of protrusion defects and the results of evaluating the number of protrusion defects based on the following criteria.
[Evaluation criteria]
Number of protrusion defects (relative value): Evaluation Less than 95: A “Generation is extremely suppressed and an improvement in substrate yield can be expected”
95 or more and less than 110: B “actual production possible”
110 to less than 125: C “Improvement is required for actual production”
125 or more: D “Substrate yield decreases significantly”

5.結果
5. result

表3に示すとおり、実施例1〜9では、比較例1〜9に比べて、工程(1)における粗研磨の研磨速度を大きく損ねることなく、また、工程(3)の仕上げ研磨後の基板の突起欠陥数を悪化させることなく、工程(1)における粗研磨後の長周期欠陥(PED)を低減できた。
また、非球状シリカ粒子と球状シリカ粒子を含む砥粒を使用した実施例7〜9では、工程(1)における粗研磨後の長周期欠陥(PED)を低減できたことに加え、実施例1〜6と比較して、工程(1)における粗研磨の研磨速度が高く、また、工程(3)の仕上げ研磨後の基板の突起欠陥数が低減された。
As shown in Table 3, in Examples 1-9, compared with Comparative Examples 1-9, the polishing rate of the rough polishing in the step (1) was not greatly impaired, and the substrate after the final polishing in the step (3) The long-period defects (PED) after rough polishing in the step (1) could be reduced without deteriorating the number of protrusion defects.
Moreover, in Examples 7 to 9 using abrasive grains containing non-spherical silica particles and spherical silica particles, in addition to being able to reduce long-period defects (PED) after rough polishing in step (1), Example 1 Compared to ˜6, the polishing rate of the rough polishing in the step (1) was high, and the number of protrusion defects of the substrate after the final polishing in the step (3) was reduced.

本開示によれば、一又は複数の実施形態において、研磨速度を維持しつつ長周期欠陥を低減できるから、磁気ディスク基板製造の生産性を維持しつつ基板収率を向上できる。本開示は、一又は複数の実施形態において、磁気ディスク基板の製造に好適に用いることができる。   According to the present disclosure, in one or a plurality of embodiments, long-period defects can be reduced while maintaining the polishing rate, so that the substrate yield can be improved while maintaining the productivity of manufacturing the magnetic disk substrate. In one or a plurality of embodiments, the present disclosure can be suitably used for manufacturing a magnetic disk substrate.

Claims (9)

非球状シリカ粒子A、窒素含有化合物、酸、酸化剤及び水を含む磁気ディスク基板用研磨剤組成物であって、
(1)前記非球状シリカ粒子Aが2つ以上の粒子が凝集又は融着した形状であり、
(2)前記非球状シリカ粒子AのΔCV値が0.0%を超え10%未満であり、
ここで、ΔCV値は、動的光散乱法による検出角30°における散乱強度分布に基づく標準偏差を前記散乱強度分布に基づく平均粒径で除して100を掛けた値(CV30)と、検出角90°における散乱強度分布に基づく標準偏差を前記散乱強度分布に基づく平均粒径で除して100を掛けた値(CV90)との差の値(ΔCV=CV30−CV90)であり、
(3)前記非球状シリカ粒子Aの動的光散乱法による体積平均粒径(D1)とBET法による比表面積換算粒径(D2)の比(D1/D2)が2.00以上4.00以下であり、
(4)前記窒素含有化合物が分子内の窒素含有数が2〜5である脂肪族アミン化合物又は脂環式アミン化合物であり、
(5)前記酸が、リン酸類、ホスホン酸、有機ホスホン酸、及びこれらの組み合わせからなる群から選択され、
(6)pHが1.4以上2.5以下である、磁気ディスク基板用研磨剤組成物。
A polishing composition for a magnetic disk substrate comprising non-spherical silica particles A, a nitrogen-containing compound, an acid, an oxidizing agent, and water,
(1) The non-spherical silica particle A has a shape in which two or more particles are aggregated or fused,
(2) The ΔCV value of the non-spherical silica particles A is more than 0.0% and less than 10%,
Here, the ΔCV value is obtained by dividing the standard deviation based on the scattering intensity distribution at a detection angle of 30 ° by the dynamic light scattering method by the average particle diameter based on the scattering intensity distribution and multiplying by 100 (CV30). The difference (ΔCV = CV30−CV90) from the value obtained by dividing the standard deviation based on the scattering intensity distribution at an angle of 90 ° by the average particle diameter based on the scattering intensity distribution and multiplying by 100 (CV90),
(3) The ratio (D1 / D2) of the volume average particle diameter (D1) by the dynamic light scattering method of the non-spherical silica particles A to the specific surface area equivalent particle size (D2) by the BET method is 2.00 or more and 4.00. And
(4) The nitrogen-containing compound is an aliphatic amine compound or an alicyclic amine compound having a nitrogen content in the molecule of 2 to 5,
(5) the acid is selected from the group consisting of phosphoric acids, phosphonic acids, organic phosphonic acids, and combinations thereof;
(6) A polishing composition for a magnetic disk substrate having a pH of 1.4 or more and 2.5 or less.
前記窒素含有化合物における炭素原子数が2〜8である、請求項1記載の磁気ディスク基板用研磨液組成物。   The polishing liquid composition for a magnetic disk substrate according to claim 1, wherein the nitrogen-containing compound has 2 to 8 carbon atoms. さらに、球状シリカ粒子Bを含み、
前記球状シリカ粒子Bは、前記非球状シリカ粒子Aと体積粒度分布の重なり頻度の合計が0%以上40%以下であり、かつ、動的光散乱法による体積平均粒径(D1)が6.0nm以上40.0nm以下であり、
前記研磨液組成物における前記非球状シリカ粒子Aと前記球状シリカ粒子Bとの質量比(A/B)が80/20以上99/1以下であり、かつ、研磨液組成物におけるシリカ粒子全体に対する非球状シリカ粒子Aと球状シリカ粒子Bの合計の質量比が、98.0質量%を超える、請求項1又は2に記載の磁気ディスク基板用研磨液組成物。
Further, spherical silica particles B are included,
The spherical silica particles B have a total overlap frequency of 0% or more and 40% or less of the non-spherical silica particles A and a volume particle size distribution, and a volume average particle diameter (D1) by a dynamic light scattering method of 6. 0 nm or more and 40.0 nm or less,
The mass ratio (A / B) of the non-spherical silica particles A and the spherical silica particles B in the polishing liquid composition is 80/20 or more and 99/1 or less, and is based on the entire silica particles in the polishing liquid composition. 3. The polishing composition for a magnetic disk substrate according to claim 1, wherein the total mass ratio of the non-spherical silica particles A and the spherical silica particles B exceeds 98.0 mass%.
前記研磨液組成物が、アルミナ粒子を実質含まない、請求項1から3のいずれかに記載の磁気ディスク基板用研磨液組成物。   The polishing composition for a magnetic disk substrate according to claim 1, wherein the polishing composition contains substantially no alumina particles. 前記非球状シリカ粒子AのCV90が、20.0%以上40.0%以下である請求項1から4のいずれかに記載の磁気ディスク基板用研磨液組成物。   5. The polishing composition for a magnetic disk substrate according to claim 1, wherein CV90 of the non-spherical silica particles A is 20.0% or more and 40.0% or less. 前記非球状シリカ粒子Aが、水ガラス法により製造されたシリカ粒子である、請求項1から5のいずれかに記載の磁気ディスク基板用研磨液組成物。   The polishing composition for a magnetic disk substrate according to claim 1, wherein the non-spherical silica particles A are silica particles produced by a water glass method. 前記研磨液組成物の研磨対象が、Ni−Pめっきアルミニウム合金基板である、請求項1から6のいずれかに記載の磁気ディスク基板用研磨液組成物。   The polishing composition for a magnetic disk substrate according to any one of claims 1 to 6, wherein a polishing target of the polishing composition is a Ni-P plated aluminum alloy substrate. (1)請求項1から7のいずれかに記載の研磨液組成物を用いて被研磨基板の研磨対象面を研磨する工程、
(2)工程(1)で得られた基板を洗浄する工程、及び、
(3)工程(2)で得られた基板を、シリカ粒子を含有する研磨液組成物を用いて
研磨対象面を研磨する工程を有し、
前記工程(1)と(3)を別の研磨機で行う、磁気ディスク基板の研磨方法。
(1) A step of polishing a polishing target surface of a substrate to be polished using the polishing composition according to any one of claims 1 to 7,
(2) a step of cleaning the substrate obtained in step (1), and
(3) The substrate obtained in step (2) has a step of polishing the surface to be polished using a polishing liquid composition containing silica particles,
A method for polishing a magnetic disk substrate, wherein the steps (1) and (3) are carried out by another polishing machine.
(1)請求項1から7のいずれかに記載の研磨液組成物を用いて被研磨基板の研磨対象面を研磨する工程、
(2)工程(1)で得られた基板を洗浄する工程、及び、
(3)工程(2)で得られた基板を、シリカ粒子を含有する研磨液組成物を用いて
研磨対象面を研磨する工程を有し、
前記工程(1)と(3)を別の研磨機で行う、磁気ディスク基板の製造方法。
(1) A step of polishing a polishing target surface of a substrate to be polished using the polishing composition according to any one of claims 1 to 7,
(2) a step of cleaning the substrate obtained in step (1), and
(3) The substrate obtained in step (2) has a step of polishing the surface to be polished using a polishing liquid composition containing silica particles,
A method of manufacturing a magnetic disk substrate, wherein the steps (1) and (3) are performed by another polishing machine.
JP2014135359A 2014-06-30 2014-06-30 Polishing liquid composition for magnetic disk substrate Active JP6316680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014135359A JP6316680B2 (en) 2014-06-30 2014-06-30 Polishing liquid composition for magnetic disk substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014135359A JP6316680B2 (en) 2014-06-30 2014-06-30 Polishing liquid composition for magnetic disk substrate

Publications (2)

Publication Number Publication Date
JP2016015184A true JP2016015184A (en) 2016-01-28
JP6316680B2 JP6316680B2 (en) 2018-04-25

Family

ID=55231256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014135359A Active JP6316680B2 (en) 2014-06-30 2014-06-30 Polishing liquid composition for magnetic disk substrate

Country Status (1)

Country Link
JP (1) JP6316680B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018081733A (en) * 2016-11-15 2018-05-24 花王株式会社 Polishing liquid composition for magnetic disk substrate
JP2020053108A (en) * 2018-09-28 2020-04-02 株式会社フジミインコーポレーテッド Composition for polishing and use thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030274A (en) * 2000-05-12 2002-01-31 Nissan Chem Ind Ltd Abrasive composition
JP2003529662A (en) * 2000-03-31 2003-10-07 バイエル アクチェンゲゼルシャフト Polishing agent and method for producing flat layer
JP2007137972A (en) * 2005-11-16 2007-06-07 Catalysts & Chem Ind Co Ltd Silica sol for polishing and polishing composition containing the sol
JP2010188514A (en) * 2009-01-20 2010-09-02 Kao Corp Polishing liquid composition for magnetic disk substrate
JP2011131346A (en) * 2009-12-25 2011-07-07 Kao Corp Polishing liquid composition
JP2012111869A (en) * 2010-11-25 2012-06-14 Jgc Catalysts & Chemicals Ltd Silica sol for polishing, polishing composition and method for producing silica sol for polishing
JP2014029754A (en) * 2012-07-05 2014-02-13 Kao Corp Method for producing magnetic disk substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003529662A (en) * 2000-03-31 2003-10-07 バイエル アクチェンゲゼルシャフト Polishing agent and method for producing flat layer
JP2002030274A (en) * 2000-05-12 2002-01-31 Nissan Chem Ind Ltd Abrasive composition
JP2007137972A (en) * 2005-11-16 2007-06-07 Catalysts & Chem Ind Co Ltd Silica sol for polishing and polishing composition containing the sol
JP2010188514A (en) * 2009-01-20 2010-09-02 Kao Corp Polishing liquid composition for magnetic disk substrate
JP2011131346A (en) * 2009-12-25 2011-07-07 Kao Corp Polishing liquid composition
JP2012111869A (en) * 2010-11-25 2012-06-14 Jgc Catalysts & Chemicals Ltd Silica sol for polishing, polishing composition and method for producing silica sol for polishing
JP2014029754A (en) * 2012-07-05 2014-02-13 Kao Corp Method for producing magnetic disk substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018081733A (en) * 2016-11-15 2018-05-24 花王株式会社 Polishing liquid composition for magnetic disk substrate
JP2020053108A (en) * 2018-09-28 2020-04-02 株式会社フジミインコーポレーテッド Composition for polishing and use thereof
JP7262197B2 (en) 2018-09-28 2023-04-21 株式会社フジミインコーポレーテッド Polishing composition and its use

Also Published As

Publication number Publication date
JP6316680B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
JP5853117B1 (en) Polishing liquid composition for magnetic disk substrate
JP4231632B2 (en) Polishing liquid composition
JP6125814B2 (en) Manufacturing method of magnetic disk substrate
JP4451347B2 (en) Polishing liquid composition
JP6125815B2 (en) Manufacturing method of magnetic disk substrate
JP6138677B2 (en) Polishing liquid composition for magnetic disk substrate
JP5940278B2 (en) Manufacturing method of glass hard disk substrate
JP6495095B2 (en) Polishing liquid composition for magnetic disk substrate
JP6316680B2 (en) Polishing liquid composition for magnetic disk substrate
JP6092623B2 (en) Manufacturing method of magnetic disk substrate
JP6148932B2 (en) Polishing liquid composition for magnetic disk substrate
JP4286168B2 (en) How to reduce nanoscratches
JP6340267B2 (en) Manufacturing method of magnetic disk substrate
JP2007301721A (en) Polishing liquid composition
JP6437303B2 (en) Polishing liquid composition for glass hard disk substrate
JP6081317B2 (en) Manufacturing method of magnetic disk substrate
JP5748331B2 (en) Polishing liquid composition for glass hard disk substrate
JP7158889B2 (en) Polishing liquid composition for glass hard disk substrate
JP6584935B2 (en) Polishing liquid composition for magnetic disk substrate
JP4640981B2 (en) Substrate manufacturing method
JP6457259B2 (en) Acidic detergent composition for glass hard disk substrate
JP2023173782A (en) polishing liquid composition
JP2015120828A (en) Polishing liquid composition for crystallized glass substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180328

R151 Written notification of patent or utility model registration

Ref document number: 6316680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250