JP2018079721A - 車両用空気調和装置 - Google Patents

車両用空気調和装置 Download PDF

Info

Publication number
JP2018079721A
JP2018079721A JP2016221395A JP2016221395A JP2018079721A JP 2018079721 A JP2018079721 A JP 2018079721A JP 2016221395 A JP2016221395 A JP 2016221395A JP 2016221395 A JP2016221395 A JP 2016221395A JP 2018079721 A JP2018079721 A JP 2018079721A
Authority
JP
Japan
Prior art keywords
heat exchanger
outdoor heat
refrigerant
air
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016221395A
Other languages
English (en)
Other versions
JP6807710B2 (ja
Inventor
耕平 山下
Kohei Yamashita
耕平 山下
竜 宮腰
Tatsu Miyakoshi
竜 宮腰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Automotive Climate Systems Corp
Original Assignee
Sanden Automotive Climate Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Automotive Climate Systems Corp filed Critical Sanden Automotive Climate Systems Corp
Priority to JP2016221395A priority Critical patent/JP6807710B2/ja
Priority to CN201780069099.2A priority patent/CN109922977B/zh
Priority to PCT/JP2017/037299 priority patent/WO2018088130A1/ja
Priority to DE112017005716.7T priority patent/DE112017005716T5/de
Publication of JP2018079721A publication Critical patent/JP2018079721A/ja
Application granted granted Critical
Publication of JP6807710B2 publication Critical patent/JP6807710B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/0073Control systems or circuits characterised by particular algorithms or computational models, e.g. fuzzy logic or dynamic models
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00961Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising means for defrosting outside heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3263Cooling devices information from a variable is obtained related to temperature of the refrigerant at an evaporating unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】部品にバラツキが生じても、室外熱交換器の着霜を的確に検知することができる車両用空気調和装置を提供する。【解決手段】室外熱交換器7の冷媒蒸発温度TXOと、無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseとに基づき、この室外熱交換器への着霜を判定する。起動初期において、無着霜時における室外熱交換器の冷媒蒸発温度TXObaseと室外熱交換器の冷媒蒸発温度TXOとの間に、着霜を検知しない側への誤差LRNがある場合、この誤差LRNを減少させ、若しくは、打ち消す方向に冷媒蒸発温度TXObaseを補正する。【選択図】図1

Description

本発明は、車両の車室内を空調するヒートポンプ式の空気調和装置に関するものである。
近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内側に設けられて冷媒を放熱させる放熱器と、車室外側に設けられて冷媒を吸熱させる室外熱交換器を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モードを実行するものが開発されている(例えば、特許文献1参照)。
また、暖房モードでは室外熱交換器が外気から吸熱するため、当該室外熱交換器には着霜が生じる。室外熱交換器に着霜が成長すると、外気からの吸熱能力が著しく低下するため、圧縮機を停止したり、室外熱交換器を除霜する必要があるが、その場合は車室内に吹き出される空気温度が低下し、快適性が損なわれるため、除霜や運転停止は最低限としたい。
そのためには、精度の高い着霜判定が必要となるが、前記公報では外気温度や車速に基づいて無着霜時における室外熱交換器の冷媒蒸発温度TXObaseや冷媒蒸発圧力PXObaseを推定し、実際の冷媒蒸発温度TXOや冷媒蒸発圧力PXOがそれらより低下してその差ΔTXOやΔPXOが所定値以上となったときに、室外熱交換器に着霜が進行しているものと判定するようにしていた。
特開2014−94676号公報
しかしながら、実際には外気温度等を検出するためのセンサその他の部品のバラツキにより、無着霜時における室外熱交換器の冷媒蒸発温度TXObaseや冷媒蒸発圧力PXObaseを推定値に誤差が生じる。この誤差が着霜を検知しない側への誤差、即ち、無着霜時における室外熱交換器の冷媒蒸発温度TXObaseや冷媒蒸発圧力PXObaseが実際の冷媒蒸発温度TXOや冷媒蒸発圧力PXOより低くなる誤差であった場合、室外熱交換器に着霜が進行しているにもかかわらず、それを検知できなくなると云う問題があった。
本発明は、係る従来の技術的課題を解決するために成されたものであり、部品にバラツキが生じても、室外熱交換器の着霜を的確に検知することができる車両用空気調和装置を提供することを目的とする。
請求項1の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、制御装置とを備え、この制御装置により、少なくとも圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房し、室外熱交換器の冷媒蒸発温度TXOと、無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseとに基づき、この室外熱交換器への着霜を判定するものであって、制御装置は、環境条件、及び/又は、運転状況を示す指標に基づいて無着霜時における室外熱交換器の冷媒蒸発温度TXObaseを推定すると共に、起動初期において、無着霜時における室外熱交換器の冷媒蒸発温度TXObaseと室外熱交換器の冷媒蒸発温度TXOとの間に、着霜を検知しない側への誤差LRNがある場合、この誤差LRNを減少させ、若しくは、打ち消す方向に無着霜時における室外熱交換器の冷媒蒸発温度TXObaseを補正することを特徴とする。
請求項2の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、制御装置とを備え、この制御装置により、少なくとも圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房し、室外熱交換器の冷媒蒸発圧力PXOと、無着霜時における当該室外熱交換器の冷媒蒸発圧力PXObaseとに基づき、この室外熱交換器への着霜を判定するものであって、制御装置は、環境条件、及び/又は、運転状況を示す指標に基づいて無着霜時における室外熱交換器の冷媒蒸発圧力PXObaseを推定すると共に、起動初期において、無着霜時における室外熱交換器の冷媒蒸発圧力PXObaseと室外熱交換器の冷媒蒸発圧力PXOとの間に、着霜を検知しない側への誤差LRNがある場合、この誤差LRNを減少させ、若しくは、打ち消す方向に無着霜時における室外熱交換器の冷媒蒸発圧力PXObaseを補正することを特徴とする。
請求項3の発明の車両用空気調和装置は、上記各発明において制御装置は、室外熱交換器の冷媒蒸発温度TXOが無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseより低下し、その差ΔTXOが所定値以上となった状態が所定時間継続した場合、又は、室外熱交換器の冷媒蒸発圧力PXOが無着霜時における当該室外熱交換器の冷媒蒸発圧力PXObaseより低下し、その差ΔPXOが所定値以上となった状態が所定時間継続した場合、室外熱交換器に着霜したものと判定することを特徴とする。
請求項4の発明の車両用空気調和装置は、上記発明において制御装置は起動初期において、差ΔTXO、又は、差ΔPXOを所定期間内に複数回算出し、当該所定期間内の最も大きな差ΔTXOと最も小さい差ΔTXOとの差違ΔPT、又は、所定期間内の最も大きな差ΔPXOと最も小さい差ΔPXOとの差違ΔPPが所定値以内となったか否か判断し、所定値以内になった場合の当該所定期間内の複数の差ΔTXO、又は、当該所定期間内の複数の差ΔPXOに基づいて誤差LRNを決定することを特徴とする。
請求項5の発明の車両用空気調和装置は、上記発明において制御装置は、所定のタイムアウト期間内に差違ΔPT、又は、差違ΔPPが所定値以内とならなかった場合、誤差LRNによる無着霜時における室外熱交換器の冷媒蒸発温度TXObaseの補正、又は、誤差LRNによる無着霜時における室外熱交換器の冷媒蒸発圧力PXObaseの補正を行わないことを特徴とする。
請求項6の発明の車両用空気調和装置は、上記各発明において制御装置は、室外熱交換器に着霜したものと判定した場合、圧縮機を停止し、若しくは、室外熱交換器の着霜を除去するための所定の除霜動作を実行することを特徴とする。
請求項1又は請求項2の発明によれば、少なくとも圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房すると共に、室外熱交換器の冷媒蒸発温度TXOと、無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseとに基づき、又は、室外熱交換器の冷媒蒸発圧力PXOと、無着霜時における当該室外熱交換器の冷媒蒸発圧力PXObaseとに基づき、室外熱交換器への着霜を判定する車両用空気調和装置において、制御装置が、環境条件、及び/又は、運転状況を示す指標に基づいて無着霜時における室外熱交換器の冷媒蒸発温度TXObase、又は、無着霜時における当該室外熱交換器の冷媒蒸発圧力PXObaseを推定すると共に、起動初期において、無着霜時における室外熱交換器の冷媒蒸発温度TXObaseと室外熱交換器の冷媒蒸発温度TXOとの間に、又は、無着霜時における室外熱交換器の冷媒蒸発圧力PXObaseと室外熱交換器の冷媒蒸発圧力PXOとの間に、着霜を検知しない側への誤差LRNがある場合、この誤差LRNを減少させ、若しくは、打ち消す方向に無着霜時における室外熱交換器の冷媒蒸発温度TXObase、又は、無着霜時における室外熱交換器の冷媒蒸発圧力PXObaseを補正するようにしたので、部品のバラツキにより、推定された無着霜時における室外熱交換器の冷媒蒸発温度TXObase、又は、無着霜時における当該室外熱交換器の冷媒蒸発圧力PXObaseと実際の室外熱交換器の冷媒蒸発温度TXO、又は、冷媒蒸発圧力PXOとの間に誤差LRNが生じた場合にも、これを減少、若しくは、打ち消して室外熱交換器の着霜の進行を的確に検知することができるようになる。
そして、請求項6の如く制御装置が、室外熱交換器に着霜したものと判定した場合、圧縮機を停止し、若しくは、室外熱交換器の着霜を除去するための所定の除霜動作を実行することにより、適切に機器の保護や室外熱交換器の除霜を行い、車室内の快適性を担保することができるようになる。
また、請求項3の発明の如く制御装置が、室外熱交換器の冷媒蒸発温度TXOが無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseより低下し、その差ΔTXOが所定値以上となった状態が所定時間継続した場合、又は、室外熱交換器の冷媒蒸発圧力PXOが無着霜時における当該室外熱交換器の冷媒蒸発圧力PXObaseより低下し、その差ΔPXOが所定値以上となった状態が所定時間継続した場合、室外熱交換器に着霜したものと判定することで、外乱等の影響による誤判定を排除し、室外熱交換器の着霜の進行を精度良く検知することができるようになる。
この場合、請求項4の発明の如く制御装置が起動初期において、差ΔTXO、又は、差ΔPXOを所定期間内に複数回算出し、当該所定期間内の最も大きな差ΔTXOと最も小さい差ΔTXOとの差違ΔPT、又は、所定期間内の最も大きな差ΔPXOと最も小さい差ΔPXOとの差違ΔPPが所定値以内となったか否か判断し、所定値以内になった場合の当該所定期間内の複数の差ΔTXO、又は、当該所定期間内の複数の差ΔPXOに基づいて誤差LRNを決定するようにすれば、起動初期における不安定な運転状況での誤った誤差LRNの算出を排除し、安定状況下での誤差LRNの決定を実現することができるようになる。
但し、請求項5の発明の如く制御装置が、所定のタイムアウト期間内に差違ΔPT、又は、差違ΔPPが所定値以内とならなかった場合、誤差LRNによる無着霜時における室外熱交換器の冷媒蒸発温度TXObaseの補正、又は、誤差LRNによる無着霜時における室外熱交換器の冷媒蒸発圧力PXObaseの補正を行わないようにすれば、不必要に長期間、誤差LRNが決定できずに室外熱交換器の着霜判定が行われなくなる不都合も回避することができるようになる。
本発明を適用した一実施形態の車両用空気調和装置の構成図である(実施例1)。 図1の車両用空気調和装置の制御装置のブロック図である。 図1の車両用空気調和装置の空気流通路の模式図である。 図2のヒートポンプコントローラの暖房モードにおける圧縮機制御に関する制御ブロック図である。 図2のヒートポンプコントローラの除湿暖房モードにおける圧縮機制御に関する制御ブロック図である。 図2のヒートポンプコントローラの除湿暖房モードにおける補助ヒータ(補助加熱装置)制御に関する制御ブロック図である。 TXObaseとTXOに基づく図2のヒートポンプコントローラによる室外熱交換器の着霜判定を説明するタイミングチャートである。 PXObaseとPXOに基づく図2のヒートポンプコントローラによる室外熱交換器の着霜判定を説明するタイミングチャートである。 TXObaseの推定に誤差LRNがある場合の室外熱交換器の着霜判定を説明するタイミングチャートである。 図2のヒートポンプコントローラによる誤差LRNによるTXObaseの補正制御を説明するフローチャートである。 図2のヒートポンプコントローラによる室外熱交換器の着霜判定の遷移図である。 誤差LRNを補正したときのTXObaseとTXOに基づく図2のヒートポンプコントローラによる室外熱交換器の着霜判定を説明するタイミングチャートである。 本発明の他の実施例の車両用空気調和装置の構成図である(実施例2)。
以下、本発明の実施の形態について、図面に基づき詳細に説明する。
図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房モードを行い、更に、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)及び補助ヒータ単独モードの各運転モードを選択的に実行するものである。
尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を放熱させて車室内に供給する空気を加熱するためのヒータとしての放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6(減圧装置)と、車室外に設けられて冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8(減圧装置)と、空気流通路3内に設けられ、冷房時及び除湿時に冷媒を吸熱させて車室内外から吸い込んで車室内に供給する空気を冷却するための吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。
そして、この冷媒回路Rには所定量の冷媒と潤滑用のオイルが充填されている。尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される電磁弁17を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは室内膨張弁8介して吸熱器9の入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。
また、過冷却部16と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側の冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出た低温の冷媒により冷却(過冷却)される構成とされている。
また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。この冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6を介して室外熱交換器7の入口側に接続されている。
また、圧縮機2の吐出側と放熱器4の入口側の間の冷媒配管13Gには後述する除湿暖房とMAX冷房時に閉じられる電磁弁30(流路切換装置を構成する)が介設されている。この場合、冷媒配管13Gは電磁弁30の上流側でバイパス配管35に分岐しており、このバイパス配管35は除湿暖房とMAX冷房時に開放される電磁弁40(これも流路切換装置を構成する)を介して室外膨張弁6の下流側の冷媒配管13Eに連通接続されている。これらバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45が構成される。
このようなバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45を構成したことで、後述する如く圧縮機2から吐出された冷媒を室外熱交換器7に直接流入させる除湿暖房モードやMAX冷房モードと、圧縮機2から吐出された冷媒を放熱器4に流入させる暖房モードや除湿冷房モード、冷房モードとの切り換えを円滑に行うことができるようになる。
また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
また、図1において23は実施例の車両用空気調和装置1に設けられた補助加熱装置(もう一つのヒータ)としての補助ヒータである。実施例の補助ヒータ23は電気ヒータであるPTCヒータにて構成されており、空気流通路3の空気の流れに対して、放熱器4の風上側(空気上流側)となる空気流通路3内に設けられている。そして、補助ヒータ23に通電されて発熱すると、吸熱器9を経て放熱器4に流入する空気流通路3内の空気が加熱される。即ち、この補助ヒータ23が所謂ヒータコアとなり、車室内の暖房を行い、或いは、それを補完する。この実施例では前述した放熱器4とこの補助ヒータ23がヒータとなる。
ここで、HVACユニット10の吸熱器9より風下側(空気下流側)の空気流通路3は仕切壁10Aにより区画され、暖房用熱交換通路3Aとそれをバイパスするバイパス通路3Bとが形成されており、前述した放熱器4と補助ヒータ23は暖房用熱交換通路3Aに配置されている。
また、補助ヒータ23の風上側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を、補助ヒータ23及び放熱器4が配置された暖房用熱交換通路3Aに通風する割合を調整するエアミックスダンパ28が設けられている。
更に、放熱器4の風下側におけるHVACユニット10には、FOOT(フット)吹出口29A(第1の吹出口)、VENT(ベント)吹出口29B(FOOT吹出口29Aに対しては第2の吹出口、DEF吹出口29Cに対しては第1の吹出口)、DEF(デフ)吹出口29C(第2の吹出口)の各吹出口が形成されている。FOOT吹出口29Aは車室内の足下に空気を吹き出すための吹出口で、最も低い位置にある。また、VENT吹出口29Bは車室内の運転者の胸や顔付近に空気を吹き出すための吹出口で、FOOT吹出口29Aより上方にある。そして、DEF吹出口29Cは車両のフロントガラス内面に空気を吹き出すための吹出口で、他の吹出口29A、29Bよりも上方の最も高い位置にある。
そして、FOOT吹出口29A、VENT吹出口29B、及び、DEF吹出口29Cには、空気の吹き出し量を制御するFOOT吹出口ダンパ31A、VENT吹出口ダンパ31B、及び、DEF吹出口ダンパ31Cがそれぞれ設けられている。
次に、図2は実施例の車両用空気調和装置1の制御装置11のブロック図を示している。制御装置11は、何れもプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された空調コントローラ20及びヒートポンプコントローラ32から構成されており、これらがCAN(Controller Area Network)やLIN(Local Interconnect Network)を構成する車両通信バス65に接続されている。また、圧縮機2と補助ヒータ23も車両通信バス65に接続され、これら空調コントローラ20、ヒートポンプコントローラ32、圧縮機2及び補助ヒータ23が車両通信バス65を介してデータの送受信を行うように構成されている。
空調コントローラ20は、車両の車室内空調の制御を司る上位のコントローラであり、この空調コントローラ20の入力には、車両の外気温度(Tam)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれて吸熱器9に流入する空気の温度(吸込空気温度Tas)を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度(室内温度Tin)を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52の各出力と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53が接続されている。
また、空調コントローラ20の出力には、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、各吹出口ダンパ31A〜31Cが接続され、それらは空調コントローラ20により制御される。
ヒートポンプコントローラ32は、主に冷媒回路Rの制御を司るコントローラであり、このヒートポンプコントローラ32の入力には、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力を検出する吸込圧力センサ44と、圧縮機2の吸込冷媒温度Tsを検出する吸込温度センサ55と、放熱器4の冷媒温度(放熱器温度TCI)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の冷媒温度(吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力を検出する吸熱器圧力センサ49と、補助ヒータ23の温度(補助ヒータ温度Tptc)を検出する補助ヒータ温度センサ50と、室外熱交換器7の出口の冷媒温度(室外熱交換器温度TXO)を検出する室外熱交換器温度センサ54と、室外熱交換器7の出口の冷媒圧力(室外熱交換器圧力PXO)を検出する室外熱交換器圧力センサ56の各出力が接続されている。
また、ヒートポンプコントローラ32の出力には、室外膨張弁6、室内膨張弁8と、電磁弁30(リヒート用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁40(バイパス用)の各電磁弁が接続され、それらはヒートポンプコントローラ32により制御される。尚、圧縮機2と補助ヒータ23はそれぞれコントローラを内蔵しており、圧縮機2と補助ヒータ23のコントローラは車両通信バス65を介してヒートポンプコントローラ32とデータの送受信を行い、このヒートポンプコントローラ32によって制御される。
ヒートポンプコントローラ32と空調コントローラ20は車両通信バス65を介して相互にデータの送受信を行い、各センサの出力や空調操作部53にて入力された設定に基づき、各機器を制御するものであるが、この場合の実施例では外気温度センサ33、吐出圧力センサ42、車速センサ52、空気流通路3に流入した空気の体積風量Ga(空調コントローラ20が算出)、エアミックスダンパ28による風量割合SW(空調コントローラ20が算出)、空調操作部53の出力は空調コントローラ20から車両通信バス65を介してヒートポンプコントローラ32に送信され、ヒートポンプコントローラ32による制御に供される構成とされている。
以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。この実施例では制御装置11(空調コントローラ20、ヒートポンプコントローラ32)は、暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)及び補助ヒータ単独モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れと制御の概略について説明する。
(1)暖房モード
ヒートポンプコントローラ32により(オートモード)或いは空調操作部53へのマニュアル操作(マニュアルモード)により暖房モードが選択されると、ヒートポンプコントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁30(リヒート用)を開放し、電磁弁40(バイパス用)を閉じる。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量を調整してもよい。
これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)にて加熱された空気は各吹出口29A〜29Cから吹き出されるので、これにより車室内の暖房が行われることになる。
ヒートポンプコントローラ32は、空調コントローラ20が目標吹出温度TAOから算出する目標ヒータ温度TCO(放熱器温度TCIの目標値)から目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御し、放熱器4による加熱を制御する。また、ヒートポンプコントローラ32は、放熱器温度センサ46が検出する放熱器4の冷媒温度(放熱器温度TCI)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度SCを制御する。
また、ヒートポンプコントローラ32はこの暖房モードにおいては、車室内空調に要求される暖房能力に対して放熱器4による暖房能力が不足する場合、その不足する分を補助ヒータ23の発熱で補完するように補助ヒータ23の通電を制御する。それにより、快適な車室内暖房を実現し、且つ、室外熱交換器7の着霜も抑制する。このとき、補助ヒータ23は放熱器4の空気上流側に配置されているので、空気流通路3を流通する空気は放熱器4の前に補助ヒータ23に通風されることになる。
ここで、補助ヒータ23が放熱器4の空気下流側に配置されていると、実施例の如くPTCヒータで補助ヒータ23を構成した場合には、補助ヒータ23に流入する空気の温度が放熱器4によって上昇するため、PTCヒータの抵抗値が大きくなり、電流値も低くなって発熱量が低下してしまうが、放熱器4の空気上流側に補助ヒータ23を配置することで、実施例の如くPTCヒータから構成される補助ヒータ23の能力を十分に発揮させることができるようになる。
(2)除湿暖房モード
次に、除湿暖房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却され、且つ、当該空気中の水分が吸熱器9に凝結して付着するので、空気流通路3内の空気は冷却され、且つ、除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。
このとき、室外膨張弁6の弁開度は全閉とされているので、圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。更に、この除湿暖房モードにおいてヒートポンプコントローラ32は、補助ヒータ23に通電して発熱させる。これにより、吸熱器9にて冷却され、且つ、除湿された空気は補助ヒータ23を通過する過程で更に加熱され、温度が上昇するので車室内の除湿暖房が行われることになる。
ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)と、空調コントローラ20が算出する吸熱器温度Teの目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御すると共に、補助ヒータ温度センサ50が検出する補助ヒータ温度Tptcと前述した目標ヒータ温度TCO(この場合、補助ヒータ温度Tptcの目標値となる)に基づいて補助ヒータ23の通電(発熱による加熱)を制御することで、吸熱器9での空気の冷却と除湿を適切に行いながら、補助ヒータ23による加熱で各吹出口29A〜29Cから車室内に吹き出される空気温度の低下を的確に防止する。これにより、車室内に吹き出される空気を除湿しながら、その温度を適切な暖房温度に制御することが可能となり、車室内の快適且つ効率的な除湿暖房を実現することができるようになる。
尚、補助ヒータ23は放熱器4の空気上流側に配置されているので、補助ヒータ23で加熱された空気は放熱器4を通過することになるが、この除湿暖房モードでは放熱器4に冷媒は流されないので、補助ヒータ23にて加熱された空気から放熱器4が吸熱してしまう不都合も解消される。即ち、放熱器4によって車室内に吹き出される空気の温度が低下してしまうことが抑制され、COPも向上することになる。
(3)除湿冷房モード
次に、除湿冷房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を開放し、電磁弁40を閉じる。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。この除湿冷房モードではヒートポンプコントローラ32は補助ヒータ23に通電しないので、吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)される。これにより車室内の除湿冷房が行われることになる。
ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEO(空調コントローラ20から送信される)に基づいて圧縮機2の回転数NCを制御する。また、ヒートポンプコントローラ32は前述した目標ヒータ温度TCOから目標放熱器圧力PCOを算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて室外膨張弁6の弁開度を制御し、放熱器4による加熱を制御する。
(4)冷房モード
次に、冷房モードでは、ヒートポンプコントローラ32は上記除湿冷房モードの状態において室外膨張弁6の弁開度を全開とする。そして、圧縮機2を運転し、補助ヒータ23には通電しない。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の空気が、暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風される割合を調整する状態とする。
これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入すると共に、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそれを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着する。
吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気が各吹出口29A〜29Cから車室内に吹き出されるので(一部は放熱器4を通過して熱交換する)、これにより車室内の冷房が行われることになる。また、この冷房モードにおいては、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である前述した目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御する。
(5)MAX冷房モード(最大冷房モード)
次に、最大冷房モードとしてのMAX冷房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2を運転し、補助ヒータ23には通電しない。空調コントローラ20は、各送風機15、27を運転し、エアミックスダンパ28は、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の空気が、暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風される割合を調整する状態とする。
これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着するので、空気流通路3内の空気は除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。このとき、室外膨張弁6は全閉とされているので、同様に圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。
ここで、前述した冷房モードでは放熱器4に高温の冷媒が流れているため、放熱器4からHVACユニット10への直接の熱伝導が少なからず生じるが、このMAX冷房モードでは放熱器4に冷媒が流れないため、放熱器4からHVACユニット10に伝達される熱で吸熱器9からの空気流通路3内の空気が加熱されることも無くなる。そのため、車室内の強力な冷房が行われ、特に外気温度Tamが高いような環境下では、迅速に車室内を冷房して快適な車室内空調を実現することができるようになる。また、このMAX冷房モードにおいても、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である前述した目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御する。
(6)補助ヒータ単独モード
尚、実施例の制御装置11は室外熱交換器7に過着霜が生じた場合などに、冷媒回路Rの圧縮機2と室外送風機15を停止し、補助ヒータ23に通電してこの補助ヒータ23のみで車室内を暖房する補助ヒータ単独モードを有している。この場合にも、ヒートポンプコントローラ32は補助ヒータ温度センサ50が検出する補助ヒータ温度Tptcと前述した目標ヒータ温度TCOに基づいて補助ヒータ23の通電(発熱)を制御する。
また、空調コントローラ20は室内送風機27を運転し、エアミックスダンパ28は、室内送風機27から吹き出された空気流通路3内の空気を暖房用熱交換通路3Aの補助ヒータ23に通風し、風量を調整する状態とする。補助ヒータ23にて加熱された空気が各吹出口29A〜29Cから車室内に吹き出されるので、これにより車室内の暖房が行われることになる。
(7)運転モードの切換
空調コントローラ20は、下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、車室内に吹き出される空気の温度の目標値である。
TAO=(Tset−Tin)×K+Tbal(f(Tset、SUN、Tam))
・・(I)
ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する室内温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
ヒートポンプコントローラ32は、起動時には空調コントローラ20から車両通信バス65を介して送信される外気温度Tam(外気温度センサ33が検出する)と目標吹出温度TAOとに基づいて上記各運転モードのうちの何れかの運転モードを選択すると共に、各運転モードを車両通信バス65を介して空調コントローラ20に送信する。また、起動後は外気温度Tam、車室内の湿度、目標吹出温度TAO、後述する加熱温度TH(放熱器4の風下側の空気の温度。推定値)、目標ヒータ温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータに基づいて各運転モードの切り換えを行うことで、環境条件や除湿の要否に応じて的確に暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード及び補助ヒータ単独モードを切り換えて車室内に吹き出される空気の温度を目標吹出温度TAOに制御し、快適且つ効率的な車室内空調を実現するものである。
(8)ヒートポンプコントローラ32による暖房モードでの圧縮機2の制御
次に、図4を用いて前述した暖房モードにおける圧縮機2の制御について詳述する。図4は暖房モード用の圧縮機2の目標回転数(圧縮機目標回転数)TGNChを決定するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部58は外気温度センサ33から得られる外気温度Tamと、室内送風機27のブロワ電圧BLVと、SW=(TAO−Te)/(TH−Te)で得られるエアミックスダンパ28による風量割合SWと、放熱器4の出口における過冷却度SCの目標値である目標過冷却度TGSCと、放熱器4の温度の目標値である前述した目標ヒータ温度TCO(空調コントローラ20から送信される)と、放熱器4の圧力の目標値である目標放熱器圧力PCOに基づいて圧縮機目標回転数のF/F操作量TGNChffを演算する。
ここで、風量割合SWを算出する上記THは、放熱器4の風下側の空気の温度(以下、加熱温度と云う)であり、ヒートポンプコントローラ32が下記に示す一次遅れ演算の式(II)から推定する。
TH=(INTL×TH0+Tau×THz)/(Tau+INTL) ・・(II)
ここで、INTLは演算周期(定数)、Tauは一次遅れの時定数、TH0は一次遅れ演算前の定常状態における加熱温度THの定常値、THzは加熱温度THの前回値である。このように加熱温度THを推定することで、格別な温度センサを設ける必要がなくなる。
尚、ヒートポンプコントローラ32は前述した運転モードによって上記時定数Tau及び定常値TH0を変更することにより、上述した推定式(II)を運転モードによって異なるものとし、加熱温度THを推定する。そして、この加熱温度THは車両通信バス65を介して空調コントローラ20に送信される。
前記目標放熱器圧力PCOは上記目標過冷却度TGSCと目標ヒータ温度TCOに基づいて目標値演算部59が演算する。更に、F/B(フィードバック)操作量演算部60はこの目標放熱器圧力PCOと放熱器4の冷媒圧力である放熱器圧力PCIに基づいて圧縮機目標回転数のF/B操作量TGNChfbを演算する。そして、F/F操作量演算部58が演算したF/F操作量TGNCnffとF/B操作量演算部60が演算したTGNChfbは加算器61で加算され、リミット設定部62で制御上限値と制御下限値のリミットが付けられた後、圧縮機目標回転数TGNChとして決定される。前記暖房モードにおいては、ヒートポンプコントローラ32はこの圧縮機目標回転数TGNChに基づいて圧縮機2の回転数NCを制御する。
(9)ヒートポンプコントローラ32による除湿暖房モードでの圧縮機2及び補助ヒータ23の制御
一方、図5は前記除湿暖房モード用の圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを決定するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F操作量演算部63は外気温度Tamと、空気流通路3に流入した空気の体積風量Gaと、放熱器4の圧力(放熱器圧力PCI)の目標値である目標放熱器圧力PCOと、吸熱器9の温度(吸熱器温度Te)の目標値である目標吸熱器温度TEOに基づいて圧縮機目標回転数のF/F操作量TGNCcffを演算する。
また、F/B操作量演算部64は目標吸熱器温度TEO(空調コントローラ20から送信される)と吸熱器温度Teに基づいて圧縮機目標回転数のF/B操作量TGNCcfbを演算する。そして、F/F操作量演算部63が演算したF/F操作量TGNCcffとF/B操作量演算部64が演算したF/B操作量TGNCcfbは加算器66で加算され、リミット設定部67で制御上限値と制御下限値のリミットが付けられた後、圧縮機目標回転数TGNCcとして決定される。除湿暖房モードにおいては、ヒートポンプコントローラ32はこの圧縮機目標回転数TGNCcに基づいて圧縮機2の回転数NCを制御する。
また、図6は除湿暖房モードにおける補助ヒータ23の補助ヒータ要求能力TGQPTCを決定するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32の減算器73には目標ヒータ温度TCOと補助ヒータ温度Tptcが入力され、目標ヒータ温度TCOと補助ヒータ温度Tptcの偏差(TCO−Tptc)が算出される。この偏差(TCO−Tptc)はF/B制御部74に入力され、このF/B制御部74は偏差(TCO−Tptc)を無くして補助ヒータ温度Tptcが目標ヒータ温度TCOとなるように補助ヒータ要求能力F/B操作量を演算する。
このF/B制御部74で算出された補助ヒータ要求能力F/B操作量はリミット設定部76で制御上限値と制御下限値のリミットが付けられた後、補助ヒータ要求能力TGQPTCとして決定される。除湿暖房モードにおいては、コントローラ32はこの補助ヒータ要求能力TGQPTCに基づいて補助ヒータ23の通電を制御することにより、補助ヒータ温度Tptcが目標ヒータ温度TCOとなるように補助ヒータ23の発熱(加熱)を制御する。
このようにしてヒートポンプコントローラ32は、除湿暖房モードでは吸熱器温度Teと目標吸熱器温度TEOに基づいて圧縮機の運転を制御すると共に、目標ヒータ温度TCOに基づいて補助ヒータ23の発熱を制御することで、除湿暖房モードにおける吸熱器9による冷却と除湿、並びに、補助ヒータ23による加熱を的確に制御する。これにより、車室内に吹き出される空気をより適切に除湿しながら、その温度をより正確な暖房温度に制御することが可能となり、より一層快適且つ効率的な車室内の除湿暖房を実現することができるようになる。
(10)エアミックスダンパ28の制御
次に、図3を参照しながら空調コントローラ20によるエアミックスダンパ28の制御について説明する。図3においてGaは前述した空気流通路3に流入した空気の体積風量、Teは吸熱器温度、THは前述した加熱温度(放熱器4の風下側の空気の温度)である。
空調コントローラ20は、前述した如き式(下記式(III))により算出される暖房用熱交換通路3Aの放熱器4と補助ヒータ23に通風する風量割合SWに基づき、当該割合の風量となるようにエアミックスダンパ28を制御することで放熱器4(及び補助ヒータ23)への通風量を調整する。
SW=(TAO−Te)/(TH−Te) ・・(III)
即ち、暖房用熱交換通路3Aの放熱器4と補助ヒータ23に通風する風量割合SWは0≦SW≦1の範囲で変化し、「0」で暖房用熱交換通路3Aへの通風をせず、空気流通路3内の全ての空気をバイパス通路3Bに通風するエアミックス全閉状態、「1」で空気流通路3内の全ての空気を暖房用熱交換通路3Aに通風するエアミックス全開状態となる。即ち、放熱器4への風量はGa×SWとなる。
(11)室外熱交換器の着霜判定制御
前述の如く暖房モードでは、室外熱交換器7は外気から吸熱して低温となるため、室外熱交換器7には外気中の水分が霜となって付着する。この着霜が成長すると室外熱交換器7と通風される外気との間の熱交換が著しく阻害され、空調性能が悪化する。また、過着霜で室外送風機15等が破損が発生する場合もある。そこで、ヒートポンプコントローラ32は後述する如く圧縮機2を停止し、或いは、圧縮機2からの高温冷媒を室外熱交換器7に流して室外熱交換器7の除霜を実行するものであるが、その前に室外熱交換器7に着霜しているか否かの判定を行う。
(11−1)室外熱交換器の着霜判定(その1)
次に、図7を用いてこの室外熱交換器7の着霜判定の一例を説明する。ヒートポンプコントローラ32は先ず、下記の着霜判定許可条件のうちの(i)が成り立ち、且つ、(ii)〜(iv)のうちの何れか一つが成り立つ場合、室外熱交換器7の着霜判定を許可する。
[着霜判定許可条件]
(i) 運転モードが暖房モードであること。
(ii) 高圧圧力が目標値に収束していること。これは具体的には、例えば目標放熱器圧力PCOと放熱器圧力PCIの差(PCO−PCI)の絶対値が所定値A以下である状態が所定時間t1(sec)継続していることがあげられる。
(iii)暖房モードへの移行後、所定時間t2(sec)が経過していること。
(iv) 車速変動が所定値以下(車両の加減速度が所定値以下)であること。車両の加減速度とは、例えば現在の車速VSPとその一秒前の車速VSPzの差(VSP−VSPz)である。
前記条件(ii)及び(iii)は運転状態の過渡期に発生する誤判定を排除するための条件である。また、車速変動が大きい場合にも誤判定が発生するため、上記条件(iv)が加えられている。
上記着霜判定許可条件が成立して着霜判定が許可となった場合、ヒートポンプコントローラ32は室外熱交換器温度センサ54から得られる室外熱交換器7の現在の冷媒蒸発温度TXOと、外気が低湿環境で室外熱交換器7に着霜していない無着霜時における当該室外熱交換器7の冷媒蒸発温度TXObaseとに基づき、室外熱交換器7に着霜しているか否かの判定を行う。この場合のヒートポンプコントローラ32は、無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseを、次式(IV)を用いて演算することで推定する。
TXObase=f(Tam、NC、Ga*SW、VSP、PCI)
=k1×Tam+k2×NC+k3×Ga*SW+k4×VSP+k5×PCI
・・(IV)
ここで、式(IV)のパラメータであるTamは外気温度センサ33から得られる外気温度、NCは圧縮機2の回転数、Ga*SWは放熱器4への風量、VSPは車速センサ52から得られる車速、PCIは放熱器圧力であり、k1〜k5は係数で、予め実験により求めておく。
外気温度Tamは室外熱交換器7の吸込空気温度(環境条件)を示す指標であり、外気温度Tam(室外熱交換器7の吸込空気温度)が低くなる程、TXObaseは低くなる傾向となる。従って、係数k1は正の値となる。尚、同様に室外熱交換器7の吸込空気温度を示す指標としては外気温度Tamに限られない。
また、圧縮機2の回転数NCは冷媒回路R内の冷媒流量(運転状況)を示す指標であり、回転数NCが高い程(冷媒流量が多い程)、TXObaseは低くなる傾向となる。従って、係数k2は負の値となる。
また、Ga*SWは放熱器4の通過風量(運転状況)を示す指標であり、Ga*SWが大きい程(放熱器4の通過風量が大きい程)、TXObaseは低くなる傾向となる。従って、係数k3は負の値となる。尚、放熱器4の通過風量を示す指標としてはこれに限らず、室内送風機27のブロワ電圧BLVでもよい。
また、車速VSPは室外熱交換器7の通過風速(運転状況)を示す指標であり、車速VSPが低い程(室外熱交換器7の通過風速が低い程)、TXObaseは低くなる傾向となる。従って、係数k4は正の値となる。尚、室外熱交換器7の通過風速を示す指標としてはこれに限らず、室外送風機15の電圧でもよい。
また、放熱器圧力PCIは放熱器4の冷媒圧力(運転状況)を示す指標であり、放熱器圧力PCIが高い程、TXObaseは低くなる傾向となる。従って、係数k5は負の値となる。
尚、この実施例の式(IV)のパラメータとして外気温度Tam、圧縮機2の回転数NC、放熱器4の通過風量Ga*SW、車速VSP、放熱器圧力PCIを用いているが、式(IV)のパラメータとしては、上記全てに限らず、それらのうちの何れか一つ、若しくは、それらの組み合わせでもよい。
次にコントローラ32は、式(IV)に現在の各パラメータの値を代入することで得られる無着霜時における冷媒蒸発温度TXObaseと現在の冷媒蒸発温度TXOとの差ΔTXO(ΔTXO=TXObase−TXO)を算出し、冷媒蒸発温度TXOが無着霜時における冷媒蒸発温度TXObaseより低下して、その差ΔTXOが所定値dTXOFST(deg)以上となった状態が所定時間t3(sec)以上継続した場合、室外熱交換器7に着霜しているものと判定する。
図7で実線は室外熱交換器7の冷媒蒸発温度TXOの変化を示し、破線は無着霜時における冷媒蒸発温度TXObaseの変化を示している。無着霜時における冷媒蒸発温度TXObaseの推定に問題が無い場合、起動初期(非着霜)には室外熱交換器7の冷媒蒸発温度TXOと無着霜時における冷媒蒸発温度TXObaseは略同じ値となる。暖房モードの進行に伴って車室内の温度は暖められ、車両用空気調和装置1の負荷は低下してくるので、前述した冷媒流量や放熱器4の通過風量も低下し、式(IV)で算出されるTXObase(図7の破線)は上昇してくる。
一方、室外熱交換器7に着霜が生じると外気との熱交換性能が阻害されるようになるので、冷媒蒸発温度TXO(実線)は低下していき、やがてTXObaseを下回る。そして冷媒蒸発温度TXOの低下が更に進行して、その差ΔTXO(TXObase−TXO)が所定値dTXOFST以上となり、その状態が所定時間t3以上継続した場合、ヒートポンプコントローラ32は着霜と判定して着霜検知フラグをセットする。
(11−2)室外熱交換器に着霜と判定したときの動作
ヒートポンプコントローラ32は上述した如く室外熱交換器7に着霜が生じているものと判定した場合、圧縮機2を停止するか、室外熱交換器7の除霜動作を行う(車両の停止中)。この室外熱交換器7の除霜動作では、例えばヒートポンプコントローラ32は電磁弁40と電磁弁21を開き、電磁弁30及び電磁弁17を閉じて圧縮機2を運転する。これにより、圧縮機2から吐出された高温高圧のガス冷媒(ホットガス)は、電磁弁40を経て室外熱交換器7に直接流入する状態となる。これにより、室外熱交換器7は加熱されるので、着霜は融解除去される。室外熱交換器7を出た冷媒は電磁弁21を経て圧縮機2に吸い込まれる。そして、開始から所定時間が経過した場合、ヒートポンプコントローラ32は除霜動作を終了して暖房モードに復帰する。
(11−3)室外熱交換器の着霜判定(その2)
次に、図8を用いて室外熱交換器7の着霜判定の他の例を説明する。前述の着霜判定(その1)で説明した着霜判定許可条件については同様である。そして、この着霜判定許可条件が成立して着霜判定が許可となった場合、この実施例ではヒートポンプコントローラ32は室外熱交換器圧力センサ56から得られる室外熱交換器7の現在の冷媒蒸発圧力PXOと、外気が低湿環境で室外熱交換器7に着霜していない無着霜時における当該室外熱交換器7の冷媒蒸発圧力PXObaseとに基づき、室外熱交換器7に着霜しているか否かの判定を行う。この場合のヒートポンプコントローラ32は、無着霜時における室外熱交換器7の冷媒蒸発圧力PXObaseを、次式(V)を用いて演算することで推定する。
PXObase=f(Tam、NC、Ga*SW、VSP、PCI)
=k6×Tam+k7×NC+k8×Ga*SW+k9×VSP+k10×PCI
・・(V)
尚、式(V)の各パラメータは式(IV)と同様であるので説明を省略する。また、各係数k6〜k10も前述した各係数k1〜k5とそれぞれ同様の傾向(正負)となる。次にヒートポンプコントローラ32は、式(v)に現在の各パラメータの値を代入することで得られる無着霜時における冷媒蒸発圧力PXObaseと現在の冷媒蒸発圧力PXOとの差ΔPXO(ΔPXO=PXObase−PXO)を算出し、冷媒蒸発圧力PXOが無着霜時における冷媒蒸発圧力PXObaseより低下して、その差ΔPXOが所定値dPXOFST(deg)以上となった状態が所定時間t4(sec)以上継続した場合、室外熱交換器7に着霜しているものと判定する。
図8で実線は室外熱交換器7の冷媒蒸発圧力PXOの変化を示し、破線は無着霜時における冷媒蒸発圧力PXObaseの変化を示している。無着霜時における冷媒蒸発圧力PXObaseの推定に問題が無い場合、起動初期(非着霜)には室外熱交換器7の冷媒蒸発圧力PXOと無着霜時における冷媒蒸発圧力PXObaseは略同じ値となる。暖房モードの進行に伴って車室内の温度は暖められ、車両用空気調和装置1の負荷は低下してくるので、前述した冷媒流量や放熱器4の通過風量も低下し、式(V)で算出されるPXObase(図8の破線)は上昇してくる。
一方、室外熱交換器7に着霜が生じると外気との熱交換性能が阻害されるようになるので、冷媒蒸発圧力PXO(実線)は低下していき、やがてPXObaseを下回る。そして冷媒蒸発圧力PXOの低下が更に進行して、その差ΔPXO(PXObase−PXO)が所定値dPXOFST以上となり、その状態が所定時間t4以上継続した場合、ヒートポンプコントローラ32は着霜と判定して室外熱交換器7の前述した着霜時の制御に入る。
(11−4)無着霜時における室外熱交換器の冷媒蒸発温度TXObaseの補正
次に、図9〜図12を参照しながら無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseの演算誤差を補正するオフセット補正制御について説明する。尚、以下は無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseの場合について説明するが、前述した無着霜時における室外熱交換器7の冷媒蒸発圧力PXObaseにおいても同様である。但し、以下の説明中のLRNは起動初期における無着霜時における室外熱交換器7の冷媒蒸発圧力PXObaseの推定値の誤差、差ΔTXOmaxとΔTXOminとの差違ΔPTは、冷媒蒸発圧力PXObaseの場合は差ΔPXOmaxとΔPXOminとの差違ΔPPに置き換えられるものとする。
前述した如く無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseは、外気温度センサ33が検出する外気温度Tam他に基づき、式(IV)を用いた演算により推定するものであるが、例えば外気温度センサ33自体やそれを取り付ける部品等(何れも部品)にバラツキがあり、検出値が本来のものとは異なっていた場合、無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseの推定値に誤差LRNが生じる。
例えば、この誤差LRNが実際の室外熱交換器7の冷媒蒸発温度TXOよりも無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseが低くなる側の誤差(室外熱交換器7の着霜を検知しない側への誤差)であった場合、暖房モードでの車両用空気調和装置1の起動初期から、図9に示す如く無着霜時における室外熱交換器7の冷媒蒸発温度TXObase(破線)が、実際の冷媒蒸発温度TXO(実線)よりも誤差LRNの分低い状態となり、そこから前述した如く室外熱交換器7に着霜が生じ、冷媒蒸発温度TXO(実線)が低下していってもTXOはTXObaseを下回らなくなり、それらの差ΔTXO(TXObase−TXO)は前述した所定値dTXOFST以上とならなくなり、室外熱交換器7の着霜を検知できなくなってしまう。
そこで、ヒートポンプコントローラ32は通常は室外熱交換器7に未だ着霜が生じていない起動初期に、係る誤差LRNを補正するオフセット補正制御を実行する。図10はヒートポンプコントローラによる係る誤差LRNのオフセット補正制御を説明するフローチャートであり、図11は着霜判定の遷移図である。ヒートポンプコントローラ32は図10のステップS1で起動(運転開始)から所定時間待機した後、ステップS2に進み、無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseを演算して推定し、室外熱交換器温度センサ54が検出する室外熱交換器7の実際の冷媒蒸発温度TXOを取り込んでそれらの差ΔTXO(TXObase−TXO)を算出する。
ヒートポンプコントローラ32はこの差ΔTXOの算出を所定期間t5内(例えば1分)に所定間隔(t5より十分短い間隔、例えば6s)で複数回(例えば5回)実行し、データベースDBに履歴として記録していく。そして、ステップS3でデータベースDBに記録された履歴から、この所定期間t5内の最も大きな差ΔTXOmaxと最も小さい差ΔTXOminとの差違ΔPT(絶対値)を算出する。そして、ステップS4でこの差違ΔPTが所定値(例えば0.6deg等)以内となったか否か判断し、所定値以内でなければステップS5に進み、予め設定された起動からの所定のタイムアウト期間t6(t5よりも十分長い時間、例えば6分等))が経過したか否か判断し、経過していなければステップS2に戻ってこれを繰り返す。
ステップS4で上記差違ΔPTが所定値以内となり、運転状態が安定してきたら、ヒートポンプコントローラ32は差違ΔPTが所定値以内となったときの算出元となった複数の差ΔTXOに基づき、これら差ΔTXOの平均値を室外熱交換器7の実際の冷媒蒸発温度TXOと無着霜時における室外熱交換器7の冷媒蒸発温度TXObase(推定値)との間の誤差LRNとして決定し、ステップS7に進む。
このステップS7では誤差LRNが0(零)より小さいか否か判断する。誤差LRNは本来ΔTXO(TXObase−TXO)に基づいた値であるから、誤差LRNが0より小さいということは、実際の室外熱交換器7の冷媒蒸発温度TXOよりも無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseが低くなる側の誤差(室外熱交換器7の着霜を検知しない側への誤差)であることになる。
そして、ステップS7で誤差LRNが0より小さかった場合、ヒートポンプコントローラ32は無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseの推定値に着霜を検知しない側への誤差があるものと判断し、ステップS9に進んで誤差LRN=0−ΔTXO(上記平均値)とし、無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseの推定値を補正する。このとき誤差LRN(=ΔTXOの平均値)は元々負の値であるので、ステップS9で誤差LRNの値は正の値となり、誤差LRNの分、無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseは引き上げられ、誤差LRNは打ち消され、或いは、極めて小さくなるように減少し、実際の冷媒蒸発温度TXOと同一若しくは略同等となる。
この様子を図12に示す。尚、図中破線L1はオフセット補正を行った場合の無着霜時における室外熱交換器7の冷媒蒸発温度TXObase、破線L2は補正を行わなかった場合の無着霜時における室外熱交換器7の冷媒蒸発温度TXObase(図9と同様)である。このように無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseを補正することで、誤差LRN(オフセット補正量)を決定し、それに基づいて補正した後は、図7と同様の状態となり、差ΔTXOと前述した所定値dTXOFST、及び、所定時間t3に基づいて室外熱交換器7の着霜を支障無く検知できるようになることが分かる。
尚、ヒートポンプコントローラ32はステップS7で誤差LRNが0以上であった場合はステップS8に進み、LRN=0として無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseのオフセット補正を行わない(オフセット補正無し)。誤差LRNが0以上であるということは、室外熱交換器7に起動初期から着霜があり、冷媒蒸発温度TXOが起動初期から無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseより低くなっていると考えられるからである。
また、起動初期から所定のタイムアウト期間t6内に前述した差違ΔPTが所定値以内とならず、ステップS5でタイムアウトt6期間が経過してしまった場合、ヒートポンプコントローラ32はステップS6に進んでLRN=0とし、同様に無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseのオフセット補正を行わない(オフセット補正無し)。即ち、起動初期とは暖房モードの起動(運転開始)からこのタイムアウト期間t6が経過するまでの期間に一致又は略一致することになる。
図11は係るヒートポンプコントローラ32による室外熱交換器7の着霜判定の遷移図である。図中SS1はオフセット補正量の算出前の状態、SS2はオフセット補正量の算出中の状態、SS3はオフセット補正量の算出後の状態をそれぞれ示し、暖房モードの開始時にSS1からSS2に遷移して着霜判定の許可後、オフセット補正量を算出し、オフセット補正量の決定或いはタイムアウトでSS2からSS3に遷移する。そして、暖房モードの停止でSS2、或いは、SS3からSS1に戻る(着霜判定不許可)。即ち、暖房モードの起動(開始)毎にヒートポンプコントローラ32は毎回オフセット補正量を算出することになる。
以上の如くヒートポンプコントローラ32は環境条件、及び/又は、運転状況を示す指標に基づいて無着霜時における室外熱交換器7の冷媒蒸発温度TXObase、又は、無着霜時における室外熱交換器7の冷媒蒸発圧力PXObaseを推定すると共に、暖房モードにおいて室外熱交換器7の冷媒蒸発温度TXOと、無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseとに基づき、又は、室外熱交換器7の冷媒蒸発圧力PXOと、無着霜時における室外熱交換器7の冷媒蒸発圧力PXObaseとに基づき、室外熱交換器7への着霜を判定する。そして、起動初期において、無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseと室外熱交換器7の冷媒蒸発温度TXOとの間に、又は、無着霜時における室外熱交換器7の冷媒蒸発圧力PXObaseと室外熱交換器7の冷媒蒸発圧力PXOとの間に、着霜を検知しない側への誤差LRNがある場合、この誤差LRNを減少させ、若しくは、打ち消す方向に無着霜時における室外熱交換器7の冷媒蒸発温度TXObase、又は、無着霜時における室外熱交換器7の冷媒蒸発圧力PXObaseを補正する。これにより、温度センサ等の部品のバラツキにより、推定された無着霜時における室外熱交換器7の冷媒蒸発温度TXObase、又は、無着霜時における室外熱交換器7の冷媒蒸発圧力PXObaseと実際の室外熱交換器7の冷媒蒸発温度TXO、又は、冷媒蒸発圧力PXOとの間に誤差LRNが生じた場合にも、これを減少、若しくは、打ち消して室外熱交換器7の着霜の進行を的確に検知することができるようになる。
そして、ヒートポンプコントローラ32が、室外熱交換器7に着霜したものと判定した場合、圧縮機2を停止し、若しくは、室外熱交換器7の着霜を除去するための前述した除霜動作を実行することにより、適切に機器の保護や室外熱交換器7の除霜を行い、車室内の快適性を担保することができるようになる。
この場合、ヒートポンプコントローラ32は、室外熱交換器7の冷媒蒸発温度TXOが無着霜時における当該室外熱交換器7の冷媒蒸発温度TXObaseより低下し、その差ΔTXOが所定値以上となった状態が所定時間(t3)継続した場合、又は、室外熱交換器7の冷媒蒸発圧力PXOが無着霜時における当該室外熱交換器7の冷媒蒸発圧力PXObaseより低下し、その差ΔPXOが所定値以上となった状態が所定時間(t4)継続した場合、室外熱交換器7に着霜したものと判定するので、外乱等の影響による誤判定を排除し、室外熱交換器7の着霜の進行を精度良く検知することができるようになる。
特に、ヒートポンプコントローラ32は起動初期において、差ΔTXO、又は、差ΔPXOを所定期間t5内に複数回算出し、当該所定期間t5内の最も大きな差ΔTXOmaxと最も小さい差ΔTXOminとの差違ΔPT、又は、所定期間t5内の最も大きな差ΔPXOmaxと最も小さい差ΔPXOminとの差違ΔPPが所定値以内となったか否か判断し、所定値以内になった場合の当該所定期間t5内の複数の差ΔTXO、又は、当該所定期間t5内の複数の差ΔPXOに基づいて誤差LRNを決定する。これにより、起動初期における不安定な運転状況での誤った誤差LRNの算出を排除し、安定状況下での誤差LRNの決定を実現することができるようになる。
但し、ヒートポンプコントローラ32は所定のタイムアウト期間内に差違ΔPT、又は、差違ΔPPが所定値以内とならなかった場合、誤差LRNによる無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseの補正、又は、誤差LRNによる無着霜時における室外熱交換器7の冷媒蒸発圧力PXObaseの補正を行わないので、不必要に長期間、誤差LRNが決定できずに室外熱交換器7の着霜判定が行われなくなる不都合も回避することができるようになる。
次に、図13は本発明を適用した他の実施例の車両用空気調和装置1の構成図を示している。尚、この図において図1と同一符号で示すものは同一若しくは同様の機能を奏するものである。この実施例の場合、過冷却部16の出口は逆止弁18に接続され、この逆止弁18の出口が冷媒配管13Bに接続されている。尚、逆止弁18は冷媒配管13B(室内膨張弁8)側が順方向とされている。
また、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前で分岐しており、この分岐した冷媒配管(以下、第2のバイパス配管と称する)13Fは電磁弁22(除湿用)を介して逆止弁18の下流側の冷媒配管13Bに連通接続されている。更に、吸熱器9の出口側の冷媒配管13Cには、内部熱交換器19の冷媒下流側であって、冷媒配管13Dとの合流点より冷媒上流側に蒸発圧力調整弁70が接続されている。そして、これら電磁弁22や蒸発圧力調整弁70もヒートポンプコントローラ32の出力に接続されている。尚、前述の実施例の図1中のバイパス配管35、電磁弁30及び電磁弁40から成るバイパス装置45は設けられていない。その他は図1と同様であるので説明を省略する。
以上の構成で、この実施例の車両用空気調和装置1の動作を説明する。ヒートポンプコントローラ32はこの実施例では、暖房モード、除湿暖房モード、内部サイクルモード、除湿冷房モード、冷房モード及び補助ヒータ単独モードの各運転モードを切り換えて実行する(MAX冷房モードはこの実施例では存在しない)。尚、暖房モード、除湿冷房モード及び冷房モードが選択されたときの動作及び冷媒の流れと、補助ヒータ単独モードは前述の実施例(実施例1)の場合と同様であるので説明を省略する。但し、この実施例(実施例2)ではこれら暖房モード、除湿冷房モード及び冷房モードにおいては電磁弁22を閉じるものとする。
(12)図13の車両用空気調和装置1の除湿暖房モード
他方、除湿暖房モードが選択された場合、この実施例(実施例2)ではヒートポンプコントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁22(除湿用)を開放する。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
これにより、圧縮機2から吐出された高温高圧のガス冷媒は冷媒配管13Gから放熱器4に流入する。放熱器4には暖房用熱交換通路3Aに流入した空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A、電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。
また、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部は分流され、電磁弁22を経て第2のバイパス配管13F及び冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至るようになる。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
吸熱器9で蒸発した冷媒は、内部熱交換器19、蒸発圧力調整弁70を順次経て冷媒配管13Cにて冷媒配管13Dからの冷媒と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
空調コントローラ20は、目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器出口温度TCIの目標値)をヒートポンプコントローラ32に送信する。ヒートポンプコントローラ32は、この目標ヒータ温度TCOから目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御し、放熱器4による加熱を制御する。また、ヒートポンプコントローラ32は、吸熱器温度センサ48が検出する吸熱器9の温度Teと、空調コントローラ20から送信された目標吸熱器温度TEOに基づいて室外膨張弁6の弁開度を制御する。また、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度Teに基づき、蒸発圧力調整弁70を開(流路を拡大する)/閉(少許冷媒が流れる)して吸熱器9の温度が下がり過ぎて凍結する不都合を防止する。
(13)図13の車両用空気調和装置1の内部サイクルモード
また、内部サイクルモードでは、ヒートポンプコントローラ32は上記除湿暖房モードの状態において室外膨張弁6を全閉とする(全閉位置)と共に、電磁弁21を閉じる。この室外膨張弁6と電磁弁21が閉じられることにより、室外熱交換器7への冷媒の流入、及び、室外熱交換器7からの冷媒の流出は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経て第2のバイパス配管13Fに全て流れるようになる。そして、第2のバイパス配管13Fを流れる冷媒は冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
吸熱器9で蒸発した冷媒は、内部熱交換器19、蒸発圧力調整弁70を順次経て冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより、車室内の除湿暖房が行われることになるが、この内部サイクルモードでは室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房モードに比較すると除湿能力は高いが、暖房能力は低くなる。
空調コントローラ20は目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器出口温度TCIの目標値)をヒートポンプコントローラ32に送信する。ヒートポンプコントローラ32は送信された目標ヒータ温度TCOから目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御し、放熱器4による加熱を制御する。
(14)図13の実施例での室外熱交換器の着霜判定制御
そして、この実施例においても前述の(11)と同様に室外熱交換器7の着霜判定を行い、無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseや無着霜時における室外熱交換器7の冷媒蒸発圧力PXObaseの誤差LRNによるオフセット補正を行うものであるが、この実施例の場合には除湿暖房モード(内部サイクルモードも含む)でも冷媒が室外熱交換器7で蒸発し、着霜が生じるので、これらの運転モードでも暖房モードと同様に着霜判定と誤差LRNのオフセット補正を行う。それにより、同様に室外熱交換器7の着霜の進行を的確に検知することができるようになるものである。
尚、各実施例で示した数値等はそれに限られるものでは無く、適用する装置に応じて適宜設定すべきものである。また、補助加熱装置は実施例で示した補助ヒータ23に限られるものでは無く、ヒータで加熱された熱媒体を循環させて空気流通路3内の空気を加熱する熱媒体循環回路や、エンジンで加熱されたラジエター水を循環するヒータコア等を利用してもよい。
1 車両用空気調和装置
2 圧縮機
3 空気流通路
4 放熱器
6 室外膨張弁
7 室外熱交換器
8 室内膨張弁
9 吸熱器
10 HVACユニット
11 制御装置
20 空調コントローラ
23 補助ヒータ(補助加熱装置)
27 室内送風機(ブロワファン)
28 エアミックスダンパ
32 ヒートポンプコントローラ
65 車両通信バス
R 冷媒回路

Claims (6)

  1. 冷媒を圧縮する圧縮機と、
    車室内に供給する空気が流通する空気流通路と、
    冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
    前記車室外に設けられて冷媒を吸熱させる室外熱交換器と、
    制御装置とを備え、
    該制御装置により、少なくとも前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させて車室内を暖房し、
    前記室外熱交換器の冷媒蒸発温度TXOと、無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseとに基づき、該室外熱交換器への着霜を判定する車両用空気調和装置において、
    前記制御装置は、環境条件、及び/又は、運転状況を示す指標に基づいて前記無着霜時における室外熱交換器の冷媒蒸発温度TXObaseを推定すると共に、
    起動初期において、前記無着霜時における室外熱交換器の冷媒蒸発温度TXObaseと前記室外熱交換器の冷媒蒸発温度TXOとの間に、着霜を検知しない側への誤差LRNがある場合、該誤差LRNを減少させ、若しくは、打ち消す方向に前記無着霜時における室外熱交換器の冷媒蒸発温度TXObaseを補正することを特徴とする車両用空気調和装置。
  2. 冷媒を圧縮する圧縮機と、
    車室内に供給する空気が流通する空気流通路と、
    冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
    前記車室外に設けられて冷媒を吸熱させる室外熱交換器と、
    制御装置とを備え、
    該制御装置により、少なくとも前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させて車室内を暖房し、
    前記室外熱交換器の冷媒蒸発圧力PXOと、無着霜時における当該室外熱交換器の冷媒蒸発圧力PXObaseとに基づき、該室外熱交換器への着霜を判定する車両用空気調和装置において、
    前記制御装置は、環境条件、及び/又は、運転状況を示す指標に基づいて前記無着霜時における室外熱交換器の冷媒蒸発圧力PXObaseを推定すると共に、
    起動初期において、前記無着霜時における室外熱交換器の冷媒蒸発圧力PXObaseと前記室外熱交換器の冷媒蒸発圧力PXOとの間に、着霜を検知しない側への誤差LRNがある場合、該誤差LRNを減少させ、若しくは、打ち消す方向に前記無着霜時における室外熱交換器の冷媒蒸発圧力PXObaseを補正することを特徴とする車両用空気調和装置。
  3. 前記制御装置は、前記室外熱交換器の冷媒蒸発温度TXOが前記無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseより低下し、その差ΔTXOが所定値以上となった状態が所定時間継続した場合、又は、前記室外熱交換器の冷媒蒸発圧力PXOが前記無着霜時における当該室外熱交換器の冷媒蒸発圧力PXObaseより低下し、その差ΔPXOが所定値以上となった状態が所定時間継続した場合、前記室外熱交換器に着霜したものと判定することを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。
  4. 前記制御装置は起動初期において、前記差ΔTXO、又は、前記差ΔPXOを所定期間内に複数回算出し、当該所定期間内の最も大きな差ΔTXOと最も小さい差ΔTXOとの差違ΔPT、又は、前記所定期間内の最も大きな差ΔPXOと最も小さい差ΔPXOとの差違ΔPPが所定値以内となったか否か判断し、所定値以内になった場合の当該所定期間内の複数の前記差ΔTXO、又は、当該所定期間内の複数の前記差ΔPXOに基づいて前記誤差LRNを決定することを特徴とする請求項3に記載の車両用空気調和装置。
  5. 前記制御装置は、所定のタイムアウト期間内に前記差違ΔPT、又は、前記差違ΔPPが所定値以内とならなかった場合、前記誤差LRNを打ち消す方向の前記無着霜時における室外熱交換器の冷媒蒸発温度TXObaseの補正、又は、前記誤差LRNを打ち消す方向の前記無着霜時における室外熱交換器の冷媒蒸発圧力PXObaseの補正を行わないことを特徴とする請求項4に記載の車両用空気調和装置。
  6. 前記制御装置は、前記室外熱交換器に着霜したものと判定した場合、前記圧縮機を停止し、若しくは、前記室外熱交換器の着霜を除去するための所定の除霜動作を実行することを特徴とする請求項1乃至請求項5のうちの何れかに記載の車両用空気調和装置。
JP2016221395A 2016-11-14 2016-11-14 車両用空気調和装置 Active JP6807710B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016221395A JP6807710B2 (ja) 2016-11-14 2016-11-14 車両用空気調和装置
CN201780069099.2A CN109922977B (zh) 2016-11-14 2017-10-10 车用空调装置
PCT/JP2017/037299 WO2018088130A1 (ja) 2016-11-14 2017-10-10 車両用空気調和装置
DE112017005716.7T DE112017005716T5 (de) 2016-11-14 2017-10-10 Fahrzeugklimaanlage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016221395A JP6807710B2 (ja) 2016-11-14 2016-11-14 車両用空気調和装置

Publications (2)

Publication Number Publication Date
JP2018079721A true JP2018079721A (ja) 2018-05-24
JP6807710B2 JP6807710B2 (ja) 2021-01-06

Family

ID=62109776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016221395A Active JP6807710B2 (ja) 2016-11-14 2016-11-14 車両用空気調和装置

Country Status (4)

Country Link
JP (1) JP6807710B2 (ja)
CN (1) CN109922977B (ja)
DE (1) DE112017005716T5 (ja)
WO (1) WO2018088130A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10103818A (ja) * 1996-08-08 1998-04-24 Hitachi Ltd 空気調和装置
JP2007198711A (ja) * 2006-01-30 2007-08-09 Daikin Ind Ltd 空気調和装置
JP2011133215A (ja) * 2009-11-25 2011-07-07 Daikin Industries Ltd コンテナ用冷凍装置
JP2014094676A (ja) * 2012-11-09 2014-05-22 Sanden Corp 車両用空気調和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3463303B2 (ja) * 1991-12-27 2003-11-05 日産自動車株式会社 車両用ヒートポンプ式冷暖房装置
JP3036519B2 (ja) * 1998-07-27 2000-04-24 ダイキン工業株式会社 冷凍装置
JP2000343934A (ja) * 1999-06-08 2000-12-12 Mitsubishi Heavy Ind Ltd ヒートポンプ式車両用空調装置
JP4075933B2 (ja) * 2006-01-30 2008-04-16 ダイキン工業株式会社 空気調和装置
CN102022872B (zh) * 2010-12-03 2011-12-07 劳特斯空调(江苏)有限公司 智能风冷热泵化霜控制方法
JP6040099B2 (ja) * 2013-05-28 2016-12-07 サンデンホールディングス株式会社 車両用空気調和装置
JP6225548B2 (ja) * 2013-08-08 2017-11-08 株式会社富士通ゼネラル 空気調和装置
CN103411290B (zh) * 2013-08-30 2016-04-06 海信(山东)空调有限公司 空调器及其除霜控制方法
JP6223753B2 (ja) * 2013-09-04 2017-11-01 サンデンホールディングス株式会社 車両用空気調和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10103818A (ja) * 1996-08-08 1998-04-24 Hitachi Ltd 空気調和装置
JP2007198711A (ja) * 2006-01-30 2007-08-09 Daikin Ind Ltd 空気調和装置
JP2011133215A (ja) * 2009-11-25 2011-07-07 Daikin Industries Ltd コンテナ用冷凍装置
JP2014094676A (ja) * 2012-11-09 2014-05-22 Sanden Corp 車両用空気調和装置

Also Published As

Publication number Publication date
DE112017005716T5 (de) 2019-08-08
WO2018088130A1 (ja) 2018-05-17
CN109922977B (zh) 2022-04-15
CN109922977A (zh) 2019-06-21
JP6807710B2 (ja) 2021-01-06

Similar Documents

Publication Publication Date Title
JP6723137B2 (ja) 車両用空気調和装置
WO2018139342A1 (ja) 車両用空気調和装置
JP6900271B2 (ja) 車両用空気調和装置
JP2019043422A (ja) 車両用空気調和装置
WO2018211957A1 (ja) 車両用空気調和装置
JP6767857B2 (ja) 車両用空気調和装置
WO2018110212A1 (ja) 車両用空気調和装置
WO2018101095A1 (ja) 車両用空気調和装置
WO2018079121A1 (ja) 車両用空気調和装置
JP2018058575A (ja) 車両用空気調和装置
WO2018225486A1 (ja) 車両用空気調和装置
WO2018088124A1 (ja) 車両用空気調和装置
JP6871745B2 (ja) 車両用空気調和装置
WO2018061785A1 (ja) 車両用空気調和装置
WO2019017149A1 (ja) 車両用空気調和装置
US11247536B2 (en) Vehicle air conditioner
WO2018225485A1 (ja) 車両用空気調和装置
WO2018088130A1 (ja) 車両用空気調和装置
WO2019049637A1 (ja) 車両用空気調和装置
WO2018074111A1 (ja) 車両用空気調和装置
JP6853036B2 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191018

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201208

R150 Certificate of patent or registration of utility model

Ref document number: 6807710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250