JP2018078801A - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
JP2018078801A
JP2018078801A JP2018019962A JP2018019962A JP2018078801A JP 2018078801 A JP2018078801 A JP 2018078801A JP 2018019962 A JP2018019962 A JP 2018019962A JP 2018019962 A JP2018019962 A JP 2018019962A JP 2018078801 A JP2018078801 A JP 2018078801A
Authority
JP
Japan
Prior art keywords
cylindrical member
rotating shaft
peripheral side
rotor
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018019962A
Other languages
Japanese (ja)
Inventor
中田 修
Osamu Nakada
修 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakada Create Co Ltd
Original Assignee
Nakada Create Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakada Create Co Ltd filed Critical Nakada Create Co Ltd
Priority to JP2018019962A priority Critical patent/JP2018078801A/en
Publication of JP2018078801A publication Critical patent/JP2018078801A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently improve a rotary electric machine with a simple structure, such as a dynamo-electric generator and a driving device.SOLUTION: A rotary electric machine 100 comprises a rotor 18 which is floated by a magnetic bearing and rotated. The magnetic bearing is provided with the reaction of a magnetic pole of an external peripheral side magnet 13 distributed opposite to an inner peripheral side magnet 4 formed in an external periphery of a fly wheel 16. Thus, the fly wheel 16 has a function as a magnet beating for magnetically floating the rotor 18 and pivotally supporting in addition of an original purpose that the rotation of the rotor 18 becomes stable. Therefore, the rotary electric machine 100 makes the rotation of the rotor 18 to be stable while rotating the rotor 18 and reducing friction, and further the rotary electric machine 100 is reduced in size.SELECTED DRAWING: Figure 1

Description

本発明は、発電機及び駆動装置などの回転電機に関し、例えば、磁気軸受けを有するものに関する。   The present invention relates to a rotating electrical machine such as a generator and a driving device, and for example, relates to one having a magnetic bearing.

一般に、発電機は、筐体に固定した固定子の内側で回転子を回転させ、これにより生じる誘導起電力により発電する。
回転子の回転運動は、例えば、水力や火力、原子力、あるいはディーゼルエンジンなどの内燃機関などにより発生するトルクにより駆動される。
これら発電機に入力されるトルクを有効利用して発電効率を高めるには、如何に発電機で回転により発生する摩擦を低減するかが重要である。
このように回転子のような回転体の回転により生じる摩擦を低減する技術として、特許文献1の「磁気浮上装置」がある。
この技術は、磁力による吸引力により回転体を浮上させるものである。
In general, a generator rotates a rotor inside a stator fixed to a casing, and generates electric power by an induced electromotive force generated thereby.
The rotational motion of the rotor is driven by torque generated by, for example, hydraulic power, thermal power, nuclear power, or an internal combustion engine such as a diesel engine.
In order to increase the power generation efficiency by effectively using the torque input to these generators, it is important how to reduce the friction generated by the rotation of the generator.
As a technique for reducing the friction generated by the rotation of a rotating body such as a rotor as described above, there is a “magnetic levitation device” in Patent Document 1.
In this technique, a rotating body is levitated by an attractive force generated by a magnetic force.

しかし、この技術では、磁力の吸引力の調節により浮上対象物の位置を制御するため、高度な技術を必要とし、構造が複雑になるという問題があった。   However, in this technique, since the position of the floating object is controlled by adjusting the magnetic attraction force, there is a problem that an advanced technique is required and the structure becomes complicated.

特開平8−154388号公報JP-A-8-154388

本発明は、簡単な構成で発生する摩擦を軽減し、発電機及び駆動装置などの回転電機の効率を向上させることを目的とする。   An object of the present invention is to reduce friction generated with a simple configuration and to improve the efficiency of a rotating electrical machine such as a generator and a driving device.

本発明は、前記目的を達成するために、請求項1に記載の発明では、
(a)水平方向に伸長する回転軸と、
(b)前記回転軸に取り付けられた回転子と、
(c)前記回転子の外周に配された固定子とを、
有する回転電機において、
(d)前記回転軸から半径外方向に伸長する円板部材と、
(e)前記円板部材の前記回転軸と反対側の端部に接続され、前記回転軸と同軸に形成された内側円筒部材と、
(f)前記内側円筒部材の外周に対向し、かつ前記内側円筒部材の外周から離隔して配された外側円筒部材とを有し、
(g)前記内側円筒部材は、その半径方向の厚みが前記回転軸の外径の2/3より短く設定され、かつ前記回転軸の軸方向と平行に、前記円板部材の前記回転軸の軸方向と平行に伸長する長さの4倍より大きい長さに亘って伸長し、前記円板部材と前記内側円筒部材とはフライホイールを構成し、
(h)前記内側円筒部材の内径は、前記回転子の外径より大きく設定され、
(i)前記外側円筒部材は、前記回転軸の軸方向と平行に、かつ前記内側円筒部材の前記回転軸の軸方向長と同等かそれ以上の距離に亘って伸長し、
(j)前記外側円筒部材の外径は、前記固定子の外径を超えないようあるいは、前記固定子の外径と略同一に設定され、
(k)前記内側円筒部材の外径より前記外側円筒部材の内径が大きく設定され、前記内側円筒部材と前記外側円筒部材は、磁気軸受けを構成することを特徴とする回転電機を提供する。
In order to achieve the above object, the present invention provides a method according to claim 1,
(A) a rotating shaft extending in the horizontal direction;
(B) a rotor attached to the rotating shaft;
(C) a stator disposed on the outer periphery of the rotor;
In a rotating electrical machine having
(D) a disk member extending radially outward from the rotating shaft;
(E) an inner cylindrical member connected to an end of the disc member opposite to the rotating shaft and formed coaxially with the rotating shaft;
(F) an outer cylindrical member facing the outer periphery of the inner cylindrical member and spaced from the outer periphery of the inner cylindrical member;
(G) The inner cylindrical member has a radial thickness set to be shorter than 2/3 of the outer diameter of the rotary shaft, and is parallel to the axial direction of the rotary shaft, Extending over a length greater than four times the length extending parallel to the axial direction, the disc member and the inner cylindrical member constitute a flywheel;
(H) An inner diameter of the inner cylindrical member is set larger than an outer diameter of the rotor,
(I) The outer cylindrical member extends in parallel with the axial direction of the rotating shaft and over a distance equal to or longer than the axial length of the rotating shaft of the inner cylindrical member,
(J) The outer diameter of the outer cylindrical member is set so as not to exceed the outer diameter of the stator or substantially the same as the outer diameter of the stator,
(K) The rotating electrical machine is characterized in that an inner diameter of the outer cylindrical member is set larger than an outer diameter of the inner cylindrical member, and the inner cylindrical member and the outer cylindrical member constitute a magnetic bearing.

本発明によれば、磁力の反発力により回転子を軸支するという簡単な構成により摩擦を低減し、これにより発電機及び駆動装置などの回転電機の効率を向上させることができる。   According to the present invention, the friction can be reduced by a simple configuration in which the rotor is pivotally supported by the repulsive force of the magnetic force, thereby improving the efficiency of the rotating electrical machine such as the generator and the driving device.

本発明の実施例に係る発電機及び駆動装置などの回転電機の構造を説明するための図である。It is a figure for demonstrating the structure of rotary electric machines, such as a generator and a drive device which concern on the Example of this invention. 本発明の実施例に係る外周側磁石、及び内周側磁石を斜め方向からみた斜視図である。It is the perspective view which looked at the outer peripheral side magnet which concerns on the Example of this invention, and the inner peripheral side magnet from the diagonal direction. 本発明の実施例に係る磁石の構成をより詳細に説明するための図であり、(a)は、磁性材料で構成された単一の部材で外周側磁石と内周側磁石を構成した例であり、(b)は、複数の磁石を貼り合わせて外周側磁石と内周側磁石を構成した例を示した図である。It is a figure for demonstrating in detail the structure of the magnet which concerns on the Example of this invention, (a) is the example which comprised the outer peripheral side magnet and the inner peripheral side magnet with the single member comprised with the magnetic material. (B) is the figure which showed the example which bonded the some magnet and comprised the outer peripheral side magnet and the inner peripheral side magnet.

図1及び図2は、本実施の形態に係る発電機及び駆動装置などの回転電機100の構造を説明するための図である。
図1は、発電機及び駆動装置などの回転電機100の回転軸方向の断面を示した図である。
発電機及び駆動装置などの回転電機100は、円筒形状を有する筐体12に発電を行うための構成要素を配設することにより構成されている。
筐体12の中央付近には、電機子巻線が配線された固定子19が筐体12の中心軸と同軸に筐体12の内周面に固定されている。
固定子19は、回転子18の外周面に対向して筐体12に配設された固定子19として機能している。なお、本実施の形態では固定子19を電機子巻線とするが、永久磁石を用いるようにしてもよい。
1 and 2 are diagrams for explaining the structure of a rotating electrical machine 100 such as a generator and a driving device according to the present embodiment.
FIG. 1 is a view showing a cross section in the rotation axis direction of a rotating electrical machine 100 such as a generator and a driving device.
A rotating electrical machine 100 such as a generator and a driving device is configured by disposing a component for generating power in a casing 12 having a cylindrical shape.
Near the center of the housing 12, a stator 19 to which armature windings are wired is fixed to the inner peripheral surface of the housing 12 coaxially with the central axis of the housing 12.
The stator 19 functions as the stator 19 disposed in the housing 12 so as to face the outer peripheral surface of the rotor 18. In the present embodiment, the stator 19 is an armature winding, but a permanent magnet may be used.

さらに、筐体12の両端面付近には、それぞれ、円筒状に形成された外周側磁石13a、外周側磁石13bが筐体12の中心軸と同軸に筐体12の内周面に固定されている。
以下、外周側磁石13a、外周側磁石13bを特に区別しない場合は、単に外周側磁石13と記載する。
外周側磁石13は、半径方向に磁化されており、例えば、内周面がN極、外周面がS極となっている。
Further, in the vicinity of both end faces of the housing 12, a cylindrical outer peripheral magnet 13 a and an outer peripheral magnet 13 b are fixed to the inner peripheral surface of the housing 12 coaxially with the central axis of the housing 12. Yes.
Hereinafter, when the outer peripheral side magnet 13a and the outer peripheral side magnet 13b are not particularly distinguished, they are simply referred to as the outer peripheral side magnet 13.
The outer peripheral side magnet 13 is magnetized in the radial direction. For example, the inner peripheral surface is an N pole and the outer peripheral surface is an S pole.

筐体12の両端面部分の中心部分には、転がり軸受け20a、転がり軸受け20bが固定されている。以下、転がり軸受け20a、転がり軸受け20bを特に区別しない場合は、単に転がり軸受け20と記載する。
転がり軸受け20と回転軸17には、所定間隙の遊びが形成されており、後述するように回転軸17が磁気により浮上している間は、転がり軸受け20と回転軸17は、接触しないようになっている。
転がり軸受け20は、装置の起動時における軸受けとしての機能、及び外乱などにより回転軸17が所定量以上ぶれた場合にこれを規制するために設けられている。
A rolling bearing 20a and a rolling bearing 20b are fixed to the central portion of both end face portions of the housing 12. Hereinafter, when the rolling bearing 20a and the rolling bearing 20b are not particularly distinguished, they are simply referred to as the rolling bearing 20.
The rolling bearing 20 and the rotating shaft 17 are provided with a play of a predetermined gap, and the rolling bearing 20 and the rotating shaft 17 are not in contact with each other while the rotating shaft 17 is magnetically levitated as will be described later. It has become.
The rolling bearing 20 is provided to regulate the function as a bearing at the start-up of the apparatus and when the rotating shaft 17 is shaken more than a predetermined amount due to disturbance or the like.

筐体12の中心には、回転軸17が筐体12の中心軸と同軸に配設されている。
回転軸17の軸方向中心部分には、固定子19の内周面に面する領域にて界磁巻線が巻回された回転子18が回転軸17に固定されている。
回転軸17は、回転軸に固定された回転子として機能している。
そして、回転軸17の両端部分には、外周側磁石13a、外周側磁石13bの内周面に面する領域にて、それぞれフライホイール16a、フライホイール16bが固定されている。
At the center of the housing 12, a rotation shaft 17 is disposed coaxially with the central axis of the housing 12.
A rotor 18 around which a field winding is wound in a region facing the inner peripheral surface of the stator 19 is fixed to the rotation shaft 17 at a central portion in the axial direction of the rotation shaft 17.
The rotating shaft 17 functions as a rotor fixed to the rotating shaft.
And the flywheel 16a and the flywheel 16b are being fixed to the both ends of the rotating shaft 17 in the area | region which faces the inner peripheral surface of the outer peripheral side magnet 13a and the outer peripheral side magnet 13b, respectively.

フライホイール16aは、回転軸17に回転軸17と同軸に固定された円板部材15aと、円板部材15aの外周部に固定された内周側磁石14aにより構成されている。
フライホイール16bの構成も同様であり、円板部材15bと内周側磁石14bにより構成されている。
以下、フライホイール16a、フライホイール16b、円板部材15a、円板部材15b、内周側磁石14a、内周側磁石14bを特に区別しない場合は、単にフライホイール16、円板部材15、内周側磁石14と記載する。
The flywheel 16a includes a disc member 15a fixed to the rotary shaft 17 coaxially with the rotary shaft 17, and an inner peripheral magnet 14a fixed to the outer peripheral portion of the disc member 15a.
The structure of the flywheel 16b is the same, and is comprised by the disc member 15b and the inner peripheral side magnet 14b.
Hereinafter, when the flywheel 16a, the flywheel 16b, the disc member 15a, the disc member 15b, the inner peripheral side magnet 14a, and the inner peripheral side magnet 14b are not particularly distinguished, the flywheel 16, the disc member 15, the inner periphery It is described as a side magnet 14.

フライホイール16は、自身の有する慣性モーメントにより回転子18の回転を安定させる働きを有しており、この目的を達成するためには、なるべく外周側の質量が大きい方が好ましい。
内周側磁石14は、円筒状に形成された磁石であって、外周面が外周側磁石13の内周面に所定の距離を隔てて対面するように外径が設定されている。
The flywheel 16 has a function of stabilizing the rotation of the rotor 18 by its own moment of inertia. In order to achieve this purpose, it is preferable that the mass on the outer peripheral side is as large as possible.
The inner circumferential side magnet 14 is a magnet formed in a cylindrical shape, and has an outer diameter set so that the outer circumferential surface faces the inner circumferential surface of the outer circumferential side magnet 13 with a predetermined distance.

内周側磁石14は、内周側磁石14の外周面の磁極が外周側磁石13の内周面の磁極と同じになるように半径方向に磁化されている。
例えば、外周側磁石13の内周面がN極である場合、内周側磁石14の外周面もN極になっている。また、外周側磁石13の内周面がS極である場合、内周側磁石14の外周面もS極になっている。
The inner peripheral magnet 14 is magnetized in the radial direction so that the magnetic pole on the outer peripheral surface of the inner peripheral magnet 14 is the same as the magnetic pole on the inner peripheral surface of the outer peripheral magnet 13.
For example, when the inner peripheral surface of the outer peripheral magnet 13 has N poles, the outer peripheral surface of the inner peripheral magnet 14 also has N poles. Moreover, when the inner peripheral surface of the outer peripheral side magnet 13 is a south pole, the outer peripheral surface of the inner peripheral side magnet 14 is also a south pole.

このように、外周側磁石13の内周側の磁極と内周側磁石14の外周側の磁極が同じであるため、両者の間には反発力が作用し、回転軸17は、筐体12の構成物とは非接触で浮揚(浮上)する。
なお、回転軸17には、軸方向に移動する力が作用するが、図示しない規制手段により、回転軸17の軸方向の移動は規制されている。
また、例えば、外周側磁石13aの内周面と内周側磁石14aの外周面がN極で、外周側磁石13bの内周面と内周側磁石14bの外周面がS極である、というように、フライホイール16aとフライホイール16bで磁石の磁極が逆でもよいし、あるいは、同じでもよい。
さらに、外周側磁石13と内周側磁石14の磁力の大きさは特に規定しないが、大きいほどよく、また、両者の磁力の大きさが同程度であるのが望ましい。
Thus, since the magnetic pole on the inner peripheral side of the outer peripheral side magnet 13 and the magnetic pole on the outer peripheral side of the inner peripheral side magnet 14 are the same, a repulsive force acts between them, and the rotary shaft 17 is connected to the casing 12. It floats (floats) in a non-contact manner.
In addition, although the force which moves to an axial direction acts on the rotating shaft 17, the axial movement of the rotating shaft 17 is controlled by the control means which is not shown in figure.
Further, for example, the inner peripheral surface of the outer peripheral magnet 13a and the outer peripheral surface of the inner peripheral magnet 14a are N poles, and the inner peripheral surface of the outer peripheral magnet 13b and the outer peripheral surface of the inner peripheral magnet 14b are S poles. As described above, the magnetic poles of the magnets may be reversed or the same between the flywheel 16a and the flywheel 16b.
Furthermore, although the magnitude | size of the magnetic force of the outer peripheral side magnet 13 and the inner peripheral side magnet 14 is not prescribed | regulated in particular, it is so good that it is large, and it is desirable for both magnitudes of the magnetic force to be comparable.

このように、フライホイール16は、本来の弾み車としての機能のほか、回転子18を磁力の反発力により浮揚させて軸支する磁気軸受けとしての機能も有している。
このように、内周側磁石14と外周側磁石13により構成される磁気軸受けは、回転軸17を磁力の反発力により中心部に向けて浮上させて回転子18を筐体12に軸支する軸支手段として機能している。
As described above, the flywheel 16 has a function as a magnetic bearing for supporting the rotor 18 by levitating the rotor 18 by the repulsive force of the magnetic force, in addition to the function as an original spring wheel.
As described above, the magnetic bearing constituted by the inner peripheral side magnet 14 and the outer peripheral side magnet 13 floats the rotating shaft 17 toward the center by the repulsive force of the magnetic force, and pivotally supports the rotor 18 on the casing 12. It functions as a pivoting means.

また、フライホイール16は、回転軸17において回転子18の両端側に形成され、外周面に所定の磁極が形成されたフライホイール16として機能しており、外周側磁石13は、フライホイール16の外周面に対向する内周面を有し、当該内周面に前記所定の磁極が形成された磁性部材として機能している。更に、内周側磁石14と外周側磁石13の磁極は何れも永久磁石により構成されている。   The flywheel 16 is formed on both ends of the rotor 18 on the rotary shaft 17 and functions as a flywheel 16 having a predetermined magnetic pole formed on the outer peripheral surface thereof. It has an inner peripheral surface facing the outer peripheral surface and functions as a magnetic member having the predetermined magnetic pole formed on the inner peripheral surface. Furthermore, the magnetic poles of the inner peripheral side magnet 14 and the outer peripheral side magnet 13 are both composed of permanent magnets.

そして、回転子18は、浮揚して回転するため、回転に際して生じる摩擦を低減するほか、作用する力が反発力であるため、複雑な制御を必要とせずに回転軸17を磁力の釣り合いの位置に保持することができ、更にフライホイール機能と磁気軸受け機能を一体化したため装置の小型化を図ることができる。   Since the rotor 18 floats and rotates, the friction generated during the rotation is reduced, and the acting force is a repulsive force. Therefore, the rotating shaft 17 is positioned at the balance of magnetic force without requiring complicated control. Furthermore, since the flywheel function and the magnetic bearing function are integrated, the apparatus can be reduced in size.

以上のように構成された発電機及び駆動装置などの回転電機100において、図示しない駆動手段により、回転子18を回転すると、固定子19の電機子巻線に起電力が生じ、図示しない端子より電流を取り出して利用することができる。
このように、発電機及び駆動装置などの回転電機100は、軸支された回転子18が固定子19に対して行う回転により発生する電流を取り出す電流取出手段を備えている。
In the rotating electrical machine 100 such as the generator and the driving device configured as described above, when the rotor 18 is rotated by a driving unit (not shown), an electromotive force is generated in the armature winding of the stator 19, and a terminal (not shown) The current can be taken out and used.
As described above, the rotating electrical machine 100 such as the generator and the driving device includes a current extraction unit that extracts current generated by the rotation of the axially supported rotor 18 with respect to the stator 19.

さらに、例えば、ロータリーポンプを用いた真空系などのように、筐体12の内部を減圧する減圧手段を備え、筐体12の内部を減圧状態、あるいは、真空状態にすると、回転子18、回転軸17、及びフライホイール16に発生する空気抵抗を低減し、より摩擦を減らすことができる。   Further, for example, a decompression means for decompressing the inside of the housing 12 such as a vacuum system using a rotary pump is provided. When the inside of the housing 12 is in a decompressed state or a vacuum state, the rotor 18 rotates. The air resistance generated in the shaft 17 and the flywheel 16 can be reduced, and friction can be further reduced.

図2は、外周側磁石13、及び内周側磁石14を斜め方向からみた斜視図である。
図中の矢線は磁化の方向を示しており、外周側磁石13の内周面と内周側磁石14の外周面が同じ磁極となっている。
このため両者が反発し合い、内周側磁石14は、反発力のバランスする位置に保持される。
FIG. 2 is a perspective view of the outer peripheral side magnet 13 and the inner peripheral side magnet 14 as seen from an oblique direction.
The arrow in the figure indicates the direction of magnetization, and the inner peripheral surface of the outer peripheral magnet 13 and the outer peripheral surface of the inner peripheral magnet 14 are the same magnetic pole.
For this reason, both repel each other, and the inner circumferential side magnet 14 is held at a position where the repulsive forces are balanced.

即ち、これら磁石の半径方向について考えると、中心方向に向かった磁力の反発力による場合は、釣り合いの位置がポテンシャルエネルギーの山の部分に相当する不安定な釣り合いの位置であるのに対し、吸引力の場合はポテンシャルエネルギーの谷の部分になり、安定な釣り合いの位置となる。
そのため、軸方向の運動を規制すれば、回転軸17が中心軸からぶれたとしても、釣り合いの位置に自ら復帰する。
In other words, when considering the radial direction of these magnets, in the case of the repulsive force of the magnetic force directed toward the center direction, the balance position is an unstable balance position corresponding to the peak portion of the potential energy. In the case of force, it becomes the valley of the potential energy, which is a stable balance position.
Therefore, if the movement in the axial direction is restricted, even if the rotating shaft 17 deviates from the central axis, it returns to the balanced position itself.

図3は、外周側磁石13と内周側磁石14の構成をより詳細に説明するための図である。
図3(a)は、磁性材料で構成された単一の部材で外周側磁石13と内周側磁石14を構成した例である。
外周側磁石13、内周側磁石14は、磁性材料を焼成などにより形成した後、着磁を行って作成する。
着磁は、外周側磁石13の場合は、内周側の面に着磁装置を当てて内側から外側に着磁を全周に渡って行い、内周側磁石14の場合は、外周側の面に着磁装置を当てて外側から内側に着磁を全周に渡って行う。
これは、外周側磁石13と内周側磁石14が対面する面から着磁することにより、より良好な磁極が当該対面する面に形成されるためである。
FIG. 3 is a diagram for explaining the configuration of the outer peripheral side magnet 13 and the inner peripheral side magnet 14 in more detail.
FIG. 3A shows an example in which the outer peripheral side magnet 13 and the inner peripheral side magnet 14 are configured by a single member made of a magnetic material.
The outer peripheral side magnet 13 and the inner peripheral side magnet 14 are formed by forming a magnetic material by firing or the like and then performing magnetization.
In the case of the outer peripheral side magnet 13, a magnetizing device is applied to the inner peripheral side surface and magnetization is performed from the inner side to the outer side, and in the case of the inner peripheral side magnet 14, A magnetizing device is applied to the surface, and magnetization is performed from the outside to the inside over the entire circumference.
This is because a better magnetic pole is formed on the facing surface by magnetizing from the surface where the outer peripheral side magnet 13 and the inner peripheral side magnet 14 face each other.

図3(b)は、複数の磁石を貼り合わせて外周側磁石13と内周側磁石14を構成した例である。
内周側磁石14は、扇型の内周側分割磁石41を円周方向に繋ぎ合わせて構成されている。
内周側分割磁石41は、予め半径方向に磁化されており、これを接着剤で繋ぎ合わせたり、あるいは、図示しない治具で固定する。
外周側磁石13も同様に扇型の外周側分割磁石31を円周方向に繋ぎ合わせて構成されている。
外周側分割磁石31は、予め半径方向に磁化されており、内周側分割磁石41と同様に作成する。
外周側分割磁石31及び内周側分割磁石41は、図3(b)では、互いに接触して配置された例を示しているが、実際には、任意の間隔を持って配置される場合もある。
FIG. 3B is an example in which a plurality of magnets are bonded to form an outer peripheral side magnet 13 and an inner peripheral side magnet 14.
The inner peripheral side magnet 14 is configured by connecting fan-shaped inner peripheral side divided magnets 41 in the circumferential direction.
The inner circumferential side divided magnet 41 is preliminarily magnetized in the radial direction, and is joined together with an adhesive or fixed with a jig (not shown).
Similarly, the outer peripheral side magnet 13 is configured by connecting fan-shaped outer peripheral side divided magnets 31 in the circumferential direction.
The outer peripheral side split magnet 31 is previously magnetized in the radial direction and is created in the same manner as the inner peripheral side split magnet 41.
FIG. 3B shows an example in which the outer peripheral side split magnet 31 and the inner peripheral side split magnet 41 are arranged in contact with each other. However, actually, the outer peripheral side split magnet 31 and the inner peripheral side split magnet 41 may be arranged with an arbitrary interval. is there.

以上のように、発電機及び駆動装置などの回転電機100は、磁気軸受けによって浮上して回転する回転子18を備えている。
そして、この磁気軸受けは、フライホイール16の外周に形成された内周側磁石14と、これに対向して筐体12に配設された外周側磁石13の磁極が反発することにより実現される。
このように、フライホイール16は、回転子18の回転を安定させるという本来の目的に加えて回転子18を磁気浮上させて軸支するという磁気軸受けとしての機能を兼ね備えている。
このため、発電機及び駆動装置などの回転電機100は、回転子18の回転にともなう摩擦を低減するとともに回転子18の回転を安定させ、更に、発電機及び駆動装置などの回転電機100を小型化することができる。
これらは、磁気回転浮上装置を施したフライホイール16により、新たに生み出された効果である。
As described above, the rotating electrical machine 100 such as the generator and the driving device includes the rotor 18 that floats and rotates by the magnetic bearing.
And this magnetic bearing is implement | achieved when the magnetic pole of the inner peripheral side magnet 14 formed in the outer periphery of the flywheel 16 and the outer peripheral side magnet 13 arrange | positioned in the housing | casing 12 facing this repels. .
As described above, the flywheel 16 also has a function as a magnetic bearing in which the rotor 18 is magnetically levitated and supported in addition to the original purpose of stabilizing the rotation of the rotor 18.
For this reason, the rotating electrical machine 100 such as the generator and the driving device reduces friction caused by the rotation of the rotor 18 and stabilizes the rotation of the rotor 18, and further reduces the size of the rotating electrical machine 100 such as the generator and the driving device. Can be
These are the effects newly produced by the flywheel 16 provided with the magnetic rotary levitation device.

以上に説明した本実施の形態により、次のような効果を得ることができる。
(1)フライホイール16の磁力により回転子18を浮上させ、非接触にて回転させることができるため、摩擦を低減することができ、発電効率を高めることができる。すなわち、回転開始当初は、例えばベアリング等と若干の接触があるが、回転が軌道にのると、磁気浮上しているため、生じる摩擦を限りなくゼロに近づけることができる。
(2)フライホイール16の磁力の反発により回転子18を浮上させるため、複雑な制御装置を特に設ける必要ない。
(3)フライホイール16を磁力により浮上させて磁気軸受けとしての機能も持たせることにより、フライホイール16による回転子18の回転の安定と、磁気軸受けによる非接触による回転をフライホイール16と外周側磁石13からなる一つの構成にて同時に実現することができ、装置の小型化と低コスト化を図ることができる。
(4)筐体12の内部を減圧(例えば真空か)することにより、より摩擦抵抗を低減することができる。
According to the embodiment described above, the following effects can be obtained.
(1) Since the rotor 18 can be levitated by the magnetic force of the flywheel 16 and rotated without contact, friction can be reduced and power generation efficiency can be increased. That is, at the beginning of rotation, there is a slight contact with, for example, a bearing or the like, but when the rotation is on the track, the magnetic levitation occurs, so that the generated friction can be brought to zero as much as possible.
(2) Since the rotor 18 is levitated by the repulsion of the magnetic force of the flywheel 16, it is not necessary to provide a complicated control device.
(3) The flywheel 16 is levitated by a magnetic force so as to have a function as a magnetic bearing, thereby stabilizing the rotation of the rotor 18 by the flywheel 16 and non-contact rotation by the magnetic bearing with the flywheel 16 and the outer peripheral side. This can be realized at the same time with a single configuration of the magnet 13, and the apparatus can be reduced in size and cost.
(4) The frictional resistance can be further reduced by reducing the pressure inside the housing 12 (for example, vacuuming).

以上、外周側磁石13と内周側磁石14が、単一、又は組み合わせにより構成される場合について説明したが、このほかに、円筒形状を有する強磁性を有しない部材で外周側磁石13と内周側磁石14の形状を作り、外周側磁石13の内周側と内周側磁石14の外周側に磁石を埋め込むなどして構成することもできる。   As described above, the case where the outer peripheral side magnet 13 and the inner peripheral side magnet 14 are formed of a single member or a combination thereof has been described. The shape of the peripheral side magnet 14 can be made, and the inner peripheral side of the outer peripheral side magnet 13 and the outer peripheral side of the inner peripheral side magnet 14 can be embedded.

なお、外周側磁石13と内周側磁石14は、強力なほどよく、例えば、ネオジム磁石を用いることができる。
更には、外周側磁石13を超伝導マグネットによって構成することもできる。この場合は、超伝導部材でコイルを複数形成し、各々の磁極が内周面を向くように円周に沿って配設する。そして、場合によっては、液体窒素などで当該コイルをTc(超伝導転移温度)以下に冷却する。
また、発電及び駆動装置100では、フライホイール16に内周側磁石14を設けたが、回転軸17に内周側磁石14を設け、フライホイール16と磁気軸受けを別体としてもよい。
さらに、フライホイール16は、フライホイール16に内周側磁石14を設けてもよいが、回転軸17に内周側磁石14を設けることで、フライホイール16と磁気軸受けを別体として構成してもよい。
In addition, the outer periphery side magnet 13 and the inner periphery side magnet 14 should be strong, and for example, a neodymium magnet can be used.
Furthermore, the outer peripheral side magnet 13 can also be comprised with a superconducting magnet. In this case, a plurality of coils are formed with a superconducting member and are arranged along the circumference so that each magnetic pole faces the inner peripheral surface. In some cases, the coil is cooled below Tc (superconducting transition temperature) with liquid nitrogen or the like.
Further, in the power generation and driving apparatus 100, the inner peripheral side magnet 14 is provided on the flywheel 16, but the inner peripheral side magnet 14 may be provided on the rotary shaft 17 so that the flywheel 16 and the magnetic bearing are separated.
Further, the flywheel 16 may be provided with the inner peripheral side magnet 14 on the flywheel 16, but by providing the inner peripheral side magnet 14 on the rotating shaft 17, the flywheel 16 and the magnetic bearing are configured separately. Also good.

以上、本実施の形態について説明したが、本発明に至る本願発明者の着想の過程は、発明者によって「無重力発電及び駆動モータシステム考」と呼ばれており、以下の通りである。
元来、特に発電モータは、回転に多くのトルクを必要とするものが一般的である。そのトルクが大きいが為に、発電モータの回転駆動には、大きなトルク出力の得られる物が求められていた。
しかしながら、この発明ポイントは、「無重力フライホイール」を使うことにより「発電モータ」を「無重力化」することで、限りなく回転が落ちない方向で設計されていくことを意味する、今までとは異なる新たな発想を持った「発電モータ」になるということになる。
「発電モータ」の動力源は、回転が落ちた分だけ、その都度、回転を元に戻す為に回転を加えるという方式に変化した「加回転動力源」でよくなり、そのことは、画期的なエネルギー効率の発電モータのシステム化ができあがることを意味している。
Although the present embodiment has been described above, the process of the inventor's idea leading to the present invention is called “zero gravity power generation and drive motor system consideration” by the inventor and is as follows.
Originally, a generator motor generally requires a lot of torque for rotation. Due to the large torque, a rotating torque drive for the generator motor is required to obtain a large torque output.
However, the point of this invention is that the "generator motor" is made "gravity-free" by using the "gravity flywheel", which means that it is designed in the direction that rotation does not fall infinitely. It will become a “generator motor” with a different new idea.
The power source of the “generator motor” can be an “acceleration power source” that has been changed to a method of adding rotation in order to restore rotation each time the rotation drops. This means that a system for a generator motor with energy efficiency can be achieved.

「今までの発電モータ」が必要とした、多くのトルクを必要とするという大きな問題が、画期的に改善され、発電動力源としてのエネルギーが比べられないほどの小さな補助動力源のエネルギーで済むことが「無重力フライホイール」を使用した「無重力発電モータ」の最大の利点である。
それは、回転が落ちてきた時「減速時」に、落ちた分だけ更に回転を加え、元の必要とする回転に戻すという、今までになかった動力源の考え方に変わり、この「減速時」に、動力源は、更なる回転エネルギーを加えるためのエネルギー源としての「加回転動力源」としての考え方になる。
そのため、一度高速回転を始めたモータの減速を補う発電モータのエネルギーは、「加回転動力源」の位置づけとして考えればよくなり、当然、この発電モータの必要条件は、大きなトルクを必要としない「省エネルギーな軽回転」なもので済み、エネルギー効率的にも画期的な「軽回転」「加回転動力源」に変わってくる。
The big problem of requiring a lot of torque, which was required by the “generation motors up to now”, has been epoch-making and the energy of the auxiliary power source is so small that the energy as the power source of power generation cannot be compared. This is the biggest advantage of the “gravity power generation motor” using the “gravity flywheel”.
It changes to a power source concept that has never existed before, when the rotation has fallen, at the time of "deceleration", adding further rotation to the original required rotation. In addition, the power source is considered as an “rotating power source” as an energy source for adding further rotational energy.
Therefore, the energy of the generator motor that compensates for the deceleration of the motor that has started high-speed rotation can be considered as the position of the “rotating power source”. Naturally, the necessary condition of this generator motor does not require a large torque. “Energy-saving light rotation” is sufficient, and it is transformed into a revolutionary “light rotation” and “rotating power source” in terms of energy efficiency.

「加回転動力源」の加えるエネルギー特性としては、トルクを必要とするよりも、高回転を保つことを目的とした加回転補助動力源でよいということになる。
そしてこの「高トルクを必要としない」ことは、今までの「火力(原子力)発電」、「水力発電」などの発電システムに比べ、動力源が画期的に小さなもので済み、大出力発電所で発電をして、それを送電線で送電し、一般家庭用まで届けるという発想も根底から変えるものになる。
As an energy characteristic to be applied by the “rotating power source”, it is possible to use a rotating assist power source aimed at maintaining a high rotation rather than requiring torque.
And this “does not require high torque” means that the power source is epoch-making and smaller than conventional power generation systems such as “thermal power (nuclear power generation)” and “hydropower generation”. The idea of generating electricity at a place, transmitting it through a transmission line, and delivering it to ordinary households will also change fundamentally.

上記した「無重力発電モータシステム」の内容と同様に、駆動モータにおいても「無重力フライホイール」を用いた「無重力駆動モータシステム」が考えられる。
駆動モータに於いても同様に、必要回転数が落ちた分だけの回転を加える考え方で、また、その時、加える回転力は無重力状態に回転を加えるので大変小さいエネルギーを加えるだけで済むという利点は、駆動モータに於いても同様に得ることができる。そのため、回転させる為のエネルギーのとても少ない高効率モータになり、「無重力駆動モータシステム」を提供することができる。
更に同様に、この「無重力フライホイール」を利用した応用は多岐に渡り、その一例として、大型無停電電源装置(USP・Uninterruuptible Power Supply)などには、高効率化に絶好の手段となる。
As in the case of the above-described “gravity generation motor system”, a “gravity drive motor system” using a “gravity flywheel” can be considered for the drive motor.
Similarly, in the drive motor, it is based on the idea of adding rotation as much as the required number of rotations has dropped, and at that time, the rotational force to be applied adds rotation in a weightless state, so there is an advantage that only a very small amount of energy needs to be added. The same can be obtained for the drive motor. Therefore, it becomes a high-efficiency motor with very little energy for rotation, and can provide a “gravity driving motor system”.
Similarly, there are a variety of applications using this “gravity-free flywheel”. For example, a large uninterruptible power supply (USP) is a great way to increase efficiency.

回転軸の固定のために取り付けられているボールベアリングは、今までの「発電モータ」の重さを支えながら、回転を滑らかにするという考えよりも、「無重力フライホイール」による特性により、高速回転での回転時点では、ボールベアリングにおいてもベアリングの中心で、回転軸の中心に向かって回転しているので、ボールベアリングにおける抵抗負荷が、限りなく解放され、あたかも「無重力ベアリング」と呼べる状態になる。その状態を有効に生かすために、摩擦抵抗の極力少ないボールベアリングが必要とされる。
「超強力磁石」ネオジムに代表される新たに開発された磁性体と今後開発される超強力磁性体と、超伝導体化した磁性体を含むものを意味する。
The ball bearing installed to fix the rotating shaft rotates at a high speed due to the characteristics of the "gravity flywheel" rather than the idea of smooth rotation while supporting the weight of the "electric motor" so far. At the time of rotation, the ball bearing also rotates at the center of the bearing toward the center of the rotating shaft, so the resistance load on the ball bearing is released as much as possible, and it can be called a “gravity bearing” . In order to make effective use of this state, a ball bearing having as little frictional resistance as possible is required.
“Super strong magnet” means a newly developed magnetic material represented by neodymium, a super strong magnetic material that will be developed in the future, and a superconductor magnet.

12 筐体
13 外周側磁石
14 内周側磁石
15 円板部材
16 フライホイール
17 回転軸
18 回転子
19 固定子
20 転がり軸受け
31 外周側分割磁石
41 内周側分割磁石
100 発電機及び駆動装置などの回転電機
DESCRIPTION OF SYMBOLS 12 Housing | casing 13 Outer peripheral side magnet 14 Inner peripheral side magnet 15 Disk member 16 Flywheel 17 Rotating shaft 18 Rotor 19 Stator 20 Rolling bearing 31 Outer peripheral side split magnet 41 Inner peripheral side split magnet 100 Generator, drive device, etc. Rotating electric machine

Claims (6)

(a)水平方向に伸長する回転軸と、
(b)前記回転軸に取り付けられた回転子と、
(c)前記回転子の外周に配された固定子とを、
有する回転電機において、
(d)前記回転軸から半径外方向に伸長する円板部材と、
(e)前記円板部材の前記回転軸と反対側の端部に接続され、前記回転軸と同軸に形成された内側円筒部材と、
(f)前記内側円筒部材の外周に対向し、かつ前記内側円筒部材の外周から離隔して配された外側円筒部材とを有し、
(g)前記内側円筒部材は、その半径方向の厚みが前記回転軸の外径の2/3より短く設定され、かつ前記回転軸の軸方向と平行に、前記円板部材の前記回転軸の軸方向と平行に伸長する長さの4倍より大きい長さに亘って伸長し、前記円板部材と前記内側円筒部材とはフライホイールを構成し、
(h)前記内側円筒部材の内径は、前記回転子の外径より大きく設定され、
(i)前記外側円筒部材は、前記回転軸の軸方向と平行に、かつ前記内側円筒部材の前記回転軸の軸方向長と同等かそれ以上の距離に亘って伸長し、
(j)前記外側円筒部材の外径は、前記固定子の外径を超えないようあるいは、前記固定子の外径と略同一に設定され、
(k)前記内側円筒部材の外径より前記外側円筒部材の内径が大きく設定され、前記内側円筒部材と前記外側円筒部材は、磁気軸受けを構成することを特徴とする回転電機。
(A) a rotating shaft extending in the horizontal direction;
(B) a rotor attached to the rotating shaft;
(C) a stator disposed on the outer periphery of the rotor;
In a rotating electrical machine having
(D) a disk member extending radially outward from the rotating shaft;
(E) an inner cylindrical member connected to an end of the disc member opposite to the rotating shaft and formed coaxially with the rotating shaft;
(F) an outer cylindrical member facing the outer periphery of the inner cylindrical member and spaced from the outer periphery of the inner cylindrical member;
(G) The inner cylindrical member has a radial thickness set to be shorter than 2/3 of the outer diameter of the rotary shaft, and is parallel to the axial direction of the rotary shaft, Extending over a length greater than four times the length extending parallel to the axial direction, the disc member and the inner cylindrical member constitute a flywheel;
(H) An inner diameter of the inner cylindrical member is set larger than an outer diameter of the rotor,
(I) The outer cylindrical member extends in parallel with the axial direction of the rotating shaft and over a distance equal to or longer than the axial length of the rotating shaft of the inner cylindrical member,
(J) The outer diameter of the outer cylindrical member is set so as not to exceed the outer diameter of the stator or substantially the same as the outer diameter of the stator,
(K) The rotating electrical machine characterized in that an inner diameter of the outer cylindrical member is set larger than an outer diameter of the inner cylindrical member, and the inner cylindrical member and the outer cylindrical member constitute a magnetic bearing.
前記内側円筒部材と前記外側円筒部材は、それぞれネオジム磁石を有するか、あるいはネオジム磁石により構成されていることを特徴とする請求項1に記載の回転電機。   2. The rotating electrical machine according to claim 1, wherein each of the inner cylindrical member and the outer cylindrical member has a neodymium magnet or is composed of a neodymium magnet. 前記内側円筒部材は、磁化された磁性材料により構成するか、あるいは永久磁石を一部に含む構成であり、また、前記外側円筒部材は、磁化された磁性材料により構成するか、あるいは永久磁石又は超伝導磁石を一部に含む構成であり、さらに前記外側円筒部材の内周側の極性と前記内側円筒部材の外周側の極性が同一であるよう構成されたことを特徴とする請求項1に記載の回転電機。   The inner cylindrical member is made of a magnetized magnetic material or includes a permanent magnet in part, and the outer cylindrical member is made of a magnetized magnetic material, or a permanent magnet or 2. The structure according to claim 1, further comprising a superconducting magnet in a part, wherein the polarity of the inner peripheral side of the outer cylindrical member is the same as the polarity of the outer peripheral side of the inner cylindrical member. The rotating electrical machine described. 前記外側円筒部材が静止部材に固定されていて、前記回転軸が静止時において、前記内側円筒部材と前記外側円筒部材との間に生じる磁気反発力により受ける鉛直上方向の浮力より、前記内側円筒部材の重量と前記回転軸の自重を少なくとも含む前記回転軸が受ける合計荷重が大きいときに、前記回転軸に接触し、かつ前記回転軸が安定的に回転しているときは、前記回転軸が接触しないように前記回転軸の外周との間に遊びがある軸受けが前記静止部材に設けられていることを特徴とする請求項1から3のいずれか1つに記載の回転電機。   The outer cylindrical member is fixed to a stationary member, and the inner cylinder is subjected to a vertical upward buoyancy received by a magnetic repulsive force generated between the inner cylindrical member and the outer cylindrical member when the rotating shaft is stationary. When the total load received by the rotating shaft including at least the weight of the member and the weight of the rotating shaft is large, the rotating shaft is in contact with the rotating shaft and the rotating shaft is rotating stably. The rotating electrical machine according to any one of claims 1 to 3, wherein a bearing having play between the outer periphery of the rotating shaft and the outer periphery of the rotating shaft is provided on the stationary member so as not to contact. 前記回転電機が発電機であるか、あるいは前記回転電機が駆動モータであることを特徴とする請求項1から3のいずれか1つに記載の回転電機。   The rotating electrical machine according to any one of claims 1 to 3, wherein the rotating electrical machine is a generator or the rotating electrical machine is a drive motor. 前記円板部材と前記内側円筒部材と前記外側円筒部材が、前記回転子を間に挟むように、前記回転軸の両端近傍にそれぞれ設けられていることを特徴とする請求項1から3のいずれか1つに記載の回転電機。

The disk member, the inner cylindrical member, and the outer cylindrical member are respectively provided in the vicinity of both ends of the rotating shaft so as to sandwich the rotor therebetween. A rotating electrical machine according to claim 1.

JP2018019962A 2018-02-07 2018-02-07 Rotary electric machine Pending JP2018078801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018019962A JP2018078801A (en) 2018-02-07 2018-02-07 Rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018019962A JP2018078801A (en) 2018-02-07 2018-02-07 Rotary electric machine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017519709A Division JPWO2017158710A1 (en) 2016-03-15 2016-03-15 Flywheel device and rotating electric machine

Publications (1)

Publication Number Publication Date
JP2018078801A true JP2018078801A (en) 2018-05-17

Family

ID=62150763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018019962A Pending JP2018078801A (en) 2018-02-07 2018-02-07 Rotary electric machine

Country Status (1)

Country Link
JP (1) JP2018078801A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841136A (en) * 1971-09-27 1973-06-16
JPH0297250A (en) * 1988-10-03 1990-04-09 Toshiba Corp Magnetic bearing type electric rotary machine
JPH0514640U (en) * 1991-08-06 1993-02-26 いすゞ自動車株式会社 Magnetic bearing device
JPH0540621U (en) * 1991-09-19 1993-06-01 光洋精工株式会社 Rotating body
JPH1084656A (en) * 1996-09-09 1998-03-31 Ebara Corp Rotating machine for magnetic levitation
JPH10136609A (en) * 1996-10-31 1998-05-22 Seiko Epson Corp Motor and storage apparatus using the wire
JP2000170766A (en) * 1998-12-01 2000-06-20 Seiko Seiki Co Ltd Generator set utilizing magnetic bearing
JP2003004041A (en) * 2001-06-19 2003-01-08 Japan Science & Technology Corp Fly wheel type super conductivity magnetic bearing and its system
JP3119542U (en) * 2005-12-12 2006-03-02 泰豊工程有限公司 Flywheel boost generator
JP2012518144A (en) * 2009-02-19 2012-08-09 リカルド ユーケー リミテッド Flywheel
JP2016039733A (en) * 2014-08-08 2016-03-22 中田 修 Flywheel device, and power generation and drive motor device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841136A (en) * 1971-09-27 1973-06-16
JPH0297250A (en) * 1988-10-03 1990-04-09 Toshiba Corp Magnetic bearing type electric rotary machine
JPH0514640U (en) * 1991-08-06 1993-02-26 いすゞ自動車株式会社 Magnetic bearing device
JPH0540621U (en) * 1991-09-19 1993-06-01 光洋精工株式会社 Rotating body
JPH1084656A (en) * 1996-09-09 1998-03-31 Ebara Corp Rotating machine for magnetic levitation
JPH10136609A (en) * 1996-10-31 1998-05-22 Seiko Epson Corp Motor and storage apparatus using the wire
JP2000170766A (en) * 1998-12-01 2000-06-20 Seiko Seiki Co Ltd Generator set utilizing magnetic bearing
JP2003004041A (en) * 2001-06-19 2003-01-08 Japan Science & Technology Corp Fly wheel type super conductivity magnetic bearing and its system
JP3119542U (en) * 2005-12-12 2006-03-02 泰豊工程有限公司 Flywheel boost generator
JP2012518144A (en) * 2009-02-19 2012-08-09 リカルド ユーケー リミテッド Flywheel
JP2016039733A (en) * 2014-08-08 2016-03-22 中田 修 Flywheel device, and power generation and drive motor device

Similar Documents

Publication Publication Date Title
US20050264118A1 (en) Conical bearingless motor/generator
CN107222131A (en) A kind of rotor gravity unloading type magnetic bearing compound machine
AU2011213438A1 (en) Magnetic levitation supporting structure for vertical shaft disc-type motor
CN101207309A (en) High speed magnetic suspension permanent magnet motor without bearing
JP2006517081A (en) Rotating electrical machine
KR100701550B1 (en) Bearingless step motor
JP2002095209A (en) Flywheel apparatus for storing electric power
JP3577558B2 (en) Flywheel equipment
US20060214525A1 (en) Magnetic suspension and drive system for rotating equipment
CN101737425A (en) Monostable radial magnetic bearing with low power consumption and zero gravity action
Ooshima et al. Design and analyses of a coreless-stator-type bearingless motor/generator for clean energy generation and storage systems
JPWO2017158710A1 (en) Flywheel device and rotating electric machine
JP5504532B2 (en) High speed rotating device
JP3850195B2 (en) Magnetic levitation motor
JP2016039733A (en) Flywheel device, and power generation and drive motor device
US10778063B2 (en) Reducing bearing forces in an electrical machine
JP3215881U (en) Flywheel device and rotating electric machine
US20120062058A1 (en) Shaft-less Energy Storage Flywheel
JP7064728B2 (en) Flywheel device and rotary electric machine
JP2018157755A (en) Flywheel device, and power generation and drive motor device
RU2540696C1 (en) High-rate electrical machine with vertical shaft
CN204497904U (en) Magnetically levitated flywheel motor
WO2011158382A1 (en) Magnetic shaft bearing assembly and system incorporating same
JP2018078801A (en) Rotary electric machine
CN102297202B (en) Single shaft controlled type five-degrees-of-freedom (DOF) miniature magnetic bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180208

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180208

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180622

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20180704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180904