JP2018074383A - 画像処理装置、画像処理方法及びプログラム - Google Patents

画像処理装置、画像処理方法及びプログラム Download PDF

Info

Publication number
JP2018074383A
JP2018074383A JP2016211900A JP2016211900A JP2018074383A JP 2018074383 A JP2018074383 A JP 2018074383A JP 2016211900 A JP2016211900 A JP 2016211900A JP 2016211900 A JP2016211900 A JP 2016211900A JP 2018074383 A JP2018074383 A JP 2018074383A
Authority
JP
Japan
Prior art keywords
color
concave
convex
color information
image processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016211900A
Other languages
English (en)
Inventor
佐野 利行
Toshiyuki Sano
利行 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016211900A priority Critical patent/JP2018074383A/ja
Publication of JP2018074383A publication Critical patent/JP2018074383A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Color, Gradation (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)

Abstract

【課題】 レンチキュラーレンズを形成することなく、観察角度に応じて見えが変化する視覚効果を画像に付与するための処理を提供することを目的とする。【解決手段】 対象物体を第1方向から見た場合の色を表す第1色情報と、前記対象物体を第2方向から見た場合の色を表す第2色情報とを取得する取得手段と、凹凸層を含む複数種類のカラーパッチを凹部が凸部によって遮蔽される方向から観察した場合に視認される色を測定することによって作成された第1テーブルを保持する第1保持手段と、前記第1色情報が表す色を変換する第1変換手段と、前記凹凸層を含む複数種類のカラーパッチを凹部が凸部によって遮蔽されない方向から観察した場合に視認される色を測定することによって作成された第2テーブルを保持する第2保持手段と、前記第2色情報が表す色を変換する第2変換手段と、を有することを特徴とする画像処理装置。【選択図】 図6

Description

本発明は、観察方向によって見え方が異なるプリント物を形成する際の画像処理技術に関する。
ベルベットに代表されるような織物は、その複雑な微細形状に起因して、観察する角度を変えると色や光沢の見え方が大きく変化する異方性を持つ。この異方性を再現するプリント物として、一般的にレンチキュラーレンズを利用したものが挙げられる。特許文献1では、画像と当該画像に重ねるレンチキュラーレンズとを形成するためのインクの吐出タイミングを同期させる技術が開示されている。
特許第3555420号
特許文献1のようなレンチキュラーレンズを形成する方法では、観察方向を変えた際に滑らかに色を変化させるために、高解像度で画像を印刷する必要がある。しかしながら、一般的なインクジェットプリンタを用いてレンズの曲面形状を高解像度で精度良く形成することは困難である。
本発明は、上記課題に鑑みてなされたものであり、レンチキュラーレンズを形成することなく、観察角度に応じて見えが変化する視覚効果を画像に付与するための処理を提供することを目的とする。
上記課題を解決するために、本発明に係る画像処理装置は、凹部と凸部とを有する凹凸層の上に対象物体の色を表す色材層を重ねた画像を形成するためのデータを生成する画像処理装置であって、前記対象物体を第1方向から見た場合の色を表す第1色情報を取得する第1取得手段と、前記対象物体を前記第1方向とは方位角が等しく仰角が異なる第2方向から見た場合の色を表す第2色情報を取得する第2取得手段と、前記凹凸層の凸部の上に有色色材を記録することによって形成された複数種類のカラーパッチを前記凹凸層の凹部が凸部によって遮蔽される方向から観察した場合に視認される色を測定することによって作成された第1テーブルを保持する第1保持手段と、前記第1テーブルに基づいて、前記第1色情報が表す色を変換する第1変換手段と、前記凹凸層の凹部の上に有色色材を記録することによって形成された複数種類のカラーパッチを前記凹凸層の凹部が凸部によって遮蔽されない方向から観察した場合に視認される色を測定することによって作成された第2テーブルを保持する第2保持手段と、前記第1変換手段によって色が変換された前記第1色情報と前記第2テーブルとに基づいて、前記第2色情報が表す色を変換する第2変換手段と、前記第1変換手段によって色が変換された前記第1色情報と前記第2変換手段によって色が変換された前記第2色情報とに基づいて、前記画像を形成するための有色色材の記録量を表す記録量データを生成する生成手段と、を有することを特徴とする。
本発明により、レンチキュラーレンズを形成することなく、観察角度に応じて見えが変化する視覚効果を画像に付与することができる。
画像処理装置1のハードウェア構成図 プリンタ13の構成図 凹凸層、画像層を形成する動作を説明する模式図 凹凸層、画像層の構造を示す模式図 画像処理装置1の機能構成を示すブロック図 画像処理装置の動作を示すフローチャート 画像データの構成を表す模式図 第一の色変換テーブルを作成する際の幾何条件の模式図 第一の色変換テーブルの一例 第二の色変換テーブルを作成する際の幾何条件の模式図 第二の色変換テーブルの一例 画像処理装置1の機能構成を示すブロック図 画像処理装置1の動作を示すフローチャート 観察角度と色との関係を表す模式図
以下、図面を参照して本発明を詳細に説明する。
[実施例1]
本実施例では、異方性の情報として、二つの観察方向(観察角度)とそれぞれの方向から画像を観察した際の色情報及び凹凸形状を取得し、記録媒体上に当該画像を再現する画像処理装置及び画像処理方法について記載する。
図1は、本実施例における画像処理装置1のハードウェア構成例である。画像処理装置1は、例えばコンピュータであり、CPU101、ROM102、RAM103を備える。CPU101は、RAM103をワークメモリとして、ROM102、HDD(ハードディスクドライブ)15などに格納されたOS(オペレーティングシステム)や各種プログラムを実行する。また、CPU101は、システムバス107を介して各構成を制御する。尚、後述するフローチャートによる処理は、ROM102やHDD15などに格納されたプログラムコードがRAM103に展開され、CPU101によって実行される。汎用I/F(インターフェース)104には、シリアルバス11を介して、マウスやキーボードなどの入力デバイス12やプリンタ13が接続される。SATA(シリアルATA)I/F105には、シリアルバス14を介して、HDD15や各種記録メディアの読み書きを行う汎用ドライブ16が接続される。CPU101は、HDD15や汎用ドライブ16にマウントされた各種記録メディアを各種データの格納場所として使用する。ビデオI/F106には、ディスプレイ17が接続される。CPU101は、プログラムによって提供されるUI(ユーザインターフェース)をディスプレイ17に表示し、入力デバイス12を介して受け付けるユーザ指示などの入力を受信する。
図2は、本実施例に示すプリンタ13の構成図である。プリンタ13としては、インクを用いて形状、色の記録を行うインクジェットプリンタを想定する。ヘッドカートリッジ201は、複数の吐出口からなる記録ヘッドと、この記録ヘッドへインクを供給するインクタンクを有し、また、記録ヘッドの各吐出口を駆動する信号などを受信するためのコネクタが設けられている。以降、インクにより形成される形状、色をそれぞれ、凹凸層、画像層(色材層)と称する。インクタンクは、凹凸層を形成するためのクリアインク、画像層を形成するためのシアン(C)、マゼンタ(M)、イエロー(Y)、ブラック(K)の有色インクの計5種が独立に設けられている。これらのインク(記録材)は紫外線を照射することにより硬化するUV硬化型インクである。ヘッドカートリッジ201はキャリッジ202に位置決めして交換可能に搭載されており、キャリッジ202には、コネクタを介してヘッドカートリッジ201に駆動信号等を伝達するためのコネクタホルダが設けられている。また、キャリッジ202には、紫外光照射装置215が搭載されており、吐出されたインクを硬化させ記録媒体上に固着させるために制御される。キャリッジ202は、ガイドシャフト203に沿って往復移動可能となっている。具体的には、キャリッジ202は、主走査モータ204を駆動源としてモータプーリ205、従動プーリ206およびタイミングベルト207等の駆動機構を介して駆動されるとともに、その位置及び移動が制御される。尚、本実施例において、このキャリッジ202のガイドシャフト203に沿った移動を「主走査」といい、移動方向を「主走査方向」という。プリント用紙等の記録媒体208は、オートシートフィーダ(以下「ASF」)210に載置されている。画像形成時、給紙モータ211の駆動によってギアを介してピックアップローラ212が回転し、ASF210から記録媒体208が一枚ずつ分離され、給紙される。更に、記録媒体208は、搬送ローラ209の回転によりキャリッジ202上のヘッドカートリッジ201の吐出口面と対向する記録開始位置に搬送される。搬送ローラ209は、ラインフィード(LF)モータ213を駆動源としてギアを介して駆動される。記録媒体208が給紙されたか否かの判定と給紙時位置の確定は、記録媒体208がペーパエンドセンサ214を通過した時点で行われる。キャリッジ202に搭載されたヘッドカートリッジ201は、吐出口面がキャリッジ202から下方へ突出して記録媒体208と平行になるように保持されている。制御部220は、CPUや記憶手段等から構成されており、外部から観察条件とその条件での色情報を含む画像データを受け取り、画像データに基づいてプリンタ13の各パーツの動作を制御する。
以下、図2に示す構成のインクジェットプリンタにおける凹凸層、画像層の形成動作について説明する。まず、凹凸層を形成するために、記録媒体208が所定の記録開始位置に搬送されると、キャリッジ202がガイドシャフト203に沿って記録媒体208上を移動し、その移動の際に記録ヘッドの吐出口よりインクが吐出される。紫外光照射装置215は記録ヘッドの移動に合わせて紫外光を照射し、吐出されたクリアインクを硬化させ、記録媒体上に固着させる。そして、キャリッジ202がガイドシャフト203の一端まで移動すると、搬送ローラ209が所定量だけ記録媒体208をキャリッジ202の走査方向に垂直な方向に搬送する。本実施例において、この記録媒体208の搬送を「紙送り」または「副走査」といい、この搬送方向を「紙送り方向」または「副走査方向」という。記録媒体208の所定量の搬送が終了すると、再度キャリッジ202はガイドシャフト203に沿って移動する。このように、記録ヘッドのキャリッジ202による走査と紙送りとを繰り返すことにより記録媒体208全体に凹凸層が形成される。凹凸層が形成された後は、搬送ローラ209が記録媒体208を記録開始位置に戻し、凹凸層形成と同様のプロセスで凹凸層上にシアン、マゼンタ、イエロー、ブラックの各有色インクを吐出し、画像層を形成する。
本実施例において、記録ヘッドは、説明を簡易にするため、基本的にインク滴を吐出するか否かの二値の制御で表現される。これはクリアインクについても有色インクについても同じである。本実施例では、プリンタ13の出力解像度で定義される画素毎にインクのオン(吐出する)・オフ(吐出しない)を制御するものとし、単位面積において全画素をオンにした状態をインク量100%として扱うものとする。尚、インクの吐出量が変調可能な記録ヘッドが一般的に使用されているが、上述の二値化処理を変調可能な複数レベルへの多値化処理に拡張すれば適用可能であり、二値化に限定されるものではない。
本実施例の凹凸層の形成では、前述のインク量の概念を用いて位置毎に高さの制御を行う。凹凸層の形成においてインク量100%でほぼ均一な層を形成した場合、吐出したインクの体積に応じて、層はある厚さ(高さ)を有する。例えば、インク量100%で形成された層が15μmの厚さを有する場合、75μmの厚さを再現するには、層を5回重ねればよい。つまり、75μmの高さが必要な位置に打ち込むインク量は500%となる。
図3は、記録媒体208上を記録ヘッドが走査することで凹凸層、画像層を形成する動作を説明する図である。キャリッジ202による主走査で記録ヘッドの幅Lだけ層形成を行い、1ラインの記録が終了する毎に記録媒体208を副走査方向に距離Lずつ搬送する。説明を平易にするため、本実施例におけるプリンタ13は一回の走査でインク量100%までのインク吐出しかできないものとし、インク量100%を超える層形成の場合には、搬送は行わずに同じ領域を複数回走査する。例えば、打ち込むインク量が最大500%の場合は、同じラインを5回走査する。図3を用いて説明すると、領域Aを記録ヘッドで5回走査した(図3(a))後、記録媒体208を副走査方向に搬送し、領域Bの主走査を5回繰り返す(図3(b))ことになる。
尚、記録ヘッドの駆動精度に起因する周期ムラ等の画質劣化を抑制するために、インク量100%以下でも複数回の走査、いわゆるマルチパス印刷を行う場合がある。図3(c)〜(e)に2パス記録の例を示す。この例では、キャリッジ202による主走査で記録ヘッドの幅Lだけ画像形成を行い、1ラインの記録が終了する毎に記録媒体208を副走査方向に距離L/2ずつ搬送する。領域Aは記録ヘッドのm回目の主走査(図3(c))とm+1回目の主走査(図3(d))により記録され、領域Bは記録ヘッドのm+1回目の主走査(図3(d))とm+2回目の主走査(図3(e))とにより記録される。ここで、2パス記録の動作を説明したが、何回のパス数で記録するかは、所望の精度に応じて変えることができる。nパス記録を行う場合は、例えば、1ラインの記録が終了する毎に記録媒体208を副走査方向に距離L/nずつ搬送する。この場合、インク量が100%以下でも複数の印字パターンに分割し記録媒体の同一ライン上を記録ヘッドがn回主走査することで凹凸層、画像層を形成する。本実施例では、上述のマルチパス印刷による走査と100%以上のインクを打ち込むための走査との混同を防ぐため、マルチパス印刷は行わないものとし、複数回の走査は、層を積層するためのものとして説明する。尚、本発明においては、記録媒体に特に限定はなく、記録ヘッドによる画像形成に対応できるものであれば、紙やプラスチックフィルム等、各種の材料が利用可能である。
図4は、本発明における画像処理装置1の処理を経て、プリンタ13で形成するプリント物の構造の一例を示す模式図である。図4(a)は、xy二次元平面における凹凸形状データおよび色データを表している。x軸方向に特定の周期の凹凸が繰り返し配置されており、印刷面に正対してみると、いわゆる縦の万線パターンになっている。図4(b)は、xz面における凹凸形状データ、すなわち断面構造を示している。本実施例では、プリンタ解像度が約600dpiであり、1ドットの幅は40μmとする。凸部が4ドット、凹部が4ドットの繰り返しであるため、凹凸1サイクルは320μmである。また、この例では、一層の厚さは15μmであり、凸部はz方向に10ドット積層して形成され、高さが150μmである。このような微小な凹凸層は、観察者からは視認されず、紙や布のような平面的なプリント物に見える。
図4(c)は、(b)に示す凹凸形状データをプリンタ13で出力したプリント物の構造の一例を示す図である。図4(b)に示す凹凸形状データを前述した図2に示すプリンタ13によってプリントすることで、図4(c)に示す形状が形成される。プリンタ13による凹凸形状の形成過程において、吐出されたUV硬化型インクは、着弾からUV照射による硬化までの間、記録媒体の面方向に濡れ広がる。そのため、最終的に形成される凹凸形状は、図4(c)に示すように、図4(b)に示すデータにおける形状よりも低周波な凹凸形状となる。尚、図4(c)に示す凹凸形状は一例であり、たとえば、ぬれ性の低い高粘度のインクを用いることにより、より図4(a)に近い高周波な凹凸形状を形成することも可能である。
図4(d)は、本実施例により形成されたプリント物により異方性が発現するメカニズムを説明するための模式図である。前述のようにプリント物は正確な矩形とはならないが、説明を簡易にするため、凹凸形状が矩形であるものとする。また、観察方向は、回転角(方位角)と仰角とで表現することができるが、本実施例では、回転角は0°、すなわち、記録媒体面をxy二次元平面とした際のx軸と並行であるものとする。また、仰角は、二次元平面鉛直方向を0°とし、後述の入力処理における角度情報はこれを用いる。
まず、仰角0°の場合、画像層の凸部と画像層の凹部との全領域の色が視認される。しかし、観察方向を変え、仰角45°とした場合、凹部の一部が凸部により遮蔽され、色が視認されなくなる。観察方向φで観察可能な単位面積あたりのインク量Vφは以下の式(1)で表すことができる。
Figure 2018074383

ここで、Vtopは画像層の凸部の単位面積あたりのインク量、Vbotは凹部の画像層の単位面積あたりのインク量、aは凹凸1サイクルの幅、bは凸部の幅、cは凸部の高さを表す。式中の分母は、凹凸1サイクルを観察方向φから観察した面積と等しく、分子の第一項および第二項は、凸部の画像層と凹部の観察可能な画像層との面積比を表している。第二項のc・tan(φ)により遮蔽により観察できない面積を勘案している。尚、式中のa−b−c・tan(φ)がマイナスの場合は、遮蔽により凹部が見えない状態であるため、第二項は0とし,凸部のみが観察される。上記の式では、凸部の側面の露出が考慮されていない。しかし、通常は図4(c)に例示したように形状が鈍る(インクが濡れ広がる)ため、上記の式で近似することが可能である。また、形状の鈍りにより観察方向による遮蔽面積が大きく変わる場合は、予めプリンタ13の凹凸形成時の周波数応答特性などから補正量を求めておくことで、式(2)のように補正することが可能である。
Figure 2018074383

ここで、Fは遮蔽量を補正する関数である。補正にはルックアップテーブル(LUT)などを利用することも可能である。
例えば、単純のため画像層はシアンインクのみ使うものとし、VtopがシアンインクC100%、VbotがシアンインクC0%であるとする。a,b,cをそれぞれ図4(b)に例示したように、320μm、160μm、150μmとする。この時の観察方向φ=0°のVφは、遮蔽分tan(φ)=0となるため、式(1)より、
Figure 2018074383

つまり、Vφは、VtopとVbotが同じ面積で観察できるため、領域全体としては、シアンインクC50%として観察できる。
同様に、観察方向φ=45°のVφは、遮蔽分tan(φ)=1.0となり、式(1)より、
Figure 2018074383

つまり、Vφは、シアンインクC94%(≒16/17)として観察できる。すなわち、図4(c)に示すプリント物は、一見平面でありながら、観察方向の仰角を変えると、シアンの濃淡が大きく変わる。このような見え方は、ベルベット生地のような質感を与える。尚、シアンインクのみを用いた場合の説明をしたが、一般的なプリンタで用いられるインク色を全て利用することが可能であり、凹部と凸部との観察可能な面積比を変えることで任意の異方性を再現することが可能である。例えば、凸部はシアンC100%、凹部はマゼンタM100%とすれば、観察方向に応じてブルーからマゼンタに変化するプリント物を形成することが可能になる。
図5は実施例1における画像処理装置1の機能構成を表すブロック図である。画像処理装置1は、異方性を持つ対象物体を再現するために、前述のように凹凸形状を持つプリント物の凹部と凸部とに適切なカラーインク(有色インク)を付与することにより、少なくとも2つの観察角度で異なる色を再現する。画像処理装置1は、第1取得部501と、第2取得部502と、第3取得部503と、第1保持部504と、第1変換部505と、第2保持部506と、補正部507と、第2変換部508と、第3変換部509と、出力部510とを有する。
第1取得部501は、対象物体の観察方向として仰角φ1(第1観察角度)とその色情報Rφ1、Gφ1、Bφ1(第2色情報)とを第1画像データとして取得する。第2取得部502は、観察方向として仰角φ1とは異なる第2観察角度φ2とその色情報Rφ2、Gφ2、Bφ2(第2色情報)とを第2画像データとして取得する。第3取得部503は、予めメモリなどに記憶されている凹凸形状データを取得する。第1変換部505は、第1保持部504に保持されている第1色変換テーブルを用いて、第1取得部501で取得された第1色情報が表す色を、第3取得部503で取得される凹凸の凸部の色へと変換する。補正部507は、第1変換部505で変換された凸部の色に基づいて、第2保持部506に保持されている第2色変換テーブルを、凹部の色を決定するための色変換テーブルとなるように補正する。第2変換部508は、補正部で補正された第2色変換テーブルに基づいて、第2取得部502で取得された第2色情報が表す色を凹部の色へと変換する。第3変換部509は、第1変換部505で変換された凸部の色、及び第2変換部508で変換された凹部の色をインク値へと変換する。最後に第3変換部509で得られたインク値データと第3取得部503で取得された凹凸形状データとに基づいて生成したデータを出力部510で出力する。
以下、上記構成からなる本実施例で実行される処理について図6のフローチャートを用いて説明する。以下、各ステップ(工程)は符号の前にSをつけて表す。
S601において、第1取得部501は、観察方向として仰角φ1とその色情報Rφ1、Gφ1、Bφ1を第1画像データとして取得する。図7に本実施例における画像データの構成を示す。図7に示すように、画像データは4チャンネルで構成され、1チャンネル目は、全画素同一の値を保持し、観察角度φ1が格納される。尚、観察角度φ1に関しては画像のヘッダ情報として保持されていても良い。また、残りの3チャンネルにはRφ1、Gφ1、Bφ1を8ビットの値として保持する。尚、本実施例においてRGBとはsRGBで定義されるRGB値として説明を行うが、RGB画像はこれに限るものではない。例えば、AdobeRGBで定義されるRGB画像や、CIELAB(L*a*b*)に対応したLab画像であってもよい。尚、本実施例では説明の簡易化のため、第1観察角度は、図7に示すように凹凸形状の凹部が遮蔽される観察角度φ1=45°であるとする。
S602において、第2取得部502は、観察方向として仰角φ1とは異なる第2観察角度φ2とその色情報Rφ2、Gφ2、Bφ2を第2画像データとして取得する。尚、画像データの構成は第1取得部501で取得される第1観察角度及び第1色情報と同様である。尚、画像データは、例えば、図7に示す二つの幾何条件で対象物を撮影した画像を公知のアフィン変換を利用して形状をそろえたものを利用することが可能である。尚、本実施例では説明の簡易化のため、第2観察角度は、図6に示すように凹凸形状を正面から観察したときの角度φ2=0°であるとする。
S603において、第3取得部503は、凹凸形状データを取得する。予めメモリなどに記憶されている凹凸形状データを取得する。ここで、凹凸形状データは、UV硬化型インクのインク量が各画素に記録されたデータである。例えば、0%や100%、500%等の値が記録されている。また、凹凸形状データは図4において例示したようなx方向に凹凸を繰り返すパターンである。前述の通り、本実施例ではプリンタ解像度が約600dpiであり、1ドットの幅は40μmとし、凹凸形状データは、凸部幅が4ドット、凹部幅が4ドットである。
S604において、第1変換部505は、第1保持部504に保持されている第1色変換テーブルを用いて、第1取得部501で取得された第1色情報を、第3取得部で取得される凹凸形状データが表す凹凸の凸部の色へと変換する。図8は第1変換テーブルを作成する際の幾何条件を表した図である。図8に示すように、第3取得部503で取得される凹凸形状データを用いて形成した凹凸形状801を有し、該凹凸形状の凸部にカラーインク802が付与された複数種類のカラーパッチを用いる。本実施例ではカラーインク802は8bitのRGB値を均等に5分割した125(=5×5×5)色のパターンを用いるものとして説明を行うが、カラーインクのパターンはこれに限るものではない。例えば、RGB値を均等に9分割した729色のパターンであっても良い。第1変換テーブルは該カラーチャートの凹部803が図8に示すように遮蔽される幾何条件であり、そのときの観察角度をφ1とする。第1変換テーブルは、観察角度φ1方向から各パッチのCIELAB値を測定し、RGB値とLAB値との対応関係が記述されたテーブルである。尚、本実施例では説明の簡易化のため、S601で取得される観察角度φ1はφ1=45°として説明を行う。ただし、観察角度はこれに限るものではない。例えば、凹凸の高さによっては45°では凹部の一部が遮蔽されない場合がある。このような場合、観察角度はより大きくなる。尚、本実施例では凹部803が遮蔽される幾何条件でLAB値を得ることを想定しているため、凹部803にはカラーインクが付与されていないものとして説明するが、該幾何条件を満たしていれば凹部にカラーインクが付与されていてもよい。図9は第1変換テーブルの一例である。図9に示すように、第1変換テーブルは凸部のRGB値とそれに対応するLAB値が記述されたテーブルである。本処理により取得された凹部の影響を受けない色を、凹部の影響を受けないテーブルを用いて色変換を行うため、取得された色を直接凸部の色へと変換するためのテーブルである。
S605において、補正部507は、S604で変換された凸部の色に基づいて、第2保持部506に保持されているテーブルを、凸部の色が考慮された色変換テーブルとなるように補正する。図10は第2変換テーブルを作成する際の幾何条件を表した図である。図10に示すように、第3取得部503で取得される凹凸形状データを用いて形成した凹凸形状1001を有し、該凹凸形状の凹部にのみカラーインク1002が付与された複数種類のカラーパッチを用いる。カラーインクのパターンは第1変換テーブルの作成に用いるカラーチャートと同様である。第2変換テーブルは、図10に示すように、該カラーチャートの凸部1002と凹部1003の両者が観察される幾何条件であり、そのときの観察角度をφ2とする。第2変換テーブルは観察角度φ2方向から各パッチのCIELAB値を測定し、RGB値とLAB値との関係が記述されたテーブルである。尚、観察角度は凹部が遮蔽されないのであれば特に限定するものではないが、凹部の面積が最大となる幾何条件、すなわち凹凸形状に対して正対する角度であることが好ましい。従って本実施例では、φ2=0°として説明を行う。図11に第2変換テーブルの一例を示す。図11に示すように、第2変換テーブルは凸部の影響が除去された凹部のみのRGB値とそれに対応するLAB値が記述されたテーブルである。しかしながら、凸部と凹部との両方が観察される方向(例えばφ2)で観察した場合、凹部の色と凸部の色が相互に影響を及ぼすため、第2変換テーブルを用いて第2色情報が表す色を凹部の色へと変換したとしても正確な色を再現することができない。S605の処理は、凸部の影響のない第2変換テーブルを、凸部の色を考慮したテーブルへと補正する処理である。具体的には、S604で変換されたLAB値と第2変換テーブルを取得し、第2変換テーブルに記載の凹部のLAB値を式(5)により凸部のLAB値だけシフトする。
Figure 2018074383

尚、式(5)において、αは凹凸の凹部の幅と凸部の幅との比よって決定される係数であり、図4(d)のように凹凸の周期がa、凸部の幅bの場合、式(6)により算出される。
Figure 2018074383

S606において、第2変換部508は、S605で補正された凸部の色が考慮された補正後の色変換テーブルを用いて、S602で取得した第2色情報が表す色を、凹部の色へと変換する。本処理において、凸部の色を考慮した色変換テーブルを用いることで、第2の色情報が表す色を直接凹部の色へと変換することが可能である。
S607において、第3変換部509は、S604で変換された凸部の色、及びS606で変換された凹部の色をプリンタに搭載された有色インクの色材量(記録量)へと変換する。尚、前述のようにプリンタの色材量はCMYKインクの量である。尚、CMYKへの変換は一般的に使われているルックアップテーブルを使った変換方法などが利用できる。
本実施例では、LAB値とCMYK値が対応付けられたテーブルを用いて、凸部の色を各画素に記録した第1画像データから、各画素にインク量を記録した第1インク量データ(第1記録量データ)を生成する。また同様に、上述したテーブルを用いて、凹部の色を各画素に記録した第2画像データから、各画素にインク量を記録した第2インク量データ(第2記録量データ)を生成する。尚、凸部の色及び凹部の色を公知の変換式によりRGB値に変換してから、RGB値とCMYK値が対応付けられたテーブルを用いてインク量データを生成しても良い。
S608において、出力部510は、まずS603で取得された凹凸形状データに基づいて、UV硬化型インクの吐出オン・オフの2値を表す2値データを生成し、当該2値データに基づいて、プリンタ13に凹凸層を形成させる。続いて、S607で生成された第1インク量データ及び第2インク量データに基づいて、有色インクの吐出オン・オフの2値を表す2値データを生成し、当該2値データに基づいて、プリンタ13に凹凸層上に画像層を形成させる。
以上説明したように本実施例の画像処理装置は、入力された少なくとも2つの色を、凹凸上の凹部、凸部の色へと適切に色変換することで、観察角度によって色が変わって見えるプリント物を形成することができる。
尚、本実施例では、有色色材として有色インクを用いたが、上記一例には限定されない。例えば、有色トナーを有色色材として用いても良い。
[実施例2]
実施例1では、第1観察角度と第2観察角度とが色変換テーブル作成時の観察角度と等しいものとして説明を行った。本実施例では、取得された第1色情報と第2色情報から、色変換テーブル作成時の色を推定することで、実施例1と同様のメモリ量で任意の2つの観察角度の色を高精度に再現する場合について説明する。ただし、以下の説明において実施例1と共通する内容については説明を簡易化又は省略する。
図12は、実施例2における画像処理装置の機能構成を示すブロック図である。本画像処理装置において、第1取得部1201、第1取得部1202、第3取得部1203は、実施例1における501から503と同様であるため説明を省略する。推定部1204は、第1取得部1201で取得した第1色情報と、第2取得部1202で取得した第2色情報とから、第1保持部504で保持されている観察角度の色、及び第2保持部507で保持されている観察角度の色を推定する。第1変換部1206は推定部1204で推定された第1変換テーブルに保持されている観察角度の色を、第3取得部で取得される凹凸形状の凸部の色へと変換する。第2変換部1209は推定部1204で推定された第2変換テーブルに保持されている観察角度の色を、凹部の色へと変換する。
第1保持部1205から補正部1208、及び第3変換部1210、出力部1211は実施例1の504から507、及び509、510と同様であるため説明を省略する。
以下、実施例2における画像処理装置1が実行する処理について図13のフローチャートを用いて説明する。
S1301において、第1色取得部1201は、観察方向として仰角θ1とその色情報Rθ1、Gθ1、Bθ1を第1画像データとして取得する。S1302において、第2取得部1202は、観察方向としてθ1とは異なる任意の仰角θ2とその色情報Rθ2、Gθ2、Bθ2を第2画像データとして取得する。1303は、実施例1のS603と同様であるため説明を省略する。
S1304において、推定部1204は、S1301及びS1302で取得された第1色情報及び第2色情報から、第1変換テーブル及び第2変換テーブルの作成時の仰角φ1、φ2の色を推定する。具体的には、まず、RGBθ1とRGBθ2とをCIELAB値へと変換し、LABθ1とLABθ2とを算出する。そして、LABそれぞれについて、観察角度θとLAB値との関係を算出する。尚、本実施例では、観察角度θとLAB値の関係は比例関係になるものと仮定し、図14に示すように、θ1とθ2の2つの色を通る直線で表されるものとする。尚、図14はL*と観察角度との関係について示しているが、a*及びb*についても同様の関係である。最後に、該直線と、色変換テーブル作成時の仰角φ1、φ2を用いて、式(7)により、テーブル作成時の観察角度の色L*φ1、a*φ1、b*φ1及びL*φ2、a*φ2、b*φ2を推定する。尚、式7はL*φ1、L*φ2に関する推定式であるが、a*φ1、a*φ2及びb*φ1、b*φ2も同様にして推定することができる。最後に推定された各LAB値をRGB値へと変換する。
Figure 2018074383

S1305は、第1変換部1206は、S1304で推定された観察角度φ1の色RGBφ1を、第1保持部1205を用いて、S1303で取得した凹凸形状データが表す凸部の色へと変換する。S1306、S1307は実施例1のS605、S606と同様であるため、説明を省略する。S1307において、第2変換部1209はS1306で補正された凸部の色が考慮された補正後の色変換テーブルを用いて、S1304で推定した観察角度φ2の色RGBφ2から、凹部の色を算出する。S1308及びS1309は実施例1のS607及びS608と同様であるため説明を省略する。
本実施例により、色変換テーブル作成時とは異なる任意の2つの観察角度を取得した場合であっても、色変換テーブル作成時の観察角度の色を推定することが可能となり、観察角度によって色が変わって見えるプリント物を形成することができる。
尚、本実施例では推定部1204において、推定する際の近似式は直線であるものとして説明を行ったが、ガンマ曲線などの曲線であっても良い。その場合、凹凸形状の凹凸の高さとγの値とを予め1次元のルックアップテーブルとして保持し、該1次元ルックアップテーブルと凹凸形状の高さとからガンマ値を算出することができる。
[その他の実施例]
本発明は、上述の実施例の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
1 画像処理装置
501 第1取得部
502 第2取得部
504 第1保持部
505 第1変換部
506 第2保持部
508 第2変換部
509 第3変換部

Claims (11)

  1. 凹部と凸部とを有する凹凸層の上に対象物体の色を表す色材層を重ねた画像を形成するためのデータを生成する画像処理装置であって、
    前記対象物体を第1方向から見た場合の色を表す第1色情報を取得する第1取得手段と、
    前記対象物体を前記第1方向とは方位角が等しく仰角が異なる第2方向から見た場合の色を表す第2色情報を取得する第2取得手段と、
    前記凹凸層の凸部の上に有色色材を記録することによって形成された複数種類のカラーパッチを前記凹凸層の凹部が凸部によって遮蔽される方向から観察した場合に視認される色を測定することによって作成された第1テーブルを保持する第1保持手段と、
    前記第1テーブルに基づいて、前記第1色情報が表す色を変換する第1変換手段と、
    前記凹凸層の凹部の上に有色色材を記録することによって形成された複数種類のカラーパッチを前記凹凸層の凹部が凸部によって遮蔽されない方向から観察した場合に視認される色を測定することによって作成された第2テーブルを保持する第2保持手段と、
    前記第1変換手段によって色が変換された前記第1色情報と前記第2テーブルとに基づいて、前記第2色情報が表す色を変換する第2変換手段と、
    前記第1変換手段によって色が変換された前記第1色情報と前記第2変換手段によって色が変換された前記第2色情報とに基づいて、前記画像を形成するための有色色材の記録量を表す記録量データを生成する生成手段と、
    を有することを特徴とする画像処理装置。
  2. 前記第1方向は、前記凹凸層の凹部が凸部によって遮蔽される方向と同じ方向であり、前記第2方向は、前記凹凸層の凹部が凸部によって遮蔽されない方向と同じ方向であることを特徴とする請求項1に記載の画像処理装置。
  3. 前記凹凸層の凹部が凸部によって遮蔽されない方向は、前記画像に正対する方向であることを特徴とする請求項1又は請求項2に記載の画像処理装置。
  4. 前記第1変換手段によって色が変換された前記第1色情報に基づいて、前記第2テーブルを補正する補正手段をさらに有し、
    前記第2変換手段は、前記補正手段によって補正された前記第2テーブルに基づいて、前記第2色情報が表す色を変換することを特徴とする請求項1乃至請求項3のいずれか一項に記載の画像処理装置。
  5. 前記第1色情報と前記第2色情報とに基づいて、前記第1方向とは異なる前記凹凸層の凹部が凸部によって遮蔽される方向で視認される色と、前記第2方向とは異なる前記凹凸層の凹部が凸部によって遮蔽されない方向で視認される色とを推定する推定手段をさらに有し、
    前記第1変換手段は、前記推定手段によって推定された前記第1方向とは異なる前記凹凸層の凹部が凸部によって遮蔽される方向で視認される色を変換する手段であって、
    前記第2変換手段は、前記推定手段によって推定された前記第1方向とは異なる前記凹凸層の凹部が凸部によって遮蔽される方向で視認される色と前記第2テーブルとに基づいて、前記第2方向とは異なる前記凹凸層の凹部が凸部によって遮蔽されない方向で視認される色を変換する手段であることを特徴とする請求項1乃至請求項4のいずれか一項に記載の画像処理装置。
  6. 前記推定手段は、前記画像を観察する方向と前記画像を観察するときに視認される色との所定の対応関係に基づいて、色を推定する手段であることを特徴とする請求項5に記載の画像処理装置。
  7. 前記所定の対応関係は、比例関係であることを特徴とする請求項6に記載の画像処理装置。
  8. 前記凹凸層の凹凸形状を形成するための記録材の記録量を表す形状データを取得する第3取得手段と、
    前記記録量データと前記形状データとに基づいて、前記画像を形成する形成手段と、
    をさらに有することを特徴とする請求項1乃至請求項7のいずれか一項に記載の画像処理装置。
  9. 前記有色色材は、有色インクであり、
    前記記録材は、UV硬化型インクであることを特徴とする請求項8に記載の画像処理装置。
  10. コンピュータを請求項1乃至請求項9のいずれか一項に記載の画像処理装置の各手段として機能させるためのプログラム。
  11. 凹部と凸部とを有する凹凸層の上に対象物体の色を表す色材層を重ねた画像を形成するためのデータを生成する画像処理方法であって、
    前記対象物体を第1方向から見た場合の色を表す第1色情報を取得する第1取得ステップと、
    前記対象物体を前記第1方向とは方位角が等しく仰角が異なる第2方向から見た場合の色を表す第2色情報を取得する第2取得ステップと、
    前記凹凸層の凸部の上に有色色材を記録することによって形成された複数種類のカラーパッチを前記凹凸層の凹部が凸部によって遮蔽される方向から観察した場合に視認される色を測定することによって作成された第1テーブルを保持する第1保持ステップと、
    前記第1テーブルに基づいて、前記第1色情報が表す色を変換する第1変換ステップと、
    前記凹凸層の凹部の上に有色色材を記録することによって形成された複数種類のカラーパッチを前記凹凸層の凹部が凸部によって遮蔽されない方向から観察した場合に視認される色を測定することによって作成された第2テーブルを保持する第2保持ステップと、
    前記第1変換ステップによって色が変換された前記第1色情報と前記第2テーブルとに基づいて、前記第2色情報が表す色を変換する第2変換ステップと、
    前記第1変換ステップによって色が変換された前記第1色情報と前記第2変換ステップによって色が変換された前記第2色情報とに基づいて、前記画像を形成するための有色色材の記録量を表す記録量データを生成する生成ステップと、
    を有することを特徴とする画像処理方法。
JP2016211900A 2016-10-28 2016-10-28 画像処理装置、画像処理方法及びプログラム Pending JP2018074383A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016211900A JP2018074383A (ja) 2016-10-28 2016-10-28 画像処理装置、画像処理方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016211900A JP2018074383A (ja) 2016-10-28 2016-10-28 画像処理装置、画像処理方法及びプログラム

Publications (1)

Publication Number Publication Date
JP2018074383A true JP2018074383A (ja) 2018-05-10

Family

ID=62115928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016211900A Pending JP2018074383A (ja) 2016-10-28 2016-10-28 画像処理装置、画像処理方法及びプログラム

Country Status (1)

Country Link
JP (1) JP2018074383A (ja)

Similar Documents

Publication Publication Date Title
JP6765794B2 (ja) 画像処理装置、画像処理方法、および、プログラム
US10397427B2 (en) Image processing apparatus, image processing method, and storage medium
US10459325B2 (en) Image processing apparatus, image processing method, and storage medium
US10538113B2 (en) Image processing apparatus, image processing method, and storage medium
JP6626405B2 (ja) 画像処理装置、方法およびプログラム
JP6900239B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP6755739B2 (ja) 画像処理装置、画像処理方法及びプログラム
US10481476B2 (en) Image processing apparatus, image processing method, and storage medium
JP6891011B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP2018074383A (ja) 画像処理装置、画像処理方法及びプログラム
JP2019107839A (ja) 画像処理装置、画像処理方法及びプログラム
JP6855293B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP6849472B2 (ja) 画像処理装置及び画像処理方法
US11900187B1 (en) Automatic tuning compensation mechanism
US11900189B1 (en) Automatic tuning compensation system that determines optimal compensation target values for each of plurality of tint levels
JP2020069699A (ja) 画像処理装置、画像処理方法及びプログラム
JP2019067128A (ja) 画像処理装置、画像処理方法及びプログラム
JP7077074B2 (ja) 画像処理装置、画像処理方法及びプログラム
EP3127702B1 (en) Image processing apparatus, image processing method, and program
JP6486125B2 (ja) 画像処理装置およびその方法
JP6355398B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP2018176561A (ja) 画像処理方法、画像処理装置および画像形成装置
JP2017200133A (ja) 画像処理装置、画像処理方法、及びプログラム