JP2018072180A - Foreign substance inspection device and foreign substance inspection method for container - Google Patents
Foreign substance inspection device and foreign substance inspection method for container Download PDFInfo
- Publication number
- JP2018072180A JP2018072180A JP2016212607A JP2016212607A JP2018072180A JP 2018072180 A JP2018072180 A JP 2018072180A JP 2016212607 A JP2016212607 A JP 2016212607A JP 2016212607 A JP2016212607 A JP 2016212607A JP 2018072180 A JP2018072180 A JP 2018072180A
- Authority
- JP
- Japan
- Prior art keywords
- container
- image
- wavelength range
- illumination
- light beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007689 inspection Methods 0.000 title claims abstract description 91
- 239000000126 substance Substances 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims description 26
- 238000005286 illumination Methods 0.000 claims abstract description 225
- 238000012545 processing Methods 0.000 claims abstract description 26
- 230000004907 flux Effects 0.000 claims abstract description 14
- 238000003384 imaging method Methods 0.000 claims description 34
- 210000000744 eyelid Anatomy 0.000 description 16
- 238000012937 correction Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 10
- 239000011521 glass Substances 0.000 description 8
- 238000002310 reflectometry Methods 0.000 description 4
- 230000007812 deficiency Effects 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
本発明は、画像処理技術を用いて容器内における異物の混入の有無を検査する検査装置等に関する。 The present invention relates to an inspection apparatus for inspecting the presence or absence of foreign matter in a container using an image processing technique.
容器中の異物の有無を検査する装置として、波長域が異なる複数の照明光で容器を照明し、各波長域の画像を取得して異物を検出する装置が知られている。例えば、液体が充填されたガラス容器に赤色光と青色光を照射し、ガラス容器を透過した赤色光とガラス容器の内部液体で反射した青色光とを色分離ミラーで分離して互いに異なるカメラに導いて各色による容器の画像を取得し、赤色光による画像を用いて黒色系の異物を、青色光による画像を用いて白濁系の異物をそれぞれ検出する装置が提案されている(特許文献1参照)。ペタロイドのような凹凸が付された容器の底部又はその近傍における異物の有無を検査するため、容器の底部に可視光と近赤外光とを照射してそれらの光束に基づく底部の画像を分けて取得し、近赤外光による画像を用いて容器の底部の凹凸部分を検出し、その凹凸部分を可視光による画像中の検査対象領域から除外することにより、凹凸部分に影響されない異物検査を実現しようとした検査装置も提案されている(特許文献2参照)。青色光と赤色光とを用いる例ではあるが、同様の手法により容器の凹凸部を検査領域から除外して容器表面の傷等を検査する装置も提案されている(特許文献3参照)。 As an apparatus for inspecting the presence or absence of a foreign substance in a container, an apparatus is known that detects a foreign substance by illuminating the container with a plurality of illumination lights having different wavelength ranges and acquiring images in each wavelength range. For example, a glass container filled with liquid is irradiated with red light and blue light, and the red light transmitted through the glass container and the blue light reflected by the liquid inside the glass container are separated by a color separation mirror to be used in different cameras. An apparatus has been proposed in which an image of a container of each color is obtained and black foreign matter is detected using an image of red light, and white turbid foreign matter is detected using an image of blue light (see Patent Document 1). ). In order to inspect for the presence or absence of foreign matter at or near the bottom of a container with irregularities such as petaloid, the bottom of the container is irradiated with visible light and near infrared light, and the bottom image based on the luminous flux is divided By detecting the concavo-convex part at the bottom of the container using an image with near infrared light, and excluding the concavo-convex part from the inspection target area in the image with visible light, foreign object inspection that is not affected by the concavo-convex part is performed. An inspection apparatus to be realized has also been proposed (see Patent Document 2). Although it is an example using blue light and red light, an apparatus for inspecting a scratch or the like on the surface of the container by removing the uneven portion of the container from the inspection region by a similar method has been proposed (see Patent Document 3).
上述した特許文献1の装置は容器の表面における凹凸、傷、汚れといった検査対象外の外乱要素が画像中にノイズ成分として含まれることに対して格別の解決策を提供していない。特許文献2及び3の装置はノイズ成分の排除に相応の効果が期待できるものの、検査対象から排除されるべき領域を、凹凸部等が明瞭に映し出される反射光の画像から特定しているため、必要以上に大きな範囲が検査対象領域から除外されるといったように検査対象領域の設定に不備が生じ、それにより検査精度が低下するおそれがある。 The apparatus of Patent Document 1 described above does not provide a special solution to the fact that disturbance elements that are not subject to inspection such as irregularities, scratches, and dirt on the surface of the container are included as noise components in the image. Although the devices of Patent Documents 2 and 3 can be expected to have a corresponding effect in eliminating the noise component, the region to be excluded from the inspection target is specified from the reflected light image in which the uneven portion is clearly projected. There is a possibility that the inspection target area is inadequately set such that an unnecessarily large range is excluded from the inspection target area, thereby reducing the inspection accuracy.
そこで、本発明は波長域が異なる複数の照明光束を含んだ照明光を用いつつ従来とは異なる手法により容器表面の凹凸等の外乱要素の影響を除外して異物の有無に関する検査精度を高めることが可能な異物検査装置等を提供することを目的とする。 Therefore, the present invention improves the inspection accuracy regarding the presence or absence of foreign matters by using the illumination light including a plurality of illumination light beams having different wavelength ranges and excluding the influence of disturbance elements such as irregularities on the container surface by a method different from the conventional one. An object of the present invention is to provide a foreign substance inspection apparatus capable of performing the above.
本発明の一態様に係る容器の異物検査装置は、容器(2)中の異物の有無を前記容器の画像に基づいて検査する容器の異物検査装置(1A、1B、1C)であって、前記容器に対する透過性を有する第1波長域の照明光束(A;A1、A2)、及び前記第1波長域の照明光束と比較して前記容器の表面における散乱性が高い第2波長域の照明光束(B)を含む照明光により前記容器を照明する照明手段(5;20;30)と、前記照明手段にて照明された容器の前記第1波長域による画像(一例として図3の画像Pa)、及び前記第2波長域による画像(一例として図3の画像Pb)が含まれるようにして前記容器を撮像する撮像手段(6)と、前記撮像手段が撮像した前記第1波長域の画像と前記第2波長域の画像との差分に基づく画像(一例として図3の画像Pd)を、前記異物の有無を検査するための画像として生成する画像処理手段(11;35)と、を備えたものである。 A container foreign matter inspection apparatus according to one aspect of the present invention is a container foreign matter inspection apparatus (1A, 1B, 1C) that inspects the presence or absence of foreign matter in a container (2) based on an image of the container, Illumination luminous flux in the first wavelength range (A; A1, A2) having transparency to the container, and illumination luminous flux in the second wavelength range, which has a higher scattering property on the surface of the container than the illumination luminous flux in the first wavelength range Illuminating means (5; 20; 30) for illuminating the container with illumination light including (B), and an image of the container illuminated by the illuminating means in the first wavelength region (image Pa in FIG. 3 as an example) And imaging means (6) for imaging the container so as to include an image in the second wavelength range (image Pb in FIG. 3 as an example), and an image in the first wavelength range captured by the imaging means An image based on a difference from the image in the second wavelength range ( Image Pd) in FIG. 3 as an example, an image processing means for generating an image for inspecting the presence or absence of the foreign substance (11; 35), those having a.
本発明の一態様に係る容器の異物検査方法は、容器(2)中の異物の有無を前記容器の画像に基づいて検査する容器の異物検査方法であって、前記容器に対する透過性を有する第1波長域の照明光束(A;A1、A2)、及び前記第1波長域の照明光束と比較して前記容器の表面における散乱性が高い第2波長域の照明光束(B)を含む照明光により前記容器を照明する手順と、前記照明光にて照明された容器の前記第1波長域による画像(一例として図3の画像Pa)、及び前記第2波長域による画像(一例として図3の画像Pb)が含まれるようにして前記容器を撮像する手順と、前記撮像する手順で得られた前記第1波長域の画像と前記第2波長域の画像との差分に基づく画像(一例として図3の画像Pd)を、前記異物の有無を検査するための画像として生成する手順と、を備えたものである。 A container foreign matter inspection method according to an aspect of the present invention is a container foreign matter inspection method for inspecting the presence or absence of foreign matter in a container (2) based on an image of the container, wherein the container has a permeability to the container. Illumination light including an illumination light beam (A; A1, A2) in one wavelength region and an illumination light beam (B) in the second wavelength region that has a higher scattering property on the surface of the container than the illumination light beam in the first wavelength region. The procedure of illuminating the container according to the above, the image of the container illuminated by the illumination light in the first wavelength range (image Pa in FIG. 3 as an example), and the image in the second wavelength range (example of FIG. 3) An image based on the difference between the image of the first wavelength range and the image of the second wavelength range obtained by the procedure of imaging the container so as to include the image Pb) and the procedure of imaging (as an example, FIG. 3 image Pd) is inspected for the presence of the foreign matter. A step of generating as because of the image, those having a.
上記態様の装置及び方法において、第1波長域の照明光束は容器の表面を透過して容器内に導かれるが、一部の照明光束は容器の表面で反射し、あるいは容器の凹凸等の外乱要素を透過する際に散乱する。そのため、容器内に異物が存在する場合、第1波長域の照明光束による画像には、異物上での反射光による像と、容器表面の凹凸、傷、汚れといった外乱要素に起因するノイズ成分とが混在するようになる。一方、第2波長域の照明光束は容器の表面で概ね反射し、容器の内部までは到達しないか、到達しても僅かであるため、第2波長域の照明光束による画像には上述したノイズ成分が主として含まれ、かつ異物上の反射光による像が含まれない。したがって、第1波長域の照明光束による画像と第2波長域の照明光束による画像との差分を求めることにより、両画像のいずれにも含まれるノイズ成分は除去され、第1波長域の照明光束による画像に限って出現している異物の像は差分画像上に残る。そのため、差分に基づく画像を異物検査用の画像として生成すれば、ノイズ成分の影響を排除して異物の有無を高精度に検査することができる。第2波長域の照明光束による画像のみに基づいて検査対象領域から除外すべき範囲を特定する従来技術と比較して、ノイズ成分を過不足なく除去することが可能であり、検査対象領域の設定の不備で検査精度が低下するおそれを排除することができる。 In the apparatus and method of the above aspect, the illumination light beam in the first wavelength range is transmitted through the surface of the container and guided into the container, but a part of the illumination light beam is reflected by the surface of the container, or disturbance such as irregularities of the container. Scatter as it passes through the element. Therefore, when there is a foreign substance in the container, the image by the illumination light beam in the first wavelength range includes an image by reflected light on the foreign substance and noise components caused by disturbance elements such as irregularities, scratches, and dirt on the container surface. Will be mixed. On the other hand, the illumination light beam in the second wavelength band is substantially reflected on the surface of the container and does not reach the interior of the container or is small even if it reaches it. The component is mainly included, and an image by reflected light on the foreign matter is not included. Therefore, by obtaining the difference between the image with the illumination light beam in the first wavelength region and the image with the illumination light beam in the second wavelength region, the noise component contained in both images is removed, and the illumination light beam in the first wavelength region is removed. The image of the foreign matter that appears only in the image by remains on the difference image. Therefore, if an image based on the difference is generated as an image for foreign object inspection, the influence of noise components can be eliminated and the presence or absence of foreign objects can be inspected with high accuracy. Compared with the prior art that specifies the range to be excluded from the inspection target area based only on the image of the illumination light beam in the second wavelength range, it is possible to remove noise components without excess and deficiency, and to set the inspection target area. It is possible to eliminate the possibility that the inspection accuracy is lowered due to the deficiency of the above.
上記態様において、前記照明手段は、前記第1波長域の照明光束と前記第2波長域の照明光束とが、前記撮像手段にて前記容器が撮像される側と同一の側から照射されるように設けられてもよい。これによれば、第1波長域の照明光束が容器内に入射し、異物上の反射光が撮像手段の側に戻ってくる一方、第2波長域の照明光束は容器表面で反射して撮影手段の側に進む。これにより、第1波長域の照明光束に対する異物の反射を利用して異物を精度よく検出することができる。 In the above aspect, the illumination unit may irradiate the illumination light beam in the first wavelength region and the illumination light beam in the second wavelength region from the same side as the side on which the container is imaged by the imaging unit. May be provided. According to this, the illumination light beam in the first wavelength region enters the container, and the reflected light on the foreign matter returns to the imaging means side, while the illumination light beam in the second wavelength region is reflected on the surface of the container and photographed. Proceed to the means side. Thereby, it is possible to accurately detect the foreign matter by using the reflection of the foreign matter with respect to the illumination light beam in the first wavelength region.
さらに、前記照明手段は前記容器を底部(2c)側から照明するように設けられ、前記撮像手段は前記容器を前記底部と向かい合う側から観察した画像を撮像するように設けられてもよい。これによれば、第1波長域の照明光束に対して反射性を有する異物が容器の底部付近に滞留している場合、その異物上での反射光による像を確実に検出することができる。 Furthermore, the illuminating means may be provided so as to illuminate the container from the bottom (2c) side, and the imaging means may be provided so as to capture an image obtained by observing the container from the side facing the bottom. According to this, when a foreign material having reflectivity with respect to the illumination light beam in the first wavelength region stays in the vicinity of the bottom of the container, it is possible to reliably detect an image due to the reflected light on the foreign material.
上記態様において、前記照明手段(20;30)は、前記撮像手段にて前記容器が撮像される側に対して反対側から前記第1波長域の照明光束(A;A1)を照射する第1の照明部(21;31)と、前記撮像手段にて前記容器が撮像される側と同一の側から前記第2波長域の照明光束(B)を照射する第2の照明部(22;32)とを含むようにしてもよい。これによれば、第1波長域の照明光束が容器を透過して撮像手段の側に射出する一方、第2波長域の照明光束は容器表面で反射して撮影手段の側に進む。第1波長域の照明光束に対して遮光性を有する異物が存在している場合、その異物により第1波長域の照明光束の一部が遮られ、その影響で第1波長域の照明光束による画像に異物の像が含まれるようになる。また、第1波長域の照明光束が容器表面の凹凸等の外乱要因を通過する際に散乱し、その影響によるノイズ成分が第1波長域の照明光束による画像に含まれるようになる。したがって、第1波長域の照明光束による画像と第2波長域の照明光束による画像との差分を求めることにより、両画像のいずれにも含まれるノイズ成分を除去し、第1波長域の照明光束を遮った異物の像が残った画像を検査用の画像として生成することができる。 In the above aspect, the illuminating means (20; 30) irradiates the illumination light beam (A; A1) in the first wavelength region from the opposite side to the side on which the container is imaged by the imaging means. Illuminating part (21; 31) and a second illuminating part (22; 32) that irradiates the illumination light beam (B) in the second wavelength region from the same side as the side on which the container is imaged by the imaging means. ) May be included. According to this, the illumination light beam in the first wavelength region passes through the container and exits to the imaging unit side, while the illumination light beam in the second wavelength region is reflected by the surface of the container and proceeds to the imaging unit side. In the case where there is a foreign matter having a light shielding property with respect to the illumination light beam in the first wavelength region, a part of the illumination light beam in the first wavelength region is blocked by the foreign material, and the influence causes the illumination light beam in the first wavelength region. A foreign object image is included in the image. In addition, the illumination light beam in the first wavelength region is scattered when passing through disturbance factors such as irregularities on the surface of the container, and a noise component due to the influence is included in the image by the illumination light beam in the first wavelength region. Therefore, by obtaining the difference between the image with the illumination light beam in the first wavelength region and the image with the illumination light beam in the second wavelength region, the noise component included in both images is removed, and the illumination light beam in the first wavelength region is obtained. An image in which an image of a foreign object that obstructs the image remains can be generated as an image for inspection.
上記態様において、前記照明手段(30)は、前記第1波長域の照明光束を照射する複数の第1の照明部(31、33)と、前記第2波長域の照明光束を照射する少なくとも一つの第2の照明部(32)とを含み、前記複数の第1の照明部のうち、少なくとも一つの第1の照明部(31)は前記撮像手段にて前記容器が撮像される側に対して反対側から前記第1波長域の照明光束(A1)を照射するように設けられ、他の少なくとも一つの第1の照明部(33)は前記撮像手段にて前記容器が撮像される側と同一の側から前記第1波長域の照明光束(A2)を照射するように設けられ、前記第2の照明部は前記容器が撮像される側と同一の側から前記第2波長域の照明光束を照射するように設けられてもよい。これによれば、第1波長域の照明光束を、撮像手段の撮像方向から見て反対側からも同一の側からも照射することができる。そのため、第1波長域の照明光束に対して遮光性が高い異物、反射性が高い異物のいずれであっても検出することができる。 In the above aspect, the illuminating means (30) includes a plurality of first illumination units (31, 33) that irradiate the illumination light beam in the first wavelength region, and at least one that irradiates the illumination light beam in the second wavelength region. Two second illumination sections (32), and at least one first illumination section (31) of the plurality of first illumination sections is on the side on which the container is imaged by the imaging means. The other illumination side is provided to irradiate the illumination light beam (A1) in the first wavelength region from the opposite side, and at least one other first illumination unit (33) is provided on the side on which the container is imaged by the imaging means The second illumination unit is provided so as to irradiate the illumination light beam (A2) in the first wavelength region from the same side, and the second illumination unit emits the illumination light beam in the second wavelength region from the same side as the side on which the container is imaged. May be provided. According to this, the illumination light beam in the first wavelength region can be irradiated from the opposite side or the same side as seen from the imaging direction of the imaging means. Therefore, it is possible to detect either a foreign matter having a high light shielding property or a foreign matter having a high reflectivity with respect to the illumination light beam in the first wavelength region.
また、前記容器が撮像される側に対して反対側から照明光束(A1)を照射する第1の照明部(31)と、前記容器が撮像される側と同一の側から照明光束(A2)を照射する第1の照明部(33)とは、前記第1波長域を区分して得られる複数の波長範囲のうち、互いに異なる波長範囲の照明光束を照射するものとしてもよい。これによれば、第1波長域の照明光束に対する遮光性を利用して異物を検出する場合にはその照明光束を容器の透過に適した波長範囲に設定し、第1波長域の照明光束に対する反射性を利用して異物を検出する場合にはその照明光束を容器内における反射に適した波長範囲に設定するといったように、第1波長域の波長範囲を目的に応じてより適切に使い分け、それにより検査精度のさらなる向上を図ることができる。 Also, a first illumination unit (31) that irradiates an illumination light beam (A1) from the opposite side to the side on which the container is imaged, and an illumination light beam (A2) from the same side as the side on which the container is imaged The first illuminating unit (33) that irradiates the light may irradiate illumination light beams having different wavelength ranges among a plurality of wavelength ranges obtained by dividing the first wavelength range. According to this, when a foreign object is detected by utilizing the light blocking property with respect to the illumination light beam in the first wavelength range, the illumination light beam is set to a wavelength range suitable for transmission through the container, and the illumination light beam in the first wavelength range is set. When detecting a foreign object using reflectivity, the wavelength range of the first wavelength range is appropriately used according to the purpose, such as setting the illumination light beam to a wavelength range suitable for reflection in the container, As a result, the inspection accuracy can be further improved.
上記態様において、前記照明手段の前記第1の照明部及び前記第2の照明部のそれぞれは、前記容器を側方から照明するように設けられ、前記撮像手段は前記容器を前記側方から観察した画像を撮像するように設けられてもよい。この場合には、容器をその高さ方向に関して広範囲に照明して撮像することができる。そのため、例えば容器に内容物が充填され、その内容物中にて異物が浮遊しているといったように、容器内の比較的広い範囲に異物が存在し得る場合に適した異物検査装置を提供することができる。 In the above aspect, each of the first illumination unit and the second illumination unit of the illumination unit is provided to illuminate the container from the side, and the imaging unit observes the container from the side. It may be provided so as to capture the image. In this case, the container can be illuminated and imaged in a wide range in the height direction. Therefore, there is provided a foreign substance inspection apparatus suitable for the case where foreign substances can exist in a relatively wide range in the container, for example, the container is filled with the contents and the foreign substances are floating in the contents. be able to.
前記容器が可視光の波長域において着色された容器として形成され、前記第2波長域が前記容器の色とは異なる波長域に設定され、前記第1波長域が前記容器の色と同一の波長域、又は前記第2波長域と比較して前記容器の色に近い波長域に設定されてもよい。着色された容器では、その色と近似する波長域ほど透過性が高まり、その色から離れた波長域ほど反射性が高まる。したがって、上記の通りに第1波長域及び第2波長域を設定することにより、第1波長域の照明光束を容器内に入射させる一方で、第2波長域の照明光束を容器表面で反射させるといった波長域の使い分けを確実に実現することができる。 The container is formed as a colored container in the visible light wavelength range, the second wavelength range is set to a wavelength range different from the color of the container, and the first wavelength range is the same wavelength as the color of the container. Or a wavelength range close to the color of the container as compared with the second wavelength range. In a colored container, the transmittance increases as the wavelength region approximates the color, and the reflectivity increases as the wavelength region is far from the color. Therefore, by setting the first wavelength region and the second wavelength region as described above, the illumination light beam in the first wavelength region is incident on the container, while the illumination light beam in the second wavelength region is reflected on the container surface. It is possible to reliably realize the proper use of the wavelength range.
さらに、前記容器が茶色系又は緑色系に着色され、前記第1波長域が赤色光又は赤外光の波長域に設定され、前記第2波長域が青色光の波長域に設定されてもよい。茶色系又は緑色系の容器に関しては、赤色光又はそれよりも波長が長い赤外光が容器の表面を透過し易いので第1波長域の照明光束として好適であり、青色光は容器表面で反射し易いために第2波長域の照明光束として好適である。 Furthermore, the container may be colored brown or green, the first wavelength range may be set to a wavelength range of red light or infrared light, and the second wavelength range may be set to a wavelength range of blue light. . For brown or green containers, red light or infrared light having a longer wavelength is easily transmitted through the surface of the container, so it is suitable as an illumination light beam in the first wavelength range, and blue light is reflected from the container surface. Therefore, it is suitable as an illumination light beam in the second wavelength region.
一方、前記容器が青色系に着色され、前記第1波長域が青色光の波長域に設定され、前記第2波長域が赤色光又は赤外光の波長域に設定されてもよい。青色系の容器に関しては、青色光が容器の表面を透過し易いので第1波長域の照明光束として好適であり、赤色光又は赤外光は容器表面で反射し易いために第2波長域の照明光束として好適である。 On the other hand, the container may be colored blue, the first wavelength range may be set to a blue wavelength range, and the second wavelength range may be set to a red or infrared wavelength range. For blue-based containers, blue light is easy to transmit through the surface of the container, so it is suitable as an illumination light beam in the first wavelength region, and red light or infrared light is easily reflected on the surface of the container, so that it is suitable for the second wavelength region. It is suitable as an illumination light beam.
また、前記容器が可視光の波長域において着色されていない容器として形成され、前記第1波長域が赤色光又は赤外光の波長域に設定され、前記第2波長域が青色光の波長域に設定されてもよい。可視光の波長域にて透明な容器に関しては、赤色光又はそれよりも波長が長い赤外光が容器の表面を透過し易いので第1波長域の照明光束として好適であり、青色光は容器表面で反射し易いために第2波長域の照明光束として好適である。 In addition, the container is formed as a container that is not colored in the visible light wavelength range, the first wavelength range is set to a wavelength range of red light or infrared light, and the second wavelength range is a wavelength range of blue light. May be set. For containers that are transparent in the visible light wavelength range, red light or infrared light having a longer wavelength is easily transmitted through the surface of the container, so that it is suitable as an illumination light beam in the first wavelength range. Since it is easy to reflect on the surface, it is suitable as an illumination light beam in the second wavelength region.
なお、以上の説明では本発明の理解を容易にするために添付図面の参照符号を括弧書きにて付記したが、それにより本発明が図示の形態に限定されるものではない。 In addition, in the above description, in order to make an understanding of this invention easy, the reference sign of the accompanying drawing was attached in parenthesis, but this invention is not limited to the form of illustration by it.
(第1の形態)
図1は本発明の第1の形態に係る異物検査装置の要部を示している。本形態の異物検査装置1Aは、容器の一例としての壜2の内部における異物の有無を検査するものである。壜2は例えばガラス製であり、透明又は適度に着色された半透明のボトル型の容器として形成されている。壜2の内部には飲料等の内容物が充填され、壜2の口部2aは密封されている。壜2は搬送装置3により直立状態で所定の搬送方向Fに搬送され、異物検査装置1Aは壜2の搬送経路上に配置される。搬送装置3は、一例として壜2の胴部2bを挟み込むように配置された一対のベルト3aを搬送方向に走行させて壜2を搬送する。
(First form)
FIG. 1 shows a main part of a foreign matter inspection apparatus according to the first embodiment of the present invention. The foreign matter inspection apparatus 1A of the present embodiment inspects the presence or absence of foreign matter inside the tub 2 as an example of a container. The basket 2 is made of, for example, glass, and is formed as a transparent or moderately colored translucent bottle-shaped container. The inside of the bowl 2 is filled with contents such as beverages, and the mouth 2a of the bowl 2 is sealed. The scissors 2 are transported in a predetermined transport direction F in an upright state by the transport device 3, and the foreign matter inspection apparatus 1 </ b> A is disposed on the transport path of the scissors 2. As an example, the conveying device 3 conveys the bag 2 by running a pair of belts 3 a arranged so as to sandwich the body 2 b of the bag 2 in the conveying direction.
異物検査装置1Aは、壜2に対して底部2cの側から照明光を照射する照明手段の一例としての照明装置5と、照明装置5にて照明された壜2を底部2cと向かい合う側から観察した画像を取得する撮像手段の一例としてのカメラ6とを備えている。照明装置5は、第1の照明部の一例としての第1の照明ユニット7と、第2の照明部の一例としての第2の照明ユニット8とを含んでいる。第1の照明ユニット7は、壜2の表面に対する透過性が比較的高い第1波長域の照明光束Aを壜2の底部2cに照射する。第2の照明ユニット8は、第1の照明ユニット7の照明光束よりも壜2の表面における散乱性が高い第2波長域の照明光束Bを壜2の底部2cに照射する。このように底部2cに向けて照明光を照射し、かつ壜2を底部2c側から撮像する場合には、底部2cの付近に沈んでいる異物を効率的に検出することができる。 The foreign matter inspection apparatus 1A observes the illuminating device 5 as an example of an illuminating unit that illuminates the heel 2 from the bottom 2c side, and the heel 2 illuminated by the illuminating device 5 from the side facing the bottom 2c. And a camera 6 as an example of an imaging means for acquiring the captured image. The lighting device 5 includes a first lighting unit 7 as an example of a first lighting unit and a second lighting unit 8 as an example of a second lighting unit. The first illumination unit 7 irradiates the bottom 2c of the ridge 2 with the illumination light beam A in the first wavelength range that has a relatively high transparency with respect to the surface of the ridge 2. The second illumination unit 8 irradiates the bottom 2c of the ridge 2 with the illumination light beam B in the second wavelength region, which has a higher scattering property on the surface of the ridge 2 than the illumination beam of the first illumination unit 7. In this way, when the illumination light is irradiated toward the bottom portion 2c and the heel 2 is imaged from the bottom portion 2c side, the foreign matter sinking in the vicinity of the bottom portion 2c can be efficiently detected.
第1波長域及び第2波長域は、壜2の色によってその選択が異なる。例えば、壜2が茶色系又は緑色系に着色され、あるいは透明な場合には、赤色光の波長域を第1波長域として選択し、青色光の波長域を第2波長域として選択することができる。一方、壜2が青色系に着色されている場合には、青色光の波長域を第1波長域として選択し、赤色光の波長域を第2波長域として選択することができる。つまり、壜2が可視光域に関して着色されている場合には、その壜2の色になるべく近いか又は壜2の色と同一の波長域を第1波長域として選択するとよい。第2波長域は、第1波長域と比較して壜2の色よりも波長が相対的に離れた波長域を選択することができる。言い換えれば、第2波長域は壜2の色とは異なる波長域に設定され、第1波長域は壜2の色と同一の波長域又は第2波長域と比較して壜2の色に近い波長域に設定される。第2波長域には第1波長域と比較して壜2の色よりも波長がなるべく大きく離れた波長域を選択するとよい。第1波長域及び第2波長域は可視域に限定されなくてもよい。例えば、壜2が茶色系の場合、第1波長域を赤外光の波長域に設定し、第2波長域を青色光の波長域に設定するといった選択も可能である。 The selection of the first wavelength range and the second wavelength range differs depending on the color of 壜 2. For example, when 壜 2 is colored brown or green or transparent, the wavelength range of red light is selected as the first wavelength range, and the wavelength range of blue light is selected as the second wavelength range. it can. On the other hand, when the eyelid 2 is colored blue, the wavelength range of blue light can be selected as the first wavelength range, and the wavelength range of red light can be selected as the second wavelength range. That is, when the cocoon 2 is colored with respect to the visible light region, a wavelength region that is as close as possible to the color of the cocoon 2 or the same as the color of the cocoon 2 may be selected as the first wavelength region. As the second wavelength range, a wavelength range in which the wavelength is relatively distant from the color of the eyelid 2 as compared with the first wavelength range can be selected. In other words, the second wavelength range is set to a wavelength range different from the color of 壜 2, and the first wavelength range is the same wavelength range as the color of 壜 2 or closer to the color of 壜 2 compared to the second wavelength range. Set to wavelength range. As the second wavelength range, it is preferable to select a wavelength range whose wavelength is as far away as possible from the color of the eyelid 2 compared to the first wavelength range. The first wavelength range and the second wavelength range may not be limited to the visible range. For example, when the eyelid 2 is brown, it is possible to select the first wavelength range as the infrared wavelength range and the second wavelength range as the blue wavelength range.
第1及び第2の照明ユニット7、8のそれぞれは、一例として壜2と同軸的に配置されたリング状の照明ユニットである。照明ユニット7、8の光源にはLEDその他の各種の発光体が適宜に利用されてよい。第1及び第2の照明ユニット7、8は、上下方向、すなわち壜2の中心軸線の方向に位置をずらして配置されている。第1の照明ユニット7は第2の照明ユニット8よりも上方、すなわち壜2の底部2cに接近するように配置されている。第1の照明ユニット7の発光面7aは、上方に向かうほど徐々に拡径するテーパ面状である。第1の照明ユニット7は、その発光面7aから射出される第1波長域の照明光束Aが底部2cの外周縁に付されたアール部2dから壜2に入射するように設けられている。これにより、壜2の底部2cの内側領域をその外周縁から第1波長域の照明光束Aにて満遍なく照明することができる。 Each of the 1st and 2nd lighting units 7 and 8 is a ring-shaped lighting unit arrange | positioned coaxially with the eaves 2 as an example. As the light sources of the illumination units 7 and 8, various light emitters such as LEDs may be appropriately used. The 1st and 2nd illumination units 7 and 8 are shifted and arrange | positioned in the up-down direction, ie, the direction of the center axis line of the collar 2. The first lighting unit 7 is disposed above the second lighting unit 8, that is, so as to approach the bottom 2 c of the basket 2. The light emitting surface 7a of the first lighting unit 7 has a tapered surface shape whose diameter gradually increases toward the top. The 1st illumination unit 7 is provided so that the illumination light beam A of the 1st wavelength range inject | emitted from the light emission surface 7a may inject into the eaves 2 from the round part 2d attached | subjected to the outer periphery of the bottom part 2c. Thereby, the inner side area | region of the bottom part 2c of the eaves 2 can be illuminated uniformly by the illumination light beam A of the 1st wavelength range from the outer periphery.
一方、第2の照明ユニット8は、その発光面8aから射出する第2波長域の照明光束Bが、壜2の底部2cのアール部2dから底部2cの全域に入射するように設けられている。発光面8aも、上方に向かうほど徐々に拡径するテーパ面状である。第2の照明ユニット8の発光面8aの最小内径(下端の内径をいう。)は、底部2cにおける反射光が壜2の中心軸線側に向かうように、壜2の外径よりも大きく設定されている。また、第2の照明ユニット8の照明光束Bが第1の照明ユニット7にて遮られる不都合を回避するため、第1の照明ユニット7の発光面7aの下端の最小内径は第2の照明ユニット8の発光面8aの最大内径と同等かそれよりも大きく設定されている。 On the other hand, the 2nd illumination unit 8 is provided so that the illumination light beam B of the 2nd wavelength range inject | emitted from the light emission surface 8a may inject into the whole region of the bottom part 2c from the round part 2d of the bottom part 2c of the collar 2. . The light emitting surface 8a also has a tapered surface shape that gradually increases in diameter toward the upper side. The minimum inner diameter (referred to as the inner diameter of the lower end) of the light emitting surface 8a of the second lighting unit 8 is set larger than the outer diameter of the bowl 2 so that the reflected light at the bottom 2c is directed toward the central axis of the bowl 2. ing. Further, in order to avoid the disadvantage that the illumination light beam B of the second illumination unit 8 is blocked by the first illumination unit 7, the minimum inner diameter of the lower end of the light emitting surface 7a of the first illumination unit 7 is the second illumination unit. 8 is set to be equal to or larger than the maximum inner diameter of the light emitting surface 8a.
カメラ6は、CCDあるいはCMOSのような固体撮像素子の受光面に結像した光学画像を電子画像に変換して出力する電子スチルカメラである。カメラ6の撮影波長域は第1波長域及び第2波長域を含むように設定されている。カメラ6はその撮影光軸を壜2の中心軸線と一致させるように配置されている。カメラ6の視野Vは壜2のアール部2dから底部2cの全域を撮影できるように設定されている。なお、カメラ6は底部2cを見上げた画像が撮影できればよい。ミラー、プリズムその他の光学素子を用いて撮影光路を曲げることにより、カメラ6が壜2の中心軸線上とは異なる方向に向けて配置されてもよい。 The camera 6 is an electronic still camera that converts an optical image formed on a light receiving surface of a solid-state imaging device such as a CCD or a CMOS into an electronic image and outputs the electronic image. The imaging wavelength range of the camera 6 is set to include the first wavelength range and the second wavelength range. The camera 6 is arranged so that its photographing optical axis coincides with the central axis of the ridge 2. The field of view V of the camera 6 is set so that the entire region from the rounded portion 2d to the bottom portion 2c of the heel 2 can be photographed. The camera 6 only needs to be able to capture an image looking up at the bottom 2c. The camera 6 may be arranged in a different direction from the central axis of the ridge 2 by bending the photographing optical path using a mirror, a prism, or other optical elements.
カメラ6にて取得された画像に基づいて壜2内の異物の有無を判別するため、異物検査装置には画像処理部11及び検査判定部12が設けられている。画像処理部11は、カメラ6にて取得された画像に所定の処理を適用して異物検査用の画像を生成することにより、画像処理手段の一例として機能する。検査判定部12は、画像処理部11にて生成された画像を用いて異物の有無を判定する。なお、画像処理部11及び検査判定部12は、コンピュータハードウエア資源とコンピュータソフトウエアとの組み合わせによって実現される論理的装置であってもよいし、LSI等のハードウエア資源を組み合わせて所定の処理を実現する物理的装置であってもよい。 In order to determine the presence / absence of a foreign substance in the basket 2 based on an image acquired by the camera 6, the foreign substance inspection apparatus is provided with an image processing unit 11 and an inspection determination unit 12. The image processing unit 11 functions as an example of an image processing unit by applying a predetermined process to an image acquired by the camera 6 and generating an image for foreign substance inspection. The inspection determination unit 12 determines the presence / absence of a foreign object using the image generated by the image processing unit 11. Note that the image processing unit 11 and the inspection determination unit 12 may be a logical device realized by a combination of computer hardware resources and computer software, or may perform predetermined processing by combining hardware resources such as LSI. It may be a physical device that realizes.
図2は画像処理部11の構成を示している。画像処理部11には、画像分割部14、第1及び第2調整部15、16及び差分画像生成部17が設けられている。画像分割部14は、カメラ6から出力される画像から、第1波長域の照明光束Aによる第1画像と、第2波長域の照明光束Bによる第2画像とを抽出し、第1画像を第1調整部15に、第2画像を第2調整部16にそれぞれ分割して出力する。第1調整部15は第1波長域の照明光束Aによる画像に明度補正、レベル補正等といった適宜の補正処理を適用して当該画像を差分画像生成部17における処理に適した画像へと調整する。第2調整部16は第2波長域の照明光束Bによる画像に明度補正、レベル補正等といった適宜の補正処理を適用して当該画像を差分画像生成部17における処理に適した画像へと調整する。なお、第1及び第2調整部15、16のそれぞれは、例えば異物検査装置1Aのオペレータ等からの指示によりその補正処理の内容を適宜に設定可能とされてよい。差分画像生成部17は、第1調整部15及び第2調整部16のそれぞれから提供される画像の差分画像を求めることにより、検査判定部12による検査判定処理の対象となる画像を生成する。具体的には、第1調整部15から提供される画像中の各画素の明度から第2調整部16から提供される画像中の各画素の明度を減算し、得られた各画素の明度に基づく明暗分布を有する画像を差分画像として生成する。なお、差分画像生成部17は差分画像に明度補正、エッジ強調、二値化といった各種の画像処理を適用した上で、処理後の画像を検査判定部12に提供してもよい。 FIG. 2 shows the configuration of the image processing unit 11. The image processing unit 11 includes an image dividing unit 14, first and second adjusting units 15 and 16, and a difference image generating unit 17. The image dividing unit 14 extracts, from the image output from the camera 6, the first image by the illumination light beam A in the first wavelength region and the second image by the illumination light beam B in the second wavelength region, and extracts the first image. The second image is divided into the second adjustment unit 16 and output to the first adjustment unit 15. The first adjustment unit 15 applies an appropriate correction process such as brightness correction and level correction to the image by the illumination light beam A in the first wavelength range, and adjusts the image to an image suitable for the process in the difference image generation unit 17. . The second adjustment unit 16 applies an appropriate correction process such as brightness correction and level correction to the image by the illumination light beam B in the second wavelength region, and adjusts the image to an image suitable for the process in the difference image generation unit 17. . Each of the first and second adjustment units 15 and 16 may be capable of appropriately setting the content of the correction process, for example, according to an instruction from an operator or the like of the foreign substance inspection apparatus 1A. The difference image generation unit 17 generates an image to be subjected to the inspection determination process by the inspection determination unit 12 by obtaining the difference image of the images provided from each of the first adjustment unit 15 and the second adjustment unit 16. Specifically, the brightness of each pixel in the image provided from the second adjustment unit 16 is subtracted from the brightness of each pixel in the image provided from the first adjustment unit 15, and the obtained brightness of each pixel is obtained. An image having a light / dark distribution based thereon is generated as a difference image. The difference image generation unit 17 may provide the processed image to the inspection determination unit 12 after applying various image processing such as brightness correction, edge enhancement, and binarization to the difference image.
以上の構成の異物検査装置1Aによれば、壜2を照明装置5の照明ユニット7、8にて照明し、照明された壜2を照明光束Aによる画像及び照明光束Bによる画像が含まれるようにしてカメラ6にて撮像し、カメラ6から出力される画像信号を画像処理部11に提供して差分画像を生成することにより、検査判定部12に異物の有無を検査するための画像が提供される。これにより、壜2の表面のナーリング等の凹凸、傷、汚れといった外乱要素に起因するノイズ成分を検査判定部12に導かれる検査対象の画像から効果的に除去し、それにより異物の有無に関する検査精度を向上させることができる。例えば、壜2が茶色系に着色され、第1波長域として赤色光の波長域が選択され、第2波長域として青色光の波長域が選択されている場合には、次のようにして異物の検出に適した画像が生成される。赤色光は壜2の内部まで深く浸透し、ガラス片のような異物上で反射する。赤色光による画像にはその異物の反射による影響が明確に出現する。しかし、たとえ赤色光が壜2に対して透過性を有していても、壜2の表面に凹凸、傷、汚れといった外乱要素が存在していれば、それらの外乱要素上でも赤色光は少なからず反射し、赤色光の画像には、外乱要素の反射に起因するノイズ成分が混ざる。つまり、赤色光による画像は、検出対象である異物の像とノイズ成分による像とが混在した画像となる。 According to the foreign matter inspection apparatus 1A having the above configuration, the ridge 2 is illuminated by the illumination units 7 and 8 of the illuminating device 5, and the illuminated ridge 2 includes an image by the illumination beam A and an image by the illumination beam B. In this manner, the image is captured by the camera 6, and the image signal output from the camera 6 is provided to the image processing unit 11 to generate a differential image, thereby providing the inspection determination unit 12 with an image for inspecting the presence or absence of foreign matter. Is done. Thereby, noise components caused by disturbance elements such as irregularities such as knurling on the surface of the ridge 2, scratches, and dirt are effectively removed from the image to be inspected guided to the inspection determination unit 12, thereby inspecting for the presence of foreign matter Accuracy can be improved. For example, when the ridge 2 is colored brown, the wavelength range of red light is selected as the first wavelength range, and the wavelength range of blue light is selected as the second wavelength range, the foreign matter is as follows An image suitable for detection is generated. The red light penetrates deeply into the ridge 2 and is reflected on a foreign object such as a glass piece. The effect of reflection of the foreign matter appears clearly in the red light image. However, even if the red light is transmissive to the ridge 2, if there are disturbance elements such as irregularities, scratches, and dirt on the surface of the ridge 2, there is little red light on those disturbance elements. The noise component resulting from the reflection of the disturbance element is mixed in the red light image. That is, the image with red light is an image in which an image of a foreign object to be detected and an image with a noise component are mixed.
一方、青色光は壜2の表面で反射し易く、その青色光の画像には外乱要因によるノイズ成分がより明確に含まれる。一方、青色光は壜2を透過する際に比較的減衰し易く、特に壜2が茶色系で着色されているときにはその減衰も大きい。そのため、青色光は壜2内部に到達し難く、壜2内の異物上で青色光が反射してその影響が青色光の画像内に出現するおそれはないか、あっても無視できる程度である。したがって、青色光の画像は概ね壜2の表面上の外乱要素に起因するノイズ成分を含み、異物の像を含まない画像となる。 On the other hand, the blue light is easily reflected on the surface of the ridge 2, and the blue light image more clearly includes noise components due to disturbance factors. On the other hand, blue light is relatively easily attenuated when passing through the ridge 2, and the attenuation is large especially when the ridge 2 is colored brown. For this reason, the blue light hardly reaches the interior of the eyelid 2, and the blue light is reflected on the foreign matter in the eyelid 2 and the influence does not appear in the image of the blue light, or is negligible. . Therefore, the blue light image generally includes a noise component caused by a disturbance element on the surface of the ridge 2 and does not include a foreign object image.
したがって、赤色光による画像から青色光の画像を差し引いて得られる画像は、壜2内の異物からの反射光による像が含まれ、壜2の表面上の外乱要素に起因するノイズ成分を含まない画像となる。図2の差分画像生成部17ではそのような差分の画像が生成される。そのため、検査判定部12では、壜2の表面の凹凸、傷、汚れといった外乱要素に起因するノイズ成分が除去された画像を用いて異物の有無を判定することができる。ちなみに、青色光による画像にはノイズ成分が明瞭に含まれるため、従来のように、ノイズ成分が出現している範囲を赤色光の画像中の検査対象領域から除外した場合には、その除外範囲が必要以上に大きくなって検査の見逃しが生じるおそれがある。これに対して、上記のように差分の画像を取得して異物の検査に用いる場合には、例えば第1調整部15又は第2調整部16にて適宜に画像を調整して、ノイズ成分が過不足なく除去されるように差分画像を生成することができる。それにより、壜2内の異物の有無を高精度に検査することが可能である。なお、第1又は第2調整部15、16による調整に代えて、又は加えて第1照明ユニット7又は第2照明ユニット8の照明光の強度を適宜に調整することにより、検査対象画像中のノイズ成分を適切に除去することも可能である。 Therefore, the image obtained by subtracting the blue light image from the red light image includes an image reflected by the foreign matter in the ridge 2 and does not include noise components due to disturbance elements on the surface of the ridge 2. It becomes an image. The difference image generation unit 17 in FIG. 2 generates such a difference image. Therefore, the inspection determination unit 12 can determine the presence or absence of a foreign object using an image from which noise components due to disturbance elements such as irregularities, scratches, and dirt on the surface of the heel 2 are removed. By the way, since the noise component is clearly included in the blue light image, if the range where the noise component appears is excluded from the inspection target area in the red light image as in the past, the excluded range May become unnecessarily large and the inspection may be missed. On the other hand, when the difference image is acquired and used for the inspection of the foreign matter as described above, for example, the first adjustment unit 15 or the second adjustment unit 16 appropriately adjusts the image so that the noise component is reduced. The difference image can be generated so as to be removed without excess or deficiency. Thereby, it is possible to inspect for the presence or absence of foreign matter in the basket 2 with high accuracy. In addition, instead of or in addition to the adjustment by the first or second adjustment unit 15, 16, the intensity of the illumination light of the first illumination unit 7 or the second illumination unit 8 is appropriately adjusted, so that the It is also possible to appropriately remove the noise component.
図3は、上記の異物検査装置1Aを用いて取得した壜2の画像の一例を示している。壜2は緑色系に着色されたガラス壜であり、第1波長域として赤色光の波長域を、第2波長域として青色光の波長域を選択した。図3の上段の画像Paは赤色光による画像を、中段の画像Pbは青色光による画像を、下段の画像Pdは赤色光による画像から青色光による画像を差し引いた差分の画像をそれぞれ示している。赤色光による画像Pa及び青色光による画像Pbには、壜2のアール部2dに存在するナーリング、及び底部2cのほぼ中央に意図的に付着させた汚れの像がノイズ成分として出現しているが、それらの画像Pa、Pbの差分(Pa−Pb)に相当する画像Pdでは、それらのノイズ成分が概ね除去されている。そして、画像Pd中に破線の丸印C1、C2で示したように、差分の画像Pdには、底部2cの外周付近に存在している異物(この例ではガラス片)の像がノイズ成分に紛れることなく、比較的明瞭に出現している。その差分の画像Pdに基づいて検査判定部12で異物の有無を判定すれば、異物の有無を高精度に検査することが可能である。なお、壜2が茶色系に着色されている場合でも、図3の例と同様にナーリング等の外乱要素によるノイズ成分を除去して異物を明瞭に出現させることができることが確認されている。 FIG. 3 shows an example of an image of the eyelid 2 acquired using the foreign matter inspection apparatus 1A.壜 2 is a glass candy colored green, and the wavelength range of red light is selected as the first wavelength range, and the wavelength range of blue light is selected as the second wavelength range. The upper image Pa in FIG. 3 shows an image by red light, the middle image Pb shows an image by blue light, and the lower image Pd shows an image of a difference obtained by subtracting an image by blue light from an image by red light. . In the image Pa by red light and the image Pb by blue light, a knurling that exists in the rounded portion 2d of the ridge 2 and a stain image intentionally attached to the approximate center of the bottom portion 2c appear as noise components. In the image Pd corresponding to the difference (Pa−Pb) between the images Pa and Pb, those noise components are substantially removed. Then, as indicated by the dashed circles C1 and C2 in the image Pd, the image of the foreign matter (in this example, a glass piece) existing in the vicinity of the outer periphery of the bottom portion 2c is a noise component in the difference image Pd. It appears relatively clearly without being misunderstood. If the inspection determination unit 12 determines the presence or absence of foreign matter based on the difference image Pd, the presence or absence of foreign matter can be inspected with high accuracy. In addition, even when the cocoon 2 is colored brown, it has been confirmed that foreign matters can clearly appear by removing noise components due to disturbance elements such as knurling as in the example of FIG.
(第2の形態)
図4及び図5は第2の形態に係る異物検査装置1Bを示している。異物検査装置1Bは、図1に示した異物検査装置1Aに対して照明手段を変更したものである。図4及び図5において、図1と共通する部分には同一符号を付し、以下では相違点を中心に説明する。本形態の異物検査装置1Bは、壜2の内容物中に浮遊する異物を検出することを目的として構成されている。そのため、照明手段の一例としての照明装置20は壜2を側方から照明するように設けられ、かつカメラ6は照明された壜2を側方から観察した画像を取得するように配置されている。カメラ6の視野Vは壜2をほぼ全長に亘って撮影できるように設定されている。
(Second form)
4 and 5 show a foreign matter inspection apparatus 1B according to the second embodiment. The foreign matter inspection apparatus 1B is obtained by changing the illumination means with respect to the foreign matter inspection apparatus 1A shown in FIG. 4 and 5, the same reference numerals are given to the portions common to FIG. 1, and the differences will be mainly described below. The foreign matter inspection apparatus 1B of the present embodiment is configured for the purpose of detecting foreign matter floating in the contents of the basket 2. Therefore, the illuminating device 20 as an example of an illuminating device is provided so as to illuminate the eyelid 2 from the side, and the camera 6 is arranged to acquire an image obtained by observing the illuminated eyelid 2 from the side. . The field of view V of the camera 6 is set so that the eyelid 2 can be photographed over almost the entire length.
照明装置20は、カメラ6から見て壜2の背面側(壜2がカメラ6にて撮像される側に対する反対側である。)に配置された第1の照明ユニット21と、壜2に対してカメラ6と同一の側に配置された一対の第2の照明ユニット22とを含んでいる。第1の照明ユニット21は第1の照明部の一例として設けられ、壜2に対して第1波長域の照明光束Aを照射する。第1の照明ユニット21の発光面21aは、カメラ6の撮影光軸とほぼ直交する平面状であり、その発光面21aの上下方向の寸法は壜2の全長とほぼ等しい。第2の照明ユニット22のそれぞれは、第2の照明部の一例として設けられている。第2の照明ユニット22は、カメラ6の視野Vを避けるように配置され、かつカメラ6の撮影光軸の方向(図5において左右方向)に対して斜めに傾いた方向から壜2に第2波長域の照明光束Bを照射する。第2の照明ユニット22の発光面22aも平面状であり、その発光面22aの上下方向の寸法は壜2の全長とほぼ等しい。 The illuminating device 20 has a first illumination unit 21 disposed on the back side of the ridge 2 as viewed from the camera 6 (the side opposite to the side where the ridge 2 is imaged by the camera 6) and the ridge 2. And a pair of second illumination units 22 arranged on the same side as the camera 6. The 1st illumination unit 21 is provided as an example of a 1st illumination part, and irradiates the illumination light beam A of a 1st wavelength range with respect to the eaves 2. As shown in FIG. The light emitting surface 21a of the first illumination unit 21 has a planar shape substantially orthogonal to the photographing optical axis of the camera 6, and the vertical dimension of the light emitting surface 21a is substantially equal to the entire length of the ridge 2. Each of the second illumination units 22 is provided as an example of a second illumination unit. The second illumination unit 22 is arranged so as to avoid the field of view V of the camera 6 and is second from the direction inclined obliquely with respect to the direction of the photographing optical axis of the camera 6 (left-right direction in FIG. 5). Irradiation light beam B in the wavelength region is irradiated. The light emitting surface 22a of the second illumination unit 22 is also planar, and the vertical dimension of the light emitting surface 22a is substantially equal to the overall length of the ridge 2.
カメラ6が撮影した画像は、画像処理部11により異物の検査に適した画像へと調整されて検査判定部12に導かれる。画像処理部11及び検査判定部12は第1の形態と同様でよく、画像処理部11の具体的構成は図2と同一でよい。壜2を側方から撮影するため、壜2の搬送装置25は、壜2の底部2cをベルト25aにて支持しつつそのベルト25aを搬送方向Fに走行させて壜2を搬送するように変更されている。 The image captured by the camera 6 is adjusted to an image suitable for the inspection of the foreign matter by the image processing unit 11 and guided to the inspection determination unit 12. The image processing unit 11 and the inspection determination unit 12 may be the same as those in the first embodiment, and the specific configuration of the image processing unit 11 may be the same as that in FIG. Since the bag 2 is photographed from the side, the conveying device 25 of the bag 2 is changed so that the belt 25a travels in the conveying direction F while the bottom 2c of the bag 2 is supported by the belt 25a and the bag 2 is conveyed. Has been.
以上の異物検査装置1Bによれば、第1波長域及び第2波長域を第1の形態と同様に選択することにより、第1の照明ユニット21から照射される第1波長域の照明光束Aが壜2を通過してカメラ6に入射し、第2の照明ユニット22から照射される第2波長域の照明光束Bは壜2の表面で反射してカメラ6に入射する。カメラ6では、第1波長域及び第2波長域のそれぞれを含む画像が取得され、その画像が画像処理部で第1波長域の照明光束Aによる画像と第2波長域の照明光束Bによる画像とに分割され、それらの画像の差分の画像が生成されて検査判定部12に提供される。 According to the foreign matter inspection apparatus 1B described above, the illumination light flux A in the first wavelength region irradiated from the first illumination unit 21 is selected by selecting the first wavelength region and the second wavelength region in the same manner as in the first embodiment. Passes through the eyelid 2 and enters the camera 6, and the illumination light beam B in the second wavelength region irradiated from the second illumination unit 22 is reflected by the surface of the eyelid 2 and enters the camera 6. In the camera 6, an image including each of the first wavelength range and the second wavelength range is acquired, and the image is processed by the image processing unit using the illumination light beam A in the first wavelength region and the illumination light beam B in the second wavelength region. And the difference image of these images is generated and provided to the examination determination unit 12.
第1波長域の照明光束Aは壜2内に遮光性の異物が存在すると、その異物によって遮光される。したがって、第1波長域の照明光束Aは、そのような遮光性の異物を検出する役割を担う。しかしながら、壜2の表面に凹凸、傷、汚れといった外乱要素が存在すれば、第1波長域の照明光束Aがそれらの外乱要素によって相応に遮光され、その遮光部分はノイズ成分となる。つまり、照明光束Aによる画像は、異物による遮光部分と外乱要素によるノイズ成分とが混在した画像である。一方、第2波長域の照明光束Bによる画像は、第1の形態と同様に壜2の表面上の外乱要素に起因するノイズ成分を含み、異物の像を含まない画像となる。したがって、照明光束Aによる画像から照明光束Bによる画像を差し引いて得られる差分の画像は、壜2内の異物の遮光に起因する像が含まれ、壜2の表面上の外乱要素に起因するノイズ成分を含まない画像となり、当該画像に基づいて異物の有無を精度よく検査することができる。 The illumination light beam A in the first wavelength region is shielded by the foreign matter if there is a light-shielding foreign matter in the ridge 2. Therefore, the illumination light flux A in the first wavelength region plays a role of detecting such a light-shielding foreign matter. However, if there are disturbance elements such as irregularities, scratches, and dirt on the surface of the ridge 2, the illumination light flux A in the first wavelength band is shielded accordingly by the disturbance elements, and the light shielding part becomes a noise component. That is, the image by the illuminating light beam A is an image in which a light shielding portion due to a foreign object and a noise component due to a disturbance element are mixed. On the other hand, the image by the illumination light beam B in the second wavelength region is an image that includes noise components due to disturbance elements on the surface of the ridge 2 and does not include a foreign object image, as in the first embodiment. Therefore, the difference image obtained by subtracting the image of the illumination light beam B from the image of the illumination light beam A includes an image caused by the shielding of the foreign matter in the eyelid 2, and noise caused by a disturbance element on the surface of the eyelid 2 The image does not include a component, and the presence or absence of a foreign object can be accurately inspected based on the image.
(第3の形態)
図6〜図8は第3の形態に係る異物検査装置1Cを示している。異物検査装置1Cは、図4及び図5に示した異物検査装置1Bに対して照明手段を変更したものである。すなわち、本形態の異物検査装置1Cにおいて、照明手段の一例としての照明装置30は、第2の形態の異物検査装置1Bと同様に壜2を側方から照明するように設けられている点で共通するが、その照明装置30は、カメラ6から見て壜2の背面側に配置された第1の照明ユニット31と、壜2に対してカメラ6と同一の側に配置された一対の第2の照明ユニット32と、第2の照明ユニット32と同一の側に配置された一対の第3の照明ユニット33とを含んでいる。第1の照明ユニット31及び第2の照明ユニット32は第2の形態における第1及び第2の照明ユニット21、22と同様である。第3の照明ユニット33は、第2の照明ユニット32と同様にカメラ6と同一の側から壜2に照明光束を照射するように設けられている。各照明ユニット31〜33の発光面31a、32a、33aは何れも平面状であり、それらの上下方向の寸法は壜2の全長と略等しい。第1の照明ユニット31は、壜2がカメラ6にて撮像される側に対する反対側から照明光束A1を照射する第1の照明部の一例であり、第3の照明ユニット33は、壜2がカメラ6にて撮像される側と同一の側から照明光束A2を照射する第1の照明部の一例である。第2の照明ユニット32は、カメラ6にて壜2が撮像される側と同一の側から第2波長域の照明光束Bを照射する第2の照明部の一例である。
(Third form)
FIGS. 6-8 has shown the foreign material inspection apparatus 1C which concerns on a 3rd form. The foreign object inspection apparatus 1C is obtained by changing the illumination means with respect to the foreign object inspection apparatus 1B shown in FIGS. That is, in the foreign matter inspection apparatus 1C of the present embodiment, the illumination device 30 as an example of an illuminating device is provided so as to illuminate the basket 2 from the side as in the foreign matter inspection device 1B of the second form. Although common, the illumination device 30 includes a first illumination unit 31 arranged on the back side of the basket 2 when viewed from the camera 6 and a pair of first units arranged on the same side as the camera 6 with respect to the basket 2. 2 illumination units 32 and a pair of third illumination units 33 arranged on the same side as the second illumination unit 32. The 1st lighting unit 31 and the 2nd lighting unit 32 are the same as that of the 1st and 2nd lighting units 21 and 22 in a 2nd form. The third illumination unit 33 is provided so as to irradiate the luminaire 2 with the illumination light beam from the same side as the camera 6, similarly to the second illumination unit 32. The light emitting surfaces 31 a, 32 a, and 33 a of the lighting units 31 to 33 are all flat, and their vertical dimensions are substantially equal to the overall length of the ridge 2. The first illumination unit 31 is an example of a first illumination unit that irradiates the illumination light flux A1 from the side opposite to the side where the ridge 2 is imaged by the camera 6, and the third illumination unit 33 includes the ridge 2 It is an example of the 1st illumination part which irradiates illumination light beam A2 from the same side as the side imaged with the camera 6. FIG. The second illumination unit 32 is an example of a second illumination unit that irradiates the illumination light beam B in the second wavelength region from the same side as the side on which the eyelid 2 is imaged by the camera 6.
第1の照明ユニット31及び第3の照明ユニット33はいずれも第1波長域の照明光束A1、A2を壜2に照射し、第2の照明ユニット32は第2波長域の照明光束Bを壜2に照射する。照明光束A1、A2の波長域は互いに等しく設定されてもよいが、第1波長域をさらに複数の波長範囲に区分し、照明光束A1、A2を互いに異なる波長範囲に振り分けてもよい。例えば、壜2が茶色系、緑色系あるいは透明な場合には、第1の照明ユニット31の照明光束A1が赤外光に設定され、第3の照明ユニット33の照明光束A2が赤色光に設定されてもよい。これによれば、第1の照明ユニット31が照射する赤外光の優れた透過性を利用して壜2内の遮光性の異物を効率よく検出する一方、第3の照明ユニット33が照射する赤色光の透過性を利用して壜2内の反射性の異物を効率よく検出する、といった役割分担を実現することができる。 Both the first illumination unit 31 and the third illumination unit 33 irradiate the illuminating light beams A1 and A2 in the first wavelength region to the ridge 2, and the second illuminating unit 32 radiates the illumination light beam B in the second wavelength region. 2 is irradiated. The wavelength ranges of the illumination light beams A1 and A2 may be set equal to each other, but the first wavelength region may be further divided into a plurality of wavelength ranges and the illumination light beams A1 and A2 may be distributed to different wavelength ranges. For example, when the ridge 2 is brown, green, or transparent, the illumination light beam A1 of the first illumination unit 31 is set to infrared light, and the illumination light beam A2 of the third illumination unit 33 is set to red light. May be. According to this, the third illumination unit 33 irradiates while efficiently detecting the light-shielding foreign matter in the basket 2 using the excellent transmittance of the infrared light irradiated by the first illumination unit 31. It is possible to realize the division of roles such as efficiently detecting the reflective foreign matter in the basket 2 using the red light transmittance.
異物検査装置1Cのカメラ6にて撮像された壜2の画像は、画像処理手段の一例としての画像処理部35にて処理された上で検査判定部12に提供される。図8に示すように、画像処理部35には、画像分割部36、第1調整部15、第2調整部16、第3調整部37及び差分画像生成部38が設けられている。画像分割部36は、カメラ6から出力される画像から、第1波長域の照明光束A1による第1画像と、第2波長域の照明光束Bによる第2画像と、第1波長域の照明光束A2による第3画像とを抽出し、第1画像を第1調整部15に、第2画像を第2調整部16に、第3画像を第3調整部37にそれぞれ分割して出力する。第1調整部15及び第2調整部16は図2の例と同様である。第3調整部37は第3画像に明度補正、レベル補正等といった適宜の補正処理を適用して当該画像を差分画像生成部38における処理に適した画像へと調整する。 The image of the eyelid 2 captured by the camera 6 of the foreign matter inspection apparatus 1C is processed by an image processing unit 35 as an example of an image processing unit, and then provided to the inspection determination unit 12. As shown in FIG. 8, the image processing unit 35 includes an image dividing unit 36, a first adjustment unit 15, a second adjustment unit 16, a third adjustment unit 37, and a difference image generation unit 38. The image dividing unit 36, from the image output from the camera 6, a first image by the illumination light beam A1 in the first wavelength region, a second image by the illumination light beam B in the second wavelength region, and an illumination light beam in the first wavelength region. The third image by A2 is extracted, and the first image is divided into the first adjustment unit 15, the second image is divided into the second adjustment unit 16, and the third image is divided into the third adjustment unit 37 and outputted. The 1st adjustment part 15 and the 2nd adjustment part 16 are the same as that of the example of FIG. The third adjustment unit 37 applies an appropriate correction process such as brightness correction and level correction to the third image and adjusts the image to an image suitable for the process in the difference image generation unit 38.
差分画像生成部38は、第1調整部15及び第3調整部37のそれぞれから提供される画像のうち、少なくともいずれか一方の画像と、第2調整部16から出力される画像との差分を演算することにより、検査判定部12による検査判定処理の対象となる画像を生成する。例えば、第1調整部15の出力画像から第2調整部16の出力画像を差し引いて差分画像を生成した場合には、照明光束A1が壜2内の異物にて遮光されたことに起因する異物の像を含み、壜2の凹凸、傷又は汚れ等の外乱要素に起因するノイズ成分を含まない画像を検査判定部12に提供することができる。第3調整部37の出力画像から第2調整部16の出力画像を差し引いて差分画像を生成した場合には、照明光束A2が壜2内の異物にて反射したことに起因する異物の像を含み、壜2の凹凸、傷又は汚れ等の外乱要素に起因するノイズ成分を含まない画像を検査判定部12に提供することができる。ただし、第1調整部15の出力画像と第3調整部37の出力画像とを加算し(合成し)、得られた画像から第2調整部16の画像を差し引くことにより差分画像が生成されてもよい。この場合には、照明光束A1を遮った異物、及び照明光束A2を反射した異物のそれぞれの像を含み、壜2の凹凸等の外乱要素によるノイズ成分を含まない画像を検査判定部12に提供することができる。 The difference image generation unit 38 calculates the difference between at least one of the images provided from the first adjustment unit 15 and the third adjustment unit 37 and the image output from the second adjustment unit 16. By calculating, an image to be subjected to inspection determination processing by the inspection determination unit 12 is generated. For example, when the difference image is generated by subtracting the output image of the second adjustment unit 16 from the output image of the first adjustment unit 15, the foreign matter caused by the illumination light beam A <b> 1 being blocked by the foreign matter in the basket 2. Thus, an image that does not include noise components caused by disturbance elements such as irregularities, scratches, or dirt on the heel 2 can be provided to the inspection determination unit 12. When the difference image is generated by subtracting the output image of the second adjustment unit 16 from the output image of the third adjustment unit 37, an image of the foreign matter resulting from the reflection of the illumination light beam A2 by the foreign matter in the basket 2 is obtained. It is possible to provide the inspection determination unit 12 with an image that does not include noise components caused by disturbance elements such as irregularities, scratches, or dirt on the heel 2. However, a difference image is generated by adding (combining) the output image of the first adjustment unit 15 and the output image of the third adjustment unit 37 and subtracting the image of the second adjustment unit 16 from the obtained image. Also good. In this case, an image including the images of the foreign matter blocking the illumination light flux A1 and the foreign matter reflecting the illumination light flux A2 and not including noise components due to disturbance elements such as the unevenness of the ridge 2 is provided to the inspection determination unit 12. can do.
本発明は上述した形態に限らず、適宜の変形又は変更が施された形態にて実施されてよい。例えば、上記の形態では、互い異なる波長域の照明光束を照射可能な複数の照明ユニットを組み合わせて照明手段を構成したが、照明手段は第1波長域の照明光束と第2波長域の照明光束とを含んだ照明光を検査対象の容器に照射することが可能であれば足りる。例えば赤色光及び青色光を含んだ比較的広い照明光を照射可能な単一の照明ユニット、照明器具等が照明手段として用いられてもよい。あるいは赤外光と可視光とを照射可能な照明ユニットが照明手段として用いられてもよい。 The present invention is not limited to the above-described embodiment, and may be implemented in a mode in which appropriate modifications or changes are made. For example, in the above embodiment, the illumination unit is configured by combining a plurality of illumination units that can irradiate illumination beams in different wavelength ranges. However, the illumination unit includes the illumination beam in the first wavelength range and the illumination beam in the second wavelength range. If it is possible to irradiate the container to be inspected with illumination light including For example, a single lighting unit or a lighting fixture that can irradiate a relatively wide illumination light including red light and blue light may be used as the illumination means. Or the illumination unit which can irradiate infrared light and visible light may be used as an illumination means.
上記の形態では、単一のカメラ6により第1波長域及び第2波長域のそれぞれの照明光束による画像を一括して取得し、その後に画像分割部14、36にて波長域ごとの画像を得ているが、本発明はこのような形態に限定されず、第1波長域の画像と、第2波長域の画像とを互いに異なるカメラにて取得するようにしてもよい。例えば、壜2からカメラに至る光路中にハーフミラーを配置して撮影光束を二分割し、分割後の一方の光路上には第1波長域の光束のみを透過させるフィルタを、他方の光路上には第2波長域の光束のみを透過させるフィルタをそれぞれ配置することにより、第1波長域の画像と第2波長域の画像とを光学的に分離して互いに異なるカメラで撮像してもよい。ただし、画像の差分を取得するためには各カメラの撮影条件を一致させることが画像処理の手間を軽減する観点から望ましい。そのためには、ミラーで分割した後の光路及びカメラといった光学要素の構成を互いに等価に設定することが好ましい。 In said form, the image by each illumination light beam of 1st wavelength range and 2nd wavelength range is collectively acquired with the single camera 6, and the image for every wavelength range is imaged by the image division parts 14 and 36 after that. However, the present invention is not limited to such a form, and the first wavelength band image and the second wavelength band image may be acquired by different cameras. For example, a half mirror is disposed in the optical path from the ridge 2 to the camera to divide the photographing light beam into two parts, and a filter that transmits only the light beam in the first wavelength region is provided on one optical path after the division. May be provided with a filter that transmits only the light beam in the second wavelength region, so that the first wavelength region image and the second wavelength region image are optically separated and captured by different cameras. . However, in order to obtain the difference between the images, it is desirable to match the shooting conditions of the respective cameras from the viewpoint of reducing the trouble of image processing. For this purpose, it is preferable to set the configuration of optical elements such as an optical path after dividing by a mirror and a camera equivalent to each other.
上記の形態では、内容物が充填された容器中の異物の有無を検査するものとしたが、本発明の異物検査装置は内容物が充填されていない空の容器を対象としてその内部における異物の有無を検査する用途にも適用可能である。容器はガラス製のボトル型容器に限定されることなく、特定の波長域に関して透過性を有する各種の容器を検査対象として設定することができる。 In the above embodiment, the presence or absence of foreign matter in the container filled with the contents is inspected. However, the foreign matter inspection apparatus of the present invention targets an empty container that is not filled with the contents of the foreign matter inside. The present invention can also be applied to the use for inspecting the presence or absence. The container is not limited to a glass bottle-type container, and various containers having transparency with respect to a specific wavelength range can be set as inspection targets.
1A、1B、1C 異物検査装置
2 壜
2c 底部
5 照明装置(照明手段)
6 カメラ(撮像手段)
7 第1の照明ユニット
8 第2の照明ユニット
11 画像処理部(画像処理手段)
12 検査判定部
14 画像分割部
17 差分画像生成部
20 照明装置(照明手段)
21 第1の照明ユニット(第1の照明部)
22 第2の照明ユニット(第2の照明部)
30 照明装置(照明手段)
31 第1の照明ユニット(第1の照射部)
32 第2の照明ユニット(第2の照射部)
33 第3の照明ユニット(第1の照射部)
35 画像処理部
36 画像分割部
38 差分画像生成部
1A, 1B, 1C Foreign matter inspection device 2 壜 2c Bottom portion 5 Illuminating device (illuminating means)
6 Camera (imaging means)
7 first lighting unit 8 second lighting unit 11 image processing unit (image processing means)
DESCRIPTION OF SYMBOLS 12 Test | inspection determination part 14 Image division part 17 Difference image generation part 20 Illuminating device (illuminating means)
21 1st illumination unit (1st illumination part)
22 2nd lighting unit (2nd lighting part)
30 Illumination device (illumination means)
31 1st illumination unit (1st irradiation part)
32 2nd illumination unit (2nd irradiation part)
33 3rd illumination unit (1st irradiation part)
35 Image processing unit 36 Image dividing unit 38 Difference image generating unit
Claims (12)
前記容器に対する透過性を有する第1波長域の照明光束、及び前記第1波長域の照明光束と比較して前記容器の表面における散乱性が高い第2波長域の照明光束を含む照明光により前記容器を照明する照明手段と、
前記照明手段にて照明された容器の前記第1波長域による画像、及び前記第2波長域による画像が含まれるようにして前記容器を撮像する撮像手段と、
前記撮像手段が撮像した前記第1波長域の画像と前記第2波長域の画像との差分に基づく画像を、前記異物の有無を検査するための画像として生成する画像処理手段と、
を備えた容器の異物検査装置。 A foreign matter inspection apparatus for a container that inspects the presence or absence of foreign matter in a container based on an image of the container,
The illumination light including the illumination light beam in the first wavelength range having transparency to the container, and the illumination light beam in the second wavelength range having a high scattering property on the surface of the container as compared with the illumination light beam in the first wavelength range. Illumination means for illuminating the container;
Imaging means for imaging the container so as to include an image of the container illuminated by the illuminating means in the first wavelength region and an image of the second wavelength region;
Image processing means for generating an image based on a difference between the image in the first wavelength range and the image in the second wavelength range captured by the imaging means as an image for inspecting the presence or absence of the foreign matter;
A foreign matter inspection apparatus for a container provided with a container.
前記撮像手段は前記容器を前記底部と向かい合う側から観察した画像を撮像するように設けられている請求項2に記載の異物検査装置。 The illumination means is provided to illuminate the container from the bottom side,
The foreign matter inspection apparatus according to claim 2, wherein the imaging unit is provided so as to capture an image obtained by observing the container from a side facing the bottom.
前記複数の第1の照明部のうち、少なくとも一つの第1の照明部は前記撮像手段にて前記容器が撮像される側に対して反対側から前記第1波長域の照明光束を照射するように設けられ、他の少なくとも一つの第1の照明部は前記撮像手段にて前記容器が撮像される側と同一の側から前記第1波長域の照明光束を照射するように設けられ、
前記第2の照明部は前記容器が撮像される側と同一の側から前記第2波長域の照明光束を照射するように設けられている請求項1に記載の異物検査装置。 The illumination means includes a plurality of first illumination units that irradiate an illumination light beam in the first wavelength region, and at least one second illumination unit that irradiates an illumination light beam in the second wavelength region,
Among the plurality of first illumination units, at least one first illumination unit irradiates the illumination light beam in the first wavelength region from the opposite side to the side on which the container is imaged by the imaging unit. The other at least one first illumination unit is provided so as to irradiate the illumination light flux in the first wavelength region from the same side as the side on which the container is imaged by the imaging means,
The foreign matter inspection apparatus according to claim 1, wherein the second illumination unit is provided so as to irradiate the illumination light beam in the second wavelength region from the same side as the side on which the container is imaged.
前記撮像手段は前記容器を前記側方から観察した画像を撮像するように設けられている請求項4〜6のいずれか一項に記載の容器の異物検査装置。 Each of the first illumination unit and the second illumination unit of the illumination means is provided to illuminate the container from the side,
The container imaging device according to any one of claims 4 to 6, wherein the imaging unit is provided so as to capture an image of the container observed from the side.
前記第2波長域が前記容器の色とは異なる波長域に設定され、前記第1波長域が前記容器の色と同一の波長域、又は前記第2波長域と比較して前記容器の色に近い波長域に設定されている請求項1〜7のいずれか一項に記載の異物検査装置。 The container is formed as a colored container in the visible wavelength range;
The second wavelength range is set to a wavelength range different from the color of the container, and the first wavelength range is the same wavelength range as the color of the container, or the color of the container compared to the second wavelength range. The foreign matter inspection apparatus according to any one of claims 1 to 7, which is set in a near wavelength range.
前記第1波長域が赤色光又は赤外光の波長域に設定され、前記第2波長域が青色光の波長域に設定されている請求項1〜7のいずれか一項に記載の異物検査装置。 The container is formed as a container that is not colored in the wavelength range of visible light,
The foreign substance inspection according to any one of claims 1 to 7, wherein the first wavelength range is set to a wavelength range of red light or infrared light, and the second wavelength range is set to a wavelength range of blue light. apparatus.
前記容器に対する透過性を有する第1波長域の照明光束、及び前記第1波長域の照明光束と比較して前記容器の表面における散乱性が高い第2波長域の照明光束を含む照明光により前記容器を照明する手順と、
前記照明光にて照明された容器の前記第1波長域による画像、及び前記第2波長域による画像が含まれるようにして前記容器を撮像する手順と、
前記撮像する手順で得られた前記第1波長域の画像と前記第2波長域の画像との差分に基づく画像を、前記異物の有無を検査するための画像として生成する手順と、
を備えた容器の異物検査方法。 A container foreign matter inspection method for inspecting the presence or absence of foreign matter in a container based on an image of the container,
The illumination light including the illumination light beam in the first wavelength range having transparency to the container, and the illumination light beam in the second wavelength range having a high scattering property on the surface of the container as compared with the illumination light beam in the first wavelength range. A procedure for illuminating the container;
A procedure of imaging the container so as to include an image by the first wavelength region and an image by the second wavelength region of the container illuminated by the illumination light;
Generating an image based on the difference between the image in the first wavelength range and the image in the second wavelength range obtained by the imaging procedure as an image for inspecting the presence or absence of the foreign matter;
Method for inspecting foreign matter in a container provided with
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016212607A JP7084012B2 (en) | 2016-10-31 | 2016-10-31 | Foreign matter inspection device and foreign matter inspection method for containers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016212607A JP7084012B2 (en) | 2016-10-31 | 2016-10-31 | Foreign matter inspection device and foreign matter inspection method for containers |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018072180A true JP2018072180A (en) | 2018-05-10 |
JP7084012B2 JP7084012B2 (en) | 2022-06-14 |
Family
ID=62115069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016212607A Active JP7084012B2 (en) | 2016-10-31 | 2016-10-31 | Foreign matter inspection device and foreign matter inspection method for containers |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7084012B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102160488B1 (en) * | 2020-05-06 | 2020-09-28 | 김천수 | Apparatus for inspecting defect of paper container |
CN112262313A (en) * | 2018-06-12 | 2021-01-22 | Fk光学研究所股份有限公司 | Foreign matter inspection device and foreign matter inspection method |
US20210231576A1 (en) * | 2020-01-23 | 2021-07-29 | Schott Schweiz Ag | Detection and characterization of defects in pharmaceutical cylindrical containers |
CN113924475A (en) * | 2019-06-06 | 2022-01-11 | 克朗斯股份公司 | Method and device for optically inspecting containers |
CN114127545A (en) * | 2019-06-06 | 2022-03-01 | 克朗斯股份公司 | Method and device for optically inspecting containers |
WO2022239158A1 (en) * | 2021-05-12 | 2022-11-17 | 日本電気株式会社 | Inspection device |
KR102570728B1 (en) * | 2022-12-23 | 2023-08-25 | 곽필규 | Foreign object inspection device inside transparent container |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04118546A (en) * | 1990-05-24 | 1992-04-20 | Asahi Chem Ind Co Ltd | Bottle inspection device |
JP2003315280A (en) * | 2002-04-26 | 2003-11-06 | Sukiyan Technol:Kk | Method and device for inspecting foreign matter |
JP2004219399A (en) * | 2002-12-27 | 2004-08-05 | Kirin Techno-System Corp | Method of inspecting foreign substance, apparatus for inspecting foreign substance, and illumination apparatus for inspecting foreign substance |
JP2005257492A (en) * | 2004-03-12 | 2005-09-22 | Hitachi Industries Co Ltd | Detector for foreign matter in container |
JP2008268236A (en) * | 2002-12-27 | 2008-11-06 | Kirin Techno-System Co Ltd | Foreign matter inspection method and device, and lighting system for inspecting foreign matter |
WO2009081706A1 (en) * | 2007-12-25 | 2009-07-02 | Olympus Corporation | Biological observation apparatus and endoscopic apparatus |
JP2009175035A (en) * | 2008-01-25 | 2009-08-06 | Topcon Corp | Inspection method and inspection device |
JP2012137397A (en) * | 2010-12-27 | 2012-07-19 | Aron Denki Co Ltd | Foreign matter detector |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4118546B2 (en) | 2001-10-16 | 2008-07-16 | 花王株式会社 | Ceramic composition |
-
2016
- 2016-10-31 JP JP2016212607A patent/JP7084012B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04118546A (en) * | 1990-05-24 | 1992-04-20 | Asahi Chem Ind Co Ltd | Bottle inspection device |
JP2003315280A (en) * | 2002-04-26 | 2003-11-06 | Sukiyan Technol:Kk | Method and device for inspecting foreign matter |
JP2004219399A (en) * | 2002-12-27 | 2004-08-05 | Kirin Techno-System Corp | Method of inspecting foreign substance, apparatus for inspecting foreign substance, and illumination apparatus for inspecting foreign substance |
JP2008268236A (en) * | 2002-12-27 | 2008-11-06 | Kirin Techno-System Co Ltd | Foreign matter inspection method and device, and lighting system for inspecting foreign matter |
JP2005257492A (en) * | 2004-03-12 | 2005-09-22 | Hitachi Industries Co Ltd | Detector for foreign matter in container |
WO2009081706A1 (en) * | 2007-12-25 | 2009-07-02 | Olympus Corporation | Biological observation apparatus and endoscopic apparatus |
JP2009175035A (en) * | 2008-01-25 | 2009-08-06 | Topcon Corp | Inspection method and inspection device |
JP2012137397A (en) * | 2010-12-27 | 2012-07-19 | Aron Denki Co Ltd | Foreign matter detector |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112262313A (en) * | 2018-06-12 | 2021-01-22 | Fk光学研究所股份有限公司 | Foreign matter inspection device and foreign matter inspection method |
CN113924475A (en) * | 2019-06-06 | 2022-01-11 | 克朗斯股份公司 | Method and device for optically inspecting containers |
CN114127545A (en) * | 2019-06-06 | 2022-03-01 | 克朗斯股份公司 | Method and device for optically inspecting containers |
US20210231576A1 (en) * | 2020-01-23 | 2021-07-29 | Schott Schweiz Ag | Detection and characterization of defects in pharmaceutical cylindrical containers |
US11841327B2 (en) * | 2020-01-23 | 2023-12-12 | Schott Pharma Schweiz Ag | Detection and characterization of defects in pharmaceutical cylindrical containers |
KR102160488B1 (en) * | 2020-05-06 | 2020-09-28 | 김천수 | Apparatus for inspecting defect of paper container |
WO2022239158A1 (en) * | 2021-05-12 | 2022-11-17 | 日本電気株式会社 | Inspection device |
KR102570728B1 (en) * | 2022-12-23 | 2023-08-25 | 곽필규 | Foreign object inspection device inside transparent container |
Also Published As
Publication number | Publication date |
---|---|
JP7084012B2 (en) | 2022-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7084012B2 (en) | Foreign matter inspection device and foreign matter inspection method for containers | |
KR101721965B1 (en) | Device and method for inspecting appearance of transparent substrate | |
JPH01314955A (en) | Method for inspection of light previous container | |
KR20160047360A (en) | System and method for defect detection | |
US20180172602A1 (en) | System and method for inspecting containers using multiple radiation sources | |
KR20060053847A (en) | Method for inspecting defects of glass plate and apparatus thereof | |
JP6409178B2 (en) | Container inspection method and inspection apparatus | |
JP6616658B2 (en) | Inspection method of conveyed object | |
KR102162693B1 (en) | System and method for defect detection | |
JP2013246059A (en) | Defect inspection apparatus and defect inspection method | |
JP6653958B2 (en) | Image inspection system, imaging system, and imaging method | |
JP2010091530A (en) | Method and apparatus for inspecting foreign substance | |
JP5633005B2 (en) | Foreign matter inspection device | |
TW201629474A (en) | Inspection device | |
JP2017120201A (en) | Inspection method of cap having bridge, and inspection device of cap | |
US20240280504A1 (en) | Method and apparatus for inspecting full containers | |
JP2019066274A (en) | Article inspection device | |
JP2014169988A (en) | Defect inspection device of transparent body or reflection body | |
KR101744643B1 (en) | Inspecting device for preventing distortion of image | |
JPH05322780A (en) | Inspecting method for light transmitting molding | |
JP7573564B2 (en) | Inspection Equipment | |
JP3318128B2 (en) | Inspection device for foreign substances settled in bottles | |
JP7264520B2 (en) | Container inspection method and device | |
JPH04309850A (en) | Inspection of defective of glass cylindrical body | |
JP2004317426A (en) | Apparatus for inspecting bottom of container for foreign substances |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190418 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190422 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200908 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210302 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20211026 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20220107 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20220222 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20220412 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20220517 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20220517 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220526 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7084012 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |