JP2018071454A - Exhaust emission control system for internal combustion engine - Google Patents

Exhaust emission control system for internal combustion engine Download PDF

Info

Publication number
JP2018071454A
JP2018071454A JP2016212806A JP2016212806A JP2018071454A JP 2018071454 A JP2018071454 A JP 2018071454A JP 2016212806 A JP2016212806 A JP 2016212806A JP 2016212806 A JP2016212806 A JP 2016212806A JP 2018071454 A JP2018071454 A JP 2018071454A
Authority
JP
Japan
Prior art keywords
exhaust gas
collection device
particulate collection
combustion engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016212806A
Other languages
Japanese (ja)
Other versions
JP6790728B2 (en
Inventor
中村 圭介
Keisuke Nakamura
圭介 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2016212806A priority Critical patent/JP6790728B2/en
Publication of JP2018071454A publication Critical patent/JP2018071454A/en
Application granted granted Critical
Publication of JP6790728B2 publication Critical patent/JP6790728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust emission control system for an internal combustion engine that can improve durability of a fine particle collecting device and improve fuel economy with a decline in frequency of forcible regeneration.SOLUTION: In an exhaust emission control system for an internal combustion engine, a boundary between a central part 12B and an outer periphery 12A of a fine particle collecting device 12 is set based on flow velocity distribution of an exhaust gas G flowing through an exhaust pipe 10 and is set so as to equalize flow velocities of the exhaust gas G flowing into the fine particle collecting device 12 at the boundary. A plugging member 20 is disposed in each end part of a cell of the outer periphery 12A.SELECTED DRAWING: Figure 3

Description

本発明は、内燃機関の排気ガス浄化システムに関する。   The present invention relates to an exhaust gas purification system for an internal combustion engine.

ディーゼルエンジンの排気管には、フィルタで構成される微粒子捕集装置が配置される。このフィルタとして、多孔質のセラミックのハニカムの周方向に関して最も外側の流路(最外周のセル)の入口を目封じするとともに、その他の流路については入口と出口を交互に目封じしたセラミックハニカムフィルタが提案されている(例えば、特許文献1参照)。   In the exhaust pipe of the diesel engine, a particulate collection device constituted by a filter is arranged. As this filter, a ceramic honeycomb in which the inlet of the outermost channel (outermost cell) in the circumferential direction of the porous ceramic honeycomb is plugged and the inlet and outlet are alternately plugged in the other channels. A filter has been proposed (see, for example, Patent Document 1).

このセラミックハニカムフィルタでは、排気管に接する最外周のセルには排気ガスが流通せず、このセル内には空気層が存在することにより、最外周のセルからの放熱を抑制して、フィルタ全体を保温している。   In this ceramic honeycomb filter, exhaust gas does not flow in the outermost cell in contact with the exhaust pipe, and an air layer exists in this cell, so that heat radiation from the outermost cell is suppressed and the entire filter is Keep warm.

WO2005−045207号特許WO2005-045207 Patent

ところで、排気管の内部は中央部よりも外側の流速が遅い。この微粒子捕集装置は、排気管内における排気ガスの速度分布の影響で、流速が遅くなる部分で温度が低下する。それ故、上記のセラミックハニカムフィルタでは、強制再生時の温度分布幅が大きいことによる耐久性の低下や、排気管径方向の外側のPMの残存率の高さによる強制再生の頻度の増加が問題となっていた。   By the way, the inside flow rate of the exhaust pipe is slower than the central part. In this particulate collection device, the temperature is lowered at a portion where the flow velocity becomes slow due to the influence of the velocity distribution of the exhaust gas in the exhaust pipe. Therefore, in the above ceramic honeycomb filter, there is a problem in that the durability decreases due to a large temperature distribution width during forced regeneration and the frequency of forced regeneration increases due to the high residual rate of PM outside the exhaust pipe radial direction. It was.

本発明の目的は、微粒子捕集装置の耐久性の向上と強制再生の頻度の低下に伴う燃費の向上を図ることができる内燃機関の排気ガス浄化システムを提供することにある。   An object of the present invention is to provide an exhaust gas purification system for an internal combustion engine that can improve the durability of a particulate collection device and improve the fuel consumption associated with a decrease in the frequency of forced regeneration.

上記の目的を達成するための本発明の内燃機関の排気ガス浄化システムは、内燃機関の排気管にウォールフロータイプのフィルタで構成される微粒子捕集装置を備えた内燃機関の排気ガス浄化システムにおいて、前記微粒子捕集装置が、排気管の径方向中央の中央部と径方向外側の環状の外周部とを有し、前記中央部と前記外周部との境界が、排気管を流れる排気ガスの流速分布に基づいて設定されると共に、この境界における前記微粒子捕集装置に流入する排気ガスの流速が同じ流速となるようにこの境界が設定されており、前記外周部のセルの両端部に目封じ部材が配置されている。   In order to achieve the above object, an exhaust gas purification system for an internal combustion engine according to the present invention is an exhaust gas purification system for an internal combustion engine provided with a particulate collection device comprising a wall flow type filter in an exhaust pipe of the internal combustion engine. The particulate collection device has a central portion in the radial center of the exhaust pipe and an annular outer peripheral portion on the outer side in the radial direction, and a boundary between the central portion and the outer peripheral portion of the exhaust gas flowing through the exhaust pipe. This boundary is set based on the flow velocity distribution, and this boundary is set so that the flow velocity of the exhaust gas flowing into the particulate collection device at this boundary becomes the same flow velocity. A sealing member is disposed.

ここで、セルとは、微粒子捕集装置のフィルタをその内部の微粒子捕集用の壁により複数に分割して排気ガスの流れ方向に形成される微小空間である。   Here, the cell is a minute space formed in the exhaust gas flow direction by dividing the filter of the particulate collection device into a plurality of particulate collection walls.

本発明の内燃機関の排気ガス浄化システムによれば、排気ガスの流速が遅くなり、微粒子捕集装置の内部で特に低温となっていた外周部を排気ガスを流通させず、空気層を設けることで、従来技術に比して断熱による保温効果を向上できる。これにより、強制再生時の温度分布幅の低減とPMの除去率の向上には有利になり、微粒子捕集装置の耐久性を向上できるとともに、強制再生の頻度の低下に伴って燃費を向上できる。   According to the exhaust gas purification system for an internal combustion engine of the present invention, the flow rate of the exhaust gas becomes slow, and an air layer is provided without circulating the exhaust gas through the outer peripheral portion that is particularly low temperature inside the particulate collection device. Therefore, the heat insulation effect by heat insulation can be improved as compared with the prior art. This is advantageous for reducing the temperature distribution width during forced regeneration and improving the PM removal rate, improving the durability of the particulate collection device, and improving fuel efficiency as the frequency of forced regeneration decreases. .

特に、外周部のセルの入口側と出口側の両端部を目封じすることで、より外周部への排気ガスの流入を抑制できる。   In particular, by sealing the both end portions on the inlet side and outlet side of the cell in the outer peripheral portion, the inflow of exhaust gas to the outer peripheral portion can be further suppressed.

また、微粒子捕集装置へ流入する排気ガスの流速と、その流速の排気ガスが通過する微粒子捕集装置の内部の温度は密接な関係があるので、外周部と中央部の境界を、この境界に流入する排気ガスの流速が同じ流速となるように設定することで、微粒子捕集装置の内部で特に低温となっていた領域のみを外周部として確実に区画することができる。   In addition, the flow rate of the exhaust gas flowing into the particulate collection device and the internal temperature of the particulate collection device through which the exhaust gas at that flow rate is closely related, the boundary between the outer peripheral portion and the central portion is defined as this boundary. By setting so that the flow rate of the exhaust gas flowing into the gas flow rate becomes the same flow rate, it is possible to reliably partition only the region where the temperature is particularly low inside the particulate collection device as the outer peripheral portion.

本発明の第1実施形態の内燃機関の排気ガス浄化システムの構成を示す図である。It is a figure showing composition of an exhaust-gas purification system of an internal-combustion engine of a 1st embodiment of the present invention. 図1の微粒子捕集装置の構成を示す図である。It is a figure which shows the structure of the particulate collection apparatus of FIG. 図1の微粒子捕集装置の内部の各セルの状態を示す図である。It is a figure which shows the state of each cell inside the particulate collection apparatus of FIG. 粒子捕集装置のセルの両端部に目封じ部材を配置していない状態における、微粒子捕集装置の入口断面の中心から径方向外側への距離と微粒子捕集装置に流入する排気ガスの温度との関係である温度分布線を示す図である。The distance from the center of the inlet cross section of the particulate collection device to the radially outer side and the temperature of the exhaust gas flowing into the particulate collection device when no sealing member is disposed at both ends of the cell of the particle collection device It is a figure which shows the temperature distribution line which is the relationship. 本発明の実施形態の微粒子捕集装置の強制PM再生制御時における中央部の温度状況を示す図である。It is a figure which shows the temperature condition of the center part at the time of forced PM regeneration control of the particulate collection device of embodiment of this invention. 粒子捕集装置のセルの両端部に目封じ部材を配置していない比較例の微粒子捕集装置の強制PM再生制御時における中央部の温度状況を示す図である。It is a figure which shows the temperature condition of the center part at the time of forced PM regeneration control of the particulate collection device of the comparative example which has not arrange | positioned the sealing member in the both ends of the cell of a particle collection device. 第2実施形態の内燃機関の排気ガス浄化システムの微粒子捕集装置の内部の各セルの状態を示す図である。It is a figure which shows the state of each cell inside the particulate collection apparatus of the exhaust gas purification system of the internal combustion engine of 2nd Embodiment. 第3実施形態の内燃機関の排気ガス浄化システムの微粒子捕集装置の内部の各セルの状態を示す図である。It is a figure which shows the state of each cell inside the particulate collection apparatus of the exhaust gas purification system of the internal combustion engine of 3rd Embodiment.

以下、本発明に係る実施の形態の内燃機関の排気ガス浄化システムについて、図面を参照しながら説明する。   Hereinafter, an exhaust gas purification system for an internal combustion engine according to an embodiment of the present invention will be described with reference to the drawings.

図1に示すように、第1実施形態の内燃機関の排気ガス浄化システム1には、エンジン2の排気管10に上流側より順に備えた酸化触媒装置11、微粒子捕集装置12が配設される。   As shown in FIG. 1, an exhaust gas purification system 1 for an internal combustion engine according to the first embodiment includes an oxidation catalyst device 11 and a particulate collection device 12 that are sequentially provided in an exhaust pipe 10 of an engine 2 from the upstream side. The

酸化触媒装置11は、ハニカム構造を形成する基材に、排気ガスGのガス成分(炭化水素(HC)や一酸化炭素(CO)等)を酸化する貴金属触媒(白金(Pt)系等)(酸化触媒)が担持されて構成される。   The oxidation catalyst device 11 is a noble metal catalyst (platinum (Pt) system or the like) that oxidizes gas components (hydrocarbon (HC), carbon monoxide (CO), etc.) of the exhaust gas G on a substrate forming a honeycomb structure ( An oxidation catalyst is supported.

この貴金属触媒による炭化水素及び一酸化炭素の酸化反応は発熱反応であるので、この発熱により排気ガスGは昇温する。これを利用して、微粒子捕集装置12の強制PM再生制御時等、高温の排気ガスGが必要となるときには、酸化触媒装置11より上流側の排気通路10を通過する排気ガスGに含まれる炭化水素の量を一時的に増加させて、この増加分の炭化水素を酸化触媒装置11で酸化させることで、排気ガスGを高温化している。   Since the oxidation reaction of hydrocarbon and carbon monoxide by the noble metal catalyst is an exothermic reaction, the temperature of the exhaust gas G rises due to this exotherm. Utilizing this, when high temperature exhaust gas G is required, such as during forced PM regeneration control of the particulate collection device 12, it is included in the exhaust gas G passing through the exhaust passage 10 upstream of the oxidation catalyst device 11. The exhaust gas G is heated to a high temperature by temporarily increasing the amount of hydrocarbons and oxidizing the increased amount of hydrocarbons in the oxidation catalyst device 11.

なお、炭化水素の量を一時的に増加させる方法としては、例えば、エンジン2の気筒(シリンダ)2a内で燃料のポスト噴射を行う方法や、酸化触媒装置11より上流側の排気通路10に燃料噴射装置(図示しない)を備えて、この燃料噴射装置から燃料を噴射する方法がある。   As a method of temporarily increasing the amount of hydrocarbons, for example, a method of performing post-injection of fuel in a cylinder (cylinder) 2a of the engine 2 or a fuel in the exhaust passage 10 upstream of the oxidation catalyst device 11 is used. There is a method of injecting fuel from the fuel injection device provided with an injection device (not shown).

図2に例示するように、微粒子捕集装置12は、その内部にフィルタを備えて構成される。このフィルタは、多孔質のセラミックのハニカムのセル(チャンネル)の入口と出口を交互に目封じしたモノリスハニカム型ウォールフロータイプのフィルタである。   As illustrated in FIG. 2, the particulate collection device 12 includes a filter therein. This filter is a monolith honeycomb wall flow type filter in which the inlets and outlets of cells (channels) of a porous ceramic honeycomb are alternately plugged.

この微粒子捕集装置12は、中央部12Bと外周部12Aとを有している。中央部12Bは、基材が円柱状に形成されており、排気管10の径方向中央で流れ方向に延在している。外周部12Aは、基材が円環体に形成されており、径方向外側で流れ方向に延在している。この外周部12Aを通過する排気ガスGaの温度は、中央部12Bを通過する排気ガスGbの温度より低くなる。排気管10を流れる排気ガスGは、排気管10の断面中心(図2では入口断面の中心を12Mとしている)から径方向外側(外壁12P側)に向かうにつれて速度が低くなり、また、外周部12Aから外部への放熱があるからである。   The particulate collection device 12 has a central portion 12B and an outer peripheral portion 12A. In the central portion 12B, the base material is formed in a columnar shape, and extends in the flow direction at the radial center of the exhaust pipe 10. 12 A of outer peripheral parts are formed in the torus in the base material, and are extended in the flow direction on the radial direction outer side. The temperature of the exhaust gas Ga passing through the outer peripheral portion 12A is lower than the temperature of the exhaust gas Gb passing through the central portion 12B. The exhaust gas G flowing through the exhaust pipe 10 decreases in speed from the center of the cross section of the exhaust pipe 10 (the center of the inlet cross section is 12M in FIG. 2) toward the outside in the radial direction (on the outer wall 12P side). This is because there is heat radiation from 12A to the outside.

第1実施形態の排気ガス浄化システム1が備える微粒子捕集装置12は、図3に示すように、この中央部12Bと外周部12Aとの境界が、排気管10を流れる排気ガスGの流速分布に基づいて設定されると共に、この境界における微粒子捕集装置12に流入する排気ガスGの流速が同じ流速となるように設定されており、外周部12Aのセルの両端部に目封じ部材20を配置している。   As shown in FIG. 3, the particulate collection device 12 included in the exhaust gas purification system 1 of the first embodiment has a flow velocity distribution of the exhaust gas G flowing through the exhaust pipe 10 at the boundary between the central portion 12B and the outer peripheral portion 12A. And the flow rate of the exhaust gas G flowing into the particulate collection device 12 at this boundary is set to be the same flow rate, and the sealing members 20 are disposed at both ends of the cell of the outer peripheral portion 12A. It is arranged.

この目封じ部材20の材質は、微粒子捕集装置12の強制PM再生制御時の高熱に耐え得るだけの耐熱性があれば、特に限定されない。また、外周部12Aのセルの両端部とは、セルの入口端部及び出口端部のことである。また、セルの入口(出口)端部とは、セルの入口(出口)の一端から出口(入口)側に予め設定された距離離れた地点までの領域である。   The material of the sealing member 20 is not particularly limited as long as it has heat resistance sufficient to withstand high heat during the forced PM regeneration control of the particulate collection device 12. Moreover, the both ends of the cell of outer peripheral part 12A are the inlet end part and outlet end part of a cell. The cell inlet (exit) end portion is a region from one end of the cell inlet (exit) to a point separated by a distance set in advance on the outlet (inlet) side.

この構成によれば、従来技術に比して、排気ガスGの流速分布の影響を考慮してより広範囲に設定された外周部12Aの両端部に目封じ部材20を備えるので、微粒子捕集装置12内部の温度ムラを低減して、微粒子捕集装置12の耐久性を向上させることができる。   According to this configuration, since the sealing members 20 are provided at both ends of the outer peripheral portion 12A set in a wider range in consideration of the influence of the flow velocity distribution of the exhaust gas G as compared with the prior art, the particulate collection device The temperature unevenness inside 12 can be reduced, and the durability of the particulate collection device 12 can be improved.

また、強制PM再生制御後の微粒子(PM)残存率を低減することができるので、微粒子捕集装置12におけるウォールフローを有効活用することができる。その結果、微粒子捕集装置12の再生回数を低減させることができ、燃費を向上させることができる。   Moreover, since the particulate matter (PM) residual rate after forced PM regeneration control can be reduced, the wall flow in the particulate collection device 12 can be effectively utilized. As a result, the frequency | count of reproduction | regeneration of the particulate collection apparatus 12 can be reduced, and a fuel consumption can be improved.

また、本発明の第1実施形態では、さらに、図4に例示するように、中央部12Bと外周部12Aとの境界が、排気ガスGの流速分布に伴う微粒子捕集装置12の径方向の中心から同心円状に変化する温度分布TLに基づいて設定されるようにする。   Further, in the first embodiment of the present invention, as illustrated in FIG. 4, the boundary between the central portion 12B and the outer peripheral portion 12A is in the radial direction of the particulate collection device 12 accompanying the flow velocity distribution of the exhaust gas G. It is set based on the temperature distribution TL that changes concentrically from the center.

微粒子捕集装置12の温度分布TLの作成方法について説明する。まず、セルの両端部に目封じ部材を配置していない微粒子捕集装置12Xにおいて、排気ガスGの流入方向に直交する微粒子捕集装置12Xの断面に関して、微粒子捕集装置12Xの入口断面の中心12Mから径方向外側への距離dに応じて、微粒子捕集装置12Xに流入する排気ガスGの温度Tを実験等により予め測定して構成される温度分布線TLを作成する。   A method for creating the temperature distribution TL of the particulate collection device 12 will be described. First, in the particulate collection device 12X in which no sealing member is disposed at both ends of the cell, the center of the inlet cross section of the particulate collection device 12X with respect to the cross section of the particulate collection device 12X orthogonal to the inflow direction of the exhaust gas G A temperature distribution line TL configured by previously measuring the temperature T of the exhaust gas G flowing into the particulate collection device 12X by an experiment or the like is created according to the distance d from 12M to the radially outer side.

次に、図4に示すように、この距離dの変化量に対する排気ガスGの温度Tの変化量の絶対値α(=|ΔT/Δd|)が、最も大きい値である最高値の点αmaxとなる位置を変曲点IP(図4に示す点(d1、T1))に設定する。言い換えれば、この変曲点IPは、微粒子捕集装置12の断面中心から径方向外側に向うにつれて排気ガスGの温度は低くなるが、この温度変化量が急激に大きくなる(急激に低温化する)点である。   Next, as shown in FIG. 4, the maximum value αmax at which the absolute value α (= | ΔT / Δd |) of the change amount of the temperature T of the exhaust gas G with respect to the change amount of the distance d is the largest value. Is set to the inflection point IP (point (d1, T1) shown in FIG. 4). In other words, at the inflection point IP, the temperature of the exhaust gas G decreases as it goes radially outward from the center of the cross section of the particulate collection device 12, but the amount of temperature change increases rapidly (decreases rapidly). ) Point.

そして、この変曲点IPから径方向外側の領域(図4に示す変曲点IPから右側の領域)を外周部12Aとし、径方向中央の領域(図4に示す変曲点IPから左側の領域)を中央部12Bとする。   A region radially outside from the inflection point IP (a region on the right side from the inflection point IP shown in FIG. 4) is defined as the outer peripheral portion 12A, and a region in the radial direction (a region on the left side from the inflection point IP shown in FIG. 4). Region) is defined as the central portion 12B.

つまり、セルの両端部に目封じ部材を配置していない場合で、言い換えれば、微粒子捕集装置12Xで、上記の流速分布における微粒子捕集装置12Xの径方向の温度分布TLを測定し、中央部と外周部との境界を、この径方向の温度分布に基づいて設定する。より具体的には、この境界における微粒子捕集装置12Xの温度が同じ温度となるように境界を設定する。この境界を微粒子捕集装置12の中央部12bと外周部12Aとの境界とする。   That is, in the case where no sealing member is arranged at both ends of the cell, in other words, with the particle collection device 12X, the temperature distribution TL in the radial direction of the particle collection device 12X in the above flow velocity distribution is measured, and the center The boundary between the part and the outer peripheral part is set based on the temperature distribution in the radial direction. More specifically, the boundary is set so that the temperature of the particulate collection device 12X at this boundary becomes the same temperature. This boundary is defined as a boundary between the central portion 12b and the outer peripheral portion 12A of the particulate collection device 12.

この構成によれば、微粒子捕集装置12の内部で特に低温となっていた領域を外周部12Aとして排気ガスGaを流通させず空気層A(図3のクロスハッチング部分)を存在させるため、従来技術に比して断熱による保温効果を向上できる。これにより、強制再生時の温度分布幅の低減とPMの除去率の向上には有利になり、微粒子捕集装置12の耐久性を向上できるとともに、強制再生の頻度の低下に伴って燃費を向上できる。   According to this configuration, the air layer A (cross-hatched portion in FIG. 3) is present without circulating the exhaust gas Ga in the outer peripheral portion 12A in the region that has been particularly low temperature inside the particulate collection device 12, Compared to technology, heat insulation effect by heat insulation can be improved. This is advantageous for reducing the temperature distribution width during forced regeneration and improving the PM removal rate, improving the durability of the particulate collection device 12, and improving fuel efficiency as the frequency of forced regeneration decreases. it can.

以上より、本発明の第1実施形態では、図5に示すように、外周部12Aに近い中央部12Bのセルの温度Taを、強制PM再生制御時の基準温度Tpを超えて、外周部12Aから遠い中央部12Bのセルの温度Tbに接近させることができるので、微粒子捕集装置12の内部の温度ムラを低減することができる。   As described above, in the first embodiment of the present invention, as shown in FIG. 5, the temperature Ta of the cell in the central portion 12B near the outer peripheral portion 12A exceeds the reference temperature Tp during forced PM regeneration control, and the outer peripheral portion 12A. Since the temperature Tb of the cell in the central portion 12B far from the center can be approached, temperature unevenness inside the particulate collection device 12 can be reduced.

なお、この温度Ta、Tbは、微粒子捕集装置12の前段の排気管10で上記の各セルに対向する位置に温度センサをそれぞれ備えて、これらの温度センサにより検出した値を用いている。図6の外周部のセルの両端部を目封じていない微粒子捕集装置12Xの比較例と比べると、この図5において、外周部12Aに近い中央部12Bのセルの温度Taが、再生時間が短いうちに基準温度Tpに到達していることが分かる。また、基準温度Tpは、微粒子捕集装置12の強制PM再生制御時に、その内部に堆積したPMの大半を燃焼除去できる温度(目標温度)である。   The temperatures Ta and Tb are provided with temperature sensors at positions facing the respective cells in the exhaust pipe 10 at the front stage of the particulate collection device 12, and values detected by these temperature sensors are used. Compared with the comparative example of the particulate collecting device 12X in which both ends of the outer peripheral cell in FIG. 6 are not sealed, in FIG. 5, the temperature Ta of the cell in the central portion 12B near the outer peripheral portion 12A is the regeneration time. It can be seen that the reference temperature Tp is reached in a short time. The reference temperature Tp is a temperature (target temperature) at which most of the PM accumulated in the particulate collection device 12 can be burned and removed during forced PM regeneration control of the particulate collection device 12.

次に、本発明の第2実施形態の内燃機関の排気ガス浄化システム1Aについて図7を参照しながら説明する。この内燃機関の排気ガス浄化システム1Aは、外周部12Aの一部または全部のセルの入口側の目封じ部材20を、その入口から出口側に離間して配置している点と、外周部12Aの入口から入口側の目封じ部材20までの間は、セルに酸化触媒(貴金属触媒)(図示しない)が担持される点を除いて、図1及び図2に示す内燃機関の排気ガス浄化システム1と同じ構成である。   Next, an exhaust gas purification system 1A for an internal combustion engine according to a second embodiment of the present invention will be described with reference to FIG. This exhaust gas purification system 1A for an internal combustion engine includes a plug member 20 on the inlet side of a part or all of the outer peripheral portion 12A that is spaced from the inlet to the outlet side, and the outer peripheral portion 12A. 1 to 2, except that an oxidation catalyst (noble metal catalyst) (not shown) is carried on the cell from the inlet to the sealing member 20 on the inlet side. 1 is the same configuration.

より具体的には、この内燃機関の排気ガス浄化システム1Aでは、外周部12Aの一部または全部のセルの入口端部の目封じ部材20を、入口の一端より出口側に予め設定された第1距離L1離間した位置に配置するとともに、目封じ部材20を配置したセルの入口の一端から目封じ部材20までの間に酸化触媒を担持する。この第1距離L1については、予め実験等により設定されるが、微粒子捕集装置12の保温性能を確保しつつ、セルの入口で排気ガスを確実に乱流して滞留させることができ、かつ、セルの入口で乱流した排気ガスがウォールフローを通過可能な値がより好ましい。   More specifically, in the exhaust gas purification system 1A for an internal combustion engine, the plugging member 20 at the inlet end of a part or all of the outer peripheral portion 12A is set in advance from the inlet end to the outlet side. While being arranged at a position separated by one distance L1, an oxidation catalyst is supported between one end of the inlet of the cell where the sealing member 20 is arranged and the sealing member 20. The first distance L1 is set in advance by experiments or the like, while ensuring the heat retaining performance of the particulate collection device 12, the exhaust gas can be reliably turbulent and retained at the inlet of the cell, and More preferably, the exhaust gas turbulent at the cell inlet can pass through the wall flow.

この構成によれば、上記の第1の実施の形態の内燃機関の排気ガス浄化システム1と同様に、微粒子捕集装置12の耐久性及び燃費を向上させることができるとともに、さらに、次のような作用効果を奏することができる。   According to this configuration, as in the exhaust gas purification system 1 for the internal combustion engine of the first embodiment, the durability and fuel consumption of the particulate collection device 12 can be improved. It is possible to achieve various effects.

すなわち、微粒子捕集装置12の外周部12Aのセルの入口の一端から目封じ部材20までの間の領域で排気ガスGを一時的に滞留させることができるので、この滞留領域で排気ガスGに含まれる炭化水素や一酸化炭素等を酸化触媒により高効率で浄化させることができる。   That is, since the exhaust gas G can be temporarily retained in the region between the one end of the cell inlet of the outer peripheral portion 12A of the particulate collection device 12 and the sealing member 20, the exhaust gas G is retained in the retention region. The contained hydrocarbons, carbon monoxide and the like can be purified with high efficiency by the oxidation catalyst.

なお、上記の排気ガスGの滞留領域以外の微粒子捕集装置12の領域(その他の領域)に酸化触媒を担持させてもよいが、この場合、滞留領域に担持させる酸化触媒の量をその他の領域に担持させる酸化触媒の量より多くすると、より好ましい。   Note that the oxidation catalyst may be supported in the region (other region) of the particulate collection device 12 other than the retention region of the exhaust gas G. In this case, the amount of the oxidation catalyst supported in the retention region It is more preferable to increase the amount of the oxidation catalyst supported on the region.

次に、本発明の第3実施形態の排気ガス浄化システム1Bについて図8を参照しながら説明する。この内燃機関の排気ガス浄化システム1Bは、微粒子捕集装置12の外周部12Aの一部または全部のセルの出口側の目封じ部材20を、その出口から入口側に離間して配置している点を除いて、図7に示す第2実施形態の内燃機関の排気ガス浄化システム1Aと同じ構成である。   Next, an exhaust gas purification system 1B according to a third embodiment of the present invention will be described with reference to FIG. In the exhaust gas purification system 1B of the internal combustion engine, the sealing member 20 on the outlet side of a part or all of the outer peripheral portion 12A of the particulate collection device 12 is arranged away from the outlet toward the inlet side. Except for this point, the configuration is the same as that of the exhaust gas purification system 1A for the internal combustion engine of the second embodiment shown in FIG.

より具体的には、この内燃機関の排気ガス浄化システム1Bでは、外周部12Aのセルの内、中央部12Bに隣接するセルの出口の目封じ部材20を、出口の一端より入口側に予め設定された第2距離l2離間した位置に配置するとともに、目封じ部材20を配置したセルの出口の一端から出口側の目封じ部材20までの間に酸化触媒(図示しない)を担持する。この第2距離l2については、予め実験等により設定されるが、
この構成によれば、上記の第1及び第2の実施の形態の内燃機関の排気ガス浄化システム1、1Aと同様に、微粒子捕集装置12の耐久性及び燃費を向上させることができるとともに、さらに、次のような作用効果を奏することができる。
More specifically, in the exhaust gas purification system 1B of the internal combustion engine, the sealing member 20 at the outlet of the cell adjacent to the central portion 12B among the cells of the outer peripheral portion 12A is set in advance to the inlet side from one end of the outlet. The second catalyst is disposed at a position spaced apart from the second distance l2, and an oxidation catalyst (not shown) is supported between one end of the outlet of the cell in which the sealing member 20 is disposed and the sealing member 20 on the outlet side. The second distance l2 is set in advance by experiments or the like.
According to this configuration, as in the exhaust gas purification systems 1 and 1A for the internal combustion engine of the first and second embodiments, the durability and fuel consumption of the particulate collection device 12 can be improved, Furthermore, the following operational effects can be achieved.

すなわち、微粒子捕集装置12の外周部12Aのセルの内、中央部12Bに隣接するセルの出口の一端から目封じ部材20までの間の領域にも排気ガスGを通過させるとともに、この領域に酸化触媒を担持させることで、この酸化触媒により排気ガスGに含まれる炭化水素及び一酸化炭素を酸化除去することができる。   That is, the exhaust gas G is passed through the region between the end of the outlet of the cell adjacent to the central portion 12B and the sealing member 20 in the cell of the outer peripheral portion 12A of the particulate collection device 12, and in this region. By supporting the oxidation catalyst, hydrocarbons and carbon monoxide contained in the exhaust gas G can be oxidized and removed by the oxidation catalyst.

以上より、本発明の内燃機関の排気ガス浄化システム1によれば、排気ガスGの流速が遅くなり、微粒子捕集装置12の内部で特に低温となっていた外周部12Aを排気ガスGaを流通させず、空気層を設けることで、従来技術に比して断熱による保温効果を向上できる。   As described above, according to the exhaust gas purification system 1 for an internal combustion engine of the present invention, the flow rate of the exhaust gas G is slow, and the exhaust gas Ga is circulated through the outer peripheral portion 12 </ b> A that was particularly low in the particulate collection device 12. Without providing the air layer, the heat insulation effect by heat insulation can be improved as compared with the prior art.

その結果、微粒子捕集装置12の破損の可能性を低減することが可能となり、微粒子捕集装置12の耐久性を向上することができる。また、強制PM再生制御後の微粒子(PM)残存率を低減することができるので、微粒子捕集装置12におけるPM捕集壁を有効に利用することができ、微粒子捕集装置12の強制PM再生制御の実施間隔(インターバル)が長くなることによる燃料消費量低減に寄与することができる。さらに、微粒子捕集装置12の外周部12Aに目封じ部材20を配置する手法は低コストで行うことができる。   As a result, it is possible to reduce the possibility of breakage of the particulate collection device 12, and the durability of the particulate collection device 12 can be improved. In addition, since the particulate (PM) remaining rate after forced PM regeneration control can be reduced, the PM collection wall in the particulate collection device 12 can be used effectively, and the forced PM regeneration of the particulate collection device 12 can be performed. This can contribute to a reduction in fuel consumption due to a longer control interval. Furthermore, the method of disposing the sealing member 20 on the outer peripheral portion 12A of the particulate collection device 12 can be performed at low cost.

なお、セルの両端部に目封じ部材20を設ける外周部12Aは、排気管壁に隣接する微粒子捕集装置12の外周から径方向内側に2列以上のセルとして構成するのが、断熱による保温効果の観点から好ましい。   The outer peripheral portion 12A provided with the sealing members 20 at both ends of the cell is configured as two or more rows of cells radially inward from the outer periphery of the particulate collection device 12 adjacent to the exhaust pipe wall. It is preferable from the viewpoint of effect.

また、微粒子捕集装置12の状態を取得するセンサの検知部が中央部12Bに配置されるようにすると、外周部12Aの両端を目封じしても、微粒子捕集装置12の状態を確実に把握することができるので好ましい。このセンサとしては、温度センサや前後差圧センサが例示される。   Moreover, if the detection part of the sensor which acquires the state of the particulate collection device 12 is arranged in the central portion 12B, the state of the particulate collection device 12 can be reliably ensured even if both ends of the outer peripheral portion 12A are plugged. It is preferable because it can be grasped. Examples of the sensor include a temperature sensor and a front / rear differential pressure sensor.

1、1A、1B 内燃機関の排気ガス浄化システム
2 エンジン
10 排気管
12 微粒子捕集装置
12X セルの両端部に目封じ部材を配置していない微粒子捕集装置
12A 微粒子捕集装置の外周部
12B 微粒子捕集装置の中央部
12M 微粒子捕集装置の入口断面の中心
20 目封じ部材
TL 径方向温度分布
IP 変曲点
G 排気ガス
Ga 微粒子捕集装置の外周部を通過する排気ガス
Gb 微粒子捕集装置の中央部を通過する排気ガス
DESCRIPTION OF SYMBOLS 1, 1A, 1B Exhaust gas purification system 2 of internal combustion engine 2 Engine 10 Exhaust pipe 12 Particulate collection device 12X Particulate collection device 12A in which sealing members are not disposed at both ends of the cell Center part of collector 12M Center of inlet cross section of particulate collector 20 Sealing member TL Radial temperature distribution IP Inflection point G Exhaust gas Ga Exhaust gas Gb passing through outer periphery of particulate collector Particulate collector Exhaust gas passing through the center of the

Claims (3)

内燃機関の排気管にウォールフロータイプのフィルタで構成される微粒子捕集装置を備えた内燃機関の排気ガス浄化システムにおいて、
前記微粒子捕集装置が、排気管の径方向中央の中央部と径方向外側の環状の外周部とを有し、前記中央部と前記外周部との境界が、排気管を流れる排気ガスの流速分布に基づいて設定されると共に、この境界における前記微粒子捕集装置に流入する排気ガスの流速が同じ流速となるように設定されており、
前記外周部のセルの両端部に目封じ部材が配置されている内燃機関の排気ガス浄化システム。
In an exhaust gas purification system for an internal combustion engine provided with a particulate collection device composed of a wall flow type filter in an exhaust pipe of the internal combustion engine,
The particulate collection device has a central portion in the radial center of the exhaust pipe and an annular outer peripheral portion on the outer side in the radial direction, and the boundary between the central portion and the outer peripheral portion is a flow velocity of exhaust gas flowing through the exhaust pipe. Is set based on the distribution, is set so that the flow rate of the exhaust gas flowing into the particulate collection device at this boundary is the same flow rate,
An exhaust gas purification system for an internal combustion engine, wherein sealing members are disposed at both ends of the outer peripheral cell.
セルの両端部に目封じ部材を配置していない場合で、前記流速分布における微粒子捕集装置の径方向の温度分布を測定し、前記中央部と前記外周部との境界が、この径方向の温度分布に基づいて設定されると共に、この境界における前記微粒子捕集装置の温度が同じ温度となるように設定される請求項1に記載の内燃機関の排気ガス浄化システム。   In the case where no sealing member is disposed at both ends of the cell, the temperature distribution in the radial direction of the particulate collection device in the flow velocity distribution is measured, and the boundary between the central portion and the outer peripheral portion is in the radial direction. The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the exhaust gas purification system is set based on a temperature distribution and set so that the temperature of the particulate collection device at the boundary is the same. 前記外周部の一部または全部のセルの入口側の目封じ部材を、その入口から出口側に離間して配置しているとともに、前記外周部の入口から前記入口側の目封じ部材までの間は、セルに酸化触媒が担持される請求項1または2に記載の内燃機関の排気ガス浄化システム。   The sealing member on the inlet side of a part or all of the outer peripheral portion is arranged away from the inlet to the outlet side, and between the inlet of the outer peripheral portion and the sealing member on the inlet side. The exhaust gas purification system for an internal combustion engine according to claim 1, wherein an oxidation catalyst is supported on the cell.
JP2016212806A 2016-10-31 2016-10-31 Exhaust gas purification system for internal combustion engine Active JP6790728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016212806A JP6790728B2 (en) 2016-10-31 2016-10-31 Exhaust gas purification system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016212806A JP6790728B2 (en) 2016-10-31 2016-10-31 Exhaust gas purification system for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2018071454A true JP2018071454A (en) 2018-05-10
JP6790728B2 JP6790728B2 (en) 2020-11-25

Family

ID=62114746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016212806A Active JP6790728B2 (en) 2016-10-31 2016-10-31 Exhaust gas purification system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6790728B2 (en)

Also Published As

Publication number Publication date
JP6790728B2 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
US8393146B2 (en) Exhaust emission control device
US8440155B2 (en) Flow modulating substrates for early light-off
ATE550089T1 (en) EMISSION CONTROL SYSTEM
WO2012096510A2 (en) Exhaust gas after-treatment device for diesel engine
JPWO2016194201A1 (en) Exhaust pipe structure of internal combustion engine
JP2015183603A (en) Exhaust emission control system of internal combustion engine with turbocharger
JP6733352B2 (en) Oxidation catalyst and exhaust gas purification system
WO2016027698A1 (en) Oxidation catalyst for diesel engines
JP6790728B2 (en) Exhaust gas purification system for internal combustion engine
JP5856641B2 (en) Exhaust gas purification device
JP2012140964A (en) Exhaust gas purifier
JP6454067B2 (en) Exhaust purification device
JP6753179B2 (en) Oxidation catalyst and exhaust gas purification system
JP6306428B2 (en) Exhaust purification device
JP6168304B2 (en) Engine exhaust gas purification device
JP2018178882A (en) Exhaust post-treatment device
JP2018071455A (en) Exhaust emission control system for internal combustion engine
JP2011064068A (en) Exhaust emission control device
JP2015113728A (en) Exhaust emission control device
JP2012013059A (en) Exhaust gas cleaning device
JP5013994B2 (en) Exhaust purification device
JP2015098796A (en) Exhaust gas emission control system for internal combustion engine
JP2010222981A (en) Exhaust emission control device
JP2005315141A (en) Exhaust emission control device
JP2008208749A (en) Soot purifying device for diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R150 Certificate of patent or registration of utility model

Ref document number: 6790728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150