JP2018071455A - Exhaust emission control system for internal combustion engine - Google Patents

Exhaust emission control system for internal combustion engine Download PDF

Info

Publication number
JP2018071455A
JP2018071455A JP2016212807A JP2016212807A JP2018071455A JP 2018071455 A JP2018071455 A JP 2018071455A JP 2016212807 A JP2016212807 A JP 2016212807A JP 2016212807 A JP2016212807 A JP 2016212807A JP 2018071455 A JP2018071455 A JP 2018071455A
Authority
JP
Japan
Prior art keywords
oxidation catalyst
exhaust gas
particulate collection
collection device
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016212807A
Other languages
Japanese (ja)
Inventor
中村 圭介
Keisuke Nakamura
圭介 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2016212807A priority Critical patent/JP2018071455A/en
Publication of JP2018071455A publication Critical patent/JP2018071455A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust emission control system for an internal combustion engine that can increase temperature of an outer periphery of a fine particle collecting device.SOLUTION: In an exhaust emission control system for an internal combustion engine, an oxidation catalyst device 11 includes: a central part 11B extending in a flow direction at an axial center of an exhaust pipe 10; and an annular outer periphery 11A extending in the flow direction on an axial outer side, where the outer periphery 11A has an amount of supporting an oxidation catalyst that is larger than that of the central part 11B.SELECTED DRAWING: Figure 4

Description

本発明は、内燃機関の排気ガス浄化システムに関する。   The present invention relates to an exhaust gas purification system for an internal combustion engine.

微粒子捕集装置の上流に配置された触媒の中心部のセルに集中的に排気を流入させる一方、この触媒の外周部に形成した粒子状物質捕集部によりPMを捕集することで、微粒子捕集装置の外周部に流入するPM量を低減して、微粒子捕集装置におけるPMの燃え残りを抑制する排気浄化装置が提案されている(例えば、特許文献1参照)。   While exhaust is intensively flowed into the central cell of the catalyst arranged upstream of the particulate collection device, PM is collected by the particulate matter collection section formed on the outer periphery of the catalyst. There has been proposed an exhaust purification device that reduces the amount of PM flowing into the outer peripheral portion of the collection device and suppresses unburned PM in the particulate collection device (see, for example, Patent Document 1).

特開2014−134122号公報JP 2014-134122 A

ところで、エンジンから排出され、排気管を流れる排気ガスは、中央部と外周部の速度分布を生じ、さらに外周部からの放熱により温度分布が生じる。この温度分布は、排気ガスが通過する微粒子捕集装置内部にも生じており、微粒子捕集装置の外周部の温度が低くなる。   By the way, the exhaust gas discharged from the engine and flowing through the exhaust pipe generates a velocity distribution between the central portion and the outer peripheral portion, and further generates a temperature distribution due to heat radiation from the outer peripheral portion. This temperature distribution is also generated inside the particulate collection device through which the exhaust gas passes, and the temperature of the outer peripheral portion of the particulate collection device becomes low.

したがって、上述したような従来技術では、強制PM再生時にHC等のガス成分を増加しても、酸化触媒を通過した排気管径方向外側の排気ガスの温度が低く、微粒子捕集装置の外周部の温度が上昇しない。それ故、微粒子捕集装置の外周部で捕集したPMを除去できない。   Therefore, in the conventional technology as described above, even if the gas component such as HC is increased during forced PM regeneration, the temperature of the exhaust gas radially outside the exhaust pipe passing through the oxidation catalyst is low, and the outer peripheral portion of the particulate collection device Temperature does not rise. Therefore, PM collected at the outer periphery of the particulate collection device cannot be removed.

本発明の目的は、微粒子捕集装置の外周部の温度を高くすることができる内燃機関の排気ガス浄化システムを提供することにある。   An object of the present invention is to provide an exhaust gas purification system for an internal combustion engine that can increase the temperature of the outer peripheral portion of a particulate collection device.

上記の目的を達成するための本発明の内燃機関の排気ガス浄化システムは、内燃機関の排気管に上流側より順に酸化触媒装置、微粒子捕集装置を備え、前記酸化触媒装置のハニカム構造を形成する基材に排気ガスのガス成分を酸化する酸化触媒が担持された内燃機関の排気ガス浄化システムにおいて、前記酸化触媒装置が前記排気管の径方向中央で流れ方向に延在する中央部と、径方向外側で流れ方向に延在する環状の外周部とを有しており、前記外周部の酸化触媒の担持量が前記中央部よりも多いことを特徴とする。   In order to achieve the above object, an exhaust gas purification system for an internal combustion engine of the present invention comprises an oxidation catalyst device and a particulate collection device in order from the upstream side in an exhaust pipe of the internal combustion engine, and forms a honeycomb structure of the oxidation catalyst device In an exhaust gas purification system of an internal combustion engine in which an oxidation catalyst that oxidizes a gas component of exhaust gas is supported on a base material that performs the oxidation catalyst device, a central portion that extends in a flow direction at a radial center of the exhaust pipe; And an annular outer peripheral portion extending in the flow direction on the outer side in the radial direction, and the carrying amount of the oxidation catalyst in the outer peripheral portion is larger than that in the central portion.

本発明の内燃機関の排気ガス浄化システムによれば、外周部の触媒の担持量を多くするので、酸化触媒装置の外周部での発熱量を増加できる。これにより、酸化触媒装置を通過した排気ガスの径方向外側の温度上昇に有利になり、下流側の微粒子捕集装置の径方向外側の温度を上昇できる。これに伴って、微粒子捕集装置の径方向外側に流入するPMを確実に除去することができる。   According to the exhaust gas purification system for an internal combustion engine of the present invention, since the amount of catalyst supported on the outer peripheral portion is increased, the amount of heat generated on the outer peripheral portion of the oxidation catalyst device can be increased. This is advantageous in increasing the temperature outside the radial direction of the exhaust gas that has passed through the oxidation catalyst device, and can increase the temperature outside the radial direction of the downstream particulate collection device. In connection with this, PM which flows in the radial direction outer side of particulate collection device can be removed reliably.

本発明の第1実施形態の内燃機関の排気ガス浄化システムの構成を示す図である。It is a figure showing composition of an exhaust-gas purification system of an internal-combustion engine of a 1st embodiment of the present invention. 図1の酸化触媒装置の構成を示す図である。It is a figure which shows the structure of the oxidation catalyst apparatus of FIG. 図1の酸化触媒装置の内部の酸化触媒の担持状態を示す図である。It is a figure which shows the carrying | support state of the oxidation catalyst inside the oxidation catalyst apparatus of FIG. 図1の微粒子捕集装置の構成を示す図である。It is a figure which shows the structure of the particulate collection apparatus of FIG. 微粒子捕集装置の入口断面の中心から径方向への距離と微粒子捕集装置に流入する排気ガスの温度との関係である径方向温度分布線を示す図である。It is a figure which shows the radial direction temperature distribution line which is the relationship between the distance to the radial direction from the center of the inlet cross section of a particulate collection device, and the temperature of the exhaust gas which flows into a particulate collection device. 本発明の微粒子捕集装置の内部のアッシュの堆積状態を示す図である。It is a figure which shows the accumulation state of the ash inside the particulate collection apparatus of this invention. 従来技術の微粒子捕集装置の内部のアッシュの堆積状態を示す図である。It is a figure which shows the accumulation state of the ash inside the particulate collection device of a prior art. 第2実施形態の内燃機関の排気ガス浄化システムの酸化触媒装置の内部の酸化触媒の担持状態を示す図である。It is a figure which shows the carrying | support state of the oxidation catalyst inside the oxidation catalyst apparatus of the exhaust gas purification system of the internal combustion engine of 2nd Embodiment. 第3実施形態の内燃機関の排気ガス浄化システムの酸化触媒装置の内部の酸化触媒の担持状態を示す図である。It is a figure which shows the carrying | support state of the oxidation catalyst inside the oxidation catalyst apparatus of the exhaust gas purification system of the internal combustion engine of 3rd Embodiment.

以下、本発明に係る実施形態の内燃機関の排気ガス浄化システムについて、図面を参照しながら説明する。   Hereinafter, an exhaust gas purification system for an internal combustion engine according to an embodiment of the present invention will be described with reference to the drawings.

図1に示すように、第1実施形態の排気ガス浄化システム1には、エンジン2の排気管10に上流側より順に備えた酸化触媒装置11、微粒子捕集装置12が配設される。   As shown in FIG. 1, the exhaust gas purification system 1 of the first embodiment is provided with an oxidation catalyst device 11 and a particulate collection device 12 that are sequentially provided in the exhaust pipe 10 of the engine 2 from the upstream side.

酸化触媒装置11は、ハニカム構造を形成する基材に、排気ガスGの炭化水素(HC)や一酸化炭素(CO)等を酸化する貴金属触媒(酸化触媒)が担持されて構成される。貴金属触媒としては、炭化水素を水と二酸化炭素に、一酸化炭素を二酸化炭素にそれぞれ酸化する白金(Pt)系の触媒が好ましい。   The oxidation catalyst device 11 is configured by supporting a noble metal catalyst (oxidation catalyst) that oxidizes hydrocarbons (HC), carbon monoxide (CO), and the like of the exhaust gas G on a base material that forms a honeycomb structure. The noble metal catalyst is preferably a platinum (Pt) catalyst that oxidizes hydrocarbons to water and carbon dioxide and carbon monoxide to carbon dioxide.

この貴金属触媒による炭化水素及び一酸化炭素の酸化反応は発熱反応であるので、この発熱により排気ガスGは昇温する。これを利用して、微粒子捕集装置12の強制PM再生制御時等、高温の排気ガスGが必要となるときには、酸化触媒装置11より上流側の排気通路10を通過する排気ガスGに含まれる炭化水素の量を一時的に増加させて、この増加分の炭化水素を酸化触媒装置11で酸化させることで、排気ガスGを高温化している。   Since the oxidation reaction of hydrocarbon and carbon monoxide by the noble metal catalyst is an exothermic reaction, the temperature of the exhaust gas G rises due to this exotherm. Utilizing this, when high temperature exhaust gas G is required, such as during forced PM regeneration control of the particulate collection device 12, it is included in the exhaust gas G passing through the exhaust passage 10 upstream of the oxidation catalyst device 11. The exhaust gas G is heated to a high temperature by temporarily increasing the amount of hydrocarbons and oxidizing the increased amount of hydrocarbons in the oxidation catalyst device 11.

なお、炭化水素の量を一時的に増加させる方法としては、例えば、エンジン2の気筒(シリンダ)2a内で燃料のポスト噴射を行う方法や、酸化触媒装置11より上流側の排気通路10に燃料噴射装置(図示しない)を備えて、この燃料噴射装置から燃料を噴射する方法がある。   As a method of temporarily increasing the amount of hydrocarbons, for example, a method of performing post-injection of fuel in a cylinder (cylinder) 2a of the engine 2 or a fuel in the exhaust passage 10 upstream of the oxidation catalyst device 11 is used. There is a method of injecting fuel from the fuel injection device provided with an injection device (not shown).

また、図2に示すように、酸化触媒装置11は、中央部11Bと外周部11Aとを有している。中央部11Bは、基材が円柱状に形成されており、排気管10の径方向中央で流れ方向に延在している。外周部11Aは、基材が円環体に形成されており、径方向外側で流れ方向に延在している。この外周部11Aに流入する排気ガスGaの温度は、中央部11Bを通過する排気ガスGbの温度より低くなる。排気管10を流れる排気ガスGは、排気管10の断面中心(図2では入口断面の中心を11Mとしている)から径方向外側(外壁11P側)に向うにつれて速度が低くなり(速度分布が生じ)、また、排気管10の外周から外部への放熱があるからである。   As shown in FIG. 2, the oxidation catalyst device 11 has a central portion 11B and an outer peripheral portion 11A. In the central portion 11B, the base material is formed in a columnar shape, and extends in the flow direction at the radial center of the exhaust pipe 10. 11 A of outer peripheral parts are formed in the torus in the base material, and are extended in the flow direction on the radial direction outer side. The temperature of the exhaust gas Ga flowing into the outer peripheral portion 11A is lower than the temperature of the exhaust gas Gb passing through the central portion 11B. The exhaust gas G flowing through the exhaust pipe 10 decreases in speed from the center of the cross section of the exhaust pipe 10 (the center of the inlet cross section is 11M in FIG. 2) toward the radially outer side (outer wall 11P side) (a speed distribution is generated). This is because there is heat radiation from the outer periphery of the exhaust pipe 10 to the outside.

第1実施形態の排気ガス浄化システム1が備える酸化触媒装置11は、図3に示すように、外周部11Aの貴金属触媒の担持量が中央部11Bの貴金属触媒の担持量よりも多いことを特徴とする。なお、図3では、貴金属触媒の量の相違をハッチングの間隔の相違により示している(ハッチングの間隔が短い:貴金属触媒の量が多い(外周部)、ハッチングの間隔が長い:貴金属触媒の量が少ない(中央部))。   As shown in FIG. 3, the oxidation catalyst device 11 provided in the exhaust gas purification system 1 of the first embodiment is characterized in that the amount of the noble metal catalyst supported on the outer peripheral portion 11A is larger than the amount of the noble metal catalyst supported on the central portion 11B. And In FIG. 3, the difference in the amount of the noble metal catalyst is shown by the difference in the hatching interval (short hatching interval: a large amount of the noble metal catalyst (peripheral portion), and a long hatching interval: the amount of the noble metal catalyst. There are few (central part).

このように構成することで、酸化触媒装置11の外周部11Aでの発熱量を増加できるので、外周部11Aを通過して下流側の微粒子捕集装置12に流入する排気ガスGaの温度を上昇させることができる。   With this configuration, the amount of heat generated at the outer peripheral portion 11A of the oxidation catalyst device 11 can be increased, so that the temperature of the exhaust gas Ga flowing through the outer peripheral portion 11A and flowing into the downstream particulate collection device 12 is increased. Can be made.

ここで、微粒子捕集装置12(図4参照)について説明する。微粒子捕集装置12は、その内部にフィルタを備えて構成される。このフィルタは、多孔質のセラミックのハニカムのセル(チャンネル)の入口と出口を交互に目封じしたモノリスハニカム型ウォールフロータイプのフィルタである。   Here, the particulate collection device 12 (see FIG. 4) will be described. The particulate collection device 12 includes a filter therein. This filter is a monolith honeycomb wall flow type filter in which the inlets and outlets of cells (channels) of a porous ceramic honeycomb are alternately plugged.

本発明の第1実施形態では、酸化触媒装置11の直径と微粒子捕集装置12の直径とを等しくし、同一軸線上に配置した酸化触媒装置11と微粒子捕集装置12とを単一の排気管10に収納している。酸化触媒装置11と微粒子捕集装置12とが収納される排気管10は、流れ方向中途の位置で縮径、拡径しない円管である。排気管10の内径は酸化触媒装置11及び微粒子捕集装置12の外径に等しい。   In the first embodiment of the present invention, the diameter of the oxidation catalyst device 11 and the diameter of the particulate collection device 12 are made equal, and the oxidation catalyst device 11 and the particulate collection device 12 arranged on the same axis are single exhausted. It is stored in the tube 10. The exhaust pipe 10 in which the oxidation catalyst device 11 and the particulate collection device 12 are housed is a circular tube that does not shrink or expand at a position in the middle of the flow direction. The inner diameter of the exhaust pipe 10 is equal to the outer diameter of the oxidation catalyst device 11 and the particulate collection device 12.

この微粒子捕集装置12は、図4に示すように、低温部12Aと高温部12Bとからなる。この低温部12Aと高温部12Bの区分方法については後述する。   As shown in FIG. 4, the particulate collection device 12 includes a low temperature part 12A and a high temperature part 12B. A method for classifying the low temperature portion 12A and the high temperature portion 12B will be described later.

そして、酸化触媒装置11の中央部11Bは微粒子捕集装置12の高温部12Bに対向する領域とし、酸化触媒装置11の外周部11Aは微粒子捕集装置12の低温部12Aに対向する領域とする。このように構成することで、上流側の外周部11Aでの発熱量増加により昇温した排気ガスGaにより、下流側の低温部12Aを昇温させることができるので、強制PM再生制御時における低温部12AでのPMの燃焼不良を防止することができ、また、後述するアッシュ(灰性状物質)の形態遷移(ウォールアッシュ→プラグアッシュ)を促進することができる。   The central portion 11B of the oxidation catalyst device 11 is a region facing the high temperature portion 12B of the particulate collection device 12, and the outer peripheral portion 11A of the oxidation catalyst device 11 is a region facing the low temperature portion 12A of the particulate collection device 12. . With this configuration, the temperature of the downstream low-temperature portion 12A can be raised by the exhaust gas Ga that has been heated by the increase in the amount of heat generated at the upstream outer peripheral portion 11A. It is possible to prevent defective combustion of PM in the portion 12A, and to promote ash (ash-like substance) form transition (wall ash → plug ash) described later.

微粒子捕集装置12の低温部12Aと高温部12Bの区分方法について説明する。この区分は、この内燃機関の排気ガス浄化システムで、上記の酸化触媒装置11を使用せずに、貴金属触媒の担持量を均一とした酸化触媒装置を使用した場合において、前記微粒子捕集装置の径方向温度分布を計測し、この計測結果である、図5に示す微粒子捕集装置12の径方向温度分布TLの変曲点IPに基づいて行う。この径方向温度分布TLは、微粒子捕集装置12の断面中心(例えば、入口断面中心12M)から径方向外側(外壁12P側)への距離dを横軸、微粒子捕集装置12を通過する排気ガスGの温度Tを縦軸とする分布線である。また、変曲点IP(図5に示す座標(d1、T1))は、微粒子捕集装置12の断面中心から径方向外側に向うにつれて排気ガスGの温度は低くなるが、この温度変化量が急激に大きくなる(急激に低温化する)点である。   A method of classifying the low temperature part 12A and the high temperature part 12B of the particulate collection device 12 will be described. In this exhaust gas purification system for an internal combustion engine, when the oxidation catalyst device in which the supported amount of the noble metal catalyst is made uniform without using the oxidation catalyst device 11 is used, The radial temperature distribution is measured, and the measurement result is based on the inflection point IP of the radial temperature distribution TL of the particulate collection device 12 shown in FIG. The radial temperature distribution TL is a distance d from the cross-sectional center (for example, the inlet cross-sectional center 12M) of the fine particle collecting device 12 to the radial outer side (the outer wall 12P side), and the exhaust passing through the fine particle collecting device 12. It is a distribution line with the temperature T of the gas G as the vertical axis. Further, at the inflection point IP (coordinates (d1, T1) shown in FIG. 5), the temperature of the exhaust gas G decreases from the center of the cross section of the particulate collection device 12 toward the outside in the radial direction. It is a point where it suddenly increases (decreases in temperature rapidly).

本発明の第1実施形態では、この変曲点IPから径方向外側の領域(図5に示す変曲点IPから右側の領域)を低温部12Aとし、径方向中央の領域(図5に示す変曲点IPから左側の領域)を高温部12Bとする。   In the first embodiment of the present invention, the region radially outward from the inflection point IP (region on the right side from the inflection point IP shown in FIG. 5) is the low temperature portion 12A, and the region in the radial direction (shown in FIG. 5). A region on the left side from the inflection point IP is defined as a high temperature portion 12B.

このようにすることで、微粒子捕集装置12の内部で特に低温の領域である低温部12Aを、酸化触媒装置11の外周部11Aでの発熱量増加により昇温した排気ガスGaが通過するので、低温部12Aを確実に昇温して、微粒子捕集装置12の低温部12Aと高温部12Bの温度差の拡大を高効率かつ低コストで抑制することができる。   By doing in this way, since the exhaust gas Ga heated by the calorific value increase in the outer peripheral portion 11A of the oxidation catalyst device 11 passes through the low temperature portion 12A, which is a particularly low temperature region, inside the particulate collection device 12. Thus, the temperature of the low temperature part 12A can be reliably raised, and the expansion of the temperature difference between the low temperature part 12A and the high temperature part 12B of the particulate collection device 12 can be suppressed with high efficiency and low cost.

ここで、微粒子捕集装置12の内部に堆積するアッシュについて説明する。微粒子捕集装置12には、排気ガスGに含まれるPMの他にアッシュが堆積する。このアッシュには、プラグアッシュPAとウォ−ルアッシュWAの2種類がある。プラグアッシュPAは、微粒子捕集装置12の下流側の目封じ部分に栓をする形で堆積するアッシュである。ウォールアッシュWAは、PM捕集用の壁の表面に一様に堆積するアッシュである。   Here, the ash deposited inside the particulate collection device 12 will be described. In addition to the PM contained in the exhaust gas G, ash is deposited on the particulate collection device 12. There are two types of ash, plug ash PA and wall ash WA. The plug ash PA is an ash that accumulates in the form of plugging the plugged portion on the downstream side of the particulate collection device 12. The wall ash WA is an ash that is uniformly deposited on the surface of the wall for collecting PM.

図7に示すように、排気ガスGが微粒子捕集装置12を通過すると、PM捕集用の壁12c(12ca、12cb、12cc)に、排気ガスGに含まれるPM(微粒子状物質:図示しない)とアッシュ(灰性状物質)が堆積する。アッシュは、PM捕集用の壁12cの表面に一様に堆積する形(ウォールアッシュWA:斜線部分)で最初は堆積する。   As shown in FIG. 7, when the exhaust gas G passes through the particulate collection device 12, PM (particulate matter: not shown) contained in the exhaust gas G is placed on the PM collection wall 12c (12ca, 12cb, 12cc). ) And ash (ash-like substance) accumulate. The ash is initially deposited in a form that uniformly accumulates on the surface of the wall 12c for collecting PM (wall ash WA: shaded portion).

そして、微粒子捕集装置12の強制PM再生制御時に、排気ガスGbが微粒子捕集装置12の高温部12Bを通過すると、高温化した排気ガスGbにより、ウォールアッシュWAを構成するアッシュ粒子が凝集して、より粒子径の大きいウォールアッシュ粒子になるとともに、この大径化したウォールアッシュWAが微粒子捕集装置12の下流側に流されて目封じ部分12aaに栓をする形(プラグアッシュPA:クロスハッチング(DX)部分)で堆積する。なお、図7では、出口側を目封じしているセルを12Ba、入口側を目封じ(目封じ部分12bb)しているセルを12Bbとしている。   When the exhaust gas Gb passes through the high temperature portion 12B of the particulate collection device 12 during forced PM regeneration control of the particulate collection device 12, the ash particles constituting the wall ash WA are aggregated by the heated exhaust gas Gb. Thus, the wall ash particles having a larger particle diameter are formed, and the increased wall ash WA is flowed downstream of the fine particle collecting device 12 to plug the plugged portion 12aa (plug ash PA: cross) Hatch (DX) part). In FIG. 7, the cell sealing the outlet side is 12Ba, and the cell sealing the inlet side (sealing portion 12bb) is 12Bb.

一方、上記の酸化触媒装置11を使用せずに、貴金属触媒の担持量を均一とした酸化触媒装置を使用した場合においては、微粒子捕集装置12の強制PM再生制御時に、排気ガスGaが微粒子捕集装置12の低温部12Aを通過すると、排気ガスGaの温度は高温部12Bを通過する排気ガスGより低温であるので、ウォールアッシュWAを構成するアッシュ粒子の凝集が進行せず、一部はプラグアッシュPAに変遷するが、大半はウォールアッシュWAのまま残存して、排気ガスGaの流通の妨げになる。なお、図7では、出口側を目封じしているセルを12Aa、入口側を目封じしているセルを12Abとしている。   On the other hand, when the oxidation catalyst device in which the supported amount of the noble metal catalyst is made uniform without using the oxidation catalyst device 11 described above, the exhaust gas Ga is fine particles during the forced PM regeneration control of the fine particle collecting device 12. When passing through the low temperature part 12A of the collection device 12, the temperature of the exhaust gas Ga is lower than the temperature of the exhaust gas G passing through the high temperature part 12B, so that the aggregation of ash particles constituting the wall ash WA does not proceed and partly Changes to plug ash PA, but most remains as wall ash WA, hindering the flow of exhaust gas Ga. In FIG. 7, the cell sealing the outlet side is 12Aa, and the cell sealing the inlet side is 12Ab.

その結果、微粒子捕集装置12の強制PM再生制御が行われる度に、低温部12Aより高温部12Bに流れる排気ガスGの量が増加するため、高温部12Bと低温部12Aの温度差が拡大していく。そのため、低温部12Aでは、ますますウォールアッシュWAのまま残存するようになる。   As a result, the amount of exhaust gas G flowing from the low temperature portion 12A to the high temperature portion 12B increases every time the forced PM regeneration control of the particulate collection device 12 is performed, so the temperature difference between the high temperature portion 12B and the low temperature portion 12A increases. I will do it. Therefore, in the low temperature part 12A, the wall ash WA remains more and more.

それに対して、本発明では、酸化触媒装置11の外周部11Aでの発熱量増加により、下流側の微粒子捕集装置12の低温部12Aを昇温するので、図6に示すように、低温部12Aに残存したウォールアッシュWAもプラグアッシュPA(図6のΔDX部分)に変遷するようになる。その結果、低温部12Aを流れる排気ガスGaの量と高温部12Bを流れる排気ガスGbの量の差は殆ど変化しないため、低温部12Aと高温部12Bの温度差の拡大を抑制することができる。   On the other hand, in the present invention, the temperature of the low-temperature part 12A of the downstream particulate collection device 12 is raised by the increase in the amount of heat generated at the outer peripheral part 11A of the oxidation catalyst device 11, so that the low-temperature part as shown in FIG. Wall ash WA remaining in 12A also changes to plug ash PA (ΔDX portion in FIG. 6). As a result, the difference between the amount of the exhaust gas Ga flowing through the low temperature part 12A and the amount of the exhaust gas Gb flowing through the high temperature part 12B hardly changes, so that the expansion of the temperature difference between the low temperature part 12A and the high temperature part 12B can be suppressed. .

次に、本発明の第2実施形態の排気ガス浄化システム1Aについて図8を参照しながら説明する。この排気ガス浄化システム1Aは、酸化触媒装置11の外周部11Aに担持される貴金属触媒の量の分布を除いて、図1及び図2に示す排気ガス浄化システム1と同じ構成である。   Next, an exhaust gas purification system 1A according to a second embodiment of the present invention will be described with reference to FIG. The exhaust gas purification system 1A has the same configuration as the exhaust gas purification system 1 shown in FIGS. 1 and 2 except for the distribution of the amount of the noble metal catalyst supported on the outer peripheral portion 11A of the oxidation catalyst device 11.

より具体的には、排気ガス浄化システム1Aでは、酸化触媒装置11の外周部11Aに担持される貴金属触媒の量を、径方向温度分布TLにしたがって変化させる。触媒の量を、酸化触媒装置11の入口断面の中心から径方向外側への距離dが大きくなるにつれて、多くする。なお、図8では、図3と同様に、貴金属触媒の量の相違をハッチングの間隔の相違により示している(ハッチングの間隔が短い:貴金属触媒の量が多い、ハッチングの間隔が長い:貴金属触媒の量が少ない)。   More specifically, in the exhaust gas purification system 1A, the amount of the noble metal catalyst supported on the outer peripheral portion 11A of the oxidation catalyst device 11 is changed according to the radial temperature distribution TL. The amount of the catalyst is increased as the distance d from the center of the inlet cross section of the oxidation catalyst device 11 to the radially outer side increases. In FIG. 8, as in FIG. 3, the difference in the amount of the noble metal catalyst is indicated by the difference in the hatching interval (short hatching interval: large amount of noble metal catalyst, long hatching interval: noble metal catalyst. Less).

この構成によれば、上記の第1の実施の形態の内燃機関の排気ガス浄化システム1と同様に、微粒子捕集装置12の内部の温度差を狭くすることができるとともに、さらに、次のような作用効果を奏することができる。   According to this configuration, as in the exhaust gas purification system 1 for the internal combustion engine of the first embodiment, the temperature difference inside the particulate collection device 12 can be reduced, and further, as follows. It is possible to achieve various effects.

すなわち、酸化触媒装置11の外周部11Aの各セルの発熱量を、微粒子捕集装置12の入口断面の中心から径方向外側への距離dが大きくなるにつれて徐々に大きくするので、酸化触媒装置11の外周部11Aに担持させる貴金属触媒の量を最適化しつつ、酸化触媒装置11の外周端部(排気管10の外壁)に近いセルの発熱量を確保することができる。   That is, since the calorific value of each cell of the outer peripheral portion 11A of the oxidation catalyst device 11 is gradually increased as the distance d from the center of the inlet cross section of the particulate collection device 12 to the radially outer side is increased, the oxidation catalyst device 11 is increased. While optimizing the amount of the noble metal catalyst supported on the outer peripheral portion 11A, the calorific value of the cell near the outer peripheral end portion (the outer wall of the exhaust pipe 10) of the oxidation catalyst device 11 can be secured.

その結果、微粒子捕集装置12の外周端部に近く、微粒子捕集装置12の外部への放熱量の大きいセルに十分な熱量を供給することができるので、微粒子捕集装置12の外周端部付近の温度低下を抑制することができる。   As a result, a sufficient amount of heat can be supplied to the cell that is close to the outer peripheral end of the particle collecting device 12 and has a large amount of heat released to the outside of the particle collecting device 12, so that the outer edge of the particle collecting device 12 The temperature drop in the vicinity can be suppressed.

次に、本発明の第3実施形態の排気ガス浄化システム1Bについて図9を参照しながら説明する。この排気ガス浄化システム1Bは、酸化触媒装置11の外周部11Aに担持される貴金属触媒の量の分布を除いて、図1及び図2に示す排気ガス浄化システム1と同じ構成である。   Next, an exhaust gas purification system 1B according to a third embodiment of the present invention will be described with reference to FIG. The exhaust gas purification system 1B has the same configuration as the exhaust gas purification system 1 shown in FIGS. 1 and 2 except for the distribution of the amount of the noble metal catalyst supported on the outer peripheral portion 11A of the oxidation catalyst device 11.

より具体的には、この排気ガス浄化システム1Bでは、酸化触媒装置11の外周部11Aの各セルに担持される貴金属触媒の量を、流れ方向に変化させる。触媒の量を、酸化触媒装置11の入口から出口に向かうにつれて少なくする。なお、図9では、図3と同様に、貴金属触媒の量の相違をハッチングの間隔の相違により示している(ハッチングの間隔が短い:貴金属触媒の量が多い、ハッチングの間隔が長い:貴金属触媒の量が少ない)。   More specifically, in the exhaust gas purification system 1B, the amount of the noble metal catalyst supported on each cell of the outer peripheral portion 11A of the oxidation catalyst device 11 is changed in the flow direction. The amount of the catalyst is reduced as it goes from the inlet to the outlet of the oxidation catalyst device 11. 9, as in FIG. 3, the difference in the amount of the noble metal catalyst is shown by the difference in the hatching interval (short hatching interval: large amount of noble metal catalyst, long hatching interval: noble metal catalyst. Less).

この構成によれば、上記の第1の実施の形態の内燃機関の排気ガス浄化システム1と同様に、微粒子捕集装置12の内部の温度差を狭くすることができるとともに、さらに、次のような作用効果を奏することができる。   According to this configuration, as in the exhaust gas purification system 1 for the internal combustion engine of the first embodiment, the temperature difference inside the particulate collection device 12 can be reduced, and further, as follows. It is possible to achieve various effects.

すなわち、酸化触媒装置11に担持される貴金属触媒による排気ガスGaに含まれる炭化水素及び一酸化炭素の酸化反応が頻繁に行われる酸化触媒装置11の入口に近い位置より順に、担持させる貴金属触媒の量を少なくするので、酸化触媒装置11の発熱効率を維持しつつ、酸化触媒装置11の外周部11Aに担持させる貴金属触媒の量を最適化することができる。   That is, the noble metal catalyst to be supported in order from the position near the inlet of the oxidation catalyst device 11 where the oxidation reaction of hydrocarbons and carbon monoxide contained in the exhaust gas Ga by the noble metal catalyst supported on the oxidation catalyst device 11 is frequently performed. Since the amount is reduced, the amount of the noble metal catalyst supported on the outer peripheral portion 11A of the oxidation catalyst device 11 can be optimized while maintaining the heat generation efficiency of the oxidation catalyst device 11.

また、上記の酸化触媒装置11は、外周部11Aを構成するドーナツ型の部材と、中央部11Bを構成する円筒型の部材とを別々に製造後に、このドーナツ型の部材11Aに円筒型の部材11Bを組み付けて製造すると、工程管理が容易になるので好ましい。   In addition, the oxidation catalyst device 11 is manufactured by separately manufacturing a donut-shaped member constituting the outer peripheral portion 11A and a cylindrical member constituting the central portion 11B, and then adding the cylindrical member to the donut-shaped member 11A. It is preferable to assemble and manufacture 11B because process management becomes easy.

本発明の内燃機関の排気ガス浄化システム1、1A、1Bによれば、外周部11Aの触媒の担持量を多くするので、酸化触媒装置11の外周部11Aでの発熱量を増加できる。これにより、酸化触媒装置11を通過した排気ガスGの径方向外側の温度上昇に有利になり、下流側の微粒子捕集装置12の径方向外側の温度を上昇できる。すなわち、微粒子捕集装置12の径方向外側で捕集したPMを確実に除去することができる。   According to the exhaust gas purification systems 1, 1 </ b> A, and 1 </ b> B of the internal combustion engine of the present invention, the amount of catalyst supported on the outer peripheral portion 11 </ b> A is increased, so that the amount of heat generated at the outer peripheral portion 11 </ b> A of the oxidation catalyst device 11 can be increased. This is advantageous in increasing the temperature on the radially outer side of the exhaust gas G that has passed through the oxidation catalyst device 11, and can increase the temperature on the radially outer side of the downstream particulate collection device 12. That is, PM collected on the radially outer side of the particulate collection device 12 can be reliably removed.

なお、外周部11Aの貴金属触媒の担持量と中央部11Bの貴金属触媒の担持量との比は、強制PM再生制御時に高温部11Bと低温部11Aとの温度差がゼロに近づく、あるいはゼロになる比が好ましい。   Note that the ratio of the amount of the precious metal catalyst supported on the outer peripheral portion 11A to the amount of the precious metal catalyst supported on the central portion 11B is such that the temperature difference between the high temperature portion 11B and the low temperature portion 11A approaches zero or zero during forced PM regeneration control. The ratio is preferred.

また、外周部11Aの貴金属触媒の担持量は、強制PM再生制御時に低温部11Aが耐久温度以下になる量が好ましい。   Further, the amount of the precious metal catalyst supported on the outer peripheral portion 11A is preferably such that the low temperature portion 11A is below the endurance temperature during forced PM regeneration control.

以上により、酸化触媒装置11の全域にわたって貴金属触媒の量を多くする場合と比較して、コストを抑えつつ、微粒子捕集装置12の全域でPMを除去できると共に、微粒子捕集装置12の耐久性の向上に有利になる。   As described above, compared to the case where the amount of the noble metal catalyst is increased over the entire region of the oxidation catalyst device 11, PM can be removed in the entire region of the particle collecting device 12 while suppressing the cost, and the durability of the particle collecting device 12. It becomes advantageous for improvement.

1、1A、1B 内燃機関の排気ガス浄化システム
2 エンジン
10 排気管
11 酸化触媒装置
11A 酸化触媒装置の外周部
11B 酸化触媒装置の中央部
12 微粒子捕集装置
12A 微粒子捕集装置の低温部(外周部)
12B 微粒子捕集装置の高温部(中央部)
d 微粒子捕集装置の入口断面の中心から径方向外側への距離
T 微粒子捕集装置に流入する排気ガスの温度
TL 径方向温度分布
IP 変曲点
G 排気ガス
Ga 酸化触媒装置の外周部及び微粒子捕集装置の低温部を通過する排気ガス
Gb 酸化触媒装置の中央部及び微粒子捕集装置の高温部を通過する排気ガス
DESCRIPTION OF SYMBOLS 1, 1A, 1B Exhaust gas purification system 2 of internal combustion engine 2 Engine 10 Exhaust pipe 11 Oxidation catalyst device 11A Outer peripheral part of oxidation catalyst device 11B Central part of oxidation catalyst device 12 Fine particle collecting device 12A Low temperature part (outer periphery) Part)
12B High temperature part (center part) of particulate collection device
d Distance from the center of the inlet cross section of the particulate collection device to the radially outer side T Temperature of the exhaust gas flowing into the particulate collection device TL Radial temperature distribution IP Inflection point G Exhaust gas Ga Peripheral portion of the oxidation catalyst device and particulates Exhaust gas Gb passing through the low temperature part of the collection device Exhaust gas passing through the central part of the oxidation catalyst device and the high temperature part of the particulate collection device

Claims (2)

内燃機関の排気管に上流側より順に酸化触媒装置、微粒子捕集装置を備え、前記酸化触媒装置のハニカム構造を形成する基材に排気ガスのガス成分を酸化する酸化触媒が担持された内燃機関の排気ガス浄化システムにおいて、
前記酸化触媒装置が前記排気管の径方向中央で流れ方向に延在する中央部と、径方向外側で流れ方向に延在する環状の外周部とを有しており、
前記外周部の酸化触媒の担持量が前記中央部よりも多いことを特徴とする内燃機関の排気ガス浄化システム。
An internal combustion engine in which an exhaust catalyst of an internal combustion engine is provided with an oxidation catalyst device and a particulate collection device in order from the upstream side, and an oxidation catalyst for oxidizing a gas component of exhaust gas is supported on a base material forming a honeycomb structure of the oxidation catalyst device In the exhaust gas purification system of
The oxidation catalyst device has a central portion extending in the flow direction at the radial center of the exhaust pipe, and an annular outer peripheral portion extending in the flow direction on the radial outer side;
An exhaust gas purification system for an internal combustion engine, wherein the amount of the oxidation catalyst supported on the outer peripheral portion is larger than that of the central portion.
この内燃機関の排気ガス浄化システムで、前記酸化触媒を使用せずに貴金属触媒の担持量を均一とした酸化触媒装置を使用した場合において、前記微粒子捕集装置の径方向温度分布を計測し、この径方向温度分布の変曲点から径方向外側の領域を前記微粒子捕集装置の低温部とし、径方向中央の領域を前記微粒子捕集装置の高温部としたときに、
前記酸化触媒装置の前記中央部を前記微粒子捕集装置の前記高温部に対向する領域とし、前記酸化触媒装置の外周部を前記微粒子捕集装置の前記低温部に対向する領域とすることを特徴とする請求項1に記載の内燃機関の排気ガス浄化システム。
In the exhaust gas purification system of the internal combustion engine, when using an oxidation catalyst device in which the supported amount of the noble metal catalyst is uniform without using the oxidation catalyst, the radial temperature distribution of the particulate collection device is measured, When the region outside the radial direction from the inflection point of the radial temperature distribution is the low temperature portion of the particulate collection device, and the region in the radial center is the high temperature portion of the particulate collection device,
The central portion of the oxidation catalyst device is a region facing the high temperature portion of the particulate collection device, and the outer peripheral portion of the oxidation catalyst device is a region facing the low temperature portion of the particulate collection device. The exhaust gas purification system for an internal combustion engine according to claim 1.
JP2016212807A 2016-10-31 2016-10-31 Exhaust emission control system for internal combustion engine Pending JP2018071455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016212807A JP2018071455A (en) 2016-10-31 2016-10-31 Exhaust emission control system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016212807A JP2018071455A (en) 2016-10-31 2016-10-31 Exhaust emission control system for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2018071455A true JP2018071455A (en) 2018-05-10

Family

ID=62114742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016212807A Pending JP2018071455A (en) 2016-10-31 2016-10-31 Exhaust emission control system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2018071455A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110489863A (en) * 2019-08-20 2019-11-22 成立航空技术有限公司 The determination method of aero-engine primary combustor chamber exit temperature field index

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110489863A (en) * 2019-08-20 2019-11-22 成立航空技术有限公司 The determination method of aero-engine primary combustor chamber exit temperature field index

Similar Documents

Publication Publication Date Title
US8691724B2 (en) Prevention of face-plugging on aftertreatment devices in exhaust
US8440155B2 (en) Flow modulating substrates for early light-off
JP6024694B2 (en) Exhaust gas purification system for an internal combustion engine with a supercharger
US10557398B2 (en) Exhaust pipe structure for internal combustion engine
CN112682138B (en) Motor vehicle exhaust converter with non-uniformly arranged microchannels and manufacturing method thereof
JP2018071455A (en) Exhaust emission control system for internal combustion engine
JP5856641B2 (en) Exhaust gas purification device
JP2010242643A (en) Exhaust emission control device
JP2012140964A (en) Exhaust gas purifier
JP6969522B2 (en) Exhaust purification device for internal combustion engine
JP6500422B2 (en) Exhaust gas purification device
JP2018178882A (en) Exhaust post-treatment device
JP6306428B2 (en) Exhaust purification device
JP2012013059A (en) Exhaust gas cleaning device
JP5112815B2 (en) Exhaust purification device
JP6454067B2 (en) Exhaust purification device
JP2011064068A (en) Exhaust emission control device
JP6168304B2 (en) Engine exhaust gas purification device
JP2005315141A (en) Exhaust emission control device
JP6790728B2 (en) Exhaust gas purification system for internal combustion engine
JP2006257920A (en) Exhaust emission control device
JP2015098796A (en) Exhaust gas emission control system for internal combustion engine
US7753978B2 (en) Filter system
JP2010222981A (en) Exhaust emission control device
KR100836369B1 (en) the inlet pipe structure of catalyzed particulate filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210112