JP2011064068A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2011064068A
JP2011064068A JP2009212662A JP2009212662A JP2011064068A JP 2011064068 A JP2011064068 A JP 2011064068A JP 2009212662 A JP2009212662 A JP 2009212662A JP 2009212662 A JP2009212662 A JP 2009212662A JP 2011064068 A JP2011064068 A JP 2011064068A
Authority
JP
Japan
Prior art keywords
exhaust
exhaust gas
inlet pipe
inlet
oxidation catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009212662A
Other languages
Japanese (ja)
Other versions
JP5553562B2 (en
Inventor
Kuniharu Tobe
邦治 戸部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2009212662A priority Critical patent/JP5553562B2/en
Publication of JP2011064068A publication Critical patent/JP2011064068A/en
Application granted granted Critical
Publication of JP5553562B2 publication Critical patent/JP5553562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent clogging of an exhaust emission control catalyst by improving a flow of exhaust gas introduced to the exhaust emission control catalyst such as an oxidation catalyst while maintaining the compactization of a casing. <P>SOLUTION: An exhaust emission control device accommodates an oxidation catalyst 2 (exhaust emission control catalyst to pass exhaust gas therethrough for purification) in a casing 4 at some midpoint in an exhaust pipe 3, forces an inlet pipe 6 containing a plurality of air diffusing holes 8 to be inserted from a direction orthogonal to an axial center of the oxidation catalyst 2 with respect to an inlet chamber 5 defined at an inlet side of the oxidation catalyst 2 in the casing 4, and diffuses exhaust gas 7 introduced from an exhaust pipe on the upstream side through the inlet pipe 6 in the inlet chamber 5 through the medium of respective air diffusing holes 8, wherein air diffusing holes 8 are limitedly opened only on a side facing to the oxidation catalyst 2 of the inlet pipe 6 and the number of air diffusing holes 8 on a tip side of the inlet pipe 6 are reduced as compared with that in a midway part. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device.

ディーゼルエンジンから排出されるパティキュレート(Particulate Matter:粒子状物質)は、炭素質から成る煤分と、高沸点炭化水素成分から成るSOF分(Soluble Organic Fraction:可溶性有機成分)とを主成分とし、更に微量のサルフェート(ミスト状硫酸成分)を含んだ組成を成すものであるが、この種のパティキュレートの低減対策としては、排気ガスが流通する排気管の途中に、パティキュレートフィルタを装備することが従来より行われている。   Particulate matter (particulate matter) discharged from diesel engines is mainly composed of carbonaceous soot and SOF (Soluble Organic Fraction) consisting of high-boiling hydrocarbon components. Furthermore, the composition contains a small amount of sulfate (mist-like sulfuric acid component). As a measure to reduce this type of particulates, a particulate filter is installed in the middle of the exhaust pipe through which the exhaust gas flows. Has been performed conventionally.

前記パティキュレートフィルタは、コージェライト等のセラミックから成る多孔質のハニカム構造となっており、格子状に区画された各流路の入口が交互に目封じされ、入口が目封じされていない流路については、その出口が目封じされるようになっており、各流路を区画する多孔質薄壁を透過した排気ガスのみが下流側へ排出されるようにしてある。   The particulate filter has a porous honeycomb structure made of a ceramic such as cordierite, and the inlets of the respective channels partitioned in a lattice shape are alternately sealed, and the channels are not sealed. The outlet is sealed, and only the exhaust gas that has permeated through the porous thin wall that defines each flow path is discharged downstream.

そして、排気ガス中のパティキュレートは、前記多孔質薄壁の内側表面に捕集されて堆積するので、目詰まりにより排気抵抗が増加しないうちにパティキュレートを適宜に燃焼除去してパティキュレートフィルタの再生を図る必要があるが、通常のディーゼルエンジンの運転状態においては、パティキュレートが自己燃焼するほどの高い排気温度が得られる機会が少ない為、酸化触媒を一体的に担持させた触媒再生型のパティキュレートフィルタの採用が検討されている。   Then, the particulates in the exhaust gas are collected and deposited on the inner surface of the porous thin wall, so that the particulates are appropriately burned and removed before the exhaust resistance increases due to clogging. It is necessary to regenerate, but in normal diesel engine operation conditions, there are few opportunities to obtain exhaust temperatures that are high enough for particulates to self-combust, so a catalyst regeneration type that integrally supports an oxidation catalyst. Adoption of a particulate filter is being studied.

即ち、このような触媒再生型のパティキュレートフィルタを採用すれば、捕集されたパティキュレートの酸化反応が促進されて着火温度が低下し、従来より低い排気温度でもパティキュレートを燃焼除去することが可能となる。   That is, if such a catalyst regeneration type particulate filter is employed, the oxidation reaction of the collected particulates is promoted to lower the ignition temperature, and the particulates can be burned and removed even at an exhaust temperature lower than the conventional one. It becomes possible.

ただし、斯かる触媒再生型のパティキュレートフィルタを採用した場合であっても、排気温度の低い運転領域では、パティキュレートの処理量よりも捕集量が上まわってしまうので、このような低い排気温度での運転状態が続くと、パティキュレートフィルタの再生が良好に進まずに該パティキュレートフィルタが過捕集状態に陥る虞れがある。   However, even when such a catalyst regeneration type particulate filter is used, the trapped amount exceeds the particulate processing amount in the operation region where the exhaust temperature is low, so such a low exhaust gas. If the operation state at the temperature continues, there is a possibility that the particulate filter will fall into an over trapped state without the regeneration of the particulate filter proceeding well.

そこで、パティキュレートフィルタの前段に、フロースルー型の酸化触媒を別途配置し、パティキュレートの堆積量が増加してきた段階で前記酸化触媒より上流側の排気ガス中に燃料を添加してパティキュレートフィルタの強制再生を行うことが考えられている。   Therefore, a flow-through type oxidation catalyst is separately arranged in front of the particulate filter, and fuel is added to the exhaust gas upstream of the oxidation catalyst at the stage where the amount of particulate accumulation has increased. It is considered to perform forced regeneration.

つまり、パティキュレートフィルタより上流側で添加された燃料(HC)が前段の酸化触媒を通過する間に酸化反応し、その反応熱で昇温した排気ガスの流入により直後のパティキュレートフィルタの触媒床温度が上げられてパティキュレートが燃やし尽くされ、パティキュレートフィルタの再生化が図られることになる。   That is, the fuel (HC) added on the upstream side of the particulate filter undergoes an oxidation reaction while passing through the preceding oxidation catalyst, and the catalyst bed of the particulate filter immediately after the inflow of exhaust gas heated by the reaction heat. The temperature is raised, the particulates are burned out, and the particulate filter is regenerated.

この種の燃料添加を実行するための具体的手段としては、圧縮上死点付近で行われる燃料のメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射を追加することで排気ガス中に燃料を添加すれば良い。   As a specific means for executing this kind of fuel addition, post-injection is added at the timing of non-ignition later than the compression top dead center following the main injection of fuel performed near the compression top dead center. What is necessary is just to add a fuel in gas.

図3に示す如く、このようなパティキュレートフィルタ1を前段の酸化触媒2と一緒に排気管3の途中に装備するにあたっては、該排気管3の途中に介装したケーシング4内に、前段の酸化触媒2とパティキュレートフィルタ1とを直列に配置して収容せしめ、ケーシング4内における酸化触媒2の入側に画成された入口室5に対し、入口パイプ6を挿入して排気ガス7を導くことになるが、ここに図示している通り、車両の装備品(架装品)とのレイアウト上の関係などから入口パイプ6を酸化触媒2の軸心方向(図3中の左右方向)と直交する向きから入口室5に挿入せざるを得ない場合がある。   As shown in FIG. 3, when such a particulate filter 1 is installed in the middle of the exhaust pipe 3 together with the oxidation catalyst 2 in the previous stage, the preceding stage is placed in a casing 4 interposed in the middle of the exhaust pipe 3. The oxidation catalyst 2 and the particulate filter 1 are arranged and accommodated in series, and the inlet pipe 6 is inserted into the inlet chamber 5 defined on the inlet side of the oxidation catalyst 2 in the casing 4 to introduce the exhaust gas 7. As shown in the drawing, the inlet pipe 6 is connected to the axial direction of the oxidation catalyst 2 in the axial direction (left-right direction in FIG. 3) due to the layout relationship with the vehicle equipment (mounting parts). May be forced to be inserted into the entrance chamber 5 from a direction orthogonal to the direction.

このような場合、従来においては、前記入口パイプ6の入口室5内に入り込んだ部位全体に散気孔8を開口するようにしており、上流側の排気管3から導いた排気ガス7が入口パイプ6の各散気孔8を介し拡散されて酸化触媒2の入側端面に導かれるようになっている。   In such a case, conventionally, the diffuser hole 8 is opened in the entire portion of the inlet pipe 6 that has entered the inlet chamber 5, and the exhaust gas 7 introduced from the upstream exhaust pipe 3 is supplied to the inlet pipe 6. 6 is diffused through each air diffusion hole 8 and led to the inlet side end face of the oxidation catalyst 2.

尚、このような排気浄化触媒の軸心方向と直交する向きから入口パイプを挿入して排気ガスの導入を行う構造について技術開示した先行技術文献情報としては、例えば、下記の特許文献1等がある。   In addition, as prior art document information that technically discloses such a structure that introduces an exhaust gas by inserting an inlet pipe from a direction orthogonal to the axial center direction of the exhaust purification catalyst, for example, the following Patent Document 1 is disclosed. is there.

特開2003−74335号公報JP 2003-74335 A

しかしながら、図3の如き従来構造においては、入口パイプ6の中を通る排気ガス7の流れがケーシング4の周面に突き当たる先端側で圧力が高くなり、図4に示すように、排気ガス7の多くが先端側の散気孔8から吹き出し、しかも、その多くが吹き出し直後にケーシング4の円筒状の周面に突き当たって該周面の円周方向に向かう流れが形成され易いため、酸化触媒2の入側端面に対し排気ガス7の流れが斜めに吹き付ける結果、前記酸化触媒2の入側端面に煤が付着し易くなるという不具合があった。   However, in the conventional structure as shown in FIG. 3, the pressure increases at the tip side where the flow of the exhaust gas 7 passing through the inlet pipe 6 hits the peripheral surface of the casing 4, and as shown in FIG. Many of them blow out from the air diffusion holes 8 on the front end side, and many of them abut against the cylindrical circumferential surface of the casing 4 immediately after blowing out, so that a flow in the circumferential direction of the circumferential surface is easily formed. As a result of the flow of the exhaust gas 7 being obliquely blown against the inlet side end face, there was a problem that soot easily adheres to the inlet side end face of the oxidation catalyst 2.

即ち、図5に酸化触媒2の入側端面付近を模式的な断面図で示している通り、酸化触媒2の入側端面に対し排気ガス7が斜めに吹き付けると、その各流路の入口において渦9が発生し、この渦9の発生する部位が実質的な排気ガス7の流れの澱み場所となって、ここに煤が付着堆積することで目詰まりが起こり易くなるという問題があった。   That is, as shown in FIG. 5 in the schematic cross-sectional view of the vicinity of the inlet side end surface of the oxidation catalyst 2, when the exhaust gas 7 is blown obliquely toward the inlet side end surface of the oxidation catalyst 2, There is a problem that a vortex 9 is generated, and a portion where the vortex 9 is generated becomes a substantial stagnation place of the flow of the exhaust gas 7, and clogging is likely to occur due to deposition and deposition of soot here.

また、先に提示した特許文献1には、入口パイプの散気孔(連通開口)を排気浄化触媒とは反対側に向けて開口した構造が提案されているが、本発明者が検証したところでは、このような構造の場合、入口パイプの散気孔(連通開口)から吹き出した排気ガスがケーシングの端面に突き当たって反転してから排気浄化触媒に向かう流れとなるため、該排気浄化触媒の入側端面に対し排気ガスの流れが斜めに吹き付け易く、前述の如き煤の付着堆積による目詰まりを抑制する効果は少ないことが確認されている。   In addition, Patent Document 1 presented earlier proposes a structure in which a diffuser hole (communication opening) of the inlet pipe is opened toward the side opposite to the exhaust purification catalyst. In such a structure, the exhaust gas blown out from the diffuser hole (communication opening) of the inlet pipe hits the end surface of the casing and reverses, and then flows toward the exhaust purification catalyst. It has been confirmed that the flow of the exhaust gas is easy to blow obliquely to the end face, and that the effect of suppressing clogging due to the deposition and deposition of soot as described above is small.

即ち、ケーシングの端面に突き当たって反転した排気ガスの流れは、ケーシングの周面に沿いながら排気浄化触媒側へ流れて排気浄化触媒の入側端面に到達し、ここで一部が排気浄化触媒の外周部に流入する一方、多くは前記排気浄化触媒の入側端面に沿って分散する流れを成し、この入側端面に沿う流れが排気浄化触媒の軸心方向に対し傾斜角を持つ流れ成分を増やす結果となる。   That is, the flow of exhaust gas that has been reversed against the end surface of the casing flows to the exhaust purification catalyst side along the peripheral surface of the casing and reaches the inlet side end surface of the exhaust purification catalyst. While flowing into the outer peripheral portion, most of the flow forms a flow that disperses along the inlet side end surface of the exhaust purification catalyst, and the flow component along the inlet side end surface has a tilt angle with respect to the axial direction of the exhaust purification catalyst. Result in increasing.

尚、図3において、入口パイプ6と酸化触媒2の入側端面までの距離L(図3参照)を十分に長く確保すれば、排気ガス7が酸化触媒2の軸心方向に沿う流れを形成し易くなるが、この距離Lを長く確保することはケーシング4のコンパクト化を阻む要因となり、車両への搭載性を著しく悪化させてしまうことになるため、ケーシング4のコンパクト化を保ちながら排気ガス7の流れの改善を図ることが望まれている。   In FIG. 3, if the distance L (see FIG. 3) between the inlet pipe 6 and the entrance end surface of the oxidation catalyst 2 is sufficiently long, the exhaust gas 7 forms a flow along the axial direction of the oxidation catalyst 2. However, securing this long distance L hinders the casing 4 from being made compact and significantly deteriorates the mountability on the vehicle. Therefore, the exhaust gas is maintained while keeping the casing 4 compact. It is desired to improve the flow of 7.

本発明は上述の実情に鑑みてなしたもので、ケーシングのコンパクト化を保ちながら酸化触媒等の排気浄化触媒に導入される排気ガスの流れを改善して前記排気浄化触媒の目詰まりを防止することを目的としている。   The present invention has been made in view of the above circumstances, and prevents clogging of the exhaust purification catalyst by improving the flow of exhaust gas introduced into the exhaust purification catalyst such as an oxidation catalyst while keeping the casing compact. The purpose is that.

本発明は、排気ガスを通過させて浄化する排気浄化触媒を排気管途中のケーシング内に収容し、該ケーシング内における排気浄化触媒の入側に画成された入口室に対し前記排気浄化触媒の軸心方向と直交する向きから多数の散気孔を有する入口パイプを挿入し、該入口パイプを通して上流側の排気管から導いた排気ガスを前記各散気孔を介し前記入口室内に拡散させるようにした排気浄化装置において、前記入口パイプの排気浄化触媒と対向する側にのみ限定的に散気孔を開口せしめ且つ前記入口パイプの先端側における散気孔の孔数を中途部の孔数よりも減少せしめたことを特徴とするものである。   According to the present invention, an exhaust purification catalyst that purifies by passing exhaust gas is housed in a casing in the middle of an exhaust pipe, and the exhaust purification catalyst is placed in an inlet chamber defined on the inlet side of the exhaust purification catalyst in the casing. An inlet pipe having a large number of air diffusion holes is inserted from a direction orthogonal to the axial direction, and exhaust gas guided from an upstream exhaust pipe through the inlet pipe is diffused into the inlet chamber through the air diffusion holes. In the exhaust purification device, the diffuser holes are limitedly opened only on the side of the inlet pipe facing the exhaust purification catalyst, and the number of diffuser holes on the tip side of the inlet pipe is made smaller than the number of holes in the middle part. It is characterized by this.

このようにすれば、入口パイプの全ての散気孔が排気浄化触媒と対向する側に向くことになるので、排気ガスが吹き出し直後にケーシングの円筒状の周面に突き当たって該周面の円周方向に向けて流れたり、ケーシングの端面に突き当たって該ケーシングの周面に沿い排気浄化触媒側に折り返して流れたりすることがなくなり、前記各散気孔から噴き出す排気ガスの大半が直接的に排気浄化触媒に向かう流れを形成し、排気ガスの全体の流れのうちで排気浄化触媒の軸心方向に向かう流れ成分が従来よりも大幅に増加されることになる。   In this way, since all the air diffusion holes of the inlet pipe face the side facing the exhaust purification catalyst, the exhaust gas hits the cylindrical peripheral surface of the casing immediately after blowing out, and the circumference of the peripheral surface The exhaust gas that flows out of the air diffuser is directly removed from the exhaust gas. A flow toward the catalyst is formed, and a flow component in the axial direction of the exhaust purification catalyst in the entire flow of the exhaust gas is greatly increased as compared with the conventional case.

そして、排気浄化触媒の入側端面に対し軸心方向から排気ガスが導入されると、前記排気浄化触媒の各流路の入口で渦が発生しなくなるため、ここに煤の付着堆積が起こらなくなり、仮に一時的に付着したとしても直ぐに排気ガスの流れに吹き飛ばされてしまうため、前述の如く、排気ガスの全体の流れのうちで排気浄化触媒の軸心方向に向かう流れ成分が従来よりも大幅に増加されると、各流路の入口に付着堆積した煤が成長して目詰まりを起こすような不具合が未然に回避されることになる。   When exhaust gas is introduced from the axial direction to the inlet end surface of the exhaust purification catalyst, no vortex is generated at the inlet of each flow path of the exhaust purification catalyst, so that no soot deposits occur here. However, even if temporarily attached, the exhaust gas flow is blown away immediately, and as described above, the flow component toward the axial direction of the exhaust purification catalyst is much larger than the conventional exhaust gas flow. When the number is increased, problems such as growth of clogs deposited and accumulated at the inlets of the respective channels and clogging can be avoided.

また、入口パイプの先端側における散気孔の孔数を中途部の孔数よりも減少させているので、圧力の高い入口パイプの先端側から相対的に多くの排気ガスが偏って入口室に導入する傾向が是正され、排気浄化触媒に導入される排気ガスの流れ分布が均一化されることになり、しかも、ケーシングの周面に近い入口パイプの先端側で散気孔の孔数が減ることにより、前記ケーシングの周面の円周方向に向かう流れの形成が効果的に抑制されることになる。   In addition, since the number of diffuser holes on the tip side of the inlet pipe is reduced compared to the number of holes in the middle, a relatively large amount of exhaust gas is biased from the tip side of the high pressure inlet pipe into the inlet chamber. The flow distribution of exhaust gas introduced into the exhaust purification catalyst is made uniform, and the number of diffuser holes is reduced on the tip side of the inlet pipe close to the peripheral surface of the casing. The formation of the flow toward the circumferential direction of the peripheral surface of the casing is effectively suppressed.

この際、入口パイプの先端側における散気孔が形成されている領域は、排気ガスの流れ方向に向け徐々に先細り状に縮小していることが好ましく、このようにすれば、入口パイプの先端側における散気孔の孔数を減少させるにあたり、排気浄化触媒の軸心方向に対する排気ガスの吹き出し方向のずれがより少ない散気孔が優先して残されることになる。   At this time, it is preferable that the region where the air diffusion holes are formed on the distal end side of the inlet pipe is gradually reduced in a tapered manner in the exhaust gas flow direction. In order to reduce the number of diffused holes in the exhaust gas, the diffused holes with less displacement of the exhaust gas blowing direction with respect to the axial direction of the exhaust purification catalyst are preferentially left.

上記した本発明の排気浄化装置によれば、下記の如き種々の優れた効果を奏し得る。   According to the exhaust emission control device of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1に記載の発明によれば、入口パイプと排気浄化触媒の入側端面までの間の距離を長く確保しなくても、排気ガスの全体の流れのうちで排気浄化触媒の軸心方向に向かう流れ成分を従来よりも大幅に増加することができ、しかも、排気浄化触媒に導入される排気ガスの流れ分布の均一化を図りつつケーシングの周面の円周方向に向かう流れの形成を効果的に抑制することもできるので、ケーシングのコンパクト化を保ちながら排気浄化触媒に導入される排気ガスの流れを改善して前記排気浄化触媒の目詰まりを防止することができる。   (I) According to the invention described in claim 1 of the present invention, the exhaust gas out of the entire flow of the exhaust gas without securing a long distance between the inlet pipe and the inlet side end surface of the exhaust purification catalyst. The flow component toward the axial direction of the purification catalyst can be greatly increased as compared with the prior art, and the flow direction of the exhaust gas introduced into the exhaust purification catalyst is made uniform, and the circumferential direction of the circumferential surface of the casing Therefore, it is possible to effectively prevent the clogging of the exhaust purification catalyst by improving the flow of the exhaust gas introduced into the exhaust purification catalyst while keeping the casing compact. it can.

(II)本発明の請求項2に記載の発明によれば、入口パイプの先端側における散気孔の孔数を減少させるにあたり、排気浄化触媒の軸心方向に対する排気ガスの吹き出し方向のずれがより少ない散気孔を優先して残すことができ、排気ガスの全体の流れのうちで排気浄化触媒の軸心方向に向かう流れ成分の更なる増加を図ることができる。   (II) According to the invention described in claim 2 of the present invention, in reducing the number of diffuser holes on the tip end side of the inlet pipe, the displacement of the exhaust gas blowing direction with respect to the axial direction of the exhaust purification catalyst is further increased. It is possible to preferentially leave a small number of air diffusion holes, and it is possible to further increase the flow component in the axial direction of the exhaust purification catalyst in the entire flow of the exhaust gas.

本発明を実施する形態の一例を示す断面図である。It is sectional drawing which shows an example of the form which implements this invention. 図1の入口パイプからの排気ガスの吹き出し状況を示す斜視図である。It is a perspective view which shows the blowing condition of the exhaust gas from the inlet pipe of FIG. 従来例を示す断面図である。It is sectional drawing which shows a prior art example. 図3の入口パイプからの排気ガスの吹き出し状況を示す斜視図である。It is a perspective view which shows the blowing condition of the exhaust gas from the inlet pipe of FIG. 図3の酸化触媒の入側端面付近を模式的に示す拡大図である。It is an enlarged view which shows typically the entrance side end surface vicinity of the oxidation catalyst of FIG.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1及び図2は本発明を実施する形態の一例を示すもので、先に図3〜図5で説明したものと略同様に、排気管3の途中に介装したケーシング4内に、前段の酸化触媒2(排気ガスを通過させて浄化する排気浄化触媒)とパティキュレートフィルタ1とを直列に配置し、前記ケーシング4内における酸化触媒2の入側に画成された入口室5に対し、前記酸化触媒2の軸心方向と直交する向きから多数の散気孔8を有する入口パイプ6を挿入し、該入口パイプ6を通して上流側の排気管3から導いた排気ガス7を前記各散気孔8を介し前記入口室5内に拡散させるようにしてあるが、前記入口パイプ6の酸化触媒2と対向する側にのみ限定的に散気孔8を開口せしめ且つ前記入口パイプ6の先端側における散気孔8の孔数を中途部の孔数よりも減少せしめたところを特徴としている。   FIGS. 1 and 2 show an example of an embodiment for carrying out the present invention. In the same manner as described above with reference to FIGS. 3 to 5, a front stage is provided in a casing 4 interposed in the middle of the exhaust pipe 3. An oxidation catalyst 2 (an exhaust purification catalyst that purifies by passing exhaust gas) and a particulate filter 1 are arranged in series with respect to an inlet chamber 5 defined on the inlet side of the oxidation catalyst 2 in the casing 4. An inlet pipe 6 having a large number of air diffusion holes 8 is inserted from a direction orthogonal to the axial center direction of the oxidation catalyst 2, and exhaust gas 7 guided from the upstream exhaust pipe 3 through the inlet pipe 6 is supplied to each of the air diffusion holes. 8 is diffused into the inlet chamber 5, but the diffuser holes 8 are limitedly opened only on the side of the inlet pipe 6 facing the oxidation catalyst 2, and the diffuser at the tip side of the inlet pipe 6 is diffused. The number of pores 8 is less than the number of holes in the middle It is characterized in was small allowed.

ここで、本形態例においては、入口パイプ6の先端側における散気孔8が形成されている領域を、排気ガス7の流れ方向に向け徐々に先細り状に縮小するように形成しており、入口パイプ6の先端側における散気孔8の孔数を減少させるにあたり、酸化触媒2の軸心方向に対する排気ガス7の吹き出し方向のずれがより少ない散気孔8を優先して残すようにしている。   Here, in this embodiment, the region where the air diffusion holes 8 are formed on the tip side of the inlet pipe 6 is formed so as to be gradually tapered toward the flow direction of the exhaust gas 7. In reducing the number of diffuser holes 8 on the tip end side of the pipe 6, the diffuser holes 8 with less shift in the blowing direction of the exhaust gas 7 with respect to the axial direction of the oxidation catalyst 2 are preferentially left.

而して、このように構成すれば、入口パイプ6の全て散気孔8が酸化触媒2と対向する側に向くことになるので、排気ガス7が吹き出し直後にケーシング4の円筒状の周面に突き当たって該周面の円周方向に向けて流れたり、ケーシング4の端面に突き当たって該ケーシング4の周面に沿い酸化触媒2側に折り返して流れたりすることがなくなり、前記各散気孔8から噴き出す排気ガス7の大半が直接的に酸化触媒2に向かう流れを形成し、排気ガス7の全体の流れのうちで酸化触媒2の軸心方向に向かう流れ成分が従来よりも大幅に増加されることになる。   Thus, if configured in this way, all the diffused holes 8 of the inlet pipe 6 are directed to the side facing the oxidation catalyst 2, so that the exhaust gas 7 is directed to the cylindrical peripheral surface of the casing 4 immediately after blowing out. It does not flow into the circumferential direction of the peripheral surface by abutting, or does not flow back to the oxidation catalyst 2 along the peripheral surface of the casing 4 along the peripheral surface of the casing 4. Most of the discharged exhaust gas 7 directly forms a flow toward the oxidation catalyst 2, and the flow component toward the axial center of the oxidation catalyst 2 out of the entire flow of the exhaust gas 7 is greatly increased as compared with the prior art. It will be.

そして、酸化触媒2の入側端面に対し軸心方向から排気ガス7が導入されると、前記酸化触媒2の各流路の入口で渦が発生しなくなるため、ここに煤の付着堆積が起こらなくなり、仮に一時的に付着したとしても直ぐに排気ガス7の流れに吹き飛ばされてしまうため、前述の如く、排気ガス7の全体の流れのうちで酸化触媒2の軸心方向に向かう流れ成分が従来よりも大幅に増加されると、各流路の入口に付着堆積した煤が成長して目詰まりを起こすような不具合が未然に回避されることになる。   Then, when the exhaust gas 7 is introduced from the axial direction to the entrance end surface of the oxidation catalyst 2, no vortex is generated at the inlet of each flow path of the oxidation catalyst 2, so that soot deposits occur. Even if it temporarily adheres, it is immediately blown off by the flow of the exhaust gas 7, so that the flow component toward the axial direction of the oxidation catalyst 2 in the entire flow of the exhaust gas 7 as described above is conventional. If it is significantly increased, problems such as growth of clogs deposited and accumulated at the inlets of the respective channels and clogging can be avoided.

また、入口パイプ6の先端側における散気孔8の孔数を中途部の孔数よりも減少させているので、圧力の高い入口パイプ6の先端側から相対的に多くの排気ガス7が偏って入口室に導入する傾向が是正され、酸化触媒2に導入される排気ガス7の流れ分布が均一化されることになり、しかも、ケーシング4の周面に近い入口パイプ6の先端側で散気孔8の孔数が減ることにより、前記ケーシング4の周面の円周方向に向かう流れの形成が効果的に抑制されることになる。   Further, since the number of diffuser holes 8 on the distal end side of the inlet pipe 6 is reduced as compared with the number of holes in the middle portion, a relatively large amount of exhaust gas 7 is biased from the distal end side of the inlet pipe 6 having a high pressure. The tendency to introduce the gas into the inlet chamber is corrected, the flow distribution of the exhaust gas 7 introduced into the oxidation catalyst 2 is made uniform, and the air diffusion holes are formed at the front end side of the inlet pipe 6 near the peripheral surface of the casing 4. By reducing the number of holes of 8, the formation of the flow in the circumferential direction of the peripheral surface of the casing 4 is effectively suppressed.

従って、上記形態例によれば、入口パイプ6と酸化触媒2の入側端面までの間の距離Lを長く確保しなくても、排気ガス7の全体の流れのうちで酸化触媒2の軸心方向に向かう流れ成分を従来よりも大幅に増加することができ、しかも、酸化触媒2に導入される排気ガス7の流れ分布の均一化を図りつつケーシング4の周面の円周方向に向かう流れの形成を効果的に抑制することもできるので、ケーシング4のコンパクト化を保ちながら酸化触媒2に導入される排気ガス7の流れを改善して前記酸化触媒2の目詰まりを防止することができる。   Therefore, according to the above embodiment, the axial center of the oxidation catalyst 2 in the entire flow of the exhaust gas 7 can be obtained without securing a long distance L between the inlet pipe 6 and the entry side end face of the oxidation catalyst 2. The flow component toward the direction can be significantly increased as compared with the conventional method, and the flow toward the circumferential direction of the peripheral surface of the casing 4 while achieving a uniform flow distribution of the exhaust gas 7 introduced into the oxidation catalyst 2. Therefore, the flow of the exhaust gas 7 introduced into the oxidation catalyst 2 can be improved while keeping the casing 4 compact, and the clogging of the oxidation catalyst 2 can be prevented. .

また、入口パイプ6の先端側における散気孔8の孔数を減少させるにあたり、酸化触媒2の軸心方向に対する排気ガス7の吹き出し方向のずれがより少ない散気孔8を優先して残すことができ、排気ガス7の全体の流れのうちで酸化触媒2の軸心方向に向かう流れ成分の更なる増加を図ることができる。   Further, in reducing the number of the diffuser holes 8 on the distal end side of the inlet pipe 6, it is possible to preferentially leave the diffuser holes 8 with less deviation in the blowing direction of the exhaust gas 7 with respect to the axial direction of the oxidation catalyst 2. Further, the flow component in the axial direction of the oxidation catalyst 2 in the entire flow of the exhaust gas 7 can be further increased.

尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、排気管途中のケーシング内に収容される排気浄化触媒は、必ずしもパティキュレートフィルタの前段に付帯装備される酸化触媒に限定されるものではなく、パティキュレートフィルタ自体を担体とした酸化触媒であっても良いし、NOx吸蔵還元触媒、選択還元型触媒、三元触媒等といった様々な触媒であっても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the exhaust purification apparatus of the present invention is not limited to the above-described embodiment, and the exhaust purification catalyst housed in the casing in the middle of the exhaust pipe is not necessarily oxidized in the front stage of the particulate filter. The catalyst is not limited to the catalyst, and may be an oxidation catalyst using the particulate filter itself as a carrier, or may be various catalysts such as a NOx occlusion reduction catalyst, a selective reduction catalyst, and a three-way catalyst. Of course, various modifications can be made without departing from the scope of the present invention.

2 酸化触媒(排気浄化触媒)
3 排気管
4 ケーシング
5 入口室
6 入口パイプ
7 排気ガス
8 散気孔
2 Oxidation catalyst (exhaust gas purification catalyst)
3 Exhaust pipe 4 Casing 5 Inlet chamber 6 Inlet pipe 7 Exhaust gas 8 Aeration hole

Claims (2)

排気ガスを通過させて浄化する排気浄化触媒を排気管途中のケーシング内に収容し、該ケーシング内における排気浄化触媒の入側に画成された入口室に対し前記排気浄化触媒の軸心方向と直交する向きから多数の散気孔を有する入口パイプを挿入し、該入口パイプを通して上流側の排気管から導いた排気ガスを前記各散気孔を介し前記入口室内に拡散させるようにした排気浄化装置において、前記入口パイプの排気浄化触媒と対向する側にのみ限定的に散気孔を開口せしめ且つ前記入口パイプの先端側における散気孔の孔数を中途部の孔数よりも減少せしめたことを特徴とする排気浄化装置。   An exhaust purification catalyst for purifying by passing exhaust gas is housed in a casing in the middle of the exhaust pipe, and the axial center direction of the exhaust purification catalyst with respect to an inlet chamber defined on the inlet side of the exhaust purification catalyst in the casing In an exhaust emission control device, an inlet pipe having a large number of air diffusion holes is inserted from an orthogonal direction, and exhaust gas guided from an upstream exhaust pipe through the inlet pipe is diffused into the inlet chamber through the air diffusion holes. The diffuser holes are limitedly opened only on the side of the inlet pipe facing the exhaust purification catalyst, and the number of diffuser holes on the tip side of the inlet pipe is made smaller than the number of holes in the middle part. Exhaust purification device. 入口パイプの先端側における散気孔が形成されている領域が、排気ガスの流れ方向に向け徐々に先細り状に縮小していることを特徴とする請求項1に記載の排気浄化装置。   2. The exhaust emission control device according to claim 1, wherein a region in which a diffuser hole is formed on the distal end side of the inlet pipe is gradually reduced in a tapered shape in the flow direction of the exhaust gas.
JP2009212662A 2009-09-15 2009-09-15 Exhaust purification device Active JP5553562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009212662A JP5553562B2 (en) 2009-09-15 2009-09-15 Exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009212662A JP5553562B2 (en) 2009-09-15 2009-09-15 Exhaust purification device

Publications (2)

Publication Number Publication Date
JP2011064068A true JP2011064068A (en) 2011-03-31
JP5553562B2 JP5553562B2 (en) 2014-07-16

Family

ID=43950578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009212662A Active JP5553562B2 (en) 2009-09-15 2009-09-15 Exhaust purification device

Country Status (1)

Country Link
JP (1) JP5553562B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011666A1 (en) * 2011-07-19 2013-01-24 コベルコ建機株式会社 Construction machine
WO2013011665A1 (en) * 2011-07-19 2013-01-24 コベルコ建機株式会社 Construction machine
WO2017095149A1 (en) * 2015-11-30 2017-06-08 두산인프라코어 주식회사 Selective catalytic reduction reactor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074335A (en) * 2001-06-22 2003-03-12 Komatsu Ltd Exhaust emission control device of internal combustion engine
GB2381218A (en) * 2001-10-25 2003-04-30 Eminox Ltd Gas treatment apparatus
US20080216470A1 (en) * 2007-03-09 2008-09-11 Sedlacek Jeffrey T Exhaust Aftertreatment System with Flow Distribution
JP2009013927A (en) * 2007-07-06 2009-01-22 Hino Motors Ltd Exhaust emission control device
JP2009047016A (en) * 2007-08-15 2009-03-05 Hino Motors Ltd Exhaust emission control device
JP2009250108A (en) * 2008-04-04 2009-10-29 Kobelco Contstruction Machinery Ltd Muffler with catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074335A (en) * 2001-06-22 2003-03-12 Komatsu Ltd Exhaust emission control device of internal combustion engine
GB2381218A (en) * 2001-10-25 2003-04-30 Eminox Ltd Gas treatment apparatus
US20080216470A1 (en) * 2007-03-09 2008-09-11 Sedlacek Jeffrey T Exhaust Aftertreatment System with Flow Distribution
JP2009013927A (en) * 2007-07-06 2009-01-22 Hino Motors Ltd Exhaust emission control device
JP2009047016A (en) * 2007-08-15 2009-03-05 Hino Motors Ltd Exhaust emission control device
JP2009250108A (en) * 2008-04-04 2009-10-29 Kobelco Contstruction Machinery Ltd Muffler with catalyst

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011666A1 (en) * 2011-07-19 2013-01-24 コベルコ建機株式会社 Construction machine
WO2013011665A1 (en) * 2011-07-19 2013-01-24 コベルコ建機株式会社 Construction machine
JP2013024077A (en) * 2011-07-19 2013-02-04 Kobelco Contstruction Machinery Ltd Exhaust structure for construction machine
CN103688029A (en) * 2011-07-19 2014-03-26 神钢建设机械株式会社 Construction machine
KR20140048273A (en) * 2011-07-19 2014-04-23 코벨코 겐키 가부시키가이샤 Construction machine
EP2735712A4 (en) * 2011-07-19 2015-05-06 Kobelco Constr Mach Co Ltd Construction machine
US9027676B2 (en) 2011-07-19 2015-05-12 Kobelco Construction Machinery Co., Ltd. Construction machine
US9347202B2 (en) 2011-07-19 2016-05-24 Kobelco Construction Machinery Co., Ltd. Construction machine
KR101632805B1 (en) * 2011-07-19 2016-06-22 코벨코 겐키 가부시키가이샤 Construction machine
WO2017095149A1 (en) * 2015-11-30 2017-06-08 두산인프라코어 주식회사 Selective catalytic reduction reactor

Also Published As

Publication number Publication date
JP5553562B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5292534B2 (en) Exhaust purification device
JP4450257B2 (en) Exhaust purification device
US20070189936A1 (en) Exhaust gas-cleaning apparatus
JP2009114930A (en) Exhaust purification device
JP2011111945A (en) Exhaust emission control device
JP5022123B2 (en) Exhaust purification device
JP2009019556A (en) Exhaust emission control device
WO2005119021A1 (en) Particulate filter
JP2012102684A (en) Exhaust emission control device for engine
JP3545712B2 (en) Exhaust gas purification device
JP5553562B2 (en) Exhaust purification device
JP2009013809A (en) Exhaust emission control device
JP2010043564A (en) Exhaust emission control device
JP5041151B2 (en) Exhaust gas purification device for internal combustion engine
JP5112815B2 (en) Exhaust purification device
JP5553519B2 (en) Exhaust purification device
JP6306428B2 (en) Exhaust purification device
JP5013994B2 (en) Exhaust purification device
JP2015113728A (en) Exhaust emission control device
JP2006161629A (en) Exhaust emission control device
JP2015121140A (en) Exhaust emission control device
JP2009115022A (en) Exhaust emission control device
JP2009062875A (en) Exhaust emission control device
JP5266105B2 (en) Desulfurization equipment
JP2011021581A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140527

R150 Certificate of patent or registration of utility model

Ref document number: 5553562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250