JP5041151B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP5041151B2
JP5041151B2 JP2007292024A JP2007292024A JP5041151B2 JP 5041151 B2 JP5041151 B2 JP 5041151B2 JP 2007292024 A JP2007292024 A JP 2007292024A JP 2007292024 A JP2007292024 A JP 2007292024A JP 5041151 B2 JP5041151 B2 JP 5041151B2
Authority
JP
Japan
Prior art keywords
injection
fuel
passage
exhaust
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007292024A
Other languages
Japanese (ja)
Other versions
JP2009115057A (en
Inventor
浩 棚田
光高 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2007292024A priority Critical patent/JP5041151B2/en
Publication of JP2009115057A publication Critical patent/JP2009115057A/en
Application granted granted Critical
Publication of JP5041151B2 publication Critical patent/JP5041151B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、排気通路に設けられた触媒に添加剤を供給する添加剤噴射弁を備えた内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine including an additive injection valve that supplies an additive to a catalyst provided in an exhaust passage.

ディーゼルエンジンの排気通路には、排気中に含まれるNOx(窒素酸化物)やパティキュレートマター(以下、PMという)が大気への放出されるのを防ぐため、NOx吸蔵触媒やディーゼルパティキュレートフィルタ(以下、DPFという)等が設けられている。
当該NOx吸蔵触媒のNOx吸蔵量やDPFのPM捕集量には限界があり、吸蔵されたNOxを放出還元させる所謂NOxパージや、DPFに捕集されたPMを焼却除去する所謂強制再生を行う必要がある。
In the exhaust passage of a diesel engine, NOx (nitrogen oxide) and particulate matter (hereinafter referred to as PM) contained in the exhaust are prevented from being released into the atmosphere, in order to prevent NOx storage catalyst and diesel particulate filter ( Hereinafter referred to as DPF).
The NOx occlusion amount of the NOx occlusion catalyst and the amount of PM trapped by the DPF are limited, so-called NOx purge for releasing and reducing the stored NOx, and so-called forced regeneration for burning and removing the PM collected by the DPF. There is a need.

そこで、NOx吸蔵触媒やDPFの排気上流側に酸化触媒を設け、当該酸化触媒に向け燃料(HC)等の添加剤を供給し、当該酸化触媒における酸化反応を利用してNOxパージや強制再生を行う構成がある。
また、当該酸化触媒への燃料(HC)の添加には、当該酸化触媒の排気上流側に燃料添加インジェクタを設けて、当該燃料添加インジェクタより燃料(HC)を噴射する構成がある。
Therefore, an NOx storage catalyst or an oxidation catalyst is provided upstream of the DPF, an additive such as fuel (HC) is supplied to the oxidation catalyst, and NOx purge or forced regeneration is performed using the oxidation reaction in the oxidation catalyst. There is a configuration to do.
In addition, the addition of fuel (HC) to the oxidation catalyst has a configuration in which a fuel addition injector is provided on the exhaust upstream side of the oxidation catalyst and fuel (HC) is injected from the fuel addition injector.

ただし、当該燃料添加インジェクタは、燃料噴射口が高温の排気に直接晒されると耐熱温度超えるおそれがある上、当該燃料噴射口付近に付着した燃料(HC)のカーボン化やPMの付着等による目詰まりを起こすおそれがある。
そこで、排気管の分岐部において、排気通路とは離間した位置に燃料添加用インジェクタが付設され、当該燃料添加用インジェクタより噴射される噴射燃料が円錐状の噴射空間(噴射通路)を通って排気管内に添加される構成が開示されている(特許文献1参照)。
特開2004−197635号公報
However, in the fuel addition injector, if the fuel injection port is directly exposed to high-temperature exhaust gas, there is a risk that the heat-resistant temperature may be exceeded, and the fuel (HC) adhering to the vicinity of the fuel injection port may be carbonized or PM may be attached. There is a risk of clogging.
Therefore, a fuel addition injector is provided at a position separated from the exhaust passage in the branch portion of the exhaust pipe, and the injected fuel injected from the fuel addition injector exhausts through the conical injection space (injection passage). The structure added in a pipe | tube is disclosed (refer patent document 1).
JP 2004-197635 A

上記特許文献1に開示された技術では、噴射空間は、燃料添加用インジェクタの燃料噴射口であるノズル先端部を頂点とし、燃料の噴射角より大きい頂角をなす円錐形状をなしているが、このような構成では噴射空間の壁面と噴射燃料との間隔が狭く、当該壁面に燃料(HC)が付着するおそれがある。
また、燃料添加用インジェクタから燃料(HC)が噴射されると、噴射燃料とともに噴射空間内のガスも排気管内へと流動するため当該噴射空間内の気圧は低下し負圧となるため、これにより燃料噴射角は拡がった噴射形状となり、さらに壁面に燃料(HC)が付着することになる。
In the technique disclosed in Patent Document 1, the injection space has a conical shape with the tip of the nozzle that is the fuel injection port of the fuel addition injector as the apex and an apex angle larger than the fuel injection angle. In such a configuration, the interval between the wall surface of the injection space and the injected fuel is narrow, and fuel (HC) may adhere to the wall surface.
Further, when fuel (HC) is injected from the fuel addition injector, the gas in the injection space flows into the exhaust pipe together with the injected fuel, so that the pressure in the injection space decreases and becomes negative pressure. The fuel injection angle has an expanded injection shape, and fuel (HC) adheres to the wall surface.

そして、噴射空間の壁面に燃料(HC)が付着すれば、当該燃料(HC)のカーボン化やPM付着等によるデポジットが堆積して、噴射空間が閉塞され、燃料添加用インジェクタによる酸化触媒への燃料(HC)の添加が遮られるという問題がある。
しかし、噴射空間と噴射燃料との間隔を拡げるよう噴射空間の頂角を大きくすると、噴射空間が大径化し、強度の確保が困難となり成形も困難となり好ましくない。
If the fuel (HC) adheres to the wall surface of the injection space, deposits due to carbonization of the fuel (HC), PM adhesion, etc. accumulate, the injection space is closed, and the fuel is added to the oxidation catalyst by the injector for fuel addition. There is a problem that the addition of fuel (HC) is blocked.
However, if the apex angle of the injection space is increased so as to widen the interval between the injection space and the injected fuel, the injection space becomes larger in diameter, making it difficult to ensure strength and difficult to mold, which is not preferable.

本発明はこのような問題を解決するためになされたもので、その目的とするところは、簡易な構成で、添加剤噴射弁より噴射される添加剤噴射が噴射通路の壁面に付着しない噴射形状を保つことができ、触媒への添加剤供給を良好に維持することのできる内燃機関の排気浄化装置を提供することにある。   The present invention has been made in order to solve such a problem, and an object of the present invention is to have a simple configuration and an injection shape in which the additive injection injected from the additive injection valve does not adhere to the wall surface of the injection passage. It is an object of the present invention to provide an exhaust gas purification apparatus for an internal combustion engine that can maintain a good quality and can maintain a good supply of additives to a catalyst.

上記した目的を達成するために、請求項1の内燃機関の排気浄化装置では、内燃機関の排気管内に設けられた触媒と、該触媒の排気上流側に添加剤を供給する添加剤噴射弁と、前記排気管内と連通するとともに前記添加剤噴射弁からの添加剤が噴射される噴射通路と、一端が前記噴射通路の前記添加剤噴射弁側と接続され、他端が前記排気管と接続され、前記噴射通路の前記添加剤噴射弁側にガスを流入可能なガス流入通路とを備え、前記ガス流入通路は、一端となる前記添加剤噴射弁側から他端となる前記排気管内へと延びた溝部であり、当該溝部は、前記噴射通路の添加剤噴射弁側で添加剤噴射により気圧の低下する低圧部と、前記噴射通路外で該低圧部より気圧の高い高圧部分とを連通し、当該溝部の一端部は前記添加剤噴射弁の噴孔より上流側に位置していることを特徴としている。 In order to achieve the above object, in the exhaust gas purification apparatus for an internal combustion engine according to claim 1, a catalyst provided in an exhaust pipe of the internal combustion engine, an additive injection valve for supplying an additive to the exhaust upstream side of the catalyst, An injection passage that communicates with the inside of the exhaust pipe and injects an additive from the additive injection valve, one end is connected to the additive injection valve side of the injection passage, and the other end is connected to the exhaust pipe. , and a said additive injection valve inflow possible gas inflow gas into side passage of the injection duct, the gas inlet passage extending into said exhaust pipe serving as the other end of the additive injection valve side as the end The groove portion communicates a low pressure portion where the pressure is reduced by additive injection on the additive injection valve side of the injection passage and a high pressure portion where the pressure is higher than the low pressure portion outside the injection passage, injection hole at one end of the groove the additive injection valve Ri is characterized by being located on the upstream side.

上記手段を用いる本発明の請求項1の内燃機関の排気浄化装置によれば、排気管内に設けられた触媒に噴射通路を介して添加剤を供給するとともに噴射通路の添加剤噴射弁側にガスを流入可能なガス流入通路を備えている。
つまり、添加剤噴射弁から噴射される添加剤噴射とともに噴射通路内のガスが排気管内へと流動した場合にも、ガス流入通路を介して該噴射通路内にガスが流入されるため、当該噴射通路内の気圧の低下が抑制される。
According to the exhaust gas purification apparatus for an internal combustion engine of the present invention using the above means, the additive is supplied to the catalyst provided in the exhaust pipe through the injection passage and the gas is supplied to the additive injection valve side of the injection passage. Is provided with a gas inflow passage.
That is, when the gas in the injection passage flows into the exhaust pipe together with the additive injection injected from the additive injection valve, the gas flows into the injection passage through the gas inflow passage. A decrease in the atmospheric pressure in the passage is suppressed.

これにより、添加剤噴射弁から噴射される燃料噴射の形状を保つことができ、噴射通路の壁面への添加剤の付着を防止することができる。
また、ガス流入通路を添加剤噴射弁による添加剤噴射時に気圧の低下する噴射通路内の低圧部と、該低圧部よりも気圧の高い高圧部とを連通する溝部とする。
Thereby, the shape of the fuel injection injected from the additive injection valve can be maintained, and adhesion of the additive to the wall surface of the injection passage can be prevented.
Further, the gas inflow passage is a groove portion that communicates the low pressure portion in the injection passage where the atmospheric pressure is lowered when the additive is injected by the additive injection valve and the high pressure portion where the atmospheric pressure is higher than the low pressure portion.

したがって、添加剤噴射弁による添加剤噴射時に低圧となる噴射通路内にガス流入通路を介して確実にガスを流入させることができる。
これにより、噴射通路内の気圧の低下を確実に抑制させることができる。
さらに、溝部の一端部が添加剤噴射弁の噴孔より上流側に位置している。
Therefore, the gas can surely flow through the gas inflow passage into the injection passage having a low pressure when the additive is injected by the additive injection valve.
Thereby, the fall of the atmospheric | air pressure in an injection channel can be suppressed reliably.
Furthermore, the one end part of the groove part is located upstream from the injection hole of the additive injection valve.

これにより、添加剤噴射弁の噴孔上部から噴射に沿って均一な流れが生成するため、噴孔部を含む、噴射弁先端部への噴射通路の壁面の添加剤の付着をより良好に抑制させることができる。
さらに、ガス流入通路は、一端が噴射通路の添加剤噴射弁側と接続され、他端が排気管と接続される。
As a result, since a uniform flow is generated along the injection from the upper part of the injection hole of the additive injection valve, adhesion of the additive on the wall surface of the injection passage to the injection valve tip including the injection hole part is further suppressed. Can be made.
Further , one end of the gas inflow passage is connected to the additive injection valve side of the injection passage, and the other end is connected to the exhaust pipe.

これにより、噴射通路が連通する排気管と同じ排気管からガスを流入させるため、エンジン制御上影響が少ない。
また、ガス流入通路を、噴射通路の壁面に、添加剤噴射弁側から排気管内へと延びた溝部としていることで、添加剤噴射弁より噴射される噴射燃料とともに噴射通路内のガスが排気管内へと流動して噴射通路内の気圧が低下する一方、噴射燃料の通過しない溝部では添加剤噴射弁側の噴射通路内へとガスが流れる。
As a result, the gas is introduced from the same exhaust pipe as the exhaust pipe communicating with the injection passage, so that there is little influence on the engine control.
Further, the gas inflow passage is formed in the wall surface of the injection passage as a groove portion extending from the additive injection valve side into the exhaust pipe, so that the gas in the injection passage is injected together with the injected fuel injected from the additive injection valve. While flowing into the exhaust pipe and reducing the pressure in the injection passage, the gas flows into the injection passage on the additive injection valve side in the groove where the injected fuel does not pass.

これにより、噴射通路壁面の加工でガス流入通路を形成でき、噴射通路内の気圧の低下を抑制させることができる Thereby, the gas inflow passage can be formed by processing the wall surface of the injection passage, and the pressure drop in the injection passage can be suppressed .

以下、本発明の実施の形態を図面に基づき説明する。
まず、第1実施例について説明する。
図1乃至3を参照すると、図1には本発明の第1実施例に係る内燃機関の排気浄化装置の概略構成図、図2には本発明の第1実施例に係る内燃機関の排気浄化装置における要部拡大縦断面図、図3には図2のA−A線に沿う横断面図がそれぞれ示されており、以下同図に基づき説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, the first embodiment will be described.
Referring to FIGS. 1 to 3, FIG. 1 is a schematic configuration diagram of an exhaust purification system for an internal combustion engine according to a first embodiment of the present invention, and FIG. 2 is an exhaust purification of the internal combustion engine according to the first embodiment of the present invention. FIG. 3 shows an enlarged vertical cross-sectional view of the main part of the apparatus, and FIG. 3 shows a cross-sectional view taken along line AA of FIG.

図1に示すエンジン(内燃機関)1は、軽油(HC)を燃料として駆動するディーゼルエンジンである。
当該エンジン1の側面には横方向に排気マニホールド2の一端が接続されており、当該排気マニホールド2の他端には過給機4が接続されている。
当該過給機4は、ターボチャージャであり、図示しない吸気通路にコンプレッサが設けられ、排気通路にはタービンが設けられている。
An engine (internal combustion engine) 1 shown in FIG. 1 is a diesel engine that is driven using light oil (HC) as fuel.
One end of an exhaust manifold 2 is connected laterally to the side surface of the engine 1, and a supercharger 4 is connected to the other end of the exhaust manifold 2.
The turbocharger 4 is a turbocharger, and a compressor is provided in an intake passage (not shown), and a turbine is provided in an exhaust passage.

また、当該過給機4の排気下流側には、排気管10が接続されている。
当該排気管10内には排気上流側から順に、酸化触媒12(触媒)、NOx吸蔵触媒14、パティキュレートフィルタ(以下、DPFという)16が設けられている。
詳しくは、排気管10は過給機4との接続部分から下方に分岐した分岐部10aが形成されており、当該分岐部10aの排気下流側に酸化触媒12が設けられている。当該酸化触媒12は通路を形成する多孔質の壁にプラチナ(Pt)、パラジウム(Pd)、ロジウム(Rh)等の触媒貴金属を担持して形成されており、排気中のCO、HC等を酸化させてCO及びHOに変換させるとともに、当該酸化反応により排気を昇温する機能を有する。
An exhaust pipe 10 is connected to the exhaust downstream side of the supercharger 4.
In the exhaust pipe 10, an oxidation catalyst 12 (catalyst), a NOx storage catalyst 14, and a particulate filter (hereinafter referred to as DPF) 16 are provided in this order from the exhaust upstream side.
Specifically, the exhaust pipe 10 is formed with a branch portion 10a branched downward from a connection portion with the supercharger 4, and an oxidation catalyst 12 is provided on the exhaust downstream side of the branch portion 10a. The oxidation catalyst 12 is formed by supporting a catalyst noble metal such as platinum (Pt), palladium (Pd), rhodium (Rh) on a porous wall forming a passage, and oxidizes CO, HC, etc. in exhaust gas. causes and converted by the CO 2 and H 2 O, has the function of raising the temperature of the exhaust by the oxidation reaction.

NOx吸蔵触媒14及びDPF16は、横方向に延びた排気下流側部分の排気管10内に設けられている。NOx吸蔵触媒14は、排気中のNOxを吸蔵し、HC等の還元剤が供給されたときに吸蔵したNOxを放出還元する所謂NOxパージが行われるものである。DPF16は、排気中のPMを捕集し、昇温されることで捕集したPMが焼却除去される所謂強制再生が行われるものである。   The NOx storage catalyst 14 and the DPF 16 are provided in the exhaust pipe 10 in the exhaust downstream side portion extending in the lateral direction. The NOx occlusion catalyst 14 performs so-called NOx purging that occludes NOx in exhaust gas and releases and reduces the occluded NOx when a reducing agent such as HC is supplied. The DPF 16 collects PM in the exhaust gas, and performs so-called forced regeneration in which the collected PM is incinerated and removed by raising the temperature.

また、排気管10の分岐部10aの上面部分には、酸化触媒12の軸方向の略延長上に位置して、当該酸化触媒12へ添加剤としての燃料(HC)を供給する燃料添加インジェクタ20(添加剤噴射弁)が支持部材22を介して配設されている。
詳しくは、図2、3に示すように、燃料添加インジェクタ20は、排気管10の外側に立設された支持部材22の上部に、酸化触媒12の入口端面中央部に指向するよう支持されている。
A fuel addition injector 20 is provided on the upper surface portion of the branch portion 10a of the exhaust pipe 10 so as to be substantially extended in the axial direction of the oxidation catalyst 12 and supply fuel (HC) as an additive to the oxidation catalyst 12. (Additive injection valve) is disposed through the support member 22.
Specifically, as shown in FIGS. 2 and 3, the fuel addition injector 20 is supported on the upper portion of the support member 22 erected on the outside of the exhaust pipe 10 so as to be directed toward the center of the inlet end surface of the oxidation catalyst 12. Yes.

支持部材22の内部には、燃料添加インジェクタ20の先端の燃料噴射口部20a(噴孔)が突出して臨んでおり、当該燃料噴射口部20aから円錐状に噴射される噴射燃料24が通過する噴射通路26が形成されている。
当該噴射通路26は、燃料添加インジェクタ20の燃料噴射口部20aを上端とし、酸化触媒12のある方向に向け延びた円筒形状の通路であり、下端は排気管10の上面に穿設された開口部10bを介して当該排気管10内と連通されている。
Inside the support member 22, a fuel injection port 20a (injection hole) at the tip of the fuel addition injector 20 protrudes and the injected fuel 24 injected conically from the fuel injection port 20a passes. An injection passage 26 is formed.
The injection passage 26 is a cylindrical passage having a fuel injection port portion 20a of the fuel addition injector 20 as an upper end and extending in a direction in which the oxidation catalyst 12 is present, and the lower end is an opening formed in the upper surface of the exhaust pipe 10. It communicates with the inside of the exhaust pipe 10 via the portion 10b.

当該噴射通路26の径は、噴射燃料24が通路壁面と間隔を有して内部に収まるよう形成されている。つまり、噴射通路26の下端部分において、当該噴射通路26の径が円錐状をなす噴射燃料24の径より大となるよう形成されている。
また、支持部材22には、噴射通路26の壁面に噴射通路の軸方向に沿って上端(一端)から下端(他端)に延びた溝部28が形成されている。
The diameter of the injection passage 26 is formed such that the injected fuel 24 is accommodated inside the passage wall surface with a gap. That is, the lower end portion of the injection passage 26 is formed so that the diameter of the injection passage 26 is larger than the diameter of the conical injection fuel 24.
The support member 22 has a groove 28 formed on the wall surface of the injection passage 26 extending from the upper end (one end) to the lower end (the other end) along the axial direction of the injection passage.

当該溝部28は、図3の横断面で視ると、噴射通路26の軸方向、即ち燃料噴射方向に対して放射状にそれぞれ円周方向に等間隔をなして8箇所形成されており、図2の縦断面で視ると各溝部28は噴射通路26の燃料添加インジェクタ20側となる上端から排気管10の開口部10bに向け外側に拡がった形状に形成されている。なお、当該溝部28は、噴射燃料24と平行または当該噴射燃料24の噴射角より大となるよう下方に向かうにつれ外側に拡がっており、燃料添加インジェクタ20側に位置する上端は、当該燃料添加インジェクタ20の燃料噴射口部20aより上方(上流側)に位置している。   The groove portion 28 is formed at eight positions at equal intervals in the circumferential direction in the radial direction with respect to the axial direction of the injection passage 26, that is, the fuel injection direction, as viewed in the cross section of FIG. Each of the groove portions 28 is formed in a shape extending outward from the upper end of the injection passage 26 on the fuel addition injector 20 side toward the opening 10b of the exhaust pipe 10. The groove 28 extends outward as it goes parallel to the injected fuel 24 or downward so as to be larger than the injection angle of the injected fuel 24, and the upper end located on the fuel addition injector 20 side is the fuel addition injector. It is located above (upstream side) 20 fuel injection ports 20a.

また、図示しないECUが燃料添加インジェクタ20と電気的に接続されており、当該ECUはNOx吸蔵触媒14のNOx吸蔵量やDPF16のPM捕集量を検知し、NOxパージや強制再生が必要であると判定したときに当該燃料添加インジェクタ20を制御し酸化触媒12に燃料(HC)を添加させる。
以下このように構成された本発明の第1実施例に係る内燃機関の排気浄化装置の作用について説明する。
Further, an ECU (not shown) is electrically connected to the fuel addition injector 20, and the ECU detects the NOx occlusion amount of the NOx occlusion catalyst 14 and the PM trapping amount of the DPF 16, and requires NOx purge or forced regeneration. Is determined, the fuel addition injector 20 is controlled to add fuel (HC) to the oxidation catalyst 12.
The operation of the exhaust gas purification apparatus for an internal combustion engine according to the first embodiment of the present invention constructed as above will be described below.

エンジン1の運転中に、NOx吸蔵触媒14のNOxパージ、またはDPF16の強制再生を行う際に、ECUの制御により燃料添加インジェクタ20による燃料噴射が行われる。
当該燃料添加インジェクタ20により噴射された噴射燃料24は噴射通路26内を通り排気管10内へと流入し、酸化触媒12に燃料(HC)が添加される。
During the operation of the engine 1, when performing NOx purge of the NOx storage catalyst 14 or forced regeneration of the DPF 16, fuel injection by the fuel addition injector 20 is performed under the control of the ECU.
The injected fuel 24 injected by the fuel addition injector 20 flows into the exhaust pipe 10 through the injection passage 26, and fuel (HC) is added to the oxidation catalyst 12.

燃料(HC)が添加された酸化触媒12では酸化反応が生じ、当該酸化反応の熱により排気が昇温される。そして、排気下流側にあるNOx触媒14に昇温された排気と酸化触媒12で酸化されなかった燃料(HC)が流入することで、NOxパージが行われる。また、DPF14においては、酸化触媒12により昇温された排気が流入することでPMが焼却除去されて強制再生が行われる。   An oxidation reaction occurs in the oxidation catalyst 12 to which fuel (HC) is added, and the temperature of the exhaust is raised by the heat of the oxidation reaction. Then, the exhaust gas whose temperature has been raised and the fuel (HC) that has not been oxidized by the oxidation catalyst 12 flow into the NOx catalyst 14 on the exhaust downstream side, whereby NOx purge is performed. Further, in the DPF 14, the exhaust gas whose temperature has been raised by the oxidation catalyst 12 flows in, whereby PM is incinerated and removed, and forced regeneration is performed.

ここで、上記燃料添加インジェクタ20から噴射される噴射燃料24が、支持部材22内の噴射通路26を通る際の作用について詳しく説明する。
該燃料添加インジェクタ20の燃料噴射口部20aから噴射される噴射燃料24は、当該噴射燃料24付近のガスとともに排気管10内へと流動する。これにより、噴射通路26内の特に流速の早い燃料添加インジェクタ20の燃料噴射口部20a付近の気圧は低下する。
Here, the action when the injected fuel 24 injected from the fuel addition injector 20 passes through the injection passage 26 in the support member 22 will be described in detail.
The injected fuel 24 injected from the fuel injection port 20 a of the fuel addition injector 20 flows into the exhaust pipe 10 together with the gas near the injected fuel 24. Thereby, the atmospheric pressure in the vicinity of the fuel injection port 20a of the fuel addition injector 20 having a particularly high flow velocity in the injection passage 26 is lowered.

一方、噴射通路26の壁面に形成されている溝部28においては、噴射燃料24は通過せず、噴射通路26と接している面積も小さいことから当該噴射燃料24の流動の影響を受けにくい。そして、当該溝部28は、当該噴射通路26の燃料噴射口部20a付近と排気管10内とを連通していることから、当該溝部28内では比較的気圧の高い排気管10内から比較的気圧の低い当該燃料噴射口部20a付近へとガスが流れる。   On the other hand, in the groove portion 28 formed on the wall surface of the injection passage 26, the injected fuel 24 does not pass and the area in contact with the injection passage 26 is small, so that it is not easily affected by the flow of the injected fuel 24. Since the groove portion 28 communicates the vicinity of the fuel injection port portion 20a of the injection passage 26 with the inside of the exhaust pipe 10, the inside of the groove portion 28 has a relatively high pressure from the exhaust pipe 10 having a relatively high pressure. The gas flows to the vicinity of the low fuel injection port 20a.

これにより、噴射通路26内の気圧の低下は抑制され、噴射燃料24は噴射形状を変化させることなく、設計通りの噴射形状を保ちながら排気管10内に流入される。
つまり、噴射燃料24を設計通り噴射通路26内に収めて排気管10内へ流入させることでき、噴射通路26の壁面に燃料(HC)が付着することを防止することができる。
また、溝部28からのガスは、燃料添加インジェクタ20上流側より流入するため、噴孔及び噴射弁先端部分のPM付着によるデポジットの堆積等も抑制させることができる。
Thereby, the fall of the atmospheric pressure in the injection passage 26 is suppressed, and the injected fuel 24 flows into the exhaust pipe 10 while maintaining the injection shape as designed without changing the injection shape.
That is, the injected fuel 24 can be accommodated in the injection passage 26 as it is designed to flow into the exhaust pipe 10, and fuel (HC) can be prevented from adhering to the wall surface of the injection passage 26.
Further, since the gas from the groove portion 28 flows from the upstream side of the fuel addition injector 20, deposit accumulation due to PM adhesion at the injection hole and the tip of the injection valve can be suppressed.

したがって、噴射通路26の壁面に付着した燃料(HC)のカーボン化やPM付着によるデポジットの堆積等を抑制させることができ、燃料添加インジェクタ20による燃料添加を良好に維持することができる。
また、噴射燃料24の形状を設計通り保つことができることから、噴射通路26を過度に拡大する必要もなく、溝部28を形成しただけの最小限の加工で十分な強度を有する支持部材22を成形することができる。
Therefore, carbonization of fuel (HC) adhering to the wall surface of the injection passage 26 and deposit accumulation due to PM adhesion can be suppressed, and fuel addition by the fuel addition injector 20 can be maintained well.
Further, since the shape of the injected fuel 24 can be maintained as designed, it is not necessary to excessively enlarge the injection passage 26, and the support member 22 having sufficient strength is formed with the minimum processing only by forming the groove portion 28. can do.

以上のように、本発明の第1実施例に係る内燃機関の排気浄化装置では、簡易な構成で、燃料添加インジェクタ20より噴射される噴射燃料24が噴射通路26の壁面に付着しない噴射形状を保つことができ、酸化触媒12への燃料添加を良好に維持することができる。
次に第2実施例について説明する。
As described above, the exhaust gas purification apparatus for an internal combustion engine according to the first embodiment of the present invention has an injection shape in which the injected fuel 24 injected from the fuel addition injector 20 does not adhere to the wall surface of the injection passage 26 with a simple configuration. The fuel addition to the oxidation catalyst 12 can be maintained well.
Next, a second embodiment will be described.

図4乃至6を参照すると、図4には本発明の第2実施例に係る内燃機関の排気浄化装置の概略構成図、図5には本発明の第2実施例に係る内燃機関の排気浄化装置における要部拡大縦断面図、図6には図5のB−B線に沿う横断面図がそれぞれ示されている。なお、第2実施例において、上記第1実施例と同様の構成についての説明は省略する。
当該第2実施例では、排気管30の分岐部30aの上面部分に、酸化触媒12の軸方向の略延長上に位置して、当該酸化触媒12へと燃料(HC)を添加する燃料添加インジェクタ40(燃料噴射弁)が支持部材42を介して配設されている。
Referring to FIGS. 4 to 6, FIG. 4 is a schematic configuration diagram of an exhaust purification device for an internal combustion engine according to a second embodiment of the present invention, and FIG. 5 is an exhaust purification of the internal combustion engine according to the second embodiment of the present invention. FIG. 6 shows an enlarged vertical cross-sectional view of the main part of the apparatus, and FIG. 6 shows a cross-sectional view taken along line BB in FIG. In the second embodiment, description of the same configuration as in the first embodiment is omitted.
In the second embodiment, a fuel addition injector for adding fuel (HC) to the oxidation catalyst 12, located on the upper surface portion of the branch portion 30 a of the exhaust pipe 30, substantially extending in the axial direction of the oxidation catalyst 12. 40 (fuel injection valve) is disposed via a support member 42.

詳しくは、図5、6に示すように、燃料添加インジェクタ40は、排気管30の外側に立設された支持部材42の上部に、酸化触媒12の入口端面中央部に指向するよう支持されている。
支持部材42の内部には、燃料添加インジェクタ40の先端の燃料噴射口部40a(噴孔)が突出して臨んでおり、当該燃料噴射口部40aから円錐状に噴射される噴射燃料44が通過する噴射通路46が形成されている。
Specifically, as shown in FIGS. 5 and 6, the fuel addition injector 40 is supported on an upper portion of a support member 42 erected on the outside of the exhaust pipe 30 so as to be directed toward the center of the inlet end surface of the oxidation catalyst 12. Yes.
A fuel injection port 40a (injection hole) at the tip of the fuel addition injector 40 protrudes inside the support member 42, and the injected fuel 44 injected conically from the fuel injection port 40a passes therethrough. An injection passage 46 is formed.

当該噴射通路46は、燃料添加インジェクタ40の燃料噴射口部40aを上端とし、酸化触媒12のある方向に向け延びた円筒形状の通路であり、下端は排気管30の上面に穿設された開口部30bを介して当該排気管30内と連通されている。
当該噴射通路46の径は、噴射燃料44が通路壁面と間隔と有して内部に収まるよう形成されている。つまり、噴射通路46の下端部分において、径が噴射燃料44の断面の径より大となるよう形成されている。
The injection passage 46 is a cylindrical passage having a fuel injection port portion 40 a of the fuel addition injector 40 as an upper end and extending in a direction in which the oxidation catalyst 12 is present, and a lower end is an opening formed in the upper surface of the exhaust pipe 30. It communicates with the inside of the exhaust pipe 30 via the part 30b.
The diameter of the injection passage 46 is formed so that the injected fuel 44 is accommodated inside the passage wall surface with a gap. That is, the lower end portion of the injection passage 46 is formed so that the diameter is larger than the diameter of the cross section of the injected fuel 44.

また、当該噴射通路46の上部、即ち燃料添加インジェクタ40の燃料噴射口部40a付近の側壁面には外側に貫通したガス流入孔48(ガス流入通路)が穿設されている。当該ガス流入孔48は支持部材42の外側に連結されたガス流入管50(ガス流入通路)の一端と接続されており、当該ガス流入管50の他端は上記開口部30bよりも排気下流側に形成された排気管30の開口部30cに接続されている。つまり、噴射通路46の上部はガス流入孔48及びガス流入管50からなるガス流入通路を介して排気管10内と連通されている。   Further, a gas inflow hole 48 (gas inflow passage) penetrating outward is formed in the upper portion of the injection passage 46, that is, in the side wall surface near the fuel injection port portion 40a of the fuel addition injector 40. The gas inflow hole 48 is connected to one end of a gas inflow pipe 50 (gas inflow passage) connected to the outside of the support member 42, and the other end of the gas inflow pipe 50 is on the exhaust downstream side of the opening 30b. It is connected to the opening 30c of the exhaust pipe 30 formed in the above. That is, the upper portion of the injection passage 46 is communicated with the inside of the exhaust pipe 10 through the gas inflow passage including the gas inflow hole 48 and the gas inflow pipe 50.

このように構成された本発明の第2実施例に係る内燃機関の排気浄化装置では、燃料添加インジェクタ40から噴射され、噴射通路46を通る際の噴射燃料44は、当該噴射燃料44付近のガスとともに噴射通路46内を通って排気管30内へと流動する。これにより、噴射通路46内の特に流速の早い燃料添加インジェクタ40の燃料噴射口部40a付近の気圧は低下する。   In the exhaust gas purification apparatus for an internal combustion engine according to the second embodiment of the present invention thus configured, the injected fuel 44 injected from the fuel addition injector 40 and passing through the injection passage 46 is a gas in the vicinity of the injected fuel 44. At the same time, it flows through the injection passage 46 and into the exhaust pipe 30. As a result, the air pressure in the vicinity of the fuel injection port 40a of the fuel addition injector 40 having a particularly high flow velocity in the injection passage 46 decreases.

そして、当該噴射通路46の上部は、ガス流入孔48及びガス流入管50を介して排気管30内と連通されていることから、比較的気圧の高い排気管30内から当該ガス流入孔48及びガス流入管50を通り比較的気圧の低い噴射通路46内へとガス(排気)が流れる。
また、ガス流入孔48からのガスは、燃料添加インジェクタ20の燃料噴射口部40aの上流側より流入するため、噴孔及び噴射弁先端部のPM付着も抑制させることができる。
Since the upper part of the injection passage 46 communicates with the inside of the exhaust pipe 30 via the gas inflow hole 48 and the gas inflow pipe 50, the gas inflow hole 48 and the inside of the exhaust pipe 30 having a relatively high atmospheric pressure. Gas (exhaust gas) flows through the gas inflow pipe 50 into the injection passage 46 having a relatively low atmospheric pressure.
Moreover, since the gas from the gas inflow hole 48 flows in from the upstream side of the fuel injection port portion 40a of the fuel addition injector 20, PM adhesion at the injection hole and the tip of the injection valve can also be suppressed.

これにより、噴射通路46内の気圧の低下は抑制され、噴射燃料44は噴射形状を変化させることなく、設計通りの噴射形状を保ちながら排気管30内に流入される。
さらに、燃料添加インジェクタ40により燃料が噴射されたことによって噴射通路46内の空気が排気管30内へ流出するが、噴射通路46とガス流入通路とが隔離されているため、この影響を受けずに噴射通路46内へガスを流入させることができる。
As a result, the pressure drop in the injection passage 46 is suppressed, and the injected fuel 44 flows into the exhaust pipe 30 while maintaining the injection shape as designed without changing the injection shape.
Further, the air in the injection passage 46 flows out into the exhaust pipe 30 due to the fuel injection by the fuel addition injector 40. However, since the injection passage 46 and the gas inflow passage are isolated, there is no influence from this. The gas can flow into the injection passage 46.

このように、当該第2実施例においても上記第1実施例と同様の効果を得ることができ上、当該第2実施例では噴射通路46の形状を特に変更することなく、当該噴射通路46内の気圧の低下を抑制させることができる。
以上で本発明に係る内燃機関の排気浄化装置の実施形態についての説明を終えるが、実施形態は上記実施形態に限られるものではない。
Thus, in the second embodiment, the same effect as in the first embodiment can be obtained, and in the second embodiment, the shape of the injection passage 46 is not changed, and the inside of the injection passage 46 is not particularly changed. The decrease in the atmospheric pressure can be suppressed.
Although the description of the embodiment of the exhaust gas purification apparatus for an internal combustion engine according to the present invention is finished above, the embodiment is not limited to the above embodiment.

上記第1実施例では、溝部28は、図3に示すように噴射通路26の壁面から外側に矩形状の形状をなしているが、このような形状に限られるものではない。例えば、変形例として図7に示すように、各溝部60が噴射通路62の壁面から外側に向かうにつれ拡がるような端面形状をなしていても構わない。つまり、当該溝部60の断面は噴射通路62の中心に向けて狭まった略三角形状をなしている。このような断面形状の溝部60とすることで、当該溝部60と噴射通路62との接する面積が縮小されるため、溝部60内は噴射燃料64の流動の影響をさらに受けにくくなる。これにより、燃料添加インジェクタによる燃料噴射時に、当該溝部60を通る排気管内から噴射通路62内へのガスの流動はより円滑なものにすることができる。   In the first embodiment, the groove 28 has a rectangular shape outward from the wall surface of the injection passage 26 as shown in FIG. 3, but is not limited to such a shape. For example, as shown in FIG. 7 as a modified example, each groove portion 60 may have an end surface shape that expands outward from the wall surface of the injection passage 62. That is, the cross section of the groove 60 has a substantially triangular shape that narrows toward the center of the injection passage 62. By setting the groove portion 60 having such a cross-sectional shape, an area where the groove portion 60 and the injection passage 62 are in contact with each other is reduced, so that the inside of the groove portion 60 is further less affected by the flow of the injected fuel 64. Thereby, at the time of fuel injection by the fuel addition injector, the flow of gas from the exhaust pipe passing through the groove 60 to the injection passage 62 can be made smoother.

また、上記第2実施例では、ガス流入孔48及びガス流入管50からなるガス流入通路は、噴射通路46の上部と排気管30の分岐部30b排気下流部分とを連通するものであるが、当該ガス流入通路は当該構成に限られない。
例えば、変形例として図8に示すように、ガス流入管70の他端を酸化触媒72の排気下流位置の排気管74に接続した構成としてもよい。このような構成とすることで、燃料添加インジェクタ40による燃料噴射時に、酸化触媒72により浄化された排気(ガス)を噴射通路内に流入させることができ、噴射通路46の壁面の燃料(HC)付着やPMの付着をより良好に抑制させることができる。
In the second embodiment, the gas inflow passage including the gas inflow hole 48 and the gas inflow pipe 50 communicates the upper portion of the injection passage 46 and the branch portion 30b exhaust downstream portion of the exhaust pipe 30. The gas inflow passage is not limited to the configuration.
For example, as shown in FIG. 8 as a modification, the other end of the gas inflow pipe 70 may be connected to the exhaust pipe 74 at the exhaust downstream position of the oxidation catalyst 72. With this configuration, the exhaust gas (gas) purified by the oxidation catalyst 72 can flow into the injection passage during fuel injection by the fuel addition injector 40, and the fuel (HC) on the wall surface of the injection passage 46 can be introduced. Adhesion and adhesion of PM can be suppressed more favorably.

また、別の変形例として図9に示すように、ガス流入管76の他端に外気を流入可能な逆止弁78を設けた構成としてもよい。このような構成とすることで燃料添加インジェクタ40による燃料噴射時に、HCやPMが含まれていない外気(ガス)を噴射通路46内に流入させることができる、噴射通路46の壁面の燃料(HC)付着やPMの付着をより良好に抑制させることができる。   As another modified example, as shown in FIG. 9, a check valve 78 capable of allowing outside air to flow into the other end of the gas inflow pipe 76 may be provided. With such a configuration, the fuel (HC) on the wall surface of the injection passage 46 can flow outside air (gas) that does not contain HC and PM into the injection passage 46 during fuel injection by the fuel addition injector 40. ) Adhesion and PM adhesion can be better suppressed.

さらに、別の変形例として図10に示すように、ガス流入管80の他端を排気マニホールド82に接続した構成としてもよい。つまり、ガス流入管80を、高圧なタービン上流側と接続させた構成とすることで、燃料添加インジェクタ40の燃料噴射時に、より円滑に噴射通路46内にガス(排気)を流入させることができる上、噴射通路46内に高圧なガスが流入することで噴射燃料44が微粒化され酸化触媒12への燃料添加をより良好なものにすることができる。   Furthermore, as another modification, as shown in FIG. 10, the other end of the gas inflow pipe 80 may be connected to the exhaust manifold 82. That is, by configuring the gas inflow pipe 80 to be connected to the high-pressure turbine upstream side, the gas (exhaust gas) can be more smoothly flowed into the injection passage 46 at the time of fuel injection of the fuel addition injector 40. In addition, when the high-pressure gas flows into the injection passage 46, the injected fuel 44 is atomized, and the fuel addition to the oxidation catalyst 12 can be improved.

また、上記第2実施例では、噴射通路46の上部から外側に貫通したガス流入孔48及び当該ガス流入孔48と接続されたガス流入管50からなるガス流入通路は1経路のみ形成されているが、これに限られるものではない。例えば、ガス流入通路を2経路以上設けてもよく、変形例として図11に示すように、噴射通路84の側壁面の対向する位置からそれぞれ相対する接線方向に延びたガス流入孔86a、86bが穿設され、当該ガス流入孔86a、86bと接続されたガス流入管88a、88bを設けた構成としても構わない。このように噴射通路84と連通するガス流入通路を複数設けることで、当該噴射通路内へより円滑にガスを流入させることができる。さらに、ガス流入孔88a、88bを噴射通路84の接線方向に延びた形状とすることで、ガス流入通路を介して流入してくるガスは噴射通路84の円周方向に沿って渦状に流動することとなり、ガスの流入がより一層円滑となる。   In the second embodiment, only one path is formed for the gas inflow passage 48 including the gas inflow hole 48 penetrating from the upper part of the injection passage 46 to the outside and the gas inflow pipe 50 connected to the gas inflow hole 48. However, it is not limited to this. For example, two or more gas inflow passages may be provided. As a modified example, as shown in FIG. 11, gas inflow holes 86 a and 86 b extending in tangential directions from the opposing positions on the side wall surface of the injection passage 84 respectively. A configuration may be employed in which gas inflow pipes 88a and 88b that are formed and connected to the gas inflow holes 86a and 86b are provided. By providing a plurality of gas inflow passages communicating with the injection passage 84 in this way, gas can be flowed more smoothly into the injection passage. Further, by forming the gas inflow holes 88a and 88b in a shape extending in the tangential direction of the injection passage 84, the gas flowing in through the gas inflow passage flows in a spiral shape along the circumferential direction of the injection passage 84. As a result, the inflow of gas becomes even smoother.

また、上記実施形態では、燃料添加インジェクタ20、40は、排気管10、30における分岐部10a、30aに設けられているが、燃料添加インジェクタは当該部分に設けられるものに限られず、燃料添加される触媒の排気上流側に設けられる構成であればよい。
また、上記実施形態では、燃料添加インジェクタ20、40は排気管10、30の分岐部10a、30aの上面に立設されているが、このような構成に限られるものではなく、燃料添加インジェクタを排気管に沿うように傾斜させて設けても構わない。
Moreover, in the said embodiment, although the fuel addition injectors 20 and 40 are provided in the branch parts 10a and 30a in the exhaust pipes 10 and 30, a fuel addition injector is not restricted to what is provided in the said part, and fuel addition is carried out. Any structure provided on the exhaust upstream side of the catalyst may be used.
Moreover, in the said embodiment, although the fuel addition injectors 20 and 40 are standingly arranged by the upper surface of the branch parts 10a and 30a of the exhaust pipes 10 and 30, it is not restricted to such a structure, A fuel addition injector is used. You may incline and provide so that an exhaust pipe may be followed.

また、上記実施形態では、排気管10、30内に酸化触媒12、NOx吸蔵触媒14、DPF16を備えた排気浄化装置であるが、燃料(HC)を添加する触媒を備えた排気浄化装置であればよく、例えば、酸化触媒の排気下流側にNOx吸蔵触媒及びDPFのいずれか一方のみを備えた構成であっても構わない。
また、上記実施形態では、燃料添加インジェクタから得られる噴射24は円錐状として説明したが、噴射の形状は円錐に限定されるもではない。
In the above embodiment, the exhaust gas purification device includes the oxidation catalyst 12, the NOx storage catalyst 14, and the DPF 16 in the exhaust pipes 10 and 30, but the exhaust purification device includes a catalyst for adding fuel (HC). For example, the configuration may be such that only one of the NOx storage catalyst and the DPF is provided on the exhaust gas downstream side of the oxidation catalyst.
Moreover, in the said embodiment, although the injection 24 obtained from a fuel addition injector demonstrated as a cone shape, the shape of injection is not limited to a cone.

さらに、上記実施形態では添加剤として燃料で説明したが、燃料に限らず尿素等の還元剤でもよい。   Furthermore, although the fuel is used as the additive in the above embodiment, the reducing agent is not limited to fuel and may be urea or the like.

本発明の第1実施例に係る内燃機関の排気浄化装置の概略構成図である。1 is a schematic configuration diagram of an exhaust gas purification apparatus for an internal combustion engine according to a first embodiment of the present invention. 本発明の第1実施例に係る内燃機関の排気浄化装置における要部拡大縦断面図である。1 is an enlarged longitudinal sectional view of a main part in an exhaust gas purification apparatus for an internal combustion engine according to a first embodiment of the present invention. 図2のA−A線に沿う横断面図である。FIG. 3 is a transverse sectional view taken along line AA in FIG. 2. 本発明の第2実施例に係る内燃機関の排気浄化装置の概略構成図である。It is a schematic block diagram of the exhaust gas purification apparatus of the internal combustion engine which concerns on 2nd Example of this invention. 本発明の第2実施例に係る内燃機関の排気浄化装置における要部拡大縦断面図である。It is a principal part expanded longitudinal cross-sectional view in the exhaust gas purification apparatus of the internal combustion engine which concerns on 2nd Example of this invention. 図5のB−B線に沿う横断面図である。It is a cross-sectional view which follows the BB line of FIG. 第1実施例の変形例を示す横断面図である。It is a cross-sectional view showing a modification of the first embodiment. 第2実施例の変形例を示す概略構成図である。It is a schematic block diagram which shows the modification of 2nd Example. 第2実施例の変形例を示す概略構成図である。It is a schematic block diagram which shows the modification of 2nd Example. 第2実施例の変形例を示す概略構成図である。It is a schematic block diagram which shows the modification of 2nd Example. 第2実施例の変形例を示す概略構成図である。It is a schematic block diagram which shows the modification of 2nd Example.

符号の説明Explanation of symbols

1 エンジン(内燃機関)
4 過給機
10 排気管
10a 分岐部
12 酸化触媒(触媒)
14 NOx吸蔵触媒
16 パティキュレートフィルタ(DPF)
20、40 燃料添加インジェクタ(添加剤噴射弁)
20a、40a 燃料噴射口部
22、42 支持部材
24、44 噴射燃料
26、46 噴射通路
28 溝部(ガス流入通路)
48 ガス流入孔(ガス流入通路)
50 ガス流入管(ガス流入通路)
1 engine (internal combustion engine)
4 Supercharger 10 Exhaust pipe 10a Branch 12 Oxidation catalyst (catalyst)
14 NOx storage catalyst 16 Particulate filter (DPF)
20, 40 Fuel addition injector (additive injection valve)
20a, 40a Fuel injection port 22, 42 Support member 24, 44 Injection fuel 26, 46 Injection passage 28 Groove (gas inflow passage)
48 Gas inflow hole (gas inflow passage)
50 Gas inflow pipe (gas inflow passage)

Claims (1)

内燃機関の排気管内に設けられた触媒と、
該触媒の排気上流側に添加剤を供給する添加剤噴射弁と、
前記排気管内と連通するとともに前記添加剤噴射弁からの添加剤が噴射される噴射通路と、
一端が前記噴射通路の前記添加剤噴射弁側と接続され、他端が前記排気管と接続され、前記噴射通路の前記添加剤噴射弁側にガスを流入可能なガス流入通路と
を備え、
前記ガス流入通路は、一端となる前記添加剤噴射弁側から他端となる前記排気管内へと延びた溝部であり、
当該溝部は、前記噴射通路の添加剤噴射弁側で添加剤噴射により気圧の低下する低圧部と、前記噴射通路外で該低圧部より気圧の高い高圧部分とを連通し、
当該溝部の一端部は前記添加剤噴射弁の噴孔より上流側に位置していることを特徴とする内燃機関の排気浄化装置。
A catalyst provided in the exhaust pipe of the internal combustion engine;
An additive injection valve for supplying an additive to the exhaust upstream side of the catalyst;
An injection passage communicating with the inside of the exhaust pipe and injecting an additive from the additive injection valve;
One end is connected to the additive injection valve side of the injection passage, the other end is connected to the exhaust pipe, and comprises a gas inflow passage through which gas can flow into the additive injection valve side of the injection passage,
The gas inflow passage is a groove extending from the additive injection valve side serving as one end into the exhaust pipe serving as the other end,
The groove portion communicates a low pressure portion where the pressure is reduced by additive injection on the additive injection valve side of the injection passage and a high pressure portion where the pressure is higher than the low pressure portion outside the injection passage,
One end of the groove is located upstream of the injection hole of the additive injection valve.
JP2007292024A 2007-11-09 2007-11-09 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP5041151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007292024A JP5041151B2 (en) 2007-11-09 2007-11-09 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007292024A JP5041151B2 (en) 2007-11-09 2007-11-09 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2009115057A JP2009115057A (en) 2009-05-28
JP5041151B2 true JP5041151B2 (en) 2012-10-03

Family

ID=40782447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007292024A Expired - Fee Related JP5041151B2 (en) 2007-11-09 2007-11-09 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5041151B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047384A (en) * 2009-08-28 2011-03-10 Mitsubishi Heavy Ind Ltd Exhaust emission control device
DE102016107867A1 (en) 2015-05-12 2016-11-17 Denso Corporation Exhaust emission control system and purification control device
JP2016211470A (en) * 2015-05-12 2016-12-15 株式会社デンソー Exhaust purification device
JP7119540B2 (en) * 2018-04-26 2022-08-17 三菱ふそうトラック・バス株式会社 Exhaust purification device
JP7428176B2 (en) * 2021-12-09 2024-02-06 いすゞ自動車株式会社 Exhaust structure and injector mounting parts

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051642A (en) * 1991-06-26 1993-01-08 Hitachi Ltd Electromagnetic fuel injection valve
JP2707490B2 (en) * 1995-06-09 1998-01-28 株式会社ウチナミ Air cleaning method and apparatus
JPH10288129A (en) * 1997-04-17 1998-10-27 Nissan Motor Co Ltd Injection valve
DE19856366C1 (en) * 1998-12-07 2000-04-20 Siemens Ag Urea injection system treating exhaust gases from lean burn engine, comprises air-cooling jacket surrounding injector valve to keep it cool, so that a petrol injection valve may be used
JP2001280297A (en) * 2000-03-30 2001-10-10 Keihin Corp Jet pump in fuel feeding device for vehicle
JP4262522B2 (en) * 2003-05-28 2009-05-13 株式会社日立ハイテクノロジーズ Exhaust gas treatment device for engine and exhaust gas treatment method
JP2006329019A (en) * 2005-05-25 2006-12-07 Hino Motors Ltd Exhaust pipe of diesel engine
DE102005061145A1 (en) * 2005-12-21 2007-06-28 Robert Bosch Gmbh Automotive exhaust pipe is shaped to maximize or minimize release of heat to adjacent reduction agent dosing valve upstream from catalytic converter

Also Published As

Publication number Publication date
JP2009115057A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP4947311B2 (en) Exhaust gas purification device for internal combustion engine
JP4450257B2 (en) Exhaust purification device
JP5041151B2 (en) Exhaust gas purification device for internal combustion engine
JP5049951B2 (en) Exhaust aftertreatment device
JP3545712B2 (en) Exhaust gas purification device
JP2009013927A (en) Exhaust emission control device
JP2012102684A (en) Exhaust emission control device for engine
US20080317643A1 (en) Selective reduction catalyst and engine exhaust gas purifier using the same
JP5166848B2 (en) Exhaust purification device
JP5335315B2 (en) Exhaust purification device
JP2009092015A (en) Exhaust emission control device
JP5304177B2 (en) Exhaust purification device
JP2011256851A (en) System for injecting fuel into exhaust pipe
JP5605578B2 (en) Exhaust purification device
JP5041168B2 (en) Exhaust purification device
JP2009013809A (en) Exhaust emission control device
JP2010106679A (en) Method and device for preventing blockage of fuel injection nozzle of particulate filter regeneration burner
JP5112986B2 (en) Exhaust purification device
JP5409984B2 (en) Exhaust gas purification device using selective reduction catalyst
JP2010031719A (en) Exhaust emission control device
JP2011064068A (en) Exhaust emission control device
JP5553519B2 (en) Exhaust purification device
JP2010031778A (en) Exhaust emission control device
JP6805948B2 (en) Exhaust purification device
JP2007205308A (en) Exhaust emission control method and exhaust emission control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120309

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120613

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120626

R151 Written notification of patent or utility model registration

Ref document number: 5041151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees