JP2018061436A - Magnetization method and magnetization device - Google Patents

Magnetization method and magnetization device Download PDF

Info

Publication number
JP2018061436A
JP2018061436A JP2018007262A JP2018007262A JP2018061436A JP 2018061436 A JP2018061436 A JP 2018061436A JP 2018007262 A JP2018007262 A JP 2018007262A JP 2018007262 A JP2018007262 A JP 2018007262A JP 2018061436 A JP2018061436 A JP 2018061436A
Authority
JP
Japan
Prior art keywords
magnet
claw
shaped magnetic
rotor
rotor core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018007262A
Other languages
Japanese (ja)
Other versions
JP6601510B2 (en
Inventor
洋次 山田
Hirotsugu Yamada
洋次 山田
横山 誠也
Seiya Yokoyama
誠也 横山
智恵 森田
Chie Morita
智恵 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Publication of JP2018061436A publication Critical patent/JP2018061436A/en
Application granted granted Critical
Publication of JP6601510B2 publication Critical patent/JP6601510B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a rotor and a motor capable of achieving a structure in which flux leakage through a clearance between a first rotor iron core and a second rotor iron core hardly occurs while suppressing the number of components.SOLUTION: A permanent magnet 6 which makes each of rotor iron cores 4 and 5 function as N-pole and S-pole iron cores is provided between a first rotor iron core 4 and a second rotor iron core 5. The permanent magnet 6 comprises: a magnet body part 16 which fills between an iron core body 8 of the first rotor iron core 4 and an iron core body 11 of the second rotor iron core 5; a plurality of inter-pole magnet parts 17 which fill between claw magnetic poles 9 of the first rotor iron core 4 and claw magnetic poles 12 of the second rotor iron core 5; and back face magnet parts 18 which fill gaps of back faces of each of the claw magnetic poles 9 and 12. Therefore, the permanent magnet 6 in this example is an integrated permanent magnet 6 in which the magnet body part 16, the inter-pole magnet parts 17, and the back face magnet parts 18 are integrally formed.SELECTED DRAWING: Figure 2

Description

本発明は、着磁方法及び着磁装置に関する。   The present invention relates to a magnetization method and a magnetization apparatus.

従来、モータの一種として、図11に示すようなマグネット界磁のランデル型ロータ81を有するモータが周知である(例えば特許文献1,2等参照)。この型のモータのロータ81は、周方向に複数の爪状磁極82a,83aを有する鉄製の一対の回転子鉄心82,83と、回転子鉄心82,83の間に配置された円板磁石84とを備える。そして、円板磁石84の磁界によって各爪状磁極82a,83aが周方向において交互に異なる磁極を生成することにより、いわゆるマグネット界磁のランデル型ロータとして機能する。   2. Description of the Related Art Conventionally, a motor having a magnet field Landell rotor 81 as shown in FIG. 11 is well known as a kind of motor (see, for example, Patent Documents 1 and 2). A rotor 81 of this type of motor includes a pair of iron rotor cores 82 and 83 having a plurality of claw-shaped magnetic poles 82a and 83a in the circumferential direction, and a disc magnet 84 disposed between the rotor cores 82 and 83. With. The claw-shaped magnetic poles 82a and 83a generate different magnetic poles alternately in the circumferential direction by the magnetic field of the disc magnet 84, thereby functioning as a so-called magnet field Landell-type rotor.

実開平5−43749号公報Japanese Utility Model Publication No. 5-43749 特開2012−115085号公報JP 2012-115085 A

本発明の目的は、周方向に複数の爪状磁極を持つ第1回転子鉄心及び第2回転子鉄心の一方の爪状磁極が他方の爪状磁極間の切欠部に入り込む組み付け状態をとるロータの前記第1回転子鉄心と前記第2回転子鉄心との軸方向における隙間に配置され軸方向に磁化される磁石本体部と、前記第1回転子鉄心の爪状磁極と前記第2回転子鉄心の爪状磁極との間において周方向に生じる隙間に配置される極間磁石部と、それぞれの前記爪状磁極の背面に生じる隙間に配置される背面磁石部とを有し、複数の前記爪状磁極を周方向において交互にN極/S極として機能させる永久磁石の着磁方法及び着磁装置を提供することにある。   An object of the present invention is to provide a rotor in an assembled state in which one claw-shaped magnetic pole of the first rotor core and the second rotor core having a plurality of claw-shaped magnetic poles in the circumferential direction enters a notch between the other claw-shaped magnetic poles. A magnet main body that is disposed in a gap in the axial direction between the first rotor core and the second rotor core and is magnetized in the axial direction, a claw-shaped magnetic pole of the first rotor core, and the second rotor An inter-pole magnet portion disposed in a gap generated in the circumferential direction between the claw-shaped magnetic poles of the iron core, and a back magnet portion disposed in a gap generated on the back surface of each of the claw-shaped magnetic poles. An object of the present invention is to provide a magnetizing method and a magnetizing device for permanent magnets in which claw-shaped magnetic poles function alternately as N poles / S poles in the circumferential direction.

上記課題を解決する着磁方法は、周方向に複数の爪状磁極を持つ第1回転子鉄心及び第2回転子鉄心の一方の爪状磁極が他方の爪状磁極間の切欠部に入り込む組み付け状態をとるロータの前記第1回転子鉄心と前記第2回転子鉄心との軸方向における隙間に配置され軸方向に磁化される磁石本体部と、前記第1回転子鉄心の爪状磁極と前記第2回転子鉄心の爪状磁極との間において周方向に生じる隙間に配置される極間磁石部と、それぞれの前記爪状磁極の背面に生じる隙間に配置される背面磁石部とを有し、複数の前記爪状磁極を周方向において交互にN極/S極として機能させる永久磁石の着磁方法であって、前記磁石本体部を軸方向に着磁する軸方向着磁工程と、前記背面磁石部から隣接の前記極間磁石部における爪状磁極より内側の部分を経由して磁極の異なる前記背面磁石部に向けて磁束が湾曲して流れる極異方配向の着磁を行う湾曲着磁工程とを備え、前記軸方向着磁工程と前記湾曲着磁工程とを時間的にずらして行う。   A magnetizing method for solving the above-described problem is an assembly in which one claw-shaped magnetic pole of the first rotor core and the second rotor core having a plurality of claw-shaped magnetic poles in the circumferential direction enters a notch between the other claw-shaped magnetic poles. A magnet main body portion that is disposed in a gap in the axial direction between the first rotor core and the second rotor core of the rotor that takes a state and is magnetized in the axial direction; a claw-shaped magnetic pole of the first rotor core; An interpole magnet portion disposed in a gap generated in the circumferential direction between the claw-shaped magnetic poles of the second rotor core, and a back magnet portion disposed in a gap generated on the back surface of each claw-shaped magnetic pole. A permanent magnet magnetizing method in which a plurality of the claw-shaped magnetic poles function alternately as N poles / S poles in the circumferential direction, wherein the magnet body portion is magnetized in the axial direction; Inside the claw-shaped magnetic pole in the interpole magnet portion adjacent from the back magnet portion. A bending magnetization step of performing magnetization in a polar anisotropic orientation in which a magnetic flux is curved and flows toward the back magnet portion having different magnetic poles via a magnetic pole, and the axial magnetization step and the bending magnetization step And are shifted in time.

上記の着磁方法において、前記湾曲着磁工程を行った後に前記軸方向着磁工程を行う。
上記の着磁方法において、前記軸方向着磁工程を行った後に前記湾曲着磁工程を行う。
上記課題を解決する着磁方法は、周方向に複数の爪状磁極を持つ第1回転子鉄心及び第2回転子鉄心の一方の爪状磁極が他方の爪状磁極間の切欠部に入り込む組み付け状態をとるロータの前記第1回転子鉄心と前記第2回転子鉄心との軸方向における隙間に配置され軸方向に磁化される磁石本体部と、前記第1回転子鉄心の爪状磁極と前記第2回転子鉄心の爪状磁極との間において周方向に生じる隙間に配置される極間磁石部と、それぞれの前記爪状磁極の背面に生じる隙間に配置される背面磁石部とを有し、複数の前記爪状磁極を周方向において交互にN極/S極として機能させる永久磁石の着磁方法であって、前記磁石本体部を軸方向に着磁する軸方向着磁工程と、前記背面磁石部から隣接の前記極間磁石部における爪状磁極より内側の部分を経由して磁極の異なる前記背面磁石部に向けて磁束が湾曲して流れる極異方配向の着磁を行う湾曲着磁工程とを備え、前記軸方向着磁工程と前記湾曲着磁工程とを同時に行う。
In the above magnetization method, the axial magnetization step is performed after the curved magnetization step.
In the above magnetization method, the curved magnetization step is performed after the axial magnetization step.
A magnetizing method for solving the above-described problem is an assembly in which one claw-shaped magnetic pole of the first rotor core and the second rotor core having a plurality of claw-shaped magnetic poles in the circumferential direction enters a notch between the other claw-shaped magnetic poles. A magnet main body portion that is disposed in a gap in the axial direction between the first rotor core and the second rotor core of the rotor that takes a state and is magnetized in the axial direction; a claw-shaped magnetic pole of the first rotor core; An interpole magnet portion disposed in a gap generated in the circumferential direction between the claw-shaped magnetic poles of the second rotor core, and a back magnet portion disposed in a gap generated on the back surface of each claw-shaped magnetic pole. A permanent magnet magnetizing method in which a plurality of the claw-shaped magnetic poles function alternately as N poles / S poles in the circumferential direction, wherein the magnet body portion is magnetized in the axial direction; Inside the claw-shaped magnetic pole in the interpole magnet portion adjacent from the back magnet portion. A bending magnetization step of performing magnetization in a polar anisotropic orientation in which a magnetic flux is curved and flows toward the back magnet portion having different magnetic poles via a magnetic pole, and the axial magnetization step and the bending magnetization step And simultaneously.

上記課題を解決する着磁装置は、周方向に複数の爪状磁極を持つ第1回転子鉄心及び第2回転子鉄心の一方の爪状磁極が他方の爪状磁極間の切欠部に入り込む組み付け状態をとるロータの前記第1回転子鉄心と前記第2回転子鉄心との軸方向における隙間に配置され軸方向に磁化される磁石本体部と、前記第1回転子鉄心の爪状磁極と前記第2回転子鉄心の爪状磁極との間において周方向に生じる隙間に配置される極間磁石部と、それぞれの前記爪状磁極の背面に生じる隙間に配置される背面磁石部とを有し、複数の前記爪状磁極を周方向において交互にN極/S極として機能させる永久磁石を着磁する着磁装置であって、前記磁石本体部を軸方向に着磁する軸方向着磁部と、前記背面磁石部から隣接の前記極間磁石部における爪状磁極より内側の部分を経由して磁極の異なる前記背面磁石部に向けて磁束が湾曲して流れる極異方配向の着磁を行う湾曲着磁部とを備え、前記軸方向着磁部による軸方向着磁と前記湾曲着磁部による極異方配向の着磁とを時間的にずらして行う。   A magnetizing apparatus that solves the above-described problem is an assembly in which one claw-shaped magnetic pole of the first and second rotor cores having a plurality of claw-shaped magnetic poles in the circumferential direction enters a notch between the other claw-shaped magnetic poles. A magnet main body portion that is disposed in a gap in the axial direction between the first rotor core and the second rotor core of the rotor that takes a state and is magnetized in the axial direction; a claw-shaped magnetic pole of the first rotor core; An interpole magnet portion disposed in a gap generated in the circumferential direction between the claw-shaped magnetic poles of the second rotor core, and a back magnet portion disposed in a gap generated on the back surface of each claw-shaped magnetic pole. A magnetizing device that magnetizes a permanent magnet that alternately functions a plurality of the claw-shaped magnetic poles as N poles / S poles in the circumferential direction, wherein the magnet main body is magnetized in the axial direction. And a claw-shaped magnetic pole in the interpole magnet portion adjacent to the back magnet portion. A curved magnetized portion that magnetizes in an anisotropic orientation, in which a magnetic flux curves and flows toward the back magnet portion having a different magnetic pole via a side portion, and is axially magnetized by the axially magnetized portion. The magnetism and magnetization of the polar anisotropic orientation by the curved magnetized portion are shifted in time.

本発明によれば、周方向に複数の爪状磁極を持つ第1回転子鉄心及び第2回転子鉄心の一方の爪状磁極が他方の爪状磁極間の切欠部に入り込む組み付け状態をとるロータの前記第1回転子鉄心と前記第2回転子鉄心との軸方向における隙間に配置され軸方向に磁化される磁石本体部と、前記第1回転子鉄心の爪状磁極と前記第2回転子鉄心の爪状磁極との間において周方向に生じる隙間に配置される極間磁石部と、それぞれの前記爪状磁極の背面に生じる隙間に配置される背面磁石部とを有し、複数の前記爪状磁極を周方向において交互にN極/S極として機能させる永久磁石の着磁方法及び着磁装置を提供することができる。   According to the present invention, the rotor takes an assembled state in which one of the claw-shaped magnetic poles of the first rotor core and the second rotor core having a plurality of claw-shaped magnetic poles in the circumferential direction enters the notch portion between the other claw-shaped magnetic poles. A magnet main body that is disposed in a gap in the axial direction between the first rotor core and the second rotor core and is magnetized in the axial direction, a claw-shaped magnetic pole of the first rotor core, and the second rotor An inter-pole magnet portion disposed in a gap generated in the circumferential direction between the claw-shaped magnetic poles of the iron core, and a back magnet portion disposed in a gap generated on the back surface of each of the claw-shaped magnetic poles. It is possible to provide a permanent magnet magnetization method and a magnetization apparatus in which the claw-shaped magnetic poles alternately function as N poles / S poles in the circumferential direction.

一実施形態のモータの構成図。The block diagram of the motor of one Embodiment. ロータの部品構成を示す分解斜視図。The disassembled perspective view which shows the components structure of a rotor. ロータの外観を示す斜視図。The perspective view which shows the external appearance of a rotor. ロータに発生する磁界を説明する図3のII−II線断面図。The II-II sectional view taken on the line of FIG. 3 explaining the magnetic field which generate | occur | produces in a rotor. 別例の一体型永久磁石の構成を示す斜視図。The perspective view which shows the structure of the integrated permanent magnet of another example. (a)(b)は、一体型永久磁石の着磁方法を説明する説明図。(A) (b) is explanatory drawing explaining the magnetization method of an integral-type permanent magnet. 別例のロータの部品構成を示す分解斜視図。The disassembled perspective view which shows the components structure of the rotor of another example. ロータに発生する磁界を説明する断面図。Sectional drawing explaining the magnetic field which generate | occur | produces in a rotor. 他の別例のロータの断面図。Sectional drawing of the rotor of another example. 他の別例のロータの断面図。Sectional drawing of the rotor of another example. 従来のロータの部品構成を示す分解斜視図。The disassembled perspective view which shows the components structure of the conventional rotor.

以下、本発明を具体化したロータ及びモータの一実施形態を図1〜図4に従って説明する。
図1に示すように、モータ(回転電機)1には、モータ1の固定側となるステータ2が設けられ、このステータ2の内部に、モータ1の回転側となるロータ3がステータ2に対して回転可能に設けられている。そして、ステータ2の鉄心に巻かれた巻線に電流が流されると、ステータ2とロータ3との間のマグネット界磁(永久磁石界磁)に発生する磁界によって、ロータ3がステータ2に対して回転する。
Hereinafter, an embodiment of a rotor and a motor embodying the present invention will be described with reference to FIGS.
As shown in FIG. 1, a motor (rotating electrical machine) 1 is provided with a stator 2 that is a fixed side of the motor 1, and a rotor 3 that is a rotating side of the motor 1 is located inside the stator 2 with respect to the stator 2. And can be rotated. When a current is passed through the winding wound around the iron core of the stator 2, the rotor 3 is moved against the stator 2 by a magnetic field generated in the magnet field (permanent magnet field) between the stator 2 and the rotor 3. Rotate.

図2に示すように、本例のようなマグネット界磁のランデル型ロータ3には、例えば鉄製の一対の回転子鉄心4,5と、これら一対の回転子鉄心4,5の間に挟まれた永久磁石6とが設けられている。永久磁石6は、各回転子鉄心4,5にN極/S極を付すための磁石である。本例の場合、紙面上側を第1回転子鉄心4とし、紙面下側を第2回転子鉄心5とする。ロータ3の軸中心には、ロータ3の回転軸となる非磁性体のシャフト7が取り付けられている。各回転子鉄心4,5は、シャフト7に圧入固定されている。   As shown in FIG. 2, the magnet field Landell rotor 3 is sandwiched between, for example, a pair of iron cores 4, 5 made of iron and the pair of rotor cores 4, 5. A permanent magnet 6 is provided. The permanent magnet 6 is a magnet for attaching the N pole / S pole to the rotor cores 4 and 5. In the case of this example, the upper side of the paper is the first rotor core 4, and the lower side of the paper is the second rotor core 5. A non-magnetic shaft 7 serving as a rotation axis of the rotor 3 is attached to the center of the rotor 3. The rotor cores 4 and 5 are press-fitted and fixed to the shaft 7.

図2〜図4に示すように、第1回転子鉄心4において略円板状の鉄心本体8の周縁には、周方向に沿って等間隔に並ぶ複数の爪状磁極9,9…が、外側に向かって放射状に突設されている。さらに、第1回転子鉄心4の爪状磁極9は、モータ軸方向に沿って延出する形状、つまり図2及び図3において紙面下方向に飛び出す形状をなし、隣同士の爪状磁極9,9の間が切欠部10となっている。第2回転子鉄心5は、第1回転子鉄心4と略同一形状をなし、第1回転子鉄心4と同様に鉄心本体11、爪状磁極12及び切欠部13を有する。第1回転子鉄心4及び第2回転子鉄心5は、一方の爪状磁極9(12)が他方の切欠部13(10)に入り込むように、上下逆さまの組み付け状態をとる。これにより、第1回転子鉄心4の爪状磁極9と第2回転子鉄心5の爪状磁極12とは、ロータ周方向において交互に配置される。各回転子鉄心4,5の中心には、シャフト7を挿通する通し孔14,15が各々貫設されている。   As shown in FIGS. 2 to 4, a plurality of claw-shaped magnetic poles 9, 9... Arranged at equal intervals along the circumferential direction are provided on the periphery of the substantially disc-shaped core body 8 in the first rotor core 4. It protrudes radially outward. Further, the claw-shaped magnetic pole 9 of the first rotor core 4 has a shape extending along the motor axis direction, that is, a shape protruding in the lower direction in FIG. 2 and FIG. The notch 10 is between 9. The second rotor core 5 has substantially the same shape as the first rotor core 4, and has an iron core body 11, a claw-shaped magnetic pole 12, and a notch 13, similar to the first rotor core 4. The first rotor core 4 and the second rotor core 5 are assembled upside down so that one claw-shaped magnetic pole 9 (12) enters the other notch 13 (10). Thereby, the claw-shaped magnetic poles 9 of the first rotor core 4 and the claw-shaped magnetic poles 12 of the second rotor core 5 are alternately arranged in the rotor circumferential direction. Through holes 14 and 15 through which the shaft 7 is inserted are respectively penetrated at the centers of the rotor cores 4 and 5.

爪状磁極9(12)は、ロータ径方向から見て長方形に形成されている。なお、爪状磁極9(12)は、例えば正四角形状や台形状に形成されてもよい。また、鉄心本体8と爪状磁極9(12)との間の隙間は、断面が長方形状となるように形成されている。さらに、隣り合う爪状磁極9,12の間は、ロータ径方向から見て長方形の空間をなすように離間する。   The claw-shaped magnetic pole 9 (12) is formed in a rectangular shape when viewed from the rotor radial direction. The claw-shaped magnetic pole 9 (12) may be formed in, for example, a regular square shape or a trapezoidal shape. The gap between the iron core body 8 and the claw-shaped magnetic pole 9 (12) is formed so that the cross section is rectangular. Further, the adjacent claw-shaped magnetic poles 9 and 12 are separated so as to form a rectangular space when viewed from the rotor radial direction.

永久磁石6は、第1回転子鉄心4と第2回転子鉄心5との間を埋める形状をなしている。具体的に述べると、本例の永久磁石6は、第1回転子鉄心4の鉄心本体8と第2回転子鉄心5の鉄心本体11との間を埋める磁石本体部16と、第1回転子鉄心4の爪状磁極9と第2回転子鉄心5の爪状磁極12との間の隙間を埋める複数の極間磁石部17と、各爪状磁極9,12の背面の隙間を埋める背面磁石部18とからなる。よって、本例の永久磁石6は、磁石本体部16、極間磁石部17及び背面磁石部18が一体に形成された一体型永久磁石6となっている。   The permanent magnet 6 has a shape that fills the space between the first rotor core 4 and the second rotor core 5. Specifically, the permanent magnet 6 of this example includes a magnet main body portion 16 that fills a space between the core body 8 of the first rotor core 4 and the core body 11 of the second rotor core 5, and the first rotor. A plurality of inter-pole magnet portions 17 that fill gaps between the claw-shaped magnetic poles 9 of the iron core 4 and the claw-shaped magnetic poles 12 of the second rotor core 5, and a back magnet that fills the gaps between the back surfaces of the claw-shaped magnetic poles 9 and 12. Part 18. Therefore, the permanent magnet 6 of this example is an integrated permanent magnet 6 in which the magnet main body portion 16, the interpolar magnet portion 17, and the back magnet portion 18 are integrally formed.

極間磁石部17は、略円板状の磁石本体部16の周囲に、爪状磁極9と爪状磁極12との間にできる周方向の10個の隙間に合わせて、周方向において等間隔に計10個形成されている。背面磁石部18は、隣同士の極間磁石部17を繋ぐように、周方向において計10個形成されている。また、磁石本体部16の中央には、シャフト7を通すための通し孔19が貫設されている。   The inter-pole magnet portions 17 are equidistant in the circumferential direction around the substantially disc-shaped magnet main body portion 16 in accordance with 10 circumferential gaps formed between the claw-shaped magnetic pole 9 and the claw-shaped magnetic pole 12. A total of 10 are formed. A total of ten back magnet portions 18 are formed in the circumferential direction so as to connect adjacent inter-electrode magnet portions 17. A through hole 19 for passing the shaft 7 is provided in the center of the magnet main body 16.

図3及び図4に示すように、本例の一体型永久磁石6は、第1回転子鉄心4をN極、第2回転子鉄心5をS極とするように着磁されている。具体的には、一体型永久磁石6は、磁石本体部16においてロータ軸方向(第2回転子鉄心5から第1回転子鉄心4の向き)に磁化され、極間磁石部17においてロータ周方向(第2回転子鉄心5から第1回転子鉄心4の向き)に磁化され、背面磁石部18においてロータ径方向(第2回転子鉄心5から第1回転子鉄心4の向き)に磁化されている。よって、図3及び図4に示すように、磁石本体部16には、矢印M1方向の磁気モーメントが生成され、極間磁石部17には、矢印M2方向の磁気モーメントが生成され、背面磁石部18には、矢印M3方向の磁気モーメントが生成される。   As shown in FIGS. 3 and 4, the integrated permanent magnet 6 of this example is magnetized so that the first rotor core 4 has an N pole and the second rotor core 5 has an S pole. Specifically, the integrated permanent magnet 6 is magnetized in the rotor main body direction (the direction from the second rotor core 5 to the first rotor core 4) in the magnet body portion 16, and in the rotor circumferential direction in the interpolar magnet portion 17. Magnetized in the direction from the second rotor core 5 to the first rotor core 4, and magnetized in the rotor radial direction (direction from the second rotor core 5 to the first rotor core 4) in the back magnet unit 18. Yes. Therefore, as shown in FIGS. 3 and 4, a magnetic moment in the direction of the arrow M1 is generated in the magnet main body portion 16, and a magnetic moment in the direction of the arrow M2 is generated in the interpole magnet portion 17, and the back magnet portion. In 18, a magnetic moment in the direction of arrow M3 is generated.

本例の永久磁石6は、例えば焼結磁石、ボンド磁石(プラスチックマグネット、ゴムマグネット等)からなる。また、これ以外に、例えばフェライト磁石、サマリウム鉄窒素(Sm−Fe−N)系磁石、サマリウムコバルト系磁石、ネオジム磁石、アルニコ磁石などを使用してもよい。   The permanent magnet 6 of this example is made of, for example, a sintered magnet or a bonded magnet (plastic magnet, rubber magnet, etc.). In addition, for example, a ferrite magnet, a samarium iron nitrogen (Sm-Fe-N) magnet, a samarium cobalt magnet, a neodymium magnet, an alnico magnet, or the like may be used.

次に、本例のモータ1の作用を、図3及び図4を用いて説明する。
図3及び図4に示すように、本例の一体型永久磁石6は、磁石本体部16が矢印M1方向の磁気モーメントの向きに着磁され、極間磁石部17が矢印M2方向の磁気モーメントの向きに着磁され、背面磁石部18が矢印M3方向の磁気モーメントの向きに着磁されている。このため、第1回転子鉄心4がN極となり、第2回転子鉄心5がS極となるので、第1回転子鉄心4と第2回転子鉄心5との間には、図4に示すように、第1回転子鉄心4か第2回転子鉄心5に入り込む矢印Bxで示す磁束ループが形成される。これにより、ロータ3がマグネット界磁のランデル型モータとして機能し、ステータ2に対して回転可能となる。
Next, the operation of the motor 1 of this example will be described with reference to FIGS.
As shown in FIGS. 3 and 4, the integrated permanent magnet 6 of this example has the magnet main body portion 16 magnetized in the direction of the magnetic moment in the direction of the arrow M1, and the interpole magnet portion 17 has the magnetic moment in the direction of the arrow M2. The back magnet portion 18 is magnetized in the direction of the magnetic moment in the direction of the arrow M3. For this reason, since the 1st rotor core 4 serves as N pole and the 2nd rotor core 5 serves as S pole, it shows in FIG. 4 between the 1st rotor core 4 and the 2nd rotor core 5. Thus, a magnetic flux loop indicated by an arrow Bx entering the first rotor core 4 or the second rotor core 5 is formed. Thereby, the rotor 3 functions as a Landel type motor having a magnet field, and can rotate with respect to the stator 2.

よって、本例の場合、回転子鉄心4,5に磁極を付す永久磁石6を、磁石本体部16と極間磁石部17と背面磁石部18とが一体となった一体型永久磁石6としたので、永久磁石6にかかる部品点数を少なく抑えることが可能となる。このため、ロータ3の組付工数を減らすことが可能となり、組付コストを低く抑えることが可能となる。また、永久磁石6自体が1つの大きな部品となるので、ロータ回転時に発生する遠心力に対して耐性が高くなる。これにより、ロータ遠心力を要因とする永久磁石6の極間磁石部17の飛散も発生し難くすることが可能となる。   Therefore, in the case of this example, the permanent magnet 6 with the magnetic poles attached to the rotor cores 4 and 5 is an integrated permanent magnet 6 in which the magnet main body portion 16, the interpole magnet portion 17, and the back magnet portion 18 are integrated. Therefore, the number of parts applied to the permanent magnet 6 can be reduced. For this reason, it becomes possible to reduce the assembly man-hour of the rotor 3, and to suppress the assembly cost low. Further, since the permanent magnet 6 itself is one large component, the resistance to the centrifugal force generated when the rotor rotates is increased. Thereby, it is possible to make it difficult for the inter-magnet portion 17 of the permanent magnet 6 to be scattered due to the rotor centrifugal force.

また、本例のロータ3において永久磁石6の磁石材料を例えばボンド磁石等で形成する場合、ボンド磁石を第1回転子鉄心4(第2回転子鉄心5でも可)にインサート形成することにより、一体型永久磁石6を形成することも可能である。こうすれば、第1回転子鉄心4(第2回転子鉄心5)と永久磁石6との間に接着層や機械的エアギャップが発生しなくなるので、モータ1のパーミアンスが上がり、トルク向上に効果が高くなる。   Further, when the magnet material of the permanent magnet 6 is formed of, for example, a bond magnet in the rotor 3 of this example, the bond magnet is inserted into the first rotor core 4 (or the second rotor core 5 is acceptable), It is also possible to form the integral permanent magnet 6. By doing so, an adhesive layer and a mechanical air gap are not generated between the first rotor core 4 (second rotor core 5) and the permanent magnet 6, so that the permeance of the motor 1 is increased and the torque is improved. Becomes higher.

本実施形態の構成によれば、以下に記載の効果を得ることができる。
(1)第1回転子鉄心4と第2回転子鉄心5との間に、各回転子鉄心4,5をN極/S極の鉄心として機能させる永久磁石6を設け、この永久磁石6を磁石本体部16と極間磁石部17と背面磁石部18とを有する形状としつつ、これらを一体型の部品として形成する。このため、ロータ3の部品点数を削減することが可能となるので、部品の組付工数を少なく抑えることができ、ひいては部品の組付コストを低く抑えることに繋がる。また、永久磁石6がそれなりの体格を有する1部品となるので、ロータ遠心力による永久磁石6の飛散も生じ難くすることができる。
According to the configuration of the present embodiment, the following effects can be obtained.
(1) A permanent magnet 6 is provided between the first rotor core 4 and the second rotor core 5 to cause the rotor cores 4 and 5 to function as N-pole / S-pole iron cores. While forming the magnet main body part 16, the interpolar magnet part 17, and the back magnet part 18, these are formed as an integral part. For this reason, since the number of parts of the rotor 3 can be reduced, it is possible to reduce the number of assembling steps of the parts, which leads to a reduction in the assembling cost of the parts. Moreover, since the permanent magnet 6 becomes one part having a certain size, it is possible to prevent the permanent magnet 6 from being scattered by the rotor centrifugal force.

(2)磁石本体部16をモータ軸方向に磁化し、極間磁石部17をロータ周方向に磁化し、背面磁石部18をロータ径方向に磁化する。よって、磁石本体部16、極間磁石部17及び背面磁石部18の各磁気モーメントM1〜M3を、それぞれ最適な方向に磁化するので、第1回転子鉄心4及び第2回転子鉄心5に、それぞれ磁束の強いN極/S極を発生させることができる。   (2) The magnet body portion 16 is magnetized in the motor axial direction, the inter-pole magnet portion 17 is magnetized in the rotor circumferential direction, and the back magnet portion 18 is magnetized in the rotor radial direction. Therefore, since the magnetic moments M1 to M3 of the magnet main body 16, the interpole magnet 17 and the back magnet 18 are magnetized in the optimum directions, respectively, the first rotor core 4 and the second rotor core 5 are N pole / S pole with strong magnetic flux can be generated.

(3)一体型永久磁石6を焼結磁石やボンド磁石とした場合、一体型永久磁石6を例えば圧縮成形や射出成形のどちらでも形成することが可能となるので、製造方法が1通りに限定されてしまうことがない。   (3) When the integrated permanent magnet 6 is a sintered magnet or a bonded magnet, the integrated permanent magnet 6 can be formed, for example, by either compression molding or injection molding, so the manufacturing method is limited to one. It will never be done.

(4)一体型永久磁石6をフェライト磁石、サマリウム鉄窒素系磁石、サマリウムコバルト系磁石、ネオジム磁石又はアルニコ磁石などで形成することも可能であるので、これら汎用的な材料によっても一体型永久磁石6を製造することができる。   (4) The integrated permanent magnet 6 can be formed of a ferrite magnet, a samarium iron nitrogen-based magnet, a samarium cobalt-based magnet, a neodymium magnet, an alnico magnet, or the like. 6 can be manufactured.

(5)回転子鉄心4,5と一体型永久磁石6は互いの凹凸形状の引っ掛かりにより強固に組み付くので、部品の位置決め状態の保持に効果が高くなる。
(6)回転子鉄心4,5は一体型永久磁石6の磁力によって一体型永久磁石6に強く組み付くので、部品の位置決め状態の保持に一層効果が高い。
(5) Since the rotor cores 4 and 5 and the integrated permanent magnet 6 are firmly assembled by the catches of the concavo-convex shape, the effect of maintaining the positioning state of the parts is enhanced.
(6) Since the rotor cores 4 and 5 are strongly assembled to the integrated permanent magnet 6 by the magnetic force of the integrated permanent magnet 6, it is more effective in maintaining the positioning state of the parts.

(7)例えばボンド磁石等を回転子鉄心4(5)にインサート成形して一体型永久磁石6を形成する場合、回転子鉄心4(5)と永久磁石6との間に接着層や機械的エアギャップが発生しなくなるので、モータ1のパーミアンスが上がり、トルク向上に効果が高くなる。   (7) For example, when the integral permanent magnet 6 is formed by insert-molding a bond magnet or the like in the rotor core 4 (5), an adhesive layer or a mechanical layer is provided between the rotor core 4 (5) and the permanent magnet 6. Since the air gap is not generated, the permeance of the motor 1 is increased and the effect of improving the torque is enhanced.

なお、実施形態はこれまでに述べた構成に限らず、以下の態様に変更してもよい。
・図5に示す一体型永久磁石6のように、主たる磁石本体部16に対して補助的に機能する極間磁石部17及び背面磁石部18の着磁態様を極異方配向としてもよい。詳しくは、S極の背面磁石部18の外側面から隣接の極間磁石部17を経由しN極の背面磁石部18の外側面に向けて磁束が湾曲(径方向内側が凸)して流れる、いわゆる極異方配向の着磁がなされている。これにより、背面磁石部18は径方向成分の磁束を有し、極間磁石部17は周方向成分の磁束を有することから、図3に示す一体型永久磁石6と同様に機能する。つまり、図5に示す一体型永久磁石6においても、極間磁石部17及び背面磁石部18がロータ3内の磁束の整流を行い、漏れ磁束を低減させる効果を発揮する。
Note that the embodiment is not limited to the configuration described so far, and may be modified as follows.
As in the integrated permanent magnet 6 shown in FIG. 5, the magnetization modes of the interpole magnet portion 17 and the back magnet portion 18 that function in an auxiliary manner with respect to the main magnet main body portion 16 may be polar anisotropic orientation. Specifically, the magnetic flux flows from the outer surface of the S-pole rear magnet portion 18 through the adjacent inter-pole magnet portion 17 toward the outer surface of the N-pole rear magnet portion 18 (the radially inner side protrudes). In other words, so-called polar anisotropic orientation is magnetized. Thus, the back magnet portion 18 has a radial component magnetic flux, and the interpole magnet portion 17 has a circumferential component magnetic flux, and thus functions in the same manner as the integrated permanent magnet 6 shown in FIG. That is, also in the integrated permanent magnet 6 shown in FIG. 5, the interpole magnet portion 17 and the back magnet portion 18 rectify the magnetic flux in the rotor 3, and exhibit the effect of reducing the leakage magnetic flux.

図5に示す一体型永久磁石6の着磁方法について、図6(a)(b)に示す着磁装置20が用いられる。図6(b)には、一体型永久磁石6の磁石本体部16に対する着磁を行う第1着磁装置21が示され、第1着磁装置21の異なる磁極の着磁部21a,21bが円板状の磁石本体部16の表裏面にそれぞれ対向し、磁石本体部16の厚み方向(軸方向)に沿った磁化が行われる。また、図6(a)(b)には、極間磁石部17及び背面磁石部18に対する着磁を行う第2着磁装置22が示され、第2着磁装置22の異なる磁極の着磁部22a,22bが周方向に交互に5個ずつ、合計10個の着磁部22a,22bが周方向等間隔に設けられる。そして、周方向等間隔に10箇所ある背面磁石部18の外側面に各着磁部22a,22bがそれぞれ対向し、背面磁石部18の外側面側から一括して着磁が行われ、極間磁石部17を挟む隣接の背面磁石部18間に跨って湾曲する磁化(上記の極異方配向)が行われる。   As for the magnetizing method of the integrated permanent magnet 6 shown in FIG. 5, a magnetizing device 20 shown in FIGS. 6 (a) and 6 (b) is used. FIG. 6B shows a first magnetizing device 21 that magnetizes the magnet main body 16 of the integrated permanent magnet 6, and magnetized portions 21 a and 21 b of different magnetic poles of the first magnetizing device 21. Magnetization is performed along the thickness direction (axial direction) of the magnet main body 16 so as to face the front and back surfaces of the disk-shaped magnet main body 16, respectively. 6A and 6B show a second magnetizing device 22 that magnetizes the interpole magnet portion 17 and the back magnet portion 18, and magnetizes different magnetic poles of the second magnetizing device 22. Five portions 22a and 22b are alternately arranged in the circumferential direction, and a total of ten magnetized portions 22a and 22b are provided at equal intervals in the circumferential direction. And each magnetized part 22a, 22b each opposes the outer surface of the back magnet part 18 which exists in the circumferential direction equal intervals, and magnetizes collectively from the outer surface side of the back magnet part 18, and it is between poles. Magnetization (the above-mentioned polar anisotropic orientation) is performed so as to bend across the adjacent back magnet portions 18 sandwiching the magnet portion 17.

また、磁石本体部16、極間磁石部17及び背面磁石部18の着磁順について、磁石本体部16と、極間磁石部17及び背面磁石部18との着磁を同時に行えば、着磁工程が少なくてすみ、一体型永久磁石6を短時間で製造できる。また、磁石本体部16と、極間磁石部17及び背面磁石部18との着磁を時間的にずらすようにすれば、磁石本体部16と、極間磁石部17及び背面磁石部18とを着磁する際の互いの磁束の干渉を防止できる。特に、磁石本体部16側の着磁を先に行えば、磁石本体部16側の磁化を着実とすることが期待でき、極間磁石部17及び背面磁石部18側の着磁を先に行えば、極間磁石部17及び背面磁石部18側の磁化を着実とすることが期待できる。   Further, with respect to the magnetization order of the magnet main body part 16, the inter-pole magnet part 17 and the back magnet part 18, if the magnet main body part 16, the inter-pole magnet part 17 and the back magnet part 18 are magnetized at the same time, the magnetization is performed. The number of steps is reduced, and the integrated permanent magnet 6 can be manufactured in a short time. Further, if the magnetization of the magnet main body portion 16 and the interpole magnet portion 17 and the back magnet portion 18 are shifted in time, the magnet main body portion 16, the interpole magnet portion 17 and the back magnet portion 18 are combined. It is possible to prevent interference between the magnetic fluxes when magnetizing. In particular, if the magnetization on the magnet body 16 side is performed first, it can be expected that the magnetization on the magnet body 16 side will be steady, and the magnetization on the interpole magnet section 17 and the back magnet section 18 side should be performed first. For example, it can be expected that the magnetization on the interpole magnet portion 17 and the back magnet portion 18 side is steady.

・図7及び図8に示すように、シャフト7は、第1回転子鉄心4及び第2回転子鉄心5に対して一体に形成されてもよい。この場合、永久磁石6を孔なしの単純円板とすることが可能となるので、これまで孔部分で損失していた分の磁束増加が見込め、トルク向上に効果が高くなる。また、永久磁石6に孔加工する必要がなくなるので、製造コストの削減も見込める。さらに、回転子鉄心4,5にシャフト機能を持たせるので、部品としてシャフト7が不要となるので、部品点数削減にも効果が高くなる。なお、図7及び図8の場合、永久磁石6を単なる円板型として記載したが、これは実施形態及び上記別例で述べた一体型永久磁石に変更することも可能である。   As shown in FIGS. 7 and 8, the shaft 7 may be formed integrally with the first rotor core 4 and the second rotor core 5. In this case, since it becomes possible to make the permanent magnet 6 into a simple disk without a hole, an increase in the magnetic flux that has been lost in the hole portion can be expected so far, and the effect of improving the torque becomes high. In addition, since it is not necessary to drill holes in the permanent magnet 6, a reduction in manufacturing cost can be expected. Furthermore, since the rotor cores 4 and 5 are provided with a shaft function, the shaft 7 is not necessary as a component, and the effect is also high in reducing the number of components. In the case of FIGS. 7 and 8, the permanent magnet 6 is described as a simple disk type, but this can be changed to the integrated permanent magnet described in the embodiment and the above-described another example.

・ロータ3は、第1回転子鉄心4及び第2回転子鉄心5の組が1組のみの一層構造に限定されず、図9に示すようなタンデム構造としてもよい。タンデム構造のロータは、複数のロータユニット31,31からなる。本例のロータユニット31は、実施形態で記載したロータ3そのものである。そして、タンデム構造の場合、これらロータユニット31,31は、軸方向において上下逆向きに配置されることにより、N極同士(又はS極同士)が接触する向きにて取り付けられる。なお、図9の場合も、永久磁石6を単なる円板型として記載したが、これは一体型永久磁石に変更することも可能である。タンデム構造を採用すれば、永久磁石6の表面におけるN極、S極の面積を広くとることが可能となるので、トルク向上に効果が高い。   The rotor 3 is not limited to a single-layer structure in which the first rotor core 4 and the second rotor core 5 are only one set, and may have a tandem structure as shown in FIG. The tandem rotor is composed of a plurality of rotor units 31 and 31. The rotor unit 31 in this example is the rotor 3 itself described in the embodiment. And in the case of a tandem structure, these rotor units 31 and 31 are attached in the direction in which N poles (or S poles) contact each other by being arranged upside down in the axial direction. In the case of FIG. 9 as well, the permanent magnet 6 is described as a simple disk type, but this can be changed to an integrated permanent magnet. If the tandem structure is adopted, the area of the N pole and the S pole on the surface of the permanent magnet 6 can be increased, which is highly effective in improving the torque.

・ロータ3をタンデム構造にした場合、図10に示すように、同極で接触する回転子鉄心4(又は回転子鉄心5)同士を一体に形成してもよい。ちなみに、図10の場合は、N極の回転子鉄心同士を一体に形成している。なお、図10の場合も、永久磁石6を単なる円板型として記載したが、これは一体型永久磁石に変更することも可能である。   When the rotor 3 has a tandem structure, as shown in FIG. 10, the rotor cores 4 (or the rotor cores 5) that make contact with the same pole may be integrally formed. Incidentally, in the case of FIG. 10, the rotor cores of N poles are integrally formed. In the case of FIG. 10 as well, the permanent magnet 6 is described as a simple disk type, but this can be changed to an integrated permanent magnet.

・爪状磁極9,12の個数は、実施形態に記載した個数に限定されず、他の個数に変更可能である。
・第1回転子鉄心4をS極とし、第2回転子鉄心5をN極としてもよい。
The number of claw-shaped magnetic poles 9 and 12 is not limited to the number described in the embodiment, and can be changed to other numbers.
The first rotor core 4 may be the S pole and the second rotor core 5 may be the N pole.

・一体型永久磁石6の材質は、実施形態に記載以外のものを適宜採用可能である。
・一体型永久磁石6の形状は、実施形態に記載したような形状に限定されず、磁石本体部16と極間磁石部17と背面磁石部18とを有していれば、どのような形状に変更してもよい。
A material other than that described in the embodiment can be appropriately adopted as the material of the integrated permanent magnet 6.
The shape of the integrated permanent magnet 6 is not limited to the shape described in the embodiment, and any shape as long as it has the magnet main body portion 16, the interpole magnet portion 17, and the back magnet portion 18. You may change to

・極間磁石部17及び背面磁石部18の個数は、爪状磁極9,12の個数に合わせて適宜変更可能である。
・磁石本体部16、極間磁石部17及び背面磁石部18の着磁方向は、回転子鉄心4,5に所望の磁極を持たせることができれば、他の向きに変更可能である。
The number of the interpole magnet portions 17 and the back magnet portions 18 can be appropriately changed according to the number of the claw-shaped magnetic poles 9 and 12.
The magnetizing directions of the magnet main body 16, the inter-pole magnet 17 and the back magnet 18 can be changed to other directions as long as the rotor cores 4 and 5 can have desired magnetic poles.

以下に技術的思想を記載する。
・周方向に複数の爪状磁極を持つ第1回転子鉄心及び第2回転子鉄心が設けられ、これらの一方の爪状磁極が他方の爪状磁極間の切欠部に入り込む組み付け状態をとり、これら第1回転子鉄心及び第2回転子鉄心の間に配置された永久磁石の磁界によって、複数の前記爪状磁極が周方向において交互にN極/S極となるロータにおいて、前記永久磁石は、前記第1回転子鉄心と第2回転子鉄心との軸方向における隙間に配置された磁石本体部と、前記第1回転子鉄心の爪状磁極と前記第2回転子鉄心の爪状磁極との間において周方向に生じる隙間に配置された極間磁石部と、それぞれの前記爪状磁極の背面に生じる隙間に配置された背面磁石部とがそれぞれ相互間で一体形成された一体型永久磁石である。
The technical idea is described below.
A first rotor core and a second rotor core having a plurality of claw-shaped magnetic poles in the circumferential direction are provided, and one of these claw-shaped magnetic poles is in an assembled state in which it enters a notch between the other claw-shaped magnetic poles, In the rotor in which the plurality of claw-shaped magnetic poles alternately become N poles / S poles in the circumferential direction by the magnetic field of the permanent magnets arranged between the first rotor core and the second rotor core, the permanent magnets A magnet body disposed in a gap in the axial direction between the first rotor core and the second rotor core, a claw-shaped magnetic pole of the first rotor core, and a claw-shaped magnetic pole of the second rotor core. An integrated permanent magnet in which an inter-pole magnet portion disposed in a gap generated in the circumferential direction between each other and a back magnet portion disposed in a gap generated on the back surface of each claw-shaped magnetic pole are integrally formed with each other It is.

この構成によれば、第1回転子鉄心及び第2回転子鉄心に各々磁極を持たせる永久磁石を、これらの軸方向にできる隙間を埋める磁石本体部と、爪状磁極間に周方向にできる隙間を埋める極間磁石部と、各爪状磁極の背面にできる隙間を埋める背面磁石部とを一体に有する一体型永久磁石とした。このため、第1回転子鉄心と第2回転子鉄心との間の隙間から磁束を漏れ難くする構造を、少ない部品点数で実現することが可能となる。また、部品の組付工数を少なく抑えることにも繋がり、ひいては部品の組付コストの低減に効果が高くなる。さらに、一体型永久磁石はそれなりの体格を有する1部品となるので、ロータ遠心力による飛散も生じ難くすることが可能となる。   According to this structure, the permanent magnet which makes a 1st rotor core and a 2nd rotor core each have a magnetic pole can be made into the circumferential direction between the magnet main-body part which fills the gap | interval which can be made in these axial directions, and a claw-shaped magnetic pole. An integral permanent magnet integrally including a gap magnet portion that fills the gap and a back magnet portion that fills the gap formed on the back surface of each claw-shaped magnetic pole was obtained. For this reason, it becomes possible to implement | achieve the structure which makes it difficult to leak magnetic flux from the clearance gap between a 1st rotor core and a 2nd rotor core with few components. In addition, it reduces the number of parts assembly man-hours, and as a result, the effect of reducing the part assembly cost is increased. Furthermore, since the integrated permanent magnet is a single component having a certain size, it is possible to prevent scattering due to the rotor centrifugal force.

・前記磁石本体部は、前記軸方向に磁化され、前記極間磁石部は、前記周方向に磁化され、前記背面磁石部は、径方向に磁化されている。この構成によれば、磁石本体部、極間磁石部及び背面磁石部の各磁気モーメントを、それぞれ最適な方向に磁化するので、第1回転子鉄心及び第2回転子鉄心に、それぞれ磁束の強いN極/S極を持たせることが可能となる。   The magnet main body is magnetized in the axial direction, the interpolar magnet is magnetized in the circumferential direction, and the back magnet is magnetized in the radial direction. According to this configuration, the magnetic moments of the magnet main body part, the interpole magnet part, and the back magnet part are magnetized in the optimum directions, respectively, so that the first rotor core and the second rotor core have strong magnetic flux respectively. It becomes possible to have N pole / S pole.

・前記一体型永久磁石は、焼結磁石又はボンド磁石である。この構成によれば、一体型永久磁石を圧縮成形や射出成形のどちらでも製造することが可能となるので、製造方法が1通りに限定されてしまうことがない。   The integrated permanent magnet is a sintered magnet or a bonded magnet. According to this configuration, since the integral permanent magnet can be manufactured by either compression molding or injection molding, the manufacturing method is not limited to one.

・前記一体型永久磁石は、フェライト磁石、サマリウム鉄窒素系磁石、サマリウムコバルト系磁石、ネオジム磁石又はアルニコ磁石である。この構成によれば、これら汎用的な材料によっても一体型永久磁石を製造することも可能である。   The integrated permanent magnet is a ferrite magnet, a samarium iron nitrogen-based magnet, a samarium cobalt-based magnet, a neodymium magnet, or an alnico magnet. According to this configuration, an integrated permanent magnet can be manufactured using these general-purpose materials.

・前記第1回転子鉄心又は前記第2回転子鉄心に磁石材料をインサート成形することにより、前記一体型永久磁石が形成されている。この構成によれば、一体型永久磁石をインサート成形によって回転子鉄心に直接形成するので、回転子鉄心と磁石との間に接着層や機械的エアギャップが発生しない。このため、ロータのパーミアンスが向上し、ロータのトルクを確保することが可能となる。   The integral permanent magnet is formed by insert-molding a magnet material in the first rotor core or the second rotor core. According to this configuration, since the integral permanent magnet is directly formed on the rotor core by insert molding, no adhesive layer or mechanical air gap is generated between the rotor core and the magnet. For this reason, the permeance of the rotor is improved and the torque of the rotor can be secured.

・前記永久磁石は、前記背面磁石部から隣接の前記極間磁石部における爪状磁極より内側の部分を経由して磁極の異なる前記背面磁石部に向けて磁束が湾曲して流れる極異方配向とした。この構成によれば、極間磁石部及び背面磁石部をそれぞれ最適な方向の成分を有するように磁化でき、しかも背面磁石部の外側面側から一括して着磁を行うことも可能である。   The polar orientation of the permanent magnet from the back magnet part through the claw-shaped magnetic pole in the adjacent interpole magnet part to the back magnet part having a different magnetic pole flows in a magnetically anisotropic manner It was. According to this configuration, it is possible to magnetize the interpole magnet portion and the back magnet portion so as to have components in optimum directions, respectively, and it is also possible to perform magnetization in a lump from the outer surface side of the back magnet portion.

・前記磁石本体部の軸方向端面は、前記背面磁石部の軸方向端面と同一平面上となる。
・周方向に複数の爪状磁極を持つ第1回転子鉄心及び第2回転子鉄心が設けられ、これらの一方の爪状磁極が他方の爪状磁極間の切欠部に入り込む組み付け状態をとり、これら第1回転子鉄心及び第2回転子鉄心の間に配置された永久磁石の磁界によって、複数の前記爪状磁極が周方向において交互にN極/S極を形成するロータと、当該ロータを回転可能に支持するステータとを備えたモータにおいて、前記永久磁石は、前記第1回転子鉄心と第2回転子鉄心との軸方向における隙間に配置された磁石本体部と、前記第1回転子鉄心の爪状磁極と前記第2回転子鉄心の爪状磁極との間において周方向に生じる隙間に配置された極間磁石部と、それぞれの前記爪状磁極の背面に生じる隙間に配置された背面磁石部とがそれぞれ相互間で一体形成された一体型永久磁石である。
The axial end surface of the magnet main body is flush with the axial end surface of the back magnet portion.
A first rotor core and a second rotor core having a plurality of claw-shaped magnetic poles in the circumferential direction are provided, and one of these claw-shaped magnetic poles is in an assembled state in which it enters a notch between the other claw-shaped magnetic poles, A rotor in which a plurality of claw-shaped magnetic poles alternately form N poles / S poles in the circumferential direction by a magnetic field of a permanent magnet disposed between the first rotor core and the second rotor core, and the rotor In the motor including a stator that is rotatably supported, the permanent magnet includes a magnet main body disposed in a gap in an axial direction between the first rotor core and the second rotor core, and the first rotor. Between the claw-shaped magnetic poles of the iron core and the claw-shaped magnetic poles of the second rotor core, the inter-pole magnet portions arranged in the gaps generated in the circumferential direction, and the gaps formed on the back surfaces of the respective claw-shaped magnetic poles The back magnet part is integrated with each other. It has been an integral permanent magnet.

・ところで、従来の型のモータにおいては、隣同士の爪状磁極82a,83aの間にどうしても隙間ができてしまい、この隙間から磁束が漏れてしまう現状があった。この漏れ磁束が増加すると、モータの出力が低下する要因にもなるので、何らかの対策が必要であるが、部品点数が増加しない構造としたい要望があった。   In the conventional type motor, there is a gap between the adjacent claw-shaped magnetic poles 82a and 83a, and the magnetic flux leaks from the gap. If this leakage magnetic flux increases, it may cause a decrease in the output of the motor. Therefore, some countermeasure is required, but there is a demand for a structure that does not increase the number of parts.

ちなみに、特許文献1に開示のモータのロータは、爪状磁極の背面に補助磁石(背面磁石)を設け、特許文献2に開示のモータのロータは、周方向隣接の爪状磁極間に補助磁石(極間磁石)を設けて、それぞれ漏れ磁束低減が図られている。これら各補助磁石を用いるのにあたり、部品点数の増加が懸念されるところである。   Incidentally, the rotor of the motor disclosed in Patent Document 1 is provided with an auxiliary magnet (back magnet) on the back surface of the claw-shaped magnetic pole, and the rotor of the motor disclosed in Patent Document 2 is provided between the claw-shaped magnetic poles adjacent in the circumferential direction. (Magnet between poles) is provided to reduce leakage magnetic flux. When using these auxiliary magnets, there is a concern about an increase in the number of parts.

以下に記載するロータ及びモータの目的は、第1回転子鉄心及び第2回転子鉄心の間の隙間から磁束が漏れ難い構造を、部品点数を少なく抑えて実現することである。
・周方向に複数の爪状磁極を持つ第1回転子鉄心及び第2回転子鉄心が設けられ、これらの一方の爪状磁極が他方の爪状磁極間の切欠部に入り込む組み付け状態をとり、これら第1回転子鉄心及び第2回転子鉄心の間に配置された永久磁石の磁界によって、複数の前記爪状磁極が周方向において交互にN極/S極となるロータにおいて、前記永久磁石は、前記第1回転子鉄心と第2回転子鉄心との軸方向における隙間に配置された磁石本体部と、前記第1回転子鉄心の爪状磁極と前記第2回転子鉄心の爪状磁極との間において周方向に生じる隙間に配置された極間磁石部と、それぞれの前記爪状磁極の背面に生じる隙間に配置された背面磁石部とがそれぞれ相互間で一体形成され、前記背面磁石部から隣接の前記極間磁石部における爪状磁極より内側の部分を経由して磁極の異なる前記背面磁石部に向けて磁束が湾曲して流れる極異方配向とした一体型永久磁石であり、前記爪状磁極は、前記第1回転子鉄心に設けられた第1爪状磁極と、前記第2回転子鉄心に設けられた第2爪状磁極とを有し、前記背面磁石部は、前記第1爪状磁極の背面に生じる隙間に配置された第1背面磁石部と、前記第2爪状磁極の背面に生じる隙間に配置された第2背面磁石部とを有しており、周方向に前記極間磁石部を挟んで隣り合う前記第1背面磁石部と前記第2背面磁石部とは、前記磁石本体部を基準にして、軸方向の前記第1回転子鉄心側に前記第2背面磁石部が配置されているとともに軸方向の前記第2回転子鉄心側に前記第1背面磁石部が配置されている。
The purpose of the rotor and motor described below is to realize a structure in which magnetic flux hardly leaks from the gap between the first rotor core and the second rotor core with a reduced number of parts.
A first rotor core and a second rotor core having a plurality of claw-shaped magnetic poles in the circumferential direction are provided, and one of these claw-shaped magnetic poles is in an assembled state in which it enters a notch between the other claw-shaped magnetic poles, In the rotor in which the plurality of claw-shaped magnetic poles alternately become N poles / S poles in the circumferential direction by the magnetic field of the permanent magnets arranged between the first rotor core and the second rotor core, the permanent magnets A magnet body disposed in a gap in the axial direction between the first rotor core and the second rotor core, a claw-shaped magnetic pole of the first rotor core, and a claw-shaped magnetic pole of the second rotor core. The interpole magnet portion disposed in the gap generated in the circumferential direction in between and the back magnet portion disposed in the gap formed on the back surface of each claw-shaped magnetic pole are integrally formed with each other, and the back magnet portion Claw-shaped magnetic poles in the interpole magnet section adjacent to each other An integrated permanent magnet having an anisotropic orientation in which the magnetic flux is curved and flows toward the back magnet part having a different magnetic pole via the inner part, and the claw-shaped magnetic pole is formed on the first rotor core. A first claw-shaped magnetic pole provided; and a second claw-shaped magnetic pole provided on the second rotor core, wherein the back magnet portion is disposed in a gap formed on the back surface of the first claw-shaped magnetic pole. The first back magnet portion and the second back magnet portion disposed in the gap formed on the back surface of the second claw-shaped magnetic pole, and adjacent to each other with the interpole magnet portion interposed therebetween in the circumferential direction. 1 back magnet part and the 2nd back magnet part are the 2nd back magnet part being arranged on the 1st rotor core side of the axial direction on the basis of the magnet body part, and the axial direction The first back magnet part is disposed on the second rotor core side.

上記の構成によれば、第1回転子鉄心及び第2回転子鉄心に各々磁極を持たせる永久磁石を、これらの軸方向にできる隙間を埋める磁石本体部と、爪状磁極間に周方向にできる隙間を埋める極間磁石部と、各爪状磁極の背面にできる隙間を埋める背面磁石部とを一体に有する一体型永久磁石とした。このため、第1回転子鉄心と第2回転子鉄心との間の隙間から磁束を漏れ難くする構造を、少ない部品点数で実現することが可能となる。また、部品の組付工数を少なく抑えることにも繋がり、ひいては部品の組付コストの低減に効果が高くなる。さらに、一体型永久磁石はそれなりの体格を有する1部品となるので、ロータ遠心力による飛散も生じ難くすることが可能となる。   According to said structure, the permanent magnet which makes a 1st rotor core and a 2nd rotor core each have a magnetic pole in the circumferential direction between the magnet main-body part which fills the clearance gap which can be made in these axial directions, and a claw-shaped magnetic pole. An integral permanent magnet integrally having an inter-electrode magnet portion that fills the gap that can be formed and a back magnet portion that fills the gap formed on the back surface of each claw-shaped magnetic pole. For this reason, it becomes possible to implement | achieve the structure which makes it difficult to leak magnetic flux from the clearance gap between a 1st rotor core and a 2nd rotor core with few components. In addition, it reduces the number of parts assembly man-hours, and as a result, the effect of reducing the part assembly cost is increased. Furthermore, since the integrated permanent magnet is a single component having a certain size, it is possible to prevent scattering due to the rotor centrifugal force.

・上記のロータにおいて、前記磁石本体部は、軸方向に磁化されており、該磁石本体部の中央には、非磁性体のシャフトを通すための通し孔が貫設されている。
・上記のモータは、上記のロータと、当該ロータを回転可能に支持するステータとを備えた。
In the rotor described above, the magnet main body is magnetized in the axial direction, and a through-hole for passing a non-magnetic shaft passes through the center of the magnet main body.
The motor includes the rotor and a stator that rotatably supports the rotor.

1…モータ、2…ステータ、3…マグネット界磁のランデル型ロータ、4…第1回転子鉄心、5…第2回転子鉄心、6…一体型永久磁石、9…爪状磁極、10…切欠部、12…爪状磁極、13…切欠部、16…磁石本体部、17…極間磁石部、18…背面磁石部。
DESCRIPTION OF SYMBOLS 1 ... Motor, 2 ... Stator, 3 ... Landel type rotor of magnet field, 4 ... 1st rotor iron core, 5 ... 2nd rotor iron core, 6 ... Integrated permanent magnet, 9 ... Claw-shaped magnetic pole, 10 ... Notch , 12 ... claw-shaped magnetic pole, 13 ... notch, 16 ... magnet body, 17 ... interpolar magnet, 18 ... back magnet.

Claims (5)

周方向に複数の爪状磁極を持つ第1回転子鉄心及び第2回転子鉄心の一方の爪状磁極が他方の爪状磁極間の切欠部に入り込む組み付け状態をとるロータの前記第1回転子鉄心と前記第2回転子鉄心との軸方向における隙間に配置され軸方向に磁化される磁石本体部と、前記第1回転子鉄心の爪状磁極と前記第2回転子鉄心の爪状磁極との間において周方向に生じる隙間に配置される極間磁石部と、それぞれの前記爪状磁極の背面に生じる隙間に配置される背面磁石部とを有し、複数の前記爪状磁極を周方向において交互にN極/S極として機能させる永久磁石の着磁方法であって、
前記磁石本体部を軸方向に着磁する軸方向着磁工程と、
前記背面磁石部から隣接の前記極間磁石部における爪状磁極より内側の部分を経由して磁極の異なる前記背面磁石部に向けて磁束が湾曲して流れる極異方配向の着磁を行う湾曲着磁工程とを備え、
前記軸方向着磁工程と前記湾曲着磁工程とを時間的にずらして行うことを特徴とする着磁方法。
The first rotor of the rotor in an assembled state in which one claw-shaped magnetic pole of the first rotor core and the second rotor core having a plurality of claw-shaped magnetic poles in the circumferential direction enters the notch portion between the other claw-shaped magnetic poles. A magnet main body that is disposed in a gap in the axial direction between the iron core and the second rotor core and magnetized in the axial direction, a claw-shaped magnetic pole of the first rotor core, and a claw-shaped magnetic pole of the second rotor core The inter-pole magnet portion disposed in the gap generated in the circumferential direction between the two and the back magnet portion disposed in the gap formed on the back surface of each of the claw-shaped magnetic poles, the plurality of claw-shaped magnetic poles in the circumferential direction In which permanent magnets function alternately as N poles / S poles,
An axial magnetization step of magnetizing the magnet body in the axial direction;
Curvature that polarizes and polarizes the magnetic flux from the back magnet part to the back magnet part having a different magnetic pole through a portion inside the claw-shaped magnetic pole in the adjacent interpole magnet part. A magnetizing process,
A magnetizing method, wherein the axial magnetization step and the curved magnetization step are performed while being shifted in time.
前記湾曲着磁工程を行った後に前記軸方向着磁工程を行うことを特徴とする請求項1に記載の着磁方法。   The magnetization method according to claim 1, wherein the axial magnetization step is performed after the curved magnetization step. 前記軸方向着磁工程を行った後に前記湾曲着磁工程を行うことを特徴とする請求項1に記載の着磁方法。   The magnetization method according to claim 1, wherein the curved magnetization step is performed after the axial magnetization step. 周方向に複数の爪状磁極を持つ第1回転子鉄心及び第2回転子鉄心の一方の爪状磁極が他方の爪状磁極間の切欠部に入り込む組み付け状態をとるロータの前記第1回転子鉄心と前記第2回転子鉄心との軸方向における隙間に配置され軸方向に磁化される磁石本体部と、前記第1回転子鉄心の爪状磁極と前記第2回転子鉄心の爪状磁極との間において周方向に生じる隙間に配置される極間磁石部と、それぞれの前記爪状磁極の背面に生じる隙間に配置される背面磁石部とを有し、複数の前記爪状磁極を周方向において交互にN極/S極として機能させる永久磁石の着磁方法であって、
前記磁石本体部を軸方向に着磁する軸方向着磁工程と、
前記背面磁石部から隣接の前記極間磁石部における爪状磁極より内側の部分を経由して磁極の異なる前記背面磁石部に向けて磁束が湾曲して流れる極異方配向の着磁を行う湾曲着磁工程とを備え、
前記軸方向着磁工程と前記湾曲着磁工程とを同時に行うことを特徴とする着磁方法。
The first rotor of the rotor in an assembled state in which one claw-shaped magnetic pole of the first rotor core and the second rotor core having a plurality of claw-shaped magnetic poles in the circumferential direction enters the notch portion between the other claw-shaped magnetic poles. A magnet main body that is disposed in a gap in the axial direction between the iron core and the second rotor core and magnetized in the axial direction, a claw-shaped magnetic pole of the first rotor core, and a claw-shaped magnetic pole of the second rotor core The inter-pole magnet portion disposed in the gap generated in the circumferential direction between the two and the back magnet portion disposed in the gap formed on the back surface of each of the claw-shaped magnetic poles, the plurality of claw-shaped magnetic poles in the circumferential direction In which permanent magnets function alternately as N poles / S poles,
An axial magnetization step of magnetizing the magnet body in the axial direction;
Curvature that polarizes and polarizes the magnetic flux from the back magnet part to the back magnet part having a different magnetic pole through a portion inside the claw-shaped magnetic pole in the adjacent interpole magnet part. A magnetizing process,
A magnetizing method, wherein the axial magnetization step and the curved magnetization step are performed simultaneously.
周方向に複数の爪状磁極を持つ第1回転子鉄心及び第2回転子鉄心の一方の爪状磁極が他方の爪状磁極間の切欠部に入り込む組み付け状態をとるロータの前記第1回転子鉄心と前記第2回転子鉄心との軸方向における隙間に配置され軸方向に磁化される磁石本体部と、前記第1回転子鉄心の爪状磁極と前記第2回転子鉄心の爪状磁極との間において周方向に生じる隙間に配置される極間磁石部と、それぞれの前記爪状磁極の背面に生じる隙間に配置される背面磁石部とを有し、複数の前記爪状磁極を周方向において交互にN極/S極として機能させる永久磁石を着磁する着磁装置であって、
前記磁石本体部を軸方向に着磁する軸方向着磁部と、
前記背面磁石部から隣接の前記極間磁石部における爪状磁極より内側の部分を経由して磁極の異なる前記背面磁石部に向けて磁束が湾曲して流れる極異方配向の着磁を行う湾曲着磁部とを備え、
前記軸方向着磁部による軸方向着磁と前記湾曲着磁部による極異方配向の着磁とを時間的にずらして行うことを特徴とする着磁装置。
The first rotor of the rotor in an assembled state in which one claw-shaped magnetic pole of the first rotor core and the second rotor core having a plurality of claw-shaped magnetic poles in the circumferential direction enters the notch portion between the other claw-shaped magnetic poles. A magnet main body that is disposed in a gap in the axial direction between the iron core and the second rotor core and magnetized in the axial direction, a claw-shaped magnetic pole of the first rotor core, and a claw-shaped magnetic pole of the second rotor core The inter-pole magnet portion disposed in the gap generated in the circumferential direction between the two and the back magnet portion disposed in the gap formed on the back surface of each of the claw-shaped magnetic poles, the plurality of claw-shaped magnetic poles in the circumferential direction A magnetizing device that magnetizes permanent magnets that alternately function as N poles / S poles,
An axially magnetized portion for magnetizing the magnet body portion in the axial direction;
Curvature that polarizes and polarizes the magnetic flux from the back magnet part to the back magnet part having a different magnetic pole through a portion inside the claw-shaped magnetic pole in the adjacent interpole magnet part. With a magnetized part,
A magnetizing apparatus characterized in that axial magnetization by the axially magnetized portion and magnetization of polar anisotropy by the curved magnetized portion are shifted in time.
JP2018007262A 2011-10-31 2018-01-19 Magnetization method and apparatus Expired - Fee Related JP6601510B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011239522 2011-10-31
JP2011239522 2011-10-31

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016204935A Division JP6280970B2 (en) 2011-10-31 2016-10-19 Rotor and motor

Publications (2)

Publication Number Publication Date
JP2018061436A true JP2018061436A (en) 2018-04-12
JP6601510B2 JP6601510B2 (en) 2019-11-06

Family

ID=48712959

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2012181637A Active JP6068048B2 (en) 2011-10-31 2012-08-20 Rotor and motor
JP2016204935A Active JP6280970B2 (en) 2011-10-31 2016-10-19 Rotor and motor
JP2018007262A Expired - Fee Related JP6601510B2 (en) 2011-10-31 2018-01-19 Magnetization method and apparatus

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2012181637A Active JP6068048B2 (en) 2011-10-31 2012-08-20 Rotor and motor
JP2016204935A Active JP6280970B2 (en) 2011-10-31 2016-10-19 Rotor and motor

Country Status (1)

Country Link
JP (3) JP6068048B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370262B (en) 2012-02-15 2019-08-06 株式会社电装 Rotor and motor
US9859761B2 (en) 2013-02-12 2018-01-02 Asmo Co., Ltd. Rotor and motor
JP6148960B2 (en) * 2013-10-03 2017-06-14 アスモ株式会社 Rotor, motor, and method of manufacturing rotor
JP6121859B2 (en) * 2013-09-26 2017-04-26 アスモ株式会社 Rotor and motor
DE102014113744A1 (en) 2013-09-26 2015-03-26 Asmo Co., Ltd. Rotor and motor
JP6390172B2 (en) * 2013-10-31 2018-09-19 株式会社デンソー Rotor and motor
JP6338245B2 (en) * 2014-05-20 2018-06-06 株式会社デンソー Multi-rundel motor
JP6432274B2 (en) * 2014-10-20 2018-12-05 株式会社デンソー Motor and motor driving method
US9787148B2 (en) * 2015-01-07 2017-10-10 Asmo Co., Ltd. Motor
JP6380112B2 (en) * 2015-01-07 2018-08-29 株式会社デンソー Rotor and motor
JP6455218B2 (en) * 2015-02-23 2019-01-23 株式会社デンソー Rotor and motor
JP6235073B2 (en) * 2016-05-23 2017-11-22 アスモ株式会社 Rotor, rotor manufacturing method and motor
EP4216408A4 (en) 2020-11-30 2024-03-20 Aisin Corp Rotor core and method for manufacturing rotor core

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0449836A (en) * 1990-06-19 1992-02-19 Nippondenso Co Ltd Field core having pawl type pole
JPH04171703A (en) * 1990-11-02 1992-06-18 Daido Steel Co Ltd Manufacture of magnet
JPH04251553A (en) * 1990-12-27 1992-09-07 Nippondenso Co Ltd Ac generator
JPH0543749U (en) * 1991-11-14 1993-06-11 アスモ株式会社 Rotor of rotating magnetic field type motor
JP2005117867A (en) * 2003-10-10 2005-04-28 Honda Motor Co Ltd Brushless motor and its control method
JP2005192396A (en) * 2005-02-21 2005-07-14 Sanyo Electric Co Ltd Process for producing induction synchronous motor
JP2008236844A (en) * 2007-03-19 2008-10-02 Hitachi Ltd Rotary electric machine and its manufacturing method and automobile equipped with rotary electric machine
JP2009055738A (en) * 2007-08-28 2009-03-12 Mitsubishi Electric Corp Welding method of cooling fan for rotor for rotary electric machine
JP2010183694A (en) * 2009-02-04 2010-08-19 Mitsubishi Electric Corp Rotating electrical machine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0449836A (en) * 1990-06-19 1992-02-19 Nippondenso Co Ltd Field core having pawl type pole
JPH04171703A (en) * 1990-11-02 1992-06-18 Daido Steel Co Ltd Manufacture of magnet
JPH04251553A (en) * 1990-12-27 1992-09-07 Nippondenso Co Ltd Ac generator
JPH0543749U (en) * 1991-11-14 1993-06-11 アスモ株式会社 Rotor of rotating magnetic field type motor
JP2005117867A (en) * 2003-10-10 2005-04-28 Honda Motor Co Ltd Brushless motor and its control method
JP2005192396A (en) * 2005-02-21 2005-07-14 Sanyo Electric Co Ltd Process for producing induction synchronous motor
JP2008236844A (en) * 2007-03-19 2008-10-02 Hitachi Ltd Rotary electric machine and its manufacturing method and automobile equipped with rotary electric machine
JP2009055738A (en) * 2007-08-28 2009-03-12 Mitsubishi Electric Corp Welding method of cooling fan for rotor for rotary electric machine
JP2010183694A (en) * 2009-02-04 2010-08-19 Mitsubishi Electric Corp Rotating electrical machine

Also Published As

Publication number Publication date
JP2013118801A (en) 2013-06-13
JP6601510B2 (en) 2019-11-06
JP6280970B2 (en) 2018-02-14
JP2017011995A (en) 2017-01-12
JP6068048B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP6601510B2 (en) Magnetization method and apparatus
JP5398512B2 (en) Axial gap type permanent magnet motor, rotor used therefor, and method for manufacturing the rotor
JP4561770B2 (en) Axial gap type rotating electrical machine and manufacturing method thereof
JP6007593B2 (en) Rotor, rotating electric machine provided with the same, and method of manufacturing rotor
JP5382012B2 (en) Rotor for rotating electrical machine and method for manufacturing the same
JP2015133839A (en) Magnet-embedded rotor
CN106165256A (en) Permanent magnet rotary electric machine and manufacture method thereof
WO2008007501A1 (en) Field element
JP2010130818A (en) Method for manufacturing field element
JPWO2006077812A1 (en) Rotor, motor driving method, compressor
KR101363199B1 (en) Motor with variable magnet flux
JP4673825B2 (en) Embedded magnet rotor and manufacturing method of embedded magnet rotor
JP2013198303A (en) Rotor structure of permanent magnet type rotary machine
JP2016072995A (en) Embedded magnet type rotor and electric motor including the same
JP2014155415A (en) Embedded magnet rotor and method of manufacturing embedded magnet rotor
CN103095015A (en) Rotor and motor
JP6001379B2 (en) Rotor and motor
JP4687687B2 (en) Axial gap type rotating electric machine and field element
JP6121914B2 (en) Synchronous motor
JP2013236418A (en) Rotary electric machine
JP5365049B2 (en) Rotating machine, radial type rotating machine, and method for determining back yoke thickness in rotating machine
JP5852418B2 (en) Rotor and motor
JP5353804B2 (en) Axial gap type rotating electrical machine and manufacturing method thereof
JP2012213269A (en) Rotary electric machine
JP5750995B2 (en) Synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190923

R151 Written notification of patent or utility model registration

Ref document number: 6601510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees