JP6121859B2 - Rotor and motor - Google Patents

Rotor and motor Download PDF

Info

Publication number
JP6121859B2
JP6121859B2 JP2013199737A JP2013199737A JP6121859B2 JP 6121859 B2 JP6121859 B2 JP 6121859B2 JP 2013199737 A JP2013199737 A JP 2013199737A JP 2013199737 A JP2013199737 A JP 2013199737A JP 6121859 B2 JP6121859 B2 JP 6121859B2
Authority
JP
Japan
Prior art keywords
magnet
claw
rotor
shaped magnetic
magnetic poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013199737A
Other languages
Japanese (ja)
Other versions
JP2015065794A (en
Inventor
貴宏 土屋
貴宏 土屋
智恵 森田
智恵 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2013199737A priority Critical patent/JP6121859B2/en
Priority to DE201410113744 priority patent/DE102014113744A1/en
Priority to CN201410489795.7A priority patent/CN104518585B/en
Priority to US14/495,492 priority patent/US9490670B2/en
Publication of JP2015065794A publication Critical patent/JP2015065794A/en
Application granted granted Critical
Publication of JP6121859B2 publication Critical patent/JP6121859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ロータ及びモータに関する。   The present invention relates to a rotor and a motor.

従来、モータに使用されるロータとして、周方向に複数の爪状磁極をそれぞれ有して組み合わされるロータコアを備え、それらの間に円板磁石(界磁磁石)を配置して各爪状磁極を交互に異なる磁極に機能させる所謂永久磁石界磁のランデル型構造のロータが知られている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, a rotor used in a motor has a rotor core that has a plurality of claw-shaped magnetic poles in the circumferential direction and is combined, and a disc magnet (field magnet) is disposed between them to provide each claw-shaped magnetic pole. A so-called permanent magnet field Landel-type rotor that functions alternately on different magnetic poles is known (for example, see Patent Document 1).

特許文献1のロータでは、爪状磁極の背面に設けられる補助磁石(背面磁石)と、周方向における各爪状磁極間に設けられる補助磁石(爪状磁極)とを有し、これら補助磁石と円板磁石の全ての磁石を予め一体成形して部品点数の増加を抑えている。   The rotor of Patent Document 1 includes an auxiliary magnet (back magnet) provided on the back surface of the claw-shaped magnetic pole, and an auxiliary magnet (claw-shaped magnetic pole) provided between the claw-shaped magnetic poles in the circumferential direction. All the magnets of the disk magnet are integrally molded in advance to suppress an increase in the number of parts.

特開2013−118801号公報JP 2013-118801 A

ところで、上記のようなモータでは、全ての磁石を一体化することで部品点数の増加を抑えることが可能となっている。
しかしながら、予め一体成形された磁石では、各部位での磁束の調整が難しいという問題があった。
By the way, in the motor as described above, it is possible to suppress an increase in the number of parts by integrating all the magnets.
However, there is a problem that it is difficult to adjust the magnetic flux at each part in the magnet integrally formed in advance.

本発明は、上記課題を解決するためになされたものであって、その目的は、部品点数の増加を抑えつつ磁束の調整を容易とすることができるロータ及びモータを提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a rotor and a motor that can easily adjust the magnetic flux while suppressing an increase in the number of components.

上記課題を解決するロータは、それぞれ略円板状のコアベースの外周部に、等間隔に複数の爪状磁極が径方向外側に突出されるとともに軸方向に延出形成され、互いのコアベースが対向されつつ爪状磁極が周方向に交互に配置された第1及び第2ロータコアと、前記コアベース同士の軸方向の間に配置され、前記軸方向に磁化されることで、第1ロータコアの前記爪状磁極を第1の磁極として機能させ、前記第2ロータコアの前記爪状磁極を第2の磁極として機能させる円板磁石と、前記第1ロータコアの爪状磁極と前記第2ロータコアの爪状磁極との間において周方向に生じる隙間に配置された極間磁石部と、前記爪状磁極の背面に生じる隙間に配置される背面磁石部とを有する整流磁石とを備え、前記円板磁石と前記極間磁石部と前記背面磁石部とは、互いに磁化方向が異なり、前記整流磁石前記円板磁石と異なる材料で構成されており、前記整流磁石はボンド磁石であるとともに、前記円板磁石は異方性の焼結磁石であり、前記整流磁石は、接着により前記円板磁石と一体化されているEach of the rotors that solve the above-described problems has a plurality of claw-shaped magnetic poles projecting radially outward at equal intervals on the outer periphery of a substantially disk-shaped core base and extending in the axial direction. Are arranged between the first and second rotor cores in which the claw-shaped magnetic poles are alternately arranged in the circumferential direction while being opposed to each other and the axial direction of the core bases, and are magnetized in the axial direction, whereby the first rotor core A disc magnet that causes the claw-shaped magnetic pole of the second rotor core to function as a second magnetic pole, a disc magnet that causes the claw-shaped magnetic pole of the second rotor core to function as the second magnetic pole, and a rectifying magnet having a machining gap magnet portion disposed in the gap that occurs in the circumferential direction between the claw-shaped magnetic poles, and a rear magnet portion disposed gap formed on a rear surface of the claw-shaped magnetic poles, the disc Magnet, inter-pole magnet part and back The magnet portion have different magnetization directions, the rectifier magnet and is composed of a material different from that of the disc magnet, together with the rectifier magnets are bonded magnet, the disc magnet sintered anisotropic a magnet, the rectifying magnet is integral with the disc magnet by an adhesive.

この構成によれば、整流磁石と円板磁石とが異なる材料で構成されることで、各部位での磁束の調整が容易となって出力調整が可能となる。また、円板磁石と整流磁石が接着により一体化されることで、部品点数の増加を抑えることができる。 According to this configuration, since the rectifying magnet and the disc magnet are made of different materials, it is easy to adjust the magnetic flux in each part, and the output can be adjusted. Moreover, an increase in the number of parts can be suppressed by integrating the disc magnet and the rectifying magnet by bonding .

上記課題を解決するロータは、それぞれ略円板状のコアベースの外周部に、等間隔に複数の爪状磁極が径方向外側に突出されるとともに軸方向に延出形成され、互いのコアベースが対向されつつ爪状磁極が周方向に交互に配置された第1及び第2ロータコアと、前記コアベース同士の軸方向の間に配置され、前記軸方向に磁化されることで、第1ロータコアの前記爪状磁極を第1の磁極として機能させ、前記第2ロータコアの前記爪状磁極を第2の磁極として機能させる円板磁石と、前記第1ロータコアの爪状磁極と前記第2ロータコアの爪状磁極との間において周方向に生じる隙間に配置された極間磁石部と、前記爪状磁極の背面に生じる隙間に配置される背面磁石部とを有する整流磁石とを備え、前記円板磁石と前記極間磁石部と前記背面磁石部とは、互いに磁化方向が異なり、前記整流磁石と前記円板磁石とは異なる材料で構成されており、前記整流磁石はボンド磁石であるとともに、前記円板磁石は異方性の焼結磁石であり、前記円板磁石を第1及び第2ロータコアのコアベースで挟んだ状態で、前記整流磁石をインサート成形して前記円板磁石に対し前記整流磁石を一体化した。 Each of the rotors that solve the above-described problems has a plurality of claw-shaped magnetic poles projecting radially outward at equal intervals on the outer periphery of a substantially disk-shaped core base and extending in the axial direction. Are arranged between the first and second rotor cores in which the claw-shaped magnetic poles are alternately arranged in the circumferential direction while being opposed to each other and the axial direction of the core bases, and are magnetized in the axial direction, whereby the first rotor core A disc magnet that causes the claw-shaped magnetic pole of the second rotor core to function as a second magnetic pole, a disc magnet that causes the claw-shaped magnetic pole of the second rotor core to function as the second magnetic pole, The disc includes an inter-pole magnet portion disposed in a gap generated in a circumferential direction between the claw-shaped magnetic poles and a rectifier magnet having a back magnet portion disposed in a gap generated on the back surface of the claw-shaped magnetic poles. Magnet, inter-pole magnet part and back The magnet part has a different magnetization direction, and the rectifier magnet and the disc magnet are made of different materials. The rectifier magnet is a bonded magnet, and the disc magnet is anisotropically sintered. a magnet, the disc magnet in a state sandwiched between the first and second rotor cores of the core base, and one conjugated to the rectifying magnet relative to the disc magnet the rectifying magnet insert molded.

この構成によれば、整流磁石と円板磁石とが異なる材料で構成されることで、各部位での磁束の調整が容易となって出力調整が可能となる。また、円板磁石と整流磁石が上記インサート成形により一体化されることで、部品点数の増加を抑えることができる。また、整流磁石をインサート成形することで、整流磁石の成形とともに円板磁石との一体化を行うことができる。更に、整流磁石が円板磁石並びに各ロータコアに直接成形されるため、例えば整流磁石と各ロータコアとの間に接着層や機械的なエアギャップが発生することを抑えることができる。その結果、ロータのパーミアンスが向上し、ロータのトルクを確保することが可能となる。 According to this configuration, since the rectifying magnet and the disc magnet are made of different materials, it is easy to adjust the magnetic flux in each part, and the output can be adjusted. Moreover, the disk magnet and the rectifying magnet are integrated by the insert molding, so that an increase in the number of parts can be suppressed. Further, by insert-molding the rectifying magnet , the rectifying magnet can be molded and integrated with the disc magnet. Furthermore, since the rectifying magnet is directly formed on the disc magnet and each rotor core, for example, it is possible to suppress the occurrence of an adhesive layer or a mechanical air gap between the rectifying magnet and each rotor core. As a result, the permeance of the rotor is improved and the torque of the rotor can be secured.

上記の各ロータの構成によれば、例えば背面磁石部と極間磁石部との両方を備えた整流磁石として形状が複雑になった場合であっても、焼結磁石よりも寸法精度が高く、形状の自由度が高いため、容易に製造することが可能となる。 According to the configuration of each of the above rotors , for example, even when the shape is complicated as a rectifying magnet including both a back magnet part and an interpole magnet part, the dimensional accuracy is higher than that of a sintered magnet, Since the degree of freedom of shape is high, it can be easily manufactured.

また、上記の各ロータの構成によれば、爪状磁極を各磁極として作用させる円板磁石を比較的磁束の強い焼結磁石で構成することで、爪状磁極をより確実に磁化させて磁極として作用させることが可能となる。 Further , according to the configuration of each of the rotors described above , the claw-shaped magnetic pole can be magnetized more reliably by configuring the disc magnet that acts as the magnetic pole with the claw-shaped magnetic pole as a sintered magnet having a relatively strong magnetic flux. It is possible to act as.

上記ロータにおいて、前記整流磁石は、配向方向が極異方配向であることが好ましい。
この構成によれば、背面磁石部と極間磁石部のそれぞれ最適な方向の成分を有するように磁化できる。
In the rotor, the commutation magnet is preferably Oriented direction is polar anisotropic orientation.
According to this structure, it can magnetize so that it may have a component of the optimal direction of a back magnet part and an interpole magnet part, respectively.

また上記課題を解決するモータは、上記いずれかのロータと、該ロータと対向配置されるステータとを有する。
この構成によれば、上記いずれかに記載の効果と同様の効果を奏することができる。
Moreover, the motor which solves the said subject has one of the said rotors, and the stator arrange | positioned facing this rotor.
According to this configuration, the same effects as described above can be achieved.

本発明のロータ及びモータによれば、部品点数の増加を抑えつつ磁束の調整を容易とすることができる。   According to the rotor and motor of the present invention, it is possible to easily adjust the magnetic flux while suppressing an increase in the number of parts.

一実施形態におけるモータの概略構成図である。It is a schematic block diagram of the motor in one Embodiment. 一体磁石を構成する整流磁石の斜視図である。It is a perspective view of the commutation magnet which comprises an integral magnet. 一体磁石を構成する円板磁石の斜視図である。It is a perspective view of the disc magnet which comprises an integral magnet. ロータの部品構成を示す分解斜視図である。It is a disassembled perspective view which shows the components structure of a rotor. ロータの斜視図である。It is a perspective view of a rotor. 図5におけるロータの6−6断面図である。FIG. 6 is a 6-6 cross-sectional view of the rotor in FIG. 5. 別例における一体磁石の成形方法について説明するための斜視図である。It is a perspective view for demonstrating the shaping | molding method of the integral magnet in another example. 別例における一体磁石の斜視図である。It is a perspective view of the integral magnet in another example.

以下、モータの一実施形態について説明する。
図1に示すように、本実施形態のモータ10は、ステータ11と、ステータ11の内部においてステータ11と対向配置されるとともに回転可能に支持されるロータ21とを有する。
Hereinafter, an embodiment of the motor will be described.
As shown in FIG. 1, the motor 10 according to the present embodiment includes a stator 11 and a rotor 21 that is disposed in the stator 11 so as to face the stator 11 and is rotatably supported.

ステータ11は、ステータコア11aと、ステータコア11aのティースに巻回される巻線11bとを有する。そして、ステータ11は、巻線11bに駆動電流が供給されることでロータ21を回転させる回転磁界を発生する。   The stator 11 has a stator core 11a and a winding 11b wound around the teeth of the stator core 11a. The stator 11 generates a rotating magnetic field that rotates the rotor 21 when a drive current is supplied to the winding 11b.

図1及び図4に示すように、ロータ21は、回転軸22が圧入されることで互いの軸方向の間隔が保持されつつ回転軸22に固定される一対のロータコア23,24と、これら一対のロータコア23,24に挟まれた一体磁石25とを有する。   As shown in FIG. 1 and FIG. 4, the rotor 21 includes a pair of rotor cores 23 and 24 that are fixed to the rotary shaft 22 while maintaining a distance in the axial direction by press-fitting the rotary shaft 22. And an integral magnet 25 sandwiched between the rotor cores 23 and 24.

ロータコア23は、略円板状のコアベース23aの外周部に、等間隔に複数(本実施形態では5つ)の爪状磁極23bが径方向外側に突出されるとともに軸方向に延出して形成されている。詳しくは、爪状磁極23bは、コアベース23aの外周部から径方向外側に突出した突出部23cと、該突出部23cの先端に設けられ軸方向に延びる爪部23dとを有する。突出部23cは、軸方向から見て扇形状に形成されている。爪部23dは、軸直交方向断面が扇形状に形成されている。   The rotor core 23 is formed on the outer peripheral portion of a substantially disk-shaped core base 23a, with a plurality of (five in the present embodiment) claw-shaped magnetic poles 23b protruding radially outward and extending in the axial direction at equal intervals. Has been. Specifically, the claw-shaped magnetic pole 23b has a protrusion 23c that protrudes radially outward from the outer periphery of the core base 23a, and a claw 23d that is provided at the tip of the protrusion 23c and extends in the axial direction. The protrusion 23c is formed in a fan shape when viewed from the axial direction. The claw portion 23d has a fan-shaped cross section in the direction perpendicular to the axis.

図3及び図4に示すように、ロータコア24は、ロータコア23と同形状であって、略円板状のコアベース24aの外周部に、等間隔に複数の爪状磁極24bが径方向外側に突出されるとともに軸方向に延出して形成されている。詳しくは、爪状磁極24bは、コアベース24aの外周部から径方向外側に突出した突出部24cと、該突出部24cの先端に設けられ軸方向に延びる爪部24dとを有する。突出部24cは、ロータコア23の突出部23cと同様に、軸方向から見て扇形状に形成されている。爪部24dは、軸直交方向断面が扇形状に形成されている。また、一方のロータコア24の爪部24dは、他方のロータコア23の爪部23dよりも軸方向に長い構成とされる。ちなみに、ロータコア23が第1ロータコアに相当し、ロータコア24が第2ロータコアに相当する。   As shown in FIGS. 3 and 4, the rotor core 24 has the same shape as the rotor core 23, and a plurality of claw-shaped magnetic poles 24b are arranged on the outer periphery of the substantially disc-shaped core base 24a at equal intervals on the outer side in the radial direction. It protrudes and extends in the axial direction. Specifically, the claw-shaped magnetic pole 24b has a protrusion 24c that protrudes radially outward from the outer periphery of the core base 24a, and a claw 24d that is provided at the tip of the protrusion 24c and extends in the axial direction. The protrusion 24c is formed in a fan shape when viewed from the axial direction, like the protrusion 23c of the rotor core 23. The claw portion 24d has a fan-shaped cross section in the direction perpendicular to the axis. Further, the claw portion 24 d of one rotor core 24 is configured to be longer in the axial direction than the claw portion 23 d of the other rotor core 23. Incidentally, the rotor core 23 corresponds to a first rotor core, and the rotor core 24 corresponds to a second rotor core.

そして、各ロータコア23,24は、その中央孔に回転軸22が圧入されるとともに、各コアベース23a,24aの軸方向の外側(相反する側)の距離が予め設定された距離となるように回転軸22に対して圧入固定される。この際、ロータコア24は、爪状磁極24bが周方向に隣り合う他方のロータコア23の爪状磁極23b間に配置されるようにして、且つコアベース23aとコアベース24aとの間に一体磁石25が配置(挟持)されるようにしてロータコア23に対して組み付けられている。   The rotor shafts 23 and 24 are respectively press-fitted with the rotary shafts 22 in the central holes thereof, and the distances on the outer sides (opposite sides) of the core bases 23a and 24a are set in advance. The rotary shaft 22 is press-fitted and fixed. At this time, the rotor core 24 is configured so that the claw-shaped magnetic pole 24b is disposed between the claw-shaped magnetic poles 23b of the other rotor core 23 adjacent in the circumferential direction, and between the core base 23a and the core base 24a. Is assembled (attached) to the rotor core 23.

一体磁石25は、円板磁石26と、整流磁石27とを有する。一体磁石25は、整流磁石27が例えば接着等の後加工によって円板磁石26と一体化されて構成される。円板磁石26と整流磁石27とは、異なる材料で構成される。   The integrated magnet 25 includes a disk magnet 26 and a rectifying magnet 27. The integrated magnet 25 is configured by integrating a rectifier magnet 27 with a disk magnet 26 by post-processing such as bonding. The disc magnet 26 and the rectifying magnet 27 are made of different materials.

図3に示すように、円板磁石26は、中央孔が形成された円環状に形成される。
円板磁石26は、ロータコア23の爪状磁極23bを第1の磁極(本実施形態ではN極)として機能させ、ロータコア24の爪状磁極24bを第2の磁極(本実施形態ではS極)として機能させるように、軸方向に磁化されている。即ち、本実施形態のロータ21は、円板磁石26を用いた所謂ランデル型構造のロータである。ロータ21は、N極となる5つの爪状磁極23bと、S極となる5つの爪状磁極24bとが周方向に交互に配置されており、極数が10極(極対数が5個)となる。
As shown in FIG. 3, the disc magnet 26 is formed in an annular shape having a central hole.
The disc magnet 26 causes the claw-shaped magnetic pole 23b of the rotor core 23 to function as a first magnetic pole (N pole in the present embodiment), and the claw-shaped magnetic pole 24b of the rotor core 24 serves as a second magnetic pole (S pole in the present embodiment). Is magnetized in the axial direction so as to function as That is, the rotor 21 of the present embodiment is a so-called Landel type rotor using the disc magnet 26. The rotor 21 has five claw-shaped magnetic poles 23b serving as N poles and five claw-shaped magnetic poles 24b serving as S poles arranged alternately in the circumferential direction, and has 10 poles (5 pole pairs). It becomes.

円板磁石26は、例えば異方性の焼結磁石であり、例えばフェライト磁石、サマリウムコバルト(SmCo)磁石、ネオジム磁石等で構成される。
図2、図5及び図6に示すように、整流磁石27は、背面磁石部28,29と、極間磁石部30とを有している。整流磁石27は、例えばボンド磁石(プラスチックマグネット、ゴムマグネット等)であり、例えばフェライト磁石、サマリウム鉄窒素(SmFeN)系磁石、サマリウムコバルト(SmCo)系磁石、ネオジム磁石等で構成される。
The disc magnet 26 is, for example, an anisotropic sintered magnet, and is composed of, for example, a ferrite magnet, a samarium cobalt (SmCo) magnet, a neodymium magnet, or the like.
As shown in FIGS. 2, 5, and 6, the rectifying magnet 27 has back magnet portions 28 and 29 and an interpole magnet portion 30. The rectifying magnet 27 is, for example, a bond magnet (plastic magnet, rubber magnet, etc.), and is composed of, for example, a ferrite magnet, a samarium iron nitrogen (SmFeN) magnet, a samarium cobalt (SmCo) magnet, a neodymium magnet, or the like.

図5及び図6に示すように、背面磁石部28,29は、ロータコア23の各爪状磁極23bの背面23e(径方向内側の面)とロータコア24のコアベース24aの外周面24fとの間、及び、ロータコア24の各爪状磁極24bの背面24eとロータコア23のコアベース23aの外周面23fとの間に配置される。   As shown in FIGS. 5 and 6, the back magnet portions 28 and 29 are located between the back surface 23 e (surface on the radially inner side) of each claw-shaped magnetic pole 23 b of the rotor core 23 and the outer peripheral surface 24 f of the core base 24 a of the rotor core 24. , And the back surface 24e of each claw-shaped magnetic pole 24b of the rotor core 24 and the outer peripheral surface 23f of the core base 23a of the rotor core 23.

一方の背面磁石部28は、爪状磁極23bの背面23eに当接する側が爪状磁極23bと同極のN極に、ロータコア24のコアベース24aの外周面24fに当接する側がコアベース24aと同極のS極となるように磁化されている。   One of the back magnet portions 28 has a claw-shaped magnetic pole 23b that is in contact with the back surface 23e on the side opposite to the claw-shaped magnetic pole 23b and has the same polarity as that of the claw-shaped magnetic pole 23b. Magnetized so as to be the south pole of the pole.

他方の背面磁石部29は、爪状磁極24bの背面24eに当接する側がS極に、ロータコア23のコアベース23aの外周面23fに当接する側がN極となるように磁化されている。   The other back magnet portion 29 is magnetized so that the side that contacts the back surface 24e of the claw-shaped magnetic pole 24b is the S pole and the side that contacts the outer peripheral surface 23f of the core base 23a of the rotor core 23 is the N pole.

極間磁石部30は、爪状磁極23bと爪状磁極24bとの周方向の間に配置されている。極間磁石部30は、周方向においてロータコア24の爪状磁極24b側がS極に、ロータコア23の爪状磁極23b側がN極となるように磁化されている。   The interpolar magnet unit 30 is disposed between the claw-shaped magnetic pole 23b and the claw-shaped magnetic pole 24b in the circumferential direction. The interpolar magnet portion 30 is magnetized in the circumferential direction so that the claw-shaped magnetic pole 24b side of the rotor core 24 is an S pole and the claw-shaped magnetic pole 23b side of the rotor core 23 is an N pole.

次に、本実施形態のモータの作用を説明する。
本実施形態のモータ10は、巻線11bに駆動電流が供給されると、ステータ11にて回転磁界が発生され、ロータ21が回転駆動される。
Next, the operation of the motor of this embodiment will be described.
In the motor 10 of this embodiment, when a driving current is supplied to the winding 11b, a rotating magnetic field is generated in the stator 11, and the rotor 21 is driven to rotate.

ここで、本実施形態のロータ21は、整流磁石27と円板磁石26とが異なる材料で構成されている。このため、整流磁石27と円板磁石26とが同一材料である場合と比較して磁束の調整が容易となっている。また、整流磁石27と円板磁石26とは後加工によって一体化されているため、部品点数の増加を抑えることができる。さらに、整流磁石27が極間磁石部30及び背面磁石部28,29を有するため、極間磁石部30及び背面磁石部28,29の一方しか有さない整流磁石と比較してロータ21の磁束量が増えるとともに、円板磁石26の磁束の流れが整えられるため、ロータ21の出力向上に寄与できる。   Here, in the rotor 21 of the present embodiment, the rectifying magnet 27 and the disc magnet 26 are made of different materials. For this reason, compared with the case where the rectifier magnet 27 and the disc magnet 26 are made of the same material, the magnetic flux can be easily adjusted. Further, since the rectifying magnet 27 and the disc magnet 26 are integrated by post-processing, an increase in the number of parts can be suppressed. Further, since the rectifying magnet 27 has the interpolar magnet portion 30 and the back magnet portions 28 and 29, the magnetic flux of the rotor 21 compared to the rectifying magnet having only one of the interpole magnet portion 30 and the back magnet portions 28 and 29. As the amount increases, the flow of magnetic flux of the disk magnet 26 is adjusted, which can contribute to the improvement of the output of the rotor 21.

次に、本実施形態の効果を記載する。
(1)整流磁石27と円板磁石26とが異なる材料で構成されることで、各部位での磁束の調整が容易となって出力調整が可能となる。また、円板磁石26と整流磁石27が後加工で一体化されることで、部品点数の増加を抑えることができる。
Next, the effect of this embodiment will be described.
(1) Since the rectifying magnet 27 and the disc magnet 26 are made of different materials, the magnetic flux can be easily adjusted at each portion, and the output can be adjusted. Further, the disk magnet 26 and the rectifying magnet 27 are integrated by post-processing, so that an increase in the number of parts can be suppressed.

(2)また、整流磁石27をボンド磁石とすることで、背面磁石部28,29と極間磁石部30との両方を備えて形状が複雑になった場合であっても、焼結磁石よりも寸法精度が高く、形状の自由度が高いため、容易に製造することが可能となる。   (2) Since the rectifying magnet 27 is a bonded magnet, even if the back magnet portions 28 and 29 and the interpole magnet portion 30 are both provided and the shape becomes complicated, the sintered magnet However, since the dimensional accuracy is high and the degree of freedom of shape is high, it can be easily manufactured.

(3)爪状磁極23b,24bを各磁極として作用させる円板磁石26を比較的磁束の強い焼結磁石で構成することで、爪状磁極23b,24bをより確実に磁化させて磁極として作用させることが可能となる。   (3) The disc magnet 26 that acts as the magnetic poles with the claw-shaped magnetic poles 23b and 24b is composed of a sintered magnet having a relatively strong magnetic flux, so that the claw-shaped magnetic poles 23b and 24b are more reliably magnetized and act as magnetic poles. It becomes possible to make it.

尚、上記実施形態は、以下のように変更してもよい。
・上記実施形態では、一体磁石25は整流磁石27を円板磁石26と接着によって一体化する構成としたが、これに限らない。例えば、一体磁石25は、図7に示すように円板磁石26を各ロータコア23,24で挟んだ状態で、整流磁石27をインサート成形して前記円板磁石26に対し前記整流磁石27を後加工で一体化する構成を採用してもよい。整流磁石27をインサート成形することで、整流磁石27の成形とともに円板磁石26との一体化を行うことができる。更に、整流磁石27が円板磁石26並びに各ロータコア23,24に直接成形されるため、例えば整流磁石27と各ロータコア23,24との間に接着層や機械的なエアギャップが発生することを抑えることができる。その結果、ロータ21のパーミアンスが向上し、ロータ21のトルクを確保することが可能となる。
In addition, you may change the said embodiment as follows.
-In above-mentioned embodiment, although the integrated magnet 25 was set as the structure which integrated the rectifier magnet 27 with the disk magnet 26 by adhesion | attachment, it is not restricted to this. For example, as shown in FIG. 7, the integrated magnet 25 is formed by insert-molding a rectifying magnet 27 in a state where the disk magnet 26 is sandwiched between the rotor cores 23, 24, and the rectifying magnet 27 is placed behind the disk magnet 26. You may employ | adopt the structure integrated by a process. By insert-molding the rectifying magnet 27, the rectifying magnet 27 can be molded and integrated with the disc magnet 26. Further, since the rectifying magnet 27 is directly formed on the disc magnet 26 and the rotor cores 23 and 24, for example, an adhesive layer and a mechanical air gap are generated between the rectifying magnet 27 and the rotor cores 23 and 24. Can be suppressed. As a result, the permeance of the rotor 21 is improved and the torque of the rotor 21 can be secured.

・図8に示す一体磁石25のように、主磁束を発生する円板磁石26に対して補助的に機能する整流磁石27の着磁態様を極異方配向としてもよい。詳述すると、一体磁石25は、S極の背面磁石部29の外側面から隣接の極間磁石部30を経由してN極の背面磁石部28の外側面に向けて磁束が径方向内側に凸状に湾曲して流れる、いわゆる極異方配向の着磁がなされている。これにより、背面磁石部28,29は径方向成分の磁束を有し、極間磁石部30は周方向成分の磁束を有することとなり、上記実施形態の一体磁石25と同様に機能し、背面磁石部28,29と極間磁石部30のそれぞれ最適な方向の成分を有するように磁化できる。   -Like the integrated magnet 25 shown in FIG. 8, the magnetizing aspect of the rectifier magnet 27 which functions in an auxiliary manner with respect to the disc magnet 26 that generates the main magnetic flux may be polar anisotropic orientation. More specifically, the integrated magnet 25 has a magnetic flux radially inward from the outer surface of the S-pole back magnet portion 29 toward the outer surface of the N-pole back magnet portion 28 via the adjacent interpole magnet portion 30. Magnetization of so-called polar anisotropic orientation, which flows curvedly in a convex shape, is performed. As a result, the back magnet portions 28 and 29 have a radial component magnetic flux, and the inter-pole magnet portion 30 has a circumferential component magnetic flux, which functions in the same manner as the integrated magnet 25 of the above embodiment. The portions 28 and 29 and the interpole magnet portion 30 can be magnetized so as to have components in optimum directions.

・上記実施形態では、整流磁石27が極間磁石部30及び背面磁石部28,29を有する構成としたが、これらの少なくとも一方を有する構成を採用してもよい。
・上記実施形態では、各爪状磁極23b,24bのそれぞれを5つとして、極数が10極のロータとしたが、これに限らず、適宜変更してもよい。
In the above embodiment, the rectifier magnet 27 has the interpolar magnet portion 30 and the back magnet portions 28 and 29. However, a configuration having at least one of these may be adopted.
In the above embodiment, each of the claw-shaped magnetic poles 23b and 24b is five and the rotor has ten poles. However, the present invention is not limited to this, and may be changed as appropriate.

・上記実施形態では、極間磁石部30を10個、背面磁石部28,29を計10個としたが、爪状磁極23b,24bの個数に応じて適宜変更してもよい。
・上記実施形態では、円板磁石26を焼結磁石とし、整流磁石27をボンド磁石としたが、これに限らず適宜変更してもよい。
In the above embodiment, ten inter-pole magnet portions 30 and ten back magnet portions 28 and 29 are used in total. However, the number may be appropriately changed according to the number of claw-shaped magnetic poles 23b and 24b.
In the above embodiment, the disc magnet 26 is a sintered magnet and the rectifying magnet 27 is a bonded magnet.

・上記実施形態の円板磁石26及び整流磁石27の材料は、上記実施形態で示したものに限らず、円板磁石26と整流磁石27とで異なる材料のものを採用すれば適宜変更してもよい。   -The material of the disc magnet 26 and the rectifying magnet 27 of the above embodiment is not limited to that shown in the above embodiment, and can be changed as appropriate if different materials are used for the disc magnet 26 and the rectifying magnet 27. Also good.

・上記実施形態並びに各変形例は適宜組み合わせてもよい。   -You may combine the said embodiment and each modification suitably.

10…モータ、11…ステータ、21…ロータ、23a…コアベース、23b…爪状磁極、24a…コアベース、24b…爪状磁極、26…円板磁石、27…整流磁石、28…背面磁石部、29…背面磁石部、30…極間磁石部。   DESCRIPTION OF SYMBOLS 10 ... Motor, 11 ... Stator, 21 ... Rotor, 23a ... Core base, 23b ... Claw-shaped magnetic pole, 24a ... Core base, 24b ... Claw-shaped magnetic pole, 26 ... Disc magnet, 27 ... Rectifier magnet, 28 ... Back magnet part 29 ... back magnet part, 30 ... interpolar magnet part.

Claims (4)

それぞれ略円板状のコアベースの外周部に、等間隔に複数の爪状磁極が径方向外側に突出されるとともに軸方向に延出形成され、互いのコアベースが対向されつつ爪状磁極が周方向に交互に配置された第1及び第2ロータコアと、
前記コアベース同士の軸方向の間に配置され、前記軸方向に磁化されることで、第1ロータコアの前記爪状磁極を第1の磁極として機能させ、前記第2ロータコアの前記爪状磁極を第2の磁極として機能させる円板磁石と、
前記第1ロータコアの爪状磁極と前記第2ロータコアの爪状磁極との間において周方向に生じる隙間に配置された極間磁石部と、前記爪状磁極の背面に生じる隙間に配置される背面磁石部とを有する整流磁石とを備え、
前記円板磁石と前記極間磁石部と前記背面磁石部とは、互いに磁化方向が異なり、
前記整流磁石前記円板磁石と異なる材料で構成されており、前記整流磁石はボンド磁石であるとともに、前記円板磁石は異方性の焼結磁石であり、
前記整流磁石は、接着により前記円板磁石と一体化されていることを特徴とするロータ。
A plurality of claw-shaped magnetic poles project radially outward and extend in the axial direction on the outer periphery of each substantially disk-shaped core base, and the claw-shaped magnetic poles are formed with the core bases facing each other. First and second rotor cores arranged alternately in the circumferential direction;
The claw-shaped magnetic poles of the first rotor core function as the first magnetic poles by being arranged between the axial directions of the core bases and magnetized in the axial direction, and the claw-shaped magnetic poles of the second rotor core are made to function as the first magnetic poles. A disc magnet that functions as a second magnetic pole;
An interpole magnet portion disposed in a gap generated in a circumferential direction between the claw-shaped magnetic pole of the first rotor core and a claw-shaped magnetic pole of the second rotor core, and a back surface disposed in a gap generated on the back surface of the claw-shaped magnetic pole and a rectifying magnet having a magnet portion,
The disk magnet, the interpolar magnet part and the back magnet part have different magnetization directions from each other,
The rectifier magnet and the disc magnet are made of different materials, the rectifier magnet is a bond magnet, and the disc magnet is an anisotropic sintered magnet,
The rectifying magnet rotor, characterized in that is integrated with the circular plate magnet by an adhesive.
それぞれ略円板状のコアベースの外周部に、等間隔に複数の爪状磁極が径方向外側に突出されるとともに軸方向に延出形成され、互いのコアベースが対向されつつ爪状磁極が周方向に交互に配置された第1及び第2ロータコアと、
前記コアベース同士の軸方向の間に配置され、前記軸方向に磁化されることで、第1ロータコアの前記爪状磁極を第1の磁極として機能させ、前記第2ロータコアの前記爪状磁極を第2の磁極として機能させる円板磁石と、
前記第1ロータコアの爪状磁極と前記第2ロータコアの爪状磁極との間において周方向に生じる隙間に配置された極間磁石部と、前記爪状磁極の背面に生じる隙間に配置される背面磁石部とを有する整流磁石とを備え、
前記円板磁石と前記極間磁石部と前記背面磁石部とは、互いに磁化方向が異なり、
前記整流磁石と前記円板磁石とは異なる材料で構成されており、前記整流磁石はボンド磁石であるとともに、前記円板磁石は異方性の焼結磁石であり、
前記円板磁石を第1及び第2ロータコアのコアベースで挟んだ状態で、前記整流磁石をインサート成形して前記円板磁石に対し前記整流磁石を一体化したことを特徴とするロータ。
A plurality of claw-shaped magnetic poles project radially outward and extend in the axial direction on the outer periphery of each substantially disk-shaped core base, and the claw-shaped magnetic poles are formed with the core bases facing each other. First and second rotor cores arranged alternately in the circumferential direction;
The claw-shaped magnetic poles of the first rotor core function as the first magnetic poles by being arranged between the axial directions of the core bases and magnetized in the axial direction, and the claw-shaped magnetic poles of the second rotor core are made to function as the first magnetic poles. A disc magnet that functions as a second magnetic pole;
An interpole magnet portion disposed in a gap generated in a circumferential direction between the claw-shaped magnetic pole of the first rotor core and a claw-shaped magnetic pole of the second rotor core, and a back surface disposed in a gap generated on the back surface of the claw-shaped magnetic pole A rectifier magnet having a magnet part,
The disk magnet, the interpolar magnet part and the back magnet part have different magnetization directions from each other,
The rectifier magnet and the disc magnet are made of different materials, the rectifier magnet is a bond magnet, and the disc magnet is an anisotropic sintered magnet,
Wherein the disc magnets in a state sandwiched between the first and second rotor cores of the core base, the rotor, characterized in that it has one conjugated said rectifying magnet relative to the disc magnet the rectifying magnet insert molded.
請求項1又は2に記載のロータにおいて、
前記整流磁石は、配向方向が極異方配向であることを特徴とするロータ。
The rotor according to claim 1 or 2 ,
Rotor, wherein the rectifying magnets Oriented direction is polar anisotropic orientation.
請求項1〜のいずれか一項に記載のロータと、該ロータと対向配置されるステータとを有することを特徴とするモータ。 A motor comprising the rotor according to any one of claims 1 to 3 and a stator disposed to face the rotor.
JP2013199737A 2013-09-26 2013-09-26 Rotor and motor Active JP6121859B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013199737A JP6121859B2 (en) 2013-09-26 2013-09-26 Rotor and motor
DE201410113744 DE102014113744A1 (en) 2013-09-26 2014-09-23 Rotor and motor
CN201410489795.7A CN104518585B (en) 2013-09-26 2014-09-23 Rotor and motor
US14/495,492 US9490670B2 (en) 2013-09-26 2014-09-24 Rotor and motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013199737A JP6121859B2 (en) 2013-09-26 2013-09-26 Rotor and motor

Publications (2)

Publication Number Publication Date
JP2015065794A JP2015065794A (en) 2015-04-09
JP6121859B2 true JP6121859B2 (en) 2017-04-26

Family

ID=52833219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013199737A Active JP6121859B2 (en) 2013-09-26 2013-09-26 Rotor and motor

Country Status (1)

Country Link
JP (1) JP6121859B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013099096A (en) * 2011-10-31 2013-05-20 Asmo Co Ltd Rotor and motor
JP5739651B2 (en) * 2010-11-26 2015-06-24 アスモ株式会社 Rotor and motor
JP6068048B2 (en) * 2011-10-31 2017-01-25 アスモ株式会社 Rotor and motor

Also Published As

Publication number Publication date
JP2015065794A (en) 2015-04-09

Similar Documents

Publication Publication Date Title
JP6601510B2 (en) Magnetization method and apparatus
JP4561770B2 (en) Axial gap type rotating electrical machine and manufacturing method thereof
JP6460159B2 (en) Rotor and motor
US9490670B2 (en) Rotor and motor
US8981612B2 (en) Rotor and motor
JP6001379B2 (en) Rotor and motor
JP5869306B2 (en) Rotor and motor
JP5947230B2 (en) motor
JP2013099102A (en) Rotor and motor
JP5855903B2 (en) Rotor and motor
JP6121859B2 (en) Rotor and motor
JP2013211982A (en) Rotor and motor
JP2013169073A (en) Rotor and motor
JP5353804B2 (en) Axial gap type rotating electrical machine and manufacturing method thereof
JP6686310B2 (en) motor
JP6413601B2 (en) motor
JP6390172B2 (en) Rotor and motor
JP6046515B2 (en) Rotor and motor
JP6001380B2 (en) Rotor and motor
JP6235073B2 (en) Rotor, rotor manufacturing method and motor
JP2016116436A (en) Lundell type rotor and lundell type motor
JP5985811B2 (en) Rotor and motor
JP2016077113A (en) Lundell type rotor and motor
JP2016042789A (en) Rotor and motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170330

R150 Certificate of patent or registration of utility model

Ref document number: 6121859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250