JP2018058799A - 2,5−ジアルコキシ−2,5−ジヒドロフラン等の製造方法及び製造装置 - Google Patents

2,5−ジアルコキシ−2,5−ジヒドロフラン等の製造方法及び製造装置 Download PDF

Info

Publication number
JP2018058799A
JP2018058799A JP2016198610A JP2016198610A JP2018058799A JP 2018058799 A JP2018058799 A JP 2018058799A JP 2016198610 A JP2016198610 A JP 2016198610A JP 2016198610 A JP2016198610 A JP 2016198610A JP 2018058799 A JP2018058799 A JP 2018058799A
Authority
JP
Japan
Prior art keywords
group
dihydrofuran
dialkoxy
derivative
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016198610A
Other languages
English (en)
Other versions
JP6784972B2 (ja
Inventor
拓之 舘野
Hiroyuki Tateno
拓之 舘野
草間 仁
Hitoshi Kusama
仁 草間
佐山 和弘
Kazuhiro Sayama
和弘 佐山
雄悟 三石
Yugo Mitsuishi
雄悟 三石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2016198610A priority Critical patent/JP6784972B2/ja
Publication of JP2018058799A publication Critical patent/JP2018058799A/ja
Application granted granted Critical
Publication of JP6784972B2 publication Critical patent/JP6784972B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

【課題】光エネルギーを利用し光電解酸化によりフラン及び/又はその誘導体からの2,5−ジアルコキシ−2,5−ジヒドロフラン及び/又はその誘導体の効率の良い製造方法の提供。
【解決手段】式(1)で表されるフラン及び/又はその誘導体と、式(2)で表されるアルコールを用い、可視光応答性光アノード電極表面に光を照射する光電解酸化反応を用いて、2,5−ジアルコキシ−2,5−ジヒドロララン及び/又はその誘導体の製造方法。
Figure 2018058799

(R1及びR2は夫々独立にH、メチル基、エチル基等)R3OH・・・(2)(R3はC4以下のアルキル基)
【選択図】図2

Description

本発明は、フランやその誘導体の光電解酸化により2,5−ジアルコキシ−2,5−ジヒドロフランやその誘導体を製造する方法や装置に関するものである。
2,5−ジアルコキシ−2,5−ジヒドロフランやその誘導体は、医農薬原料、ポリマー原料、香料などの合成の中間体として重要である。
2,5−ジアルコキシ−2,5−ジヒドロフランやその誘導体の製造方法としては、アルコールに溶解したフランやその誘導体に臭素を滴下し、ついでアンモニアなどの塩基で処理して生成させる化学的方法(臭素法)が報告されている(例えば、非特許文献1)。しかし、収率が非常に低く同時に大量の臭化アンモニウムも生成するので分離工程を必要とする。また生成する2,5−ジアルコキシ−2,5−ジヒドロフランやその誘導体は酸に対して不安定であるので、2,5−ジアルコキシ−2,5−ジヒドロフランやその誘導体の単離段階で加熱操作すると、微量に残っている無機塩の作用によってしばしばタール化してしまうという欠点がある。
これに対して、フランやその誘導体とアルコールを原料とし、支持電解質と電解溶媒からなる電解溶液を満たした電解槽を用いたアノード電極での酸化反応により2,5−ジアルコキシ−2,5−ジヒドロフランやその誘導体を電気化学的に製造する方法(電解酸化法)が報告されている(例えば、非特許文献2)。臭素法に比べて副生成物が少なく収率が高い上に、生成する2,5−ジアルコキシ−2,5−ジヒドロフランやその誘導体の単離も容易であり、大量合成に適している。
また、2,5−ジアルコキシ−2,5−ジヒドロフランやその誘導体の製造方法とは異なるが、水の電気化学反応による過酸化水素の製造方法において、半導体光電極に光を照射する過酸化水素の製造方法および製造装置が提案されている(例えば、特許文献1)。
特願2016−062043号明細書
「アリンジャー有機化学―下―」、東京化学同人、1976年9月、926〜927頁 「有機電解合成」、講談社、1981年4月、155〜157頁
上述の電解酸化法による2,5−ジアルコキシ−2,5−ジヒドロフランやその誘導体の製造法は、臭素法に比べ多くの利点を有するが、本発明者らは同時に、高い電圧が必要で膨大な電力エネルギーを要するという問題点が存在することも認識した。
以上のような背景技術やそれらについて認識された問題点から、本発明は、フランやその誘導体とアルコールから効率よく2,5−ジアルコキシ−2,5−ジヒドロフランやその誘導体を製造することのできる新しい2,5−ジアルコキシ−2,5−ジヒドロフランやその誘導体の製造方法や製造装置を提供することを課題としている。
本発明者らは、支持電解質の存在下、光を可視光応答性光アノード電極に照射し、光電解酸化反応によりフランやその誘導体とアルコールから2,5−ジアルコキシ−2,5−ジヒドロフランやその誘導体を製造できることを見出した。この方法は未だ報告されていない新規な2,5−ジアルコキシ−2,5−ジヒドロフランやその誘導体の製造方法である。
本発明は、これらの知見に基づいて完成に至ったものであり、具体的には以下のことを特徴としている。
(1)次の一般式(1)
Figure 2018058799
(式中、R1及びR2は、それぞれ独立して、水素原子、メチル基、エチル基、ヒドロキシメチル基、メトキシメチル基、ホルミル基、アセトニル基、アセトキシメチル基、アミノメチル基、又は、アミノエチル基を示す)で表されるフラン及び/又はその誘導体と、次の一般式
3OH
(式中、R3は炭素数4以下のアルキル基を示す)で表されるアルコールから、支持電解質と、可視光応答性光アノード電極を用い、可視光応答性光アノード電極表面に光を照射して光電解酸化反応により次の一般式(2)
Figure 2018058799
(式中、R1、R2、及びR3は前記と同じものを示す)で表される2,5−ジアルコキシ−2,5−ジヒドロフラン及び/又はその誘導体を製造する2,5−ジアルコキシ−2,5−ジヒドロフラン及び/又はその誘導体の製造方法。
(2)前記可視光応答性光アノード電極が表面に増感色素を担持したn型半導体を有する(1)に記載の2,5−ジアルコキシ−2,5−ジヒドロフラン及び/又はその誘導体の製造方法。
(3)前記可視光応答性光アノード電極が表面にBiVO4、WO3から選択される1種又は2種の可視光応答性n型半導体を有するものである(1)に記載の2,5−ジアルコキシ−2,5−ジヒドロフラン及び/又はその誘導体の製造方法。
(4)前記支持電解質がテトラエチルアンモニウムブロミド、テトラブチルアンモニウムブロミドから選択される少なくとも1種である(1)〜(3)のいずれかに記載の2,5−ジアルコキシ−2,5−ジヒドロフラン及び/又はその誘導体の製造方法。
(5)前記支持電解質が、テトラエチルアンモニウムブロミド、テトラブチルアンモニウムブロミドから選択される少なくとも1種と、テトラフルオロほう酸テトラエチルアンモニウム、トリフルオロメタンスルホン酸テトラエチルアンモニウム、過塩素酸テトラエチルアンモニウムから選択される少なくとも1種との組み合わせである(1)〜(3)のいずれかに記載の2,5−ジアルコキシ−2,5−ジヒドロフラン及び/又はその誘導体の製造方法。
(6)可視光応答性光アノード電極とカソード電極を備え、電解液を収容する電解槽と、前記電解槽に、次の一般式(1)
Figure 2018058799
(式中、R1及びR2は、それぞれ独立して、水素原子、メチル基、エチル基、ヒドロキシメチル基、メトキシメチル基、ホルミル基、アセトニル基、アセトキシメチル基、アミノメチル基、又は、アミノエチル基を示す)で表されるフラン及び/又はその誘導体と、次の一般式
3OH
(式中、R3は炭素数4以下のアルキル基を示す)で表されるアルコールとを供給する供給装置とを具備する、次の一般式(2)
Figure 2018058799
(式中、R1、R2、及びR3は前記と同じものを示す)で表される2,5−ジアルコキシ−2,5−ジヒドロフラン及び/又はその誘導体の製造装置。
(7)前記可視光応答性光アノード電極が表面に増感色素を担持したn型半導体を有するものである(6)に記載の2,5−ジアルコキシ−2,5−ジヒドロフラン及び/又はその誘導体の製造装置。
(8)前記n型半導体が、TiO2、Nb25、及び、ZnOから選択される1種である(7)に記載の2,5−ジアルコキシ−2,5−ジヒドロフラン及び/又はその誘導体の製造装置。
本発明によれば、医農薬原料、ポリマー原料、香料などの合成の中間体として用いられる有用な一般式(2)で表される2,5−ジアルコキシ−2,5−ジヒドロフランやその誘導体を比較的安価に効率よく製造できる。
本発明を実施するための形態に係わる光電解酸化装置を模式的に示した図である。 本発明を実施するための形態に係わる光電解酸化反応を模式的に示した図である。
以下、本発明の一般式(2)で表される2,5−ジアルコキシ−2,5−ジヒドロフランやその誘導体の製造方法について、図面を参照しながら実施形態と実施例に基づいて詳細に説明する。なお、重複説明は適宜省略する。
図1に示す本発明の1実施形態の一般式(2)で表される2,5−ジアルコキシ−2,5−ジヒドロフラン及び/又はその誘導体の製造は、可視光応答性光アノード電極とカソード電極を備え、一般式(1)で表されるフラン及び/又はその誘導体、一般式R3OHで表されるアルコール、および支持電解質を溶媒に溶解した電解液を満たした電解槽において行う。可視光応答性光アノード電極とカソード電極は直流電源を介して電気的に接続し、可視光応答性光アノード電極に光を照射することで光電解酸化反応を行う。定電位にて光電解酸化反応を行う場合、可視光応答性光アノード電極とカソード電極に加え参照電極を用いる。電解槽は図1のような一室型でも、隔膜を有する二室型のものでも良い。
照射に用いる光としては、波長が400nmから800nmの可視光を含む疑似太陽光などが挙げられる。
図2において、可視光応答性光アノード電極では支持電解質に含まれる臭化物イオンが酸化され臭素の酸化体を生成する。この臭素酸化体が一般式(1)で表されるフラン及び/又はその誘導体を酸化して元の臭化物イオンへ回復する。この臭化物イオンは直ちに可視光応答性光アノード電極で再び酸化され臭素酸化体となるので、臭素の酸化還元系がメディエーターとして働く。一般式(1)で表されるフラン及び/又はその誘導体の酸化体は、一般式R3OHで表されるアルコールと反応して一般式(2)で表される2,5−ジアルコキシ−2,5−ジヒドロフラン及び/又はその誘導体を生成する。
本発明の可視光応答性光アノード電極は、表面に増感色素を担持したn型半導体を導電性基材に備えたもの、又は可視光応答性n型半導体を導電性基材に備えたものがよい。使用する導電性基材としては、フッ素ドープ酸化スズ(FTO)、スズドープ酸化インジウム(ITO)などの酸化物の導電性ガラス基材、カーボンや金属などの耐熱性の導電性基材などが挙げられる。電極の安定性や効率よく一般式(2)で表される2,5−ジアルコキシ−2,5−ジヒドロフラン及び/又はその誘導体を製造するための観点から、導電性酸化物を表面に有するガラス基材を使用することがより好ましい。導電性基材の形状は限定されないが、板状のものを好適に使用することができる。
本発明の導電性基材に備えた表面に増感色素を担持したn型半導体は、可視光応答性のないTiO2、Nb25、ZnOなどを挙げることができるが、TiO2を用いることが好ましい。
本発明の導電性基材に備えた可視光応答性n型半導体は、Bi、V、およびWの中から選択され1以上の元素を含むことが好ましく、BiVO4、およびWO3から選択される。WO3とBiVO4を積層することがより好ましい。
本発明の導電性基材に備えたn型半導体は、熱分解法や混合粉末の焼結法、電着法あるいはスパッタリングなどのような気相成膜法などの各種の方法により製造可能であるが、なかでも、製造方法が簡便な観点から、熱分解法で作製することが好ましい。例えば、薄膜形状で基材に担持する場合の塗布熱分解法については詳細を実施例において説明する。この熱分解法では元素を含む溶液(場合によってはコロイド溶液や懸濁液など)をよく混合して原料液を調製し、それを焼成することで作製する。熱分解法には、溶液で混合するので均一な組成物を作製できる利点があるが、特に、熱分解法の一種である塗布熱分解法では、薄膜を形成する場合に、塗布と焼成を繰り返して積層することで精密なものが作製できるなどの利点もある。本発明に用いる熱分解法は、元素を含む溶液を混合して焼成する方法ならばよく、ゾルゲル法、錯体重合法、有機金属分解法なども挙げることができる。溶液粘度や薄膜の多孔性を制御するためにポリエチレングリコールやエチルセルロースなどポリマーや有機物を溶液に添加しても良い。
本発明の可視光応答性光アノード電極として導電性基材に備えたn型半導体に担持する増感色素は、種々の可視光領域、又は可視光領域と赤外光領域に吸収を持つものを用いることができる。このような光増感色素には、構造上の制限は特になく、たとえば、クマリン系色素、アゾ系色素、キノン系色素、キノンイミン系色素、キナクリドン系色素、スクアリリウム系色素、シアニン系色素、メロシアニン系色素、トリフェニルメタン系色素、ポルフィリン系色素、フタロシアニン系色素、ペリレン系色素、インジゴ系色素、ナフタロシアニン系色素、および中心金属としてルテニウムなどを有するビピリジル錯体など、種々の色素が使用できる。その中でも、ビピリジル錯体、ターピリジル錯体のような金属錯体色素がより好ましい。なお、金属錯体色素の場合においては、Cu、Ni、Fe、Co、V、Sn、Si、Ti、Ge、Cr、Zn、Ru、Mg、Al、Pb、Mn、In、Mo、Y、Zr、Nb、Sb、La、W、Pt、Ta、Ir、Pd、Os、Ga、Tb、Eu、Rb、Bi、Se、As、Sc、Ag、Cd、Hf、Re、Au、Ac、Tc、Te、Rhなどの金属が用いられる。この中でも、Fe、Cu、Ru、Rh、Re、Os、Ptなどの金属錯体色素がより好ましく、Ruであることがさらに好ましい。
導電性基材に備えたn型半導体に増感色素を担持する方法としては、特に限定されず、公知の方法を採用することができる。例えば、上記の方法により得られた導電性基材に備えたn型半導体を、増感色素を含有する溶液に浸漬して化学吸着させて行うことができる。ここで使用する溶媒は、増感色素を溶解させるものであればよい。
本発明に使用する支持電解質としては、メディエーターである臭素の酸化還元系を含む四級アンモニウム塩が好ましい。臭素の酸化還元系を含む四級アンモニウム塩としては、テトラエチルアンモニウムブロミド、テトラブチルアンモニウムブロミドなどが挙げられる。臭素の酸化還元系を含む四級アンモニウム塩は、他の四級アンモニウム塩と組み合わせて使用することがさらに好ましい。そのような他の四級アンモニウム塩としては、テトラフルオロほう酸テトラエチルアンモニウム、トリフルオロメタンスルホン酸テトラエチルアンモニウム、過塩素酸テトラエチルアンモニウムなどが挙げられる。
本発明に使用する電解液の溶媒としては、一般式(1)で表されるフランやその誘導体、一般式R3OHで表されるアルコール、および支持電解質を溶解し、カチオンラジカルと作用しない非プロトン性極性溶媒が好ましく、アセトニトリルがさらに好ましい。
本発明のカソード電極材料としては、限定されず、例えば、白金、金、銀、パラジウム、カーボンなどが挙げられるが、効率よく一般式(2)で表される2,5−ジアルコキシ−2,5−ジヒドロフランやその誘導体を製造するための観点から、白金を用いることが好ましい。
以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
(実施例1)
増粘剤としてエチルセルロースを含むTiO2ペースト(住友大阪セメント)を導電性基板のFTO膜の表面にスクリーン印刷し525℃にて空気中で焼成した。これを下記式(3)
Figure 2018058799
で表されるN719色素溶液に浸漬した後余分な色素を洗浄することで、N719色素を担持したTiO2を有する可視光応答性光アノード電極を作製した。
支持電解質としてテトラエチルアンモニウムブロミド(濃度0.01M)とテトラフルオロほう酸テトラエチルアンモニウム(濃度0.09M)を30mLのアセトニトリルに溶解させ、電解液を調製した。ナフィオン(登録商標)膜を隔膜とした二室型電解槽のアノード室にN719担持TiO2可視光応答性光アノード電極と銀からなる参照電極を、カソード室に白金からなるカソード電極をそれぞれ設置し、直流電源のポテンシオ/ガルバノスタットを介してこれらの電極を電気的に接続した。アノード室とカソード室に調製した電解液を15mLずつ注入し、ソーラーシュミレーターと短波長カットフィルターを用いて可視光より短波長の光をカットした疑似太陽光(AM1.5)を照射して1.0V(標準水素電極(SHE)に対する電位、以下、「V(SHE)」と表示する)の一定電位で5Cの電気量を流した。
次に、フラン0.8mL、アルコールとしてメタノール(CH3OH)2.2mLをアノード室に注入し、10分間攪拌した。その後、電解液200μLを採取し、ジエチルエーテルとイオン交換水にて分液処理を行い、有機層をガスクロマトグラフ(島津製作所社製、GC−2014)により分析したところ、下記式(4)
Figure 2018058799
で表される2,5−ジメトキシ−2,5−ジヒドロフランが得られたことを確認した。なお、光照射下では、光非照射下と比較して必要な印加電圧が1.5V低減された。
(比較例1)
N719色素を担持していない可視光応答性でないTiO2光アノード電極を用いたことを除いて実施例1と同様の操作を行ったが、2,5−ジメトキシ−2,5−ジヒドロフランは得られなかった。
(実施例2)
アルゴン置換したグローブバッグ中で0.50M、および0.25Mの六塩化タングステンのジメチルホルムアミド溶液を調製した。導電性基板のFTO膜の表面に0.50Mの六塩化タングステン溶液200μLを2000rpmでスピンコートした後500℃にて空気中で焼成し、0.25Mの六塩化タングステン溶液200μLを2000rpmで再度スピンコートした後500℃にて空気中で焼成しWO膜を作製した。そして、ビスマス前駆体塗布液(高純度化学研究所製、EMOD塗布型材料)、バナジウム前駆体塗布液(高純度化学研究所製、EMOD塗布型材料)、および増粘剤としてエチルセルロースを溶解した酢酸ブチルからなる溶液(Bi、V濃度各0.04M)400μLを、WO3膜の表面に500rpmでスピンコートした。これを550℃にて空気中で焼成し、WO3とBiVO4が積層したWO3/BiVO4可視光応答性光アノード電極を作製した。
アルコールとしてエタノール(C25OH)、及びWO3/BiVO4可視光応答性光アノード電極を用いたことを除いて実施例1と同様の操作を行ったところ、下記式(5)
Figure 2018058799
で表される2,5−ジエトキシ−2,5−ジヒドロフランが得られたことをガスクロマトグラフ質量分析計(アジレント・テクノロジー社製ガスクロマトグラフ、GC7890B、日本電子社製質量分析計、JMS−Q1500GC)で確認した。
(実施例3)
アルコールとしてn−ブタノール(n−C49OH)、およびWO3/BiVO4可視光応答性光アノード電極を用いたことを除いて実施例1と同様の操作を行ったところ、下記式(6)
Figure 2018058799
で表される2,5−ジブトキシ−2,5−ジヒドロフランが得られたことをガスクロマトグラフ質量分析計(アジレント・テクノロジー社製ガスクロマトグラフ、GC7890B、日本電子社製質量分析計、JMS−Q1500GC)で確認した。
(実施例4)
フラン0.8mL、アルコールとしてメタノール2.2mL、および支持電解質としてテトラエチルアンモニウムブロミド(濃度0.1M)を12mLのアセトニトリルに溶解させ、電解液を調製した。
次に、一室型電解槽にWO3/BiVO4可視光応答性光アノード電極、白金からなるカソード電極、および銀からなる参照電極を設置し、直流電源のポテンシオ/ガルバノスタットを介してこれらの電極を電気的に接続した。この電解槽に電解液を注入し、ソーラーシュミレーターを用いて疑似太陽光(AM1.5)を照射して1.0V(SHE)の一定電位で5Cの電気量を流した。光照射下では、光非照射下と比較して必要な印加電圧が1.5V低減された。
電解液200μLを採取し、ジエチルエーテルとイオン交換水にて分液処理を行い、有機層をガスクロマトグラフ(島津製作所社製、GC−2014)により分析したところ、2,5−ジメトキシ−2,5−ジヒドロフランが得られたことを確認した。
(実施例5)
支持電解質としてテトラブチルアンモニウムブロミド0.1Mを用いたことを除いて実施例4と同様の操作を行ったところ、2,5−ジメトキシ−2,5−ジヒドロフランが得られた。
(実施例6)
支持電解質としてテトラエチルアンモニウムブロミド0.05Mとテトラフルオロほう酸テトラエチルアンモニウム0.05Mを用いたことを除いて実施例4と同様の操作を行ったところ、2,5−ジメトキシ−2,5−ジヒドロフランが得られた。
(実施例7)
支持電解質としてテトラエチルアンモニウムブロミド0.05Mとトリフルオロメタンスルホン酸テトラエチルアンモニウム0.05Mを用いたことを除いて実施例4と同様の操作を行ったところ、2,5−ジメトキシ−2,5−ジヒドロフランが得られた。
(実施例8)
支持電解質としてテトラエチルアンモニウムブロミド0.05Mと過塩素酸テトラエチルアンモニウム0.05Mを用いたことを除いて実施例4と同様の操作を行ったところ、2,5−ジメトキシ−2,5−ジヒドロフランが得られた。
(比較例2)
支持電解質としてテトラフルオロほう酸テトラエチルアンモニウム0.1Mを用いたことを除いて実施例4と同様の操作を行ったが、2,5−ジメトキシ−2,5−ジヒドロフランは得られなかった。
(比較例3)
電圧を印加しないことを除いて実施例4と同様の操作を行ったが、2,5−ジメトキシ−2,5−ジヒドロフランは得られなかった。
(比較例4)
電圧を印加しないこと、及び光を照射しないことを除いて実施例4と同様の操作を行ったが、2,5−ジメトキシ−2,5−ジヒドロフランは得られなかった。
本発明は、医農薬原料、ポリマー原料、香料などの合成の中間体として重要である2,5−ジアルコキシ−2,5−ジヒドロフランやその誘導体を、安価に効率よく製造する技術に適用できる。

Claims (8)

  1. 次の一般式(1)
    Figure 2018058799
    (式中、R1及びR2は、それぞれ独立して、水素原子、メチル基、エチル基、ヒドロキシメチル基、メトキシメチル基、ホルミル基、アセトニル基、アセトキシメチル基、アミノメチル基、又は、アミノエチル基を示す)で表されるフラン及び/又はその誘導体と、次の一般式
    3OH
    (式中、R3は炭素数4以下のアルキル基を示す)で表されるアルコールから、支持電解質と、可視光応答性光アノード電極を用い、可視光応答性光アノード電極表面に光を照射して光電解酸化反応により次の一般式(2)
    Figure 2018058799
    (式中、R1、R2、及びR3は前記と同じものを示す)で表される2,5−ジアルコキシ−2,5−ジヒドロフラン及び/又はその誘導体を製造する2,5−ジアルコキシ−2,5−ジヒドロフラン及び/又はその誘導体の製造方法。
  2. 前記可視光応答性光アノード電極が表面に増感色素を担持したn型半導体を有する請求項1に記載の2,5−ジアルコキシ−2,5−ジヒドロフラン及び/又はその誘導体の製造方法。
  3. 前記可視光応答性光アノード電極が表面にBiVO4、WO3から選択される1種又は2種の可視光応答性n型半導体を有するものである請求項1に記載の2,5−ジアルコキシ−2,5−ジヒドロフラン及び/又はその誘導体の製造方法。
  4. 前記支持電解質がテトラエチルアンモニウムブロミド、テトラブチルアンモニウムブロミドから選択される少なくとも1種である請求項1〜3のいずれか1項に記載の2,5−ジアルコキシ−2,5−ジヒドロフラン及び/又はその誘導体の製造方法。
  5. 前記支持電解質が、テトラエチルアンモニウムブロミド、テトラブチルアンモニウムブロミドから選択される少なくとも1種と、テトラフルオロほう酸テトラエチルアンモニウム、トリフルオロメタンスルホン酸テトラエチルアンモニウム、過塩素酸テトラエチルアンモニウムから選択される少なくとも1種との組み合わせである請求項1〜3のいずれか1項に記載の2,5−ジアルコキシ−2,5−ジヒドロフラン及び/又はその誘導体の製造方法。
  6. 可視光応答性光アノード電極とカソード電極を備え、電解液を収容する電解槽と、前記電解槽に、次の一般式(1)
    Figure 2018058799
    (式中、R1及びR2は、それぞれ独立して、水素原子、メチル基、エチル基、ヒドロキシメチル基、メトキシメチル基、ホルミル基、アセトニル基、アセトキシメチル基、アミノメチル基、又は、アミノエチル基を示す)で表されるフラン及び/又はその誘導体と、次の一般式
    3OH
    (式中、R3は炭素数4以下のアルキル基を示す)で表されるアルコールとを供給する供給装置とを具備する、次の一般式(2)
    Figure 2018058799
    (式中、R1、R2、及びR3は前記と同じものを示す)で表される2,5−ジアルコキシ−2,5−ジヒドロフラン及び/又はその誘導体の製造装置。
  7. 前記可視光応答性光アノード電極が表面に増感色素を担持したn型半導体を有するものである請求項6に記載の2,5−ジアルコキシ−2,5−ジヒドロフラン及び/又はその誘導体の製造装置。
  8. 前記n型半導体が、TiO2、Nb25、及び、ZnOから選択される1種である請求項7に記載の2,5−ジアルコキシ−2,5−ジヒドロフラン及び/又はその誘導体の製造装置。
JP2016198610A 2016-10-07 2016-10-07 2,5−ジアルコキシ−2,5−ジヒドロフラン等の製造方法及び製造装置 Active JP6784972B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016198610A JP6784972B2 (ja) 2016-10-07 2016-10-07 2,5−ジアルコキシ−2,5−ジヒドロフラン等の製造方法及び製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016198610A JP6784972B2 (ja) 2016-10-07 2016-10-07 2,5−ジアルコキシ−2,5−ジヒドロフラン等の製造方法及び製造装置

Publications (2)

Publication Number Publication Date
JP2018058799A true JP2018058799A (ja) 2018-04-12
JP6784972B2 JP6784972B2 (ja) 2020-11-18

Family

ID=61908166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016198610A Active JP6784972B2 (ja) 2016-10-07 2016-10-07 2,5−ジアルコキシ−2,5−ジヒドロフラン等の製造方法及び製造装置

Country Status (1)

Country Link
JP (1) JP6784972B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112625015A (zh) * 2021-01-21 2021-04-09 荆楚理工学院 一种2-(1,3-二氢-2-异苯并呋喃)-1-苯乙酮化合物的制备方法
JP2021143367A (ja) * 2020-03-11 2021-09-24 国立研究開発法人産業技術総合研究所 非溶解性光触媒、光電解反応装置及び有用化成品合成法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2714576A (en) * 1949-12-29 1955-08-02 Sadolin And Holmblad As Electrolytic preparation of 2,5-dialkoxy-2,5-dihydrofurans
JPS58157069A (ja) * 1982-03-13 1983-09-19 Rikagaku Kenkyusho 光応答性電極
JPH11199579A (ja) * 1998-01-12 1999-07-27 Wakunaga Pharmaceut Co Ltd 2,6−ジアルキル−γ−ピロン誘導体の製造法及びその製造中間体
JP2003272721A (ja) * 2002-03-14 2003-09-26 National Institute Of Advanced Industrial & Technology ピリジルキノリン誘導体を有するルテニウム錯体による色素増感金属酸化物半導体電極、及びそれを用いた太陽電池
JP2016089250A (ja) * 2014-11-10 2016-05-23 国立研究開発法人産業技術総合研究所 光エネルギーの利用方法および光エネルギーの利用装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2714576A (en) * 1949-12-29 1955-08-02 Sadolin And Holmblad As Electrolytic preparation of 2,5-dialkoxy-2,5-dihydrofurans
JPS58157069A (ja) * 1982-03-13 1983-09-19 Rikagaku Kenkyusho 光応答性電極
JPH11199579A (ja) * 1998-01-12 1999-07-27 Wakunaga Pharmaceut Co Ltd 2,6−ジアルキル−γ−ピロン誘導体の製造法及びその製造中間体
JP2003272721A (ja) * 2002-03-14 2003-09-26 National Institute Of Advanced Industrial & Technology ピリジルキノリン誘導体を有するルテニウム錯体による色素増感金属酸化物半導体電極、及びそれを用いた太陽電池
JP2016089250A (ja) * 2014-11-10 2016-05-23 国立研究開発法人産業技術総合研究所 光エネルギーの利用方法および光エネルギーの利用装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CLAUSON-KAAS, N. ET AL., ACTA CHEMICA SCANDINAVICA, vol. 2, JPN7020001010, 1948, pages 109 - 115, ISSN: 0004247328 *
CLAUSON-KAAS, N. ET AL., ACTA CHEMICA SCANDINAVICA, vol. 6, JPN7020001009, 1952, pages 531 - 534, ISSN: 0004247327 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021143367A (ja) * 2020-03-11 2021-09-24 国立研究開発法人産業技術総合研究所 非溶解性光触媒、光電解反応装置及び有用化成品合成法
CN112625015A (zh) * 2021-01-21 2021-04-09 荆楚理工学院 一种2-(1,3-二氢-2-异苯并呋喃)-1-苯乙酮化合物的制备方法
CN112625015B (zh) * 2021-01-21 2023-07-21 荆楚理工学院 一种2-(1,3-二氢-2-异苯并呋喃)-1-苯乙酮化合物的制备方法

Also Published As

Publication number Publication date
JP6784972B2 (ja) 2020-11-18

Similar Documents

Publication Publication Date Title
Freitag et al. Copper phenanthroline as a fast and high-performance redox mediator for dye-sensitized solar cells
Magni et al. Tetracoordinated bis-phenanthroline copper-complex couple as efficient redox mediators for dye solar cells
Bergeron et al. Dye-sensitized SnO2 electrodes with iodide and pseudohalide redox mediators
Cappel et al. Characterization of the interface properties and processes in solid state dye-sensitized solar cells employing a perylene sensitizer
Colombo et al. Efficient copper mediators based on bulky asymmetric phenanthrolines for DSSCs
Caramori et al. Photoelectrochemical behavior of sensitized TiO2 photoanodes in an aqueous environment: application to hydrogen production
Huang et al. Dirhodium (II, II)/NiO photocathode for photoelectrocatalytic hydrogen evolution with red light
JP2009032547A (ja) 色素増感光電変換素子およびその製造方法ならびに電子機器ならびに半導体電極およびその製造方法
Yum et al. Toward higher photovoltage: Effect of blocking layer on cobalt bipyridine pyrazole complexes as redox shuttle for dye-sensitized solar cells
WO2005112183A1 (ja) 光電変換素子、及び半導体電極
JP2004006235A (ja) 色素増感太陽電池基体用の多孔質酸化亜鉛薄膜及び色素増感太陽電池の光電極材料用の酸化亜鉛/色素複合薄膜並びにこれらの製造方法、酸化亜鉛/色素複合薄膜を光電極材料に用いる色素増感太陽電池
Athanas et al. Co-sensitization of ruthenium (II) dye-sensitized solar cells by coumarin based dyes
Hilmi et al. Universal low-temperature MWCNT-COOH-based counter electrode and a new thiolate/disulfide electrolyte system for dye-sensitized solar cells
JP6784972B2 (ja) 2,5−ジアルコキシ−2,5−ジヒドロフラン等の製造方法及び製造装置
Akula et al. Effect of extended conjugation of N-heterocyclic carbene-based sensitizers on the performance of dye-sensitized solar cells
JP5181550B2 (ja) 光電変換素子
Vlachopoulos et al. Photoelectrochemical cells based on dye sensitization for electricity and fuel production
Na et al. Bio-inspired model of photosystem II: supramolecular assembly of an electron mediator into an SnO 2 photoanode co-sensitized by a porphyrin photosensitizer and ruthenium molecular catalyst
Gonzalez-Flores et al. Influence of redox couple on the performance of ZnO dye solar cells and minimodules with benzothiadiazole-based photosensitizers
Sullivan et al. Photoinjection of high potential holes into Cu5Ta11O30 nanoparticles by porphyrin dyes
JP4668660B2 (ja) 多孔質酸化金属色素複合膜の製造方法
JPWO2014013734A1 (ja) 色素増感太陽電池の製造方法及び色素増感太陽電池
JP2006339245A (ja) 光電変換素子及び光電池
JP4537693B2 (ja) 色素増感太陽電池
JP4455868B2 (ja) 色素増感太陽電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201015

R150 Certificate of patent or registration of utility model

Ref document number: 6784972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250