JP2018058086A - 超電導部品製造装置及び超電導部品製造方法 - Google Patents

超電導部品製造装置及び超電導部品製造方法 Download PDF

Info

Publication number
JP2018058086A
JP2018058086A JP2016197353A JP2016197353A JP2018058086A JP 2018058086 A JP2018058086 A JP 2018058086A JP 2016197353 A JP2016197353 A JP 2016197353A JP 2016197353 A JP2016197353 A JP 2016197353A JP 2018058086 A JP2018058086 A JP 2018058086A
Authority
JP
Japan
Prior art keywords
superconducting component
raw material
superconducting
manufacturing apparatus
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016197353A
Other languages
English (en)
Inventor
日野 武久
Takehisa Hino
武久 日野
野村 俊自
Shiyunji Nomura
俊自 野村
智子 太田
Tomoko Ota
智子 太田
高橋 政彦
Masahiko Takahashi
政彦 高橋
大谷 安見
Yasumi Otani
安見 大谷
雅士 高橋
Masashi Takahashi
雅士 高橋
智史 只野
Satoshi Tadano
智史 只野
春樹 大西
Haruki Onishi
春樹 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2016197353A priority Critical patent/JP2018058086A/ja
Publication of JP2018058086A publication Critical patent/JP2018058086A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Particle Accelerators (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Laser Beam Processing (AREA)

Abstract

【課題】十分な品質を有する超電導部品を簡易に製造することができる超電導部品製造装置及び超電導部品製造方法を提供する。
【解決手段】超電導部品製造装置10は、超電導部品16の原料部材14を真空中で溶融することで純度を高めながら超電導部品16を積層造形する3次元積層造形部11と、超電導部品16に仕上げ加工を施す仕上げ部12と、を備える。
【選択図】 図1

Description

本発明の実施形態は、荷電粒子加速器に用いられる超電導部品の製造技術に関する。
高周波加速空洞は、荷電粒子加速器の一部を構成する金属製の空洞経路であり、荷電粒子を効率良く加速するために特定の周波数の高周電磁波が共振するように設計される。
高周波加速空洞の素材には、発生した高周電磁波による温度上昇が小さい金属材料、すなわち熱伝導率が大きく電気抵抗が小さい金属材料が適している。よって、従来は高周波加速空洞の素材として銅が用いられてきた。
しかし、銅は加速電場の増加に伴って発熱量も増加するため、近年では、高出力の高周波加速空洞では高純度Nbの適用が図られている。超伝導空洞に用いられる高純度Nb材は、Nbパウダー又は粗鋼Nbインゴットから出発して、Nbの純度を高められた後、成形される。
国際公開2010/016337号公報
しかしながら、上述した従来の技術では、インゴットの真空電子ビーム多重溶解、鍛造、圧延、中間熱処理及び表面研磨など工程が多く複雑であるという課題があった。
また、圧延等の工程において、周囲の雰囲気から不純物が混入され、超電導部品としての材料特性が低下することがあるという課題もあった。
本発明はこのような事情を考慮してなされたもので、十分な品質を有する超電導部品を簡易に製造することができる超電導部品製造装置及び超電導部品製造方法を提供することを目的とする。
本実施形態にかかる超電導部品製造装置は、超電導部品の原料部材を真空中で溶融することで純度を高めながら前記超電導部品を積層造形する3次元積層造形部と、前記超電導部品に仕上げ加工を施す仕上げ部と、を備えるものである。
本実施形態にかかる超電導部品製造方法は、超電導部品の原料部材を真空中で溶融することで純度を高めながら前記超電導部品を積層造形する工程と、前記超電導部品に仕上げ加工を施す工程と、を含むものである。
本発明により、十分な品質を有する超電導部品を簡易に製造することができる超電導部品製造装置及び超電導部品製造方法が提供される。
第1実施形態にかかる超電導部品製造装置の概略構成図。 第1実施形態にかかる超電導部品製造方法を示すフローチャート。 原料部材及び積層造形された超電導部品の残留抵抗比値を示す図。 第2実施形態における再溶融による平滑化を説明する図。 第2実施形態にかかる超電導部品製造方法を示すフローチャート。 第2実施形態にかかる超電導部品製造装置の概略構成図。 第2実施形態にかかる超電導部品製造装置の変形例の概略構成図。
以下、本発明の実施形態を添付図面に基づいて説明する。
(第1実施形態)
図1は、第1実施形態にかかる超電導部品製造装置10の概略構成図である。
第1実施形態にかかる超電導部品製造装置10は、図1に示されるように、3次元積層造形部11と、仕上げ部12と、を備える。
3次元積層造形部11は、真空引きにされたチャンバ13内で、線材状に溶融成形された原料部材14を溶融して積層造形することで超電導部品16を作製する。
チャンバ13の天井部には、ビーム源である電子銃17、及びこの電子銃17から出射された電子ビーム18を収束させる電子レンズ19が設けられる。
造形方式には、部品固定台22または原料供給部(原料保持部)23の位置を随時調整して、原料部材14の先端を電子ビーム18の照射位置に維持するデポジション方式が用いられる。
原料部材14は、材料をNbにして、これを電子ビーム18で溶融して積層造形するのが望ましい。
Nbは超電導部品16として好適な材料特性を有することに加えて、沸点が4927℃と極めて高く、本実施形態の超電導部品製造方法により後述する精錬効果を発揮するからである。
また、原料部材14の溶融に電子ビーム18が用いられることから、チャンバ13は、真空吸引部24によって1×10−3Pa以下の真空度まで減圧される。
Nbは沸点が高く不純物や気体成分との間に大きな蒸気圧差があるため、原料をNbにして真空中で積層造形すると、不純物が揮発する一方、Nb原子は液相に留まることになる。
つまり、Nbを真空中で積層造形することで、事前に精錬された原料部材14の純度がさらに高められ、高周波加速空洞などの超電導部品16の材料特性を高めることができる。
ところで、金属材を用いた従来の3次元積層造形手法では、成形されていない金属材の粉末が用いられていた。
しかし、Nbは酸化されやすいので、比表面積が大きくなる粉末状のNbを溶融して造形すると、Nbがチャンバ13内に残留する酸素等と結合してNbの純度が低下する。
そこで、粉末と比較して比表面積が小さくなる塊状に成形された原料部材14を用いて積層造形をするのが好ましい。
例えば、原料部材14は、ワイヤ形状や、フィルム線材形状、棒形状等にされる。
なお、従来では、Nbを鍛造し圧延して二次元的な板材形状にし、これをプレスして細分化された部品を作製し、さらにこれらを溶接して超電導部品を作製していた。
しかし、原料部材14は、上記のように成形が容易な一次元的な形状で使用されることに加え、3次元積層造形によって原形を留めない別形状に造形される。
よって、その形状に高い精度が要求されず、鍛造、圧延または中間熱処理などの工程が不要になる。
仕上げ部12は、造形された超電導部品16に仕上げ加工を施す。
仕上げ部12は、例えば、研磨部26、洗浄部27及び焼成部28で構成される。
研磨部26は、研削機、バレル、化学研磨機など研磨精度の異なる種々の研磨機で構成され、積層造形された超電導部品16を研磨する。
洗浄部27は、超電導部品16を洗浄して研磨時に付着した研磨剤などを除去する。
焼成部28は、洗浄された超電導部品16を焼成して部品として完成させる。
なお、3次元積層造形部11及び仕上げ部12は、一体化して1つのチャンバ13内で3次元積層造形、研磨、洗浄及び焼成の工程を実施させてもよい。
また、仕上げ部12を構成する各部(26〜28)は、必ずしも一体として収容等されていなくてもよい。
次に、第1実施形態にかかる超電導部品製造方法を図2のフローチャートを用いて説明する(適宜図1を参照)。
超電導部品16の製造工程は、原料部材作製の工程(S11〜S20)と、部品作製の工程(S21〜S26)と、に大別することができる。
原料部材作製の工程(S11〜S20)では、まず、Nb粉末を焼結してインゴットを作製する(S11)。
このインゴットを電子ビームで多重溶融して(複数回のEB溶融)、Nbを精錬する(S12)。
そして、精錬されたNbのインゴットを、切断し(S13)、切断片の表面を研削して表面の不純物を除去する(S14)。
この切断片を線引きしてワイヤ形状などにする(S15)。
次に、物理研磨(S16)、化学研磨(S17)、純水洗浄(S18)そして乾燥(S19)の順で原料部材14に仕上げ、欠陥について検査をする(S20)。
このように原料部材作製の工程(S11〜S20)では、いずれの超電導部品16もワイヤ状等の原料部材14から作製されるので、部品形状に合わせて作製される板材にするための、鍛造、圧延及び中間熱処理などの多くの工程が不要になる。
さらに、廃棄材が多量に発生する鍛造後の皮剥ぎや、角板から円板を切り出す工程なども不要になる。
検査がなされた原料部材14は、部品作製場所に搬送されて、部品作製の工程(S21〜S26)がなされる。
まず、原料部材14を真空中で溶融して超電導部品16を積層造形する(S21)。
電子ビーム18を部品の断面形状に沿って原料部材14の先端とともに掃引させることを繰り返して、超電導部品16の3次元形状を造形する。
そして、超電導部品16に仕上げ加工の工程(S22〜S26)に移行する。
3次元積層造形によって造形された超電導部品16は多数のビードを有する。
そこで、このビードを従来の工程と同様に旋盤などで平均算術粗さ(Ra)で16μm程度の粗さになるまで表面を研削した後(S22)、バレル研磨(S23)および化学研磨(S24)で表面粗さをRaで1.6μm程度まで平滑にする。
そして、純水洗浄(S25)の後、焼成(S26)をして超電導部品16の製造工程を終了する(END)。
部品作製の工程(S21〜S26)においても、3次元積層造形手法を用いることで、従来労力がかかっていたプレス工程及び変形修正などの工程が不要になる。
また、3次元積層造形手法は造形の自由度が高いので、複雑形状でも一時に造形することができ、部品点数を削減することができる。また、これら部品の溶接数も削減することができる。
以上より、原料部材14の製造工程及び超電導部品16の製造工程のいずれにおいても、工程数を大幅に削減することができる。
次に、図3を用いて、原料部材14及び積層造形された超電導部品16の残留抵抗比(RRR:Residual Resistance Ratio)値について説明する。
残留抵抗比とは、超伝導状態から常伝導状態に転移した直後の電気抵抗に対する超伝導素線の室温における電気抵抗の比であり、超電導部品16の安定性の指標になる。
図3に示されるように、積層造形された超電導部品16のRRRは、原料部材14の1.7倍程度になった。
この結果から、上述の3次元積層造形の工程を経ることで、蒸気圧の高い不純物の比率が減少して超電導部品16の材料特性が向上することがわかった。
つまり、コスト高や性能低下の原因となる鍛造、圧延及び途中熱処理などの工程を省きながらも、性能の高い超伝導空洞を得ることができることが確認された。
以上のように、第1実施形態にかかる超電導部品製造装置10によれば、十分な品質を有する超電導部品を簡易に製造することができる。
(第2実施形態)
図4は、第2実施形態における再溶融による平滑化を説明する図である。
図5は、第2実施形態にかかる超電導部品製造方法を示すフローチャートである。
第2実施形態にかかる超電導部品製造方法は、図5に示されるように、3次元積層造形工程(S41)の後に、超電導部品16のビード表面を溶融してビード表面を平滑化する再溶融工程(S42)を含む。
なお、図5において、再溶融工程(S42)以外の各工程(S31〜S41,S43〜S46)は、図2の各工程(S11〜S21,S23〜S26)と同様である。
研磨工程(S22)では、研磨によって表面が汚染され、RRR特性が低下するおそれがあった。
そこで、図4に示されるように、積層されたビード間の凸部と凹部を含めるように平滑ビーム源31から平滑ビーム29を照射して超電導部品16の表面を再溶融する。
この再溶融で、表面張力によって表面粗さを算術平均粗さ(Ra)で1.6μm程度まで平滑化することができる。
よって、再溶融工程(S42)の後工程にある研磨工程(S43)を短縮することが可能になることに加え、再溶融時の精錬効果によりRRR特性を向上させることができる。
また、図6は、第2実施形態にかかる超電導部品製造装置10の概略構成図である。
この再溶融工程(S42)を実施するために、第2実施形態にかかる超電導部品製造装置10は、図6に示されるように、平滑化するための電子ビーム(以下、電子ビーム18と区別して「平滑ビーム29」という)を出射する平滑ビーム源31を備える。
平滑ビーム源31は、例えばチャンバ13内に設けられて、再溶融が積層造形と並行して実施される。
真空引きしたチャンバ13内で平滑化することで、平滑ビーム29の照射による溶融で酸化されることを防止することに加えて、Nbの純度を向上させることもできるからである。
平滑ビーム29の進路も、第2電子レンズ21によって自由に制御される。
また、図7は、第2実施形態にかかる超電導部品製造装置10の変形例の概略構成図である。
図7に示されるように、平滑ビーム源31は、3次元積層造形部11のチャンバ13内に設けられずに、ビーム成形部32として仕上げ部12に設けられていてもよい。
なお、平滑ビーム29でビード表面を平滑化すること以外は、第2実施形態は第1実施形態と同じ構造及び動作手順となるので、重複する説明を省略する。
図面においても、共通の構成または機能を有する部分は同一符号で示し、重複する説明を省略する。
このように、第2実施形態にかかる超電導部品製造装置10によれば、第1実施形態の効果に加え、表面張力により表面粗さをRaで1.6μm程度まで平滑化することができるので、後工程の研磨工程を短縮することができる。
また、再溶融時の精錬効果によりRRR特性を向上させることができる。
以上述べた少なくとも一つの実施形態の超電導部品製造装置10によれば、上述した条件下で3次元積層造形をすることで、十分な品質を有する超電導部品を簡易に製造することが可能となる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。
これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。
これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
例えば、上述のように超電導部品の材料特性の向上は、Nbが低い蒸気圧を有するという性質と、真空中におけるNbの3次元積層造形と、が組み合わされることに起因している。
よって、原料部材は、超電導部品としての金属的性質を有し、沸点が高く不純物との蒸気圧差が十分に確保することができる材料であれば、Nbに限定されない。
また、Nbの酸化が生じない真空度を維持することができれば、電子ビームに代えてレーザビーム等他の高エネルギービームを用いることもできる。
10…超電導部品製造装置、11…3次元積層造形部、12…仕上げ部、13…チャンバ、14…原料部材、16…超電導部品、17…電子銃、18…電子ビーム、19…電子レンズ、21…第2電子レンズ、22…部品固定台、23…原料保持部(原料供給部)、24…真空吸引部、26…研磨部、27…洗浄部、28…焼成部、29…平滑ビーム、31…平滑ビーム源、32…ビーム成形部。

Claims (11)

  1. 超電導部品の原料部材を真空中で溶融することで純度を高めながら前記超電導部品を積層造形する3次元積層造形部と、
    前記超電導部品に仕上げ加工を施す仕上げ部と、を備えることを特徴とする超電導部品製造装置。
  2. 前記原料部材は、多重溶融によって精錬されて塊状に成形されたものである請求項1に記載の超電導部品製造装置。
  3. 前記3次元積層造形部は、
    真空引きにされるチャンバと、
    前記原料部材を前記チャンバ内で保持する原料保持部と、
    前記原料部材を溶融するビーム源と、を備える請求項1または請求項2に記載の超電導部品製造装置。
  4. 前記ビーム源は電子ビームを出射する請求項3に記載の超電導部品製造装置。
  5. 前記超電導部品のビード表面を溶融して前記ビード表面を平滑化する平滑ビーム源を備える請求項3または請求項4に記載の超電導部品製造装置。
  6. 前記平滑化は前記3次元積層造形部の内部で前記積層造形と並行して実施される請求項5に記載の超電導部品製造装置。
  7. 前記チャンバの真空度は、1×10−3Pa以下である請求項3から請求項6のいずれか1項に記載の超電導部品製造装置。
  8. 仕上げ部は、
    積層造形された前記超電導部品を研磨する研磨部と、
    研磨された超電導部品を焼成する焼成部と、を備える請求項1から請求項7のいずれか1項に記載の超電導部品製造装置。
  9. 前記ビーム源はレーザビームである請求項3から請求項8のいずれか1項に記載の超電導部品製造装置。
  10. 超電導部品の原料部材を真空中で溶融することで純度を高めながら前記超電導部品を積層造形する工程と、
    前記超電導部品に仕上げ加工を施す工程と、を含むことを特徴とする超電導部品製造方法。
  11. 前記原料部材は、多重溶融によって精錬されて塊状に成形されている請求項10に記載の超電導部品製造方法。
JP2016197353A 2016-10-05 2016-10-05 超電導部品製造装置及び超電導部品製造方法 Pending JP2018058086A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016197353A JP2018058086A (ja) 2016-10-05 2016-10-05 超電導部品製造装置及び超電導部品製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016197353A JP2018058086A (ja) 2016-10-05 2016-10-05 超電導部品製造装置及び超電導部品製造方法

Publications (1)

Publication Number Publication Date
JP2018058086A true JP2018058086A (ja) 2018-04-12

Family

ID=61909283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016197353A Pending JP2018058086A (ja) 2016-10-05 2016-10-05 超電導部品製造装置及び超電導部品製造方法

Country Status (1)

Country Link
JP (1) JP2018058086A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6824487B1 (ja) * 2020-04-23 2021-02-03 三菱電機株式会社 付加製造装置、付加製造方法および機械学習装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6824487B1 (ja) * 2020-04-23 2021-02-03 三菱電機株式会社 付加製造装置、付加製造方法および機械学習装置
WO2021214948A1 (ja) * 2020-04-23 2021-10-28 三菱電機株式会社 付加製造装置、付加製造方法および機械学習装置

Similar Documents

Publication Publication Date Title
JP6797642B2 (ja) 原料粉体の処理方法、および三次元造形物の製造方法
TW201736028A (zh) 利用積層製造製備金屬部件
JP6543439B2 (ja) 金属積層材の製造方法
US20160368077A1 (en) Surface processing in additive manufacturing with laser and gas flow
JP5328755B2 (ja) 金属部品の接合方法、及び接合構造体
US11104068B2 (en) Method for enhancing the finish of additively-manufactured components
Tiismus et al. Challenges of additive manufacturing of electrical machines
KR20150010946A (ko) 전자 빔을 발생시키기 위한 방법 및 장치
GB2500461A (en) Dispersing contaminants in a metallic object made by additive manufacturing
JP2015196179A (ja) 金属積層材の製造方法
WO2014109675A1 (ru) Способ изготовления металлического изделия из порошкового материала и установка для его осуществления
CN105479007B (zh) 一种铸造Ti3Al系合金盘件缺陷激光焊补修复方法
US11253916B2 (en) Method of production using melting and hot isostatic pressing
US20170087669A1 (en) Apparatus and method for producing and/or repairing in particular rotationally symmetrical components
JP2015120975A (ja) スパッタリングターゲットの製造方法及びスパッタリングターゲット
JP2018104769A (ja) 加熱工具の先端部材の製造方法及び加熱工具の先端部材
JP2022105482A (ja) 挟層直溝環状部材の製造方法
JP2018058086A (ja) 超電導部品製造装置及び超電導部品製造方法
CN104651833B (zh) 激光光内送粉熔覆凹凸缺陷的修复方法及修复装置
Nursyifaulkhair et al. Effect of process parameters on the formation of lack of fusion in directed energy deposition of Ti-6Al-4V alloy
CN103722172A (zh) 用于制造手表部件的工艺
EP3527864A1 (en) Methods of manufacturing a valve or an element used to form a valve
TWI566284B (zh) Lavacoat型之預清潔與預熱
JP6862312B2 (ja) アディティブマニュファクチャリング方法及び蒸気タービン部品の製造方法
JP3696148B2 (ja) 陽極ターゲットの再生処理方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128