JP2018055897A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2018055897A
JP2018055897A JP2016188972A JP2016188972A JP2018055897A JP 2018055897 A JP2018055897 A JP 2018055897A JP 2016188972 A JP2016188972 A JP 2016188972A JP 2016188972 A JP2016188972 A JP 2016188972A JP 2018055897 A JP2018055897 A JP 2018055897A
Authority
JP
Japan
Prior art keywords
fuel cell
seal member
separator
main line
cell structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016188972A
Other languages
Japanese (ja)
Other versions
JP6769213B2 (en
Inventor
陽介 福山
Yosuke Fukuyama
陽介 福山
岳史 塩見
Takeshi Shiomi
岳史 塩見
隆夫 和泉
Takao Izumi
隆夫 和泉
敬士 市原
Keiji Ichihara
敬士 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2016188972A priority Critical patent/JP6769213B2/en
Publication of JP2018055897A publication Critical patent/JP2018055897A/en
Application granted granted Critical
Publication of JP6769213B2 publication Critical patent/JP6769213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem in that since a sealing material is continuous with a fixed width in a conventional fuel cell, damage such as crack may occur due to cumulative stress when the sealing material contracts as a result of burning.SOLUTION: A fuel cell comprises: a cell structure 3 having a structure in which an electrolyte 5 is sandwiched between an anode electrode 6 and a cathode electrode 7; a pair of separators 4 arranged on both sides of the cell structure 3; and a sealing member S air-tightly joining the cell structure 3 and at least the peripheral edge part of each separator 4. The sealing member S comprises: a main-line part Sa continuous along the peripheral edge part and having the same cross-sectional shape in the continuous direction; and an increase part Sb that partially increases the volume of the main-line part Sa. In the fuel cell FC, increase parts Sb are arranged at predetermined intervals with respect to the main-line part Sa. Stress on the entire main-line part Sa is prevented, a sealing material is refilled in the main-line part Sa from an increase part Sb, and damage to the sealing member S during manufacture is prevented.SELECTED DRAWING: Figure 3

Description

本発明は、セル構造体を一対のセパレータで挟持すると共に、セル構造体とセパレータとの間にシール部材を配置した構造を有する燃料電池の改良に関するものである。   The present invention relates to an improvement in a fuel cell having a structure in which a cell structure is sandwiched between a pair of separators and a seal member is disposed between the cell structure and the separator.

従来の燃料電池としては、例えば特許文献1に記載されているものがある。特許文献1に記載の燃料電池は、支持体表面を有するフレームと、電解質シートと、フレーム及び電解質シートの間に挿入されるシール材料とを備え、シール材料が蛇行した表面形状を有している。シール材料は、例えばガラス材料から成るもので、塗布後に焼成される。この燃料電池は、シール材料に蛇行パターンを適用することにより、電解質シートの高い応力領域における任意の亀裂形成の可能性を最小化、又は排除するものとしている。   As a conventional fuel cell, there is one described in Patent Document 1, for example. The fuel cell described in Patent Document 1 includes a frame having a support surface, an electrolyte sheet, and a seal material inserted between the frame and the electrolyte sheet, and the seal material has a serpentine surface shape. . The sealing material is made of, for example, a glass material, and is fired after application. This fuel cell is intended to minimize or eliminate the possibility of any crack formation in the high stress region of the electrolyte sheet by applying a serpentine pattern to the sealing material.

特表2010−536145号公報Special table 2010-536145 gazette

しかしながら、上記したような従来の燃料電池にあっては、シール材料がほぼ一定の断面積で連続しているため、製造時においてシール材料が焼成により収縮した際、その連続方向に累積応力が発生し、シール材料に亀裂等の損傷が生じる可能性が皆無ではないという問題点があり、このような問題点を解決することが課題であった。   However, in the conventional fuel cell as described above, since the sealing material is continuous with a substantially constant cross-sectional area, when the sealing material shrinks due to firing during manufacturing, cumulative stress is generated in the continuous direction. However, there is a problem that there is no possibility of damage such as cracks in the sealing material, and it has been a problem to solve such a problem.

本発明は、上記従来の課題を解決するために成されたものであって、製造時におけるシール部材の損傷を防止することができる燃料電池を提供することを目的としている。   The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a fuel cell capable of preventing damage to a seal member during manufacturing.

本発明に係わる燃料電池は、電解質をアノード電極及びカソード電極で挟んだ構造を有するセル構造体と、前記セル構造体の両面側に配置する一対のセパレータと、前記セル構造体及び各セパレータの少なくとも周縁部同士の間を気密的に接合するシール部材とを備えている。そして、燃料電池は、前記シール部材が、前記周縁部に沿って連続し且つ連続方向に同一断面形状を有する本線部と、本線部の体積を部分的に増大させる増量部とを備えると共に、前記本線部に対して前記増量部を所定間隔で配置したことを特徴としている。   The fuel cell according to the present invention includes a cell structure having a structure in which an electrolyte is sandwiched between an anode electrode and a cathode electrode, a pair of separators disposed on both sides of the cell structure, and at least one of the cell structure and each separator. And a sealing member that hermetically joins between the peripheral portions. In the fuel cell, the sealing member includes a main line portion that is continuous along the peripheral edge portion and has the same cross-sectional shape in the continuous direction, and an increasing portion that partially increases the volume of the main line portion, and The increase portion is arranged at a predetermined interval with respect to the main line portion.

本発明に係わる燃料電池は、シール部材が、その連続方向に一定の断面積ではなく、本線部の体積を部分的に増大させる増量部を所定間隔で配置した構成であって、本線部が各増量部によって複数の短線状に分割された状態になる。このため、燃料電池は、製造時においてシール部材が焼成により収縮しても、本線部全体に応力が及ばない、すなわち累積応力が生じないうえに、増量部から本線部にシール材料を補充する。これにより、燃料電池は、製造時におけるシール部材の損傷を防止することができる。   The fuel cell according to the present invention has a configuration in which the sealing member is not a constant cross-sectional area in the continuous direction, but is provided with an increasing portion that partially increases the volume of the main line portion at a predetermined interval. The increased portion is divided into a plurality of short lines. For this reason, in the fuel cell, even if the seal member contracts by firing at the time of manufacture, no stress is exerted on the entire main line portion, that is, no cumulative stress is generated, and the main portion is replenished with the sealing material from the increased portion. Thereby, the fuel cell can prevent the seal member from being damaged during manufacture.

本発明の第1実施形態を説明する燃料電池スタックの分解斜視図である。It is a disassembled perspective view of the fuel cell stack explaining 1st Embodiment of this invention. 燃料電池の長辺部分の断面図である。It is sectional drawing of the long side part of a fuel cell. 燃料電池のシール部材を説明する拡大図付きの平面図である。It is a top view with an enlarged view explaining the sealing member of a fuel cell. 本発明の燃料電池の第2実施形態を説明する拡大図付きの平面図である。It is a top view with an enlarged view explaining 2nd Embodiment of the fuel cell of this invention. 本発明の燃料電池の第3実施形態を説明する拡大図付きの平面図である。It is a top view with an enlarged view explaining 3rd Embodiment of the fuel cell of this invention. 第4及び第5の実施形態を示す各々平面図(A)(B)である。It is a top view (A) which shows the 4th and 5th embodiment, respectively (B). 第6実施形態としてシール部材の各種形状を説明する各々断面図(A)〜(G)である。It is each sectional drawing (A)-(G) explaining the various shapes of a sealing member as 6th Embodiment. シール部材の断面形状による圧縮量と荷重との関係を示すグラフである。It is a graph which shows the relationship between the compression amount by the cross-sectional shape of a sealing member, and a load. シール部材及びセパレータの第7実施形態を示す断面図(A)、及びシール部材の第8実施形態を示す断面図(B)である。It is sectional drawing (A) which shows 7th Embodiment of a sealing member and a separator, and sectional drawing (B) which shows 8th Embodiment of a sealing member.

〈第1実施形態〉
図1は、本発明に係わる燃料電池FCを含む燃料電池スタックFSを概略的に示す図である。図示の燃料電池スタックFSは、発電領域1の周囲にフレーム2を備えたセル構造体3と、セパレータ4とを交互に積層した構造を有している。なお、図1には2枚のセル構造体3を示したが、実際には多数のセル構造体3を積層する。また、燃料電池スタックFSは、個々のセル構造体3の両面にガスの流通領域を形成する都合上、セパレータ4の数はセル構造体3の数よりも1枚多くなる。
<First Embodiment>
FIG. 1 is a diagram schematically showing a fuel cell stack FS including a fuel cell FC according to the present invention. The illustrated fuel cell stack FS has a structure in which cell structures 3 having frames 2 around a power generation region 1 and separators 4 are alternately stacked. Although two cell structures 3 are shown in FIG. 1, a large number of cell structures 3 are actually stacked. Further, in the fuel cell stack FS, the number of separators 4 is one more than the number of cell structures 3 for the purpose of forming gas flow regions on both surfaces of each cell structure 3.

燃料電池FCは、セル構造体3が、その周囲を保持するフレーム2を含み、このセル構造体3と、一対のセパレータ4,4とを備えている。すなわち、燃料電池FCは、図1に示す燃料電池スタックFSにおいては、隣接するもの同士が、相互間のセパレータ4を共用して夫々の燃料電池FCを形成している。   In the fuel cell FC, the cell structure 3 includes a frame 2 that holds the periphery thereof, and includes the cell structure 3 and a pair of separators 4 and 4. That is, in the fuel cell stack FS shown in FIG. 1, adjacent fuel cells FC share the separator 4 between them to form the respective fuel cells FC.

セル構造体3は、平面矩形を成すプレート状の多層構造体であり、図2に一部を示すように、図中で上側のカソード電極(空気極)6と、図中で下側のアノード電極(燃料極)7とで電解質5を挟んだ構造を有している。また、セル構造体3は、アノード電極7側に、発泡金属等の多孔質材から成る支持プレート8を有している。このセル構造体3は、支持プレート8により、アノード電極7へのガス透過性を維持しつつ機械的強度を高めたものであり、例えば、メタルサポートセルと称されることがある。   The cell structure 3 is a plate-like multi-layer structure having a planar rectangle. As shown in FIG. 2, a part of the cell structure 3 is an upper cathode electrode (air electrode) 6 in the figure and a lower anode in the figure. It has a structure in which an electrolyte 5 is sandwiched between an electrode (fuel electrode) 7. The cell structure 3 has a support plate 8 made of a porous material such as foam metal on the anode electrode 7 side. This cell structure 3 has a mechanical strength increased by the support plate 8 while maintaining gas permeability to the anode electrode 7, and may be referred to as a metal support cell, for example.

上記フレーム2は、セル構造体3の一部であり、その材料がとくに限定されるものではないが、樹脂や金属を用いることができる。このフレーム2は、電解質5、カソード電極6及びアノード電極7から成る発電領域1と一体成形しても良い。また、フレーム2は、中央に発電領域1を配置し得る大きさの多孔質材製の支持プレート8を使用し、この支持プレート8の周囲を圧縮して緻密化し、緻密化部分をフレーム(フレーム部)とすることもできる。   The frame 2 is a part of the cell structure 3 and the material thereof is not particularly limited, but resin or metal can be used. The frame 2 may be integrally formed with the power generation region 1 including the electrolyte 5, the cathode electrode 6, and the anode electrode 7. Further, the frame 2 uses a porous support plate 8 having a size capable of disposing the power generation region 1 in the center, and the periphery of the support plate 8 is compressed and densified. Part).

この実施形態のセル構造体3は、カソード電極6側に、エキスパンドメタルや金属メッシュ等のガス透過性を有する材料から成る補強プレート9を備えており、カソード電極6へのガス透過性を維持しつつ機械的強度をより一層高めている。   The cell structure 3 of this embodiment includes a reinforcing plate 9 made of a material having gas permeability such as expanded metal or metal mesh on the cathode electrode 6 side, and maintains gas permeability to the cathode electrode 6. However, the mechanical strength is further increased.

セパレータ4は、ステンレス等の金属材料から成ると共に、セル構造体3に対応した平面矩形の部材であり、プレス加工により凹凸を有する表裏反転形状に成形してある。燃料電池FCにおいて、一対のセパレータ4,4のうちの一方のセパレータ4は、セル構造体3のカソード電極6側との間で、カソードガス(酸素含有ガス・空気)の流通領域G2を形成する。また、他方のセパレータ4は、セル構造体3のアノード電極7側との間で、アノードガス(水素含有ガス・水素ガス)の流通領域G1を形成する。   The separator 4 is made of a metal material such as stainless steel, and is a planar rectangular member corresponding to the cell structure 3 and is formed into a reversed front and back shape having irregularities by pressing. In the fuel cell FC, one separator 4 of the pair of separators 4 and 4 forms a cathode gas (oxygen-containing gas / air) circulation region G2 between the cell structure 3 and the cathode electrode 6 side. . The other separator 4 forms an anode gas (hydrogen-containing gas / hydrogen gas) flow region G1 between the cell structure 3 and the anode electrode 7 side.

なお、燃料電池FCは、先述したように、燃料電池スタックFSにおいては相互間のセパレータ4を共用している。このため、共用の各セパレータ4は、図2中の上側である一方側でカソードガスの流通領域G2を形成し、図2中の下側である他方側でアノードガスの流通領域G1を形成して、双方の流通領域G1,G2を分離している。各流通領域G1,G2は、夫々のガスのみが流通し得る領域である。   As described above, the fuel cells FC share the separator 4 between them in the fuel cell stack FS. For this reason, each shared separator 4 forms a cathode gas flow region G2 on one side which is the upper side in FIG. 2, and forms an anode gas flow region G1 on the other side which is the lower side in FIG. Thus, both distribution regions G1 and G2 are separated. Each distribution area | region G1, G2 is an area | region where only each gas can distribute | circulate.

ここで、セル構造体3のフレーム2、及びセパレータ4の一方の短辺部分には、アノードガスの供給用マニホールド穴H1、及びカソードガス排出用マニホールド穴H2が夫々形成してある。また、他方の短辺部分には、アノードガスの排出用マニホールド穴H3、及びカソードガスの供給用マニホールド穴H4が夫々形成してある。これらのマニホールド穴H1〜H4は、セル構造体3及びセパレータ4を積層した状態で、互いに連通して燃料ガスや空気を流通させるマニホールドを夫々形成する。   Here, an anode gas supply manifold hole H1 and a cathode gas discharge manifold hole H2 are formed in one short side portion of the frame 2 of the cell structure 3 and the separator 4, respectively. In addition, an anode gas discharge manifold hole H3 and a cathode gas supply manifold hole H4 are formed in the other short side portion, respectively. These manifold holes H1 to H4 form manifolds that communicate with each other and allow fuel gas and air to flow in a state where the cell structure 3 and the separator 4 are stacked.

燃料電池スタックFSは、図1に示すように、燃料電池FCの積層体の上下に、集電板C1,C2を介してエンドプレートE1,E2を配置する。そして、燃料電池スタックFSは、両側のエンドプレートE1,E2をボルト・ナット類で連結して積層体を拘束する。エンドプレートE1,E2の連結には、必要に応じて、積層荷重を付与するためのスプリングを配置する。なお、集電板C1,C2及び一方のエンドプレートE2にも個々のマニホールド穴H1〜H4が形成してある。   As shown in FIG. 1, in the fuel cell stack FS, end plates E1 and E2 are arranged above and below the stack of fuel cells FC via current collecting plates C1 and C2. The fuel cell stack FS restrains the stack by connecting the end plates E1 and E2 on both sides with bolts and nuts. For connection of the end plates E1 and E2, a spring for applying a stacking load is disposed as necessary. The manifold plates H1 to H4 are also formed in the current collector plates C1 and C2 and one end plate E2.

また、燃料電池スタックFSにおいて、各部材間には、図1中で点線で示すシール部材Sが配置してある。このシール部材Sには、セル構造体3とセパレータ4との周縁部同士の間に配置したものと、マニホールド穴H1〜H4の周囲に配置したものがある。以下、シール部材Sについて具体的に述べる。   In the fuel cell stack FS, a seal member S indicated by a dotted line in FIG. 1 is disposed between the members. The seal member S includes a member disposed between the peripheral portions of the cell structure 3 and the separator 4 and a member disposed around the manifold holes H1 to H4. Hereinafter, the seal member S will be specifically described.

すなわち、上記の燃料電池FCは、セル構造体3及び各セパレータ4の少なくとも周縁部同士の間を気密的に接合する無端状のシール部材Sを備えている。シール部材Sは、図2及び図3に示すように、セパレータ4の外周に沿って形成したシール溝Gに配置してあり、前記周縁部に沿って連続する本線部Saと、本線部Saの体積を部分的に増大させる増量部Sbとを備えている。本線部Saは、連続方向において実質的に同一の断面形状を有しており、成形上の誤差は許容範囲である。そして、シール部材Sは、本線部Saに対して増量部Sbを所定間隔で配置した構成である。   That is, the fuel cell FC includes an endless seal member S that hermetically joins at least the peripheral portions of the cell structure 3 and each separator 4. As shown in FIGS. 2 and 3, the seal member S is disposed in a seal groove G formed along the outer periphery of the separator 4, and the main line portion Sa continuous along the peripheral edge portion and the main line portion Sa And an increase portion Sb that partially increases the volume. The main line portion Sa has substantially the same cross-sectional shape in the continuous direction, and a molding error is within an allowable range. And the sealing member S is the structure which has arrange | positioned the increase part Sb with the predetermined space | interval with respect to main line part Sa.

また、この実施形態の燃料電池FCでは、シール部材Sの増量部Sbが、本線部Saからセパレータ4の面内方向(面に沿う方向)に突出しており、とくに、本線部Saが、直線状であると共に、増量部Sbが、セパレータ4の外周側(図3の拡大図で下側)に突出している。シール部材Sにおいて、本線部Sa及び増量部Sbは同じ材料である。   Further, in the fuel cell FC of this embodiment, the increasing portion Sb of the seal member S protrudes from the main line portion Sa in the in-plane direction (direction along the surface) of the separator 4, and in particular, the main line portion Sa is linear. In addition, the increased portion Sb protrudes to the outer peripheral side of the separator 4 (lower side in the enlarged view of FIG. 3). In the seal member S, the main line portion Sa and the increase portion Sb are made of the same material.

ここで、上記のシール部材Sは、例えば、ガラス等の無機材料とバインダー等とを混合したものであって、燃料電池FCの組立後に焼成され、セル構造体3とセパレータ4とを互いに気密的に接合する。なお、シール部材Sは、焼成の際にバインダー等が飛散して収縮する。このようなシール部材Sは、例えば燃料電池FCの運転時における熱により軟化することで部材間の気密性を維持すると共に、運転停止後には初期の硬化状態に戻る性質を有している。   Here, the sealing member S is, for example, a mixture of an inorganic material such as glass and a binder, and is baked after the assembly of the fuel cell FC so that the cell structure 3 and the separator 4 are hermetically sealed. To join. Note that the seal member S contracts due to scattering of the binder and the like during firing. Such a sealing member S has a property of maintaining airtightness between the members by being softened by heat at the time of operation of the fuel cell FC, for example, and returning to an initial cured state after the operation is stopped.

上記構成を備えた燃料電池FCは、シール部材Sが、その連続方向に一定の断面積ではなく、本線部Saの体積を部分的に増加させる増量部Sbを所定間隔で配置した構成であるから、本線部Saが各増量部Sbによって複数の短線状に分割された状態になる。このため、燃料電池FCは、製造時においてシール部材Sが焼成により収縮しても、本線部Sa全体に応力が及ばない、すなわち累積応力が生じないうえに、図3中に白矢印で示すように、増量部Sbから本線部Saにシール材料を補充する。   In the fuel cell FC having the above-described configuration, the sealing member S is not configured to have a constant cross-sectional area in the continuous direction, but is configured such that increasing portions Sb that partially increase the volume of the main line portion Sa are arranged at predetermined intervals. The main line portion Sa is in a state of being divided into a plurality of short lines by each of the increasing portions Sb. For this reason, in the fuel cell FC, even when the seal member S contracts due to firing at the time of manufacture, no stress is exerted on the entire main line portion Sa, that is, no cumulative stress is generated, and as indicated by a white arrow in FIG. In addition, a sealing material is replenished from the increasing portion Sb to the main line portion Sa.

これにより、燃料電池FCは、製造時におけるシール部材Sに亀裂等の損傷が生じるのを防止することができる。また、上記の燃料電池FCを積層してなる燃料電池スタックFSでは、損傷の無いシール部材Sにより、反応用ガス(燃料ガス及び酸化剤ガス)に対する充分な密閉性能が得られ、安定した発電に貢献することができる。   As a result, the fuel cell FC can prevent the seal member S from being damaged during the production, such as cracks. Further, in the fuel cell stack FS formed by stacking the fuel cells FC described above, a sufficient sealing performance against the reaction gas (fuel gas and oxidant gas) is obtained by the seal member S without damage, and stable power generation is achieved. Can contribute.

なお、シール部材は、焼成時の亀裂等を防ぐために、全長にわたって断面積を大きくすることも考えられる。しかし、この場合には、より多くのシール部材が必要であり、シール部材に生じる累積応力も大きくなるうえに、バインダー等の飛散も不充分になる。これに対して、上記のシール部材Sでは、累積応力が生じないうえに、焼成時におけるバインダー等の飛散も充分に行われるので、シール性能に優れた組成になる。   In addition, in order to prevent the crack at the time of baking, etc., it is also considered that a sealing member enlarges a cross-sectional area over the full length. However, in this case, more sealing members are required, the accumulated stress generated in the sealing members is increased, and the scattering of the binder and the like is insufficient. On the other hand, the above-described sealing member S does not generate accumulated stress, and the binder and the like are sufficiently scattered during firing, so that the composition has an excellent sealing performance.

また、上記の燃料電池FCは、シール部材Sの増量部Sbを、本線部Saからセパレータ4の面内方向に突出させているので、シール部材Sの厚みが一定になる。このようなシール部材Sは、スクリーン印刷等による形成も可能であると共に、セル構造体3とセパレータ4とを重ねた際、部分的に大きな潰れが生じることもなく、シールラインを良好に維持することができる。   In the fuel cell FC, the increasing portion Sb of the seal member S is protruded from the main line portion Sa in the in-plane direction of the separator 4, so that the thickness of the seal member S is constant. Such a seal member S can be formed by screen printing or the like, and when the cell structure 3 and the separator 4 are overlapped, the seal line S is favorably maintained without causing a partial collapse. be able to.

さらに、上記の燃料電池FCは、本線部Saが直線状であると共に、増量部Sbがセパレータ4の外周側に突出しているので、図3中に矢印示す反応用ガスの脇流れを防止することができる。つまり、シール部材Sは、図示例とは逆に増量部Sbを内側に設けると、増量部Sb同士の間に反応用ガスの脇流れ、すなわち発電に寄与しない無駄なガス流が生じる。これに対して、上記のシール部材Sは、反応用ガスの脇流れを防止すると共に、増量部Sbがガス流を妨げる心配もない。   Further, in the fuel cell FC, the main line portion Sa is linear, and the increasing portion Sb protrudes to the outer peripheral side of the separator 4, thereby preventing a side flow of the reaction gas indicated by an arrow in FIG. 3. Can do. That is, when the increasing portion Sb is provided on the inner side of the sealing member S contrary to the illustrated example, a side flow of the reaction gas occurs between the increasing portions Sb, that is, a useless gas flow that does not contribute to power generation occurs. On the other hand, the sealing member S described above prevents the side flow of the reaction gas, and there is no fear that the increasing portion Sb hinders the gas flow.

さらに、上記の燃料電池FCは、セル構造体3とセパレータ4との間に介装したシール部材Sを焼成する場合、例えば、図3中の矢印で示すように、一方側のマニホールド穴H2から他方側のマニホールド穴H4に高温ガスを流通させて、シール部材Sを焼成することができる。この場合、燃料電池FCは、高温ガスの上流側が、下流側に対して相対的に高温の領域になる。   Further, when firing the sealing member S interposed between the cell structure 3 and the separator 4, the fuel cell FC described above, for example, from the manifold hole H <b> 2 on one side, as indicated by an arrow in FIG. 3. The sealing member S can be baked by circulating a high temperature gas through the manifold hole H4 on the other side. In this case, in the fuel cell FC, the upstream side of the high-temperature gas is a relatively high temperature region relative to the downstream side.

そこで、燃料電池FCは、より好ましい実施形態として、シール部材Sを介装したセル構造体3及びセパレータ4の加熱時において、高温領域(上流側)に、シール部材Sの増量部Sbを相対的に多く分布させることができる。これにより、シール部材Sの収縮がより顕著になる高温領域において、シール部材Sの損傷をより確実に防止する。なお、シール部材Sの増量部Sbは、図3に示すマニホールド穴H1,H3の周囲に配置したシール部材Sにも設けることができる。   Therefore, as a more preferred embodiment, the fuel cell FC is configured to place the increasing portion Sb of the seal member S in the high temperature region (upstream side) at the time of heating the cell structure 3 and the separator 4 with the seal member S interposed therebetween. Can be distributed in large numbers. Thereby, in the high temperature region where the shrinkage of the seal member S becomes more conspicuous, damage to the seal member S is more reliably prevented. The increasing portion Sb of the seal member S can also be provided in the seal member S disposed around the manifold holes H1 and H3 shown in FIG.

〈第2実施形態〉
図4は、本発明の燃料電池の第2実施形態を示す図である。なお、以下に説明する各実施形態において、先の実施形態と同一部位は、同一符号を付して詳細な説明を省略する。
Second Embodiment
FIG. 4 is a view showing a second embodiment of the fuel cell of the present invention. In each embodiment described below, the same parts as those in the previous embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図4に示す燃料電池のシール部材Sは、増量部Sbが、本線部Saからセパレータ4の面内方向に突出しており、とくに、本線部Saが、ジグザク状であると共に、増量部Sbが、本線部Saのジグザグ形状の角部に設けてある。   In the seal member S of the fuel cell shown in FIG. 4, the increasing portion Sb protrudes from the main line portion Sa in the in-plane direction of the separator 4. In particular, the main line portion Sa has a zigzag shape, and the increasing portion Sb The zigzag corners of the main line portion Sa are provided.

上記の燃料電池にあっても、先の実施形態と同様に、本線部Saが各増量部Sbによって複数の短線状に分割された状態になり、製造時においてシール部材Sが焼成により収縮しても、本線部Sa全体に応力が及ばない、すなわち累積応力が発生しないうえに、図4中に白矢印で示すように、増量部Sbから本線部Saにシール材料を補充する。これにより、燃料電池FCは、製造時におけるシール部材Sに亀裂等の損傷が生じるのを防止することができる。   Even in the above fuel cell, as in the previous embodiment, the main line portion Sa is divided into a plurality of short lines by each of the increasing portions Sb, and the seal member S shrinks due to firing during manufacturing. In addition, no stress is exerted on the entire main line portion Sa, that is, no cumulative stress is generated, and a seal material is replenished from the increased portion Sb to the main line portion Sa as indicated by white arrows in FIG. As a result, the fuel cell FC can prevent the seal member S from being damaged during the production, such as cracks.

また、上記の燃料電池FCは、本線部Saをジグザク状にし、増量部Sbを本線部Saの角部に設けてあるので、本線部Saをより長くして幅の広いシール領域を確保することができる。   In addition, the fuel cell FC has a zigzag main line portion Sa and an increased portion Sb provided at the corner of the main line portion Sa. Therefore, the main line portion Sa is made longer to secure a wide sealing region. Can do.

〈第3実施形態〉
図5に示す燃料電池のシール部材Sは、本線部Saが、分割された複数の短線部Scから成ると共に、増量部Sbが、各短線部Scの端部同士を接合した部分である。図示例のシール部材Sは、シール部材Sの連続方向において、その中心線の左右に短線部Scを交互に配置し、各短線部Scの接合部分である端部同士を増量部Sbとした構成である。図示例のシール部材Sは、各短線部Sbの端部同士を平面上で接合している。
<Third Embodiment>
In the fuel cell sealing member S shown in FIG. 5, the main line portion Sa is composed of a plurality of divided short line portions Sc, and the increasing portion Sb is a portion where the ends of the respective short line portions Sc are joined together. The seal member S in the illustrated example has a configuration in which the short line portions Sc are alternately arranged on the left and right of the center line in the continuous direction of the seal member S, and the end portions that are joint portions of the short line portions Sc are increased portions Sb. It is. The sealing member S in the illustrated example joins the ends of the short line portions Sb on a plane.

上記の燃料電池は、分割された複数の短線部Scを接合して本線部Saを形成しているので、製造時においてシール部材Sが焼成により収縮しても、本線部Sa全体に応力が及ばないうえに、図5中に白矢印で示すように、増量部Sbから本線部Saにシール材料を補充する。これにより、燃料電池FCは、製造時におけるシール部材Sに亀裂等の損傷が生じるのを防止することができる。また、上記の燃料電池FCは、複数の短線部Scを採用したことから、様々な形態のシールラインにも容易に適用することが可能である。   In the fuel cell described above, since the main line portion Sa is formed by joining the plurality of divided short line portions Sc, even when the seal member S contracts due to firing at the time of manufacture, the entire main line portion Sa is stressed. In addition, as indicated by a white arrow in FIG. 5, the sealing material is replenished from the increased portion Sb to the main line portion Sa. As a result, the fuel cell FC can prevent the seal member S from being damaged during the production, such as cracks. In addition, since the fuel cell FC employs a plurality of short line portions Sc, it can be easily applied to various forms of seal lines.

〈第4・第5の実施形態〉
図6に示す燃料電池のシール部材Sは、本線部Saが、分割された複数の短線部Scから成ると共に、増量部Sbが、各短線部Scの端部同士を接合した部分である。なお、先の第3実施形態では、各短線部Scの端部同士を平面上で接合した構成を説明した。これに対して、第4及び第5の実施形態のシール部材Sは、各短線部Scの端部同士を上下に重ねて接合している。
<Fourth and Fifth Embodiments>
In the fuel cell sealing member S shown in FIG. 6, the main line portion Sa is composed of a plurality of divided short line portions Sc, and the increasing portion Sb is a portion where the ends of the respective short line portions Sc are joined together. In the third embodiment, the configuration in which the ends of the respective short line portions Sc are joined on a plane has been described. On the other hand, the sealing members S of the fourth and fifth embodiments are joined by overlapping the ends of the respective short line portions Sc in the vertical direction.

図6(A)に示す第4実施形態のシール部材Sは、分割された複数の短線部Scをジグザグ状に配置してこれを本線部Saにすると共に、短線部Scの端部同士を上下に重ねてこれを増量部Sb、すなわち本線部Saの体積を部分的に増大させる増量部Sbとしたものである。   In the seal member S of the fourth embodiment shown in FIG. 6A, a plurality of divided short line portions Sc are arranged in a zigzag shape to form the main line portion Sa, and the ends of the short line portions Sc are moved up and down. This is overlapped with the increase portion Sb, that is, the increase portion Sb that partially increases the volume of the main line portion Sa.

また、図6(B)に示す第5実施形態のシール部材Sは、分割された複数の短線部Scを直線状に配置してこれを本線部Saにすると共に、短線部Scの端部同士を上下に重ねてこれを増量部Sbとしたものである。   In addition, the seal member S of the fifth embodiment shown in FIG. 6B has a plurality of divided short line portions Sc arranged in a straight line to form a main line portion Sa, and ends of the short line portions Sc. Are stacked on top and bottom to form the increased portion Sb.

さらに、第4及び第5の実施形態では、図6に示すように、セパレータ4が、シール部材Sの配置に対応した形状のシール溝Gを有している。図示のシール溝Gは、シール部材Sの配置に対応した形状としてジグザグ状や直線状を成すと共に、シール部材Sの幅よりも大きい幅寸法を有しており、その内部にシール部材Sが配置してある。   Furthermore, in 4th and 5th embodiment, as shown in FIG. 6, the separator 4 has the seal groove G of the shape corresponding to arrangement | positioning of the seal member S. As shown in FIG. The illustrated seal groove G has a zigzag shape or a linear shape as a shape corresponding to the arrangement of the seal member S, and has a width dimension larger than the width of the seal member S, and the seal member S is disposed therein. It is.

上記の各燃料電池は、シール部材Sにおいて、各短線部Scの端部同士を上下に重ねているので、セル構造体3とセパレータ4とを接合した際に、増量部Sbが押し潰され、その状態でシール材の焼成が行われる。これらの燃料電池にあっても、製造時においてシール部材Sが焼成により収縮しても、本線部Sa全体に応力が及ばないうえに、増量部Sbから本線部Saにシール材料を補充する。これにより、燃料電池は、製造時におけるシール部材Sに亀裂等の損傷が生じるのを防止することができる。   In each of the fuel cells, since the end portions of the respective short line portions Sc are vertically stacked in the seal member S, when the cell structure 3 and the separator 4 are joined, the increasing portion Sb is crushed, In this state, the sealing material is fired. Even in these fuel cells, even if the seal member S contracts due to firing at the time of manufacture, the entire main line portion Sa is not stressed, and the main line portion Sa is replenished with the sealing material from the increasing portion Sb. Thereby, the fuel cell can prevent damage such as cracks from occurring in the seal member S during manufacturing.

また、上記の各燃料電池は、セパレータ4にシール部材Sの配置に対応した形状のシール溝Gを形成し、そのシール溝Gにシール部材Sを配置しているので、セル構造体3とセパレータ4とを接合して増量部Sbを押し潰す際に、増量部Sbの横方向への広がりをシール溝G内に留めて、良好なシールラインを形成することができる。   Further, in each of the above fuel cells, since the seal groove G having a shape corresponding to the arrangement of the seal member S is formed in the separator 4 and the seal member S is arranged in the seal groove G, the cell structure 3 and the separator 4 is joined to crush the increased portion Sb, the lateral extension of the increased portion Sb can be retained in the seal groove G, and a good seal line can be formed.

〈第6実施形態〉
図7は、シール部材Sの各種の断面形状を示す図である。なお、同図には、シール材Sの本線部Saの形状を示し、増量部の図示は省略した。
<Sixth Embodiment>
FIG. 7 is a diagram showing various cross-sectional shapes of the seal member S. In the drawing, the shape of the main line portion Sa of the sealing material S is shown, and the illustration of the increasing portion is omitted.

すなわち、本発明の燃料電池は、より好ましい実施形態として、シール部材Sが、連続方向に交差する断面において、厚さ方向への変形を促進する形状を成しているものとすることができる。変形を促進する形状とは、弾性係数が低くなる形状であり、要するに、厚さ方向に変形しやすい形状である。   That is, as a more preferred embodiment, the fuel cell of the present invention can be configured such that the seal member S has a shape that promotes deformation in the thickness direction in a cross section that intersects the continuous direction. The shape that promotes deformation is a shape that has a low elastic modulus, and in short, is a shape that is easily deformed in the thickness direction.

この実施形態において、図7(A)に示すシール部材Sは、上側を外周側とした円弧状を成している。図7(B)に示すシール部材Sは、矩形本体の上部両側に面取りRを有する形状を成している。図7(C)に示すシール部材Sは、上側を頂点とした三角形状を成している。   In this embodiment, the seal member S shown in FIG. 7A has an arc shape with the upper side as the outer peripheral side. The seal member S shown in FIG. 7B has a shape having chamfers R on both upper sides of the rectangular main body. The seal member S shown in FIG. 7C has a triangular shape with the upper side as a vertex.

図7(D)に示すシール部材Sは、上側を斜辺とした矩形状を成している。図7(E)に示すシール部材Sは、矩形本体の上部片側に三角形の突起Tを有している。図7(F)に示すシール部材Sは、矩形本体の上辺中央に三角形の凹部Qを有している。そして、図7(G)に示すシール部材Sは、矩形本体の上辺中央に半円形の凹部Qを有している。   The seal member S shown in FIG. 7D has a rectangular shape with the upper side as a hypotenuse. The seal member S shown in FIG. 7E has a triangular protrusion T on the upper side of the rectangular main body. The seal member S shown in FIG. 7F has a triangular recess Q at the center of the upper side of the rectangular main body. And the sealing member S shown to FIG. 7 (G) has the semicircle recessed part Q in the upper side center of a rectangular main body.

図8は、断面形状が長方形のシール部材Sと、図7(A)に示す如く断面形状が円弧状のシール部材Sとについて、荷重と圧縮量との関係を示すグラフである。このグラフにおいて、荷重F1は、シール性を発現するために必要な最低荷重(充分に焼成するためのミニマム荷重)である。荷重F2は、シール部材Sが耐えられる限界荷重である。   FIG. 8 is a graph showing the relationship between the load and the compression amount for the sealing member S having a rectangular cross-sectional shape and the sealing member S having a circular cross-sectional shape as shown in FIG. In this graph, the load F1 is the minimum load (minimum load for sufficient firing) necessary to develop the sealing property. The load F2 is a limit load that the seal member S can withstand.

上記グラフから明らかなように、最低荷重F1から限界荷重F2に至る範囲では、図中に点線で示す長方形のシール部材Sの圧縮量(L2−L1)よりも、図中に実線で示す円弧状のシール部材Sの圧縮量(L2−L1)の方が大きくなる。このように、長方形のシール部材Sよりも圧縮量が増大するのは、円弧状のシール部材Sだけでなく、図7(B)〜(G)に示す各シール部材Sも同様である。   As is apparent from the above graph, in the range from the minimum load F1 to the limit load F2, the arc shape indicated by the solid line in the figure rather than the compression amount (L2-L1) of the rectangular seal member S indicated by the dotted line in the figure. The amount of compression (L2-L1) of the sealing member S is larger. In this way, the amount of compression is larger than that of the rectangular seal member S, as well as the arc-shaped seal member S, as well as the seal members S shown in FIGS.

上記のシール部材Sを備えた燃料電池は、先の各実施形態と同様に、製造時におけるシール部材Sに亀裂等の損傷が生じるのを防止することができるうえに、シール部材Sが厚さ方向に変形し易いので、セル構造体3とセパレータ4との間で挟持して焼成する際に、シール溝Gの深さのばらつきを吸収して、双方の間を気密的に封止する。   Like the previous embodiments, the fuel cell including the above-described seal member S can prevent the seal member S from being damaged such as cracks during manufacturing, and the seal member S is thick. Since it is easily deformed in the direction, when sandwiched between the cell structure 3 and the separator 4 and baked, the variation in the depth of the seal groove G is absorbed and the gap between the two is hermetically sealed.

〈第7及び第8の実施形態〉
図9(A)に示す第7実施形態の燃料電池は、セル構造体(3)及びセパレータ(4)の少なくとも一方が、本体部とシール領域との間に、本体部に対してシール領域を変位させる変位促進部Fを有している。図示例では、セル構造体3のフレーム2において、本体部Aと、本体部Aの周縁部であるシール領域2Bとの間に、他の部位よりも肉厚を相対的に小さくした変位促進部Fを有している。
<Seventh and Eighth Embodiments>
In the fuel cell of the seventh embodiment shown in FIG. 9A, at least one of the cell structure (3) and the separator (4) has a sealing region between the main body and the sealing region. A displacement promoting part F for displacement is provided. In the illustrated example, in the frame 2 of the cell structure 3, the displacement promoting portion having a thickness relatively smaller than other portions between the main body portion A and the seal region 2 </ b> B that is the peripheral portion of the main body portion A. F.

上記構成を備えた燃料電池は、シール部材Sにより先の各実施形態と同様の効果が得られる。そして、燃料電池は、セル構造体3のフレーム2が、変位促進部Fによりシール領域2Bが変位し易いので、シール部材Sをセル構造体3とセパレータ4との間で挟持して焼成する際に、シール溝Gの深さのばらつきに左右されることなく、双方の間を気密的に封止することができる。   The fuel cell having the above configuration can obtain the same effects as those of the previous embodiments by the seal member S. In the fuel cell, since the frame 2 of the cell structure 3 is easily displaced in the seal region 2B by the displacement promoting portion F, the seal member S is sandwiched between the cell structure 3 and the separator 4 and fired. In addition, the gap between the two can be hermetically sealed without being affected by variations in the depth of the seal groove G.

図9(B)に示す第8実施形態の燃料電池は、セル構造体(3)及びセパレータ(4)の少なくとも一方とシール部材sとの間に、シール部材Sよりも軟質の補助材10を備えている。図示例では、セル構造体3のフレーム2とシール部材Sとの間に補助材を介装している。補助材10には、ガラスペースト等の接点材料を用いることができる。   In the fuel cell of the eighth embodiment shown in FIG. 9B, an auxiliary material 10 that is softer than the seal member S is provided between at least one of the cell structure (3) and the separator (4) and the seal member s. I have. In the illustrated example, an auxiliary material is interposed between the frame 2 of the cell structure 3 and the seal member S. For the auxiliary material 10, a contact material such as glass paste can be used.

上記構成を備えた燃料電池は、シール部材Sにより先の各実施形態と同様の効果が得られる。そして、燃料電池は、セル構造体3のフレーム2とシール部材Sとの間に、シール部材Sよりも軟質の補助材10を配置したので、図9(B)中の右図から左図に移行するように、シール部材Sをセル構造体3とセパレータ4との組み付け初期から、補助材10がセル構造体3のフレーム2に必ず接触して潰された状態になる。   The fuel cell having the above configuration can obtain the same effects as those of the previous embodiments by the seal member S. And since the fuel cell has arrange | positioned the auxiliary | assistant material 10 softer than the sealing member S between the flame | frame 2 and the sealing member S of the cell structure 3, from the right figure in FIG.9 (B) to the left figure. From the initial assembly of the cell structure 3 and the separator 4, the auxiliary member 10 is in contact with the frame 2 of the cell structure 3 and is crushed so that the seal member S is transferred.

これにより、燃料電池は、シール部材Sをセル構造体3とセパレータ4との間で挟持して焼成する際に、シール溝Gの深さのばらつきに左右されることなく、双方の間を気密的に封止することができ、しかも、補助材10の分だけシール部材Sの圧縮量や収縮量が減るので、シール部材Sの密度(ガラス密度)の低下を防ぐことができる。   Thus, when the fuel cell is sandwiched between the cell structure 3 and the separator 4 and fired, the fuel cell does not depend on the variation in the depth of the seal groove G, and does not affect the airtightness between the two. In addition, since the amount of compression and shrinkage of the seal member S is reduced by the amount of the auxiliary material 10, a decrease in the density (glass density) of the seal member S can be prevented.

本発明に係わる燃料電池は、構成が上記各実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲で構成を適宜変更することが可能であり、シール部材の配置や断面形状、本線部に対する増量部の形状や配置などを変更したり、各実施形態の構成を組み合わせたりすることができる。   The configuration of the fuel cell according to the present invention is not limited to the above embodiments, and the configuration can be changed as appropriate without departing from the gist of the present invention. The shape and arrangement of the increasing portion with respect to the main line portion can be changed, or the configurations of the embodiments can be combined.

1 セル構造体の発電領域
2 セル構造体のフレーム
2A 本体部
2B シール領域
3 セル構造体
4 セパレータ
5 電解質
6 アノード電極
7 カソード電極
10 補助材
F 変位促進部
FC 燃料電池
FS 燃料電池スタック
S シール部材
Sa 本線部
Sb 増量部
Sc 短線部
DESCRIPTION OF SYMBOLS 1 Power generation area of cell structure 2 Frame of cell structure 2A Main body part 2B Seal area 3 Cell structure 4 Separator 5 Electrolyte 6 Anode electrode 7 Cathode electrode 10 Auxiliary material F Displacement promotion part FC Fuel cell FS Fuel cell stack S Seal member Sa Main line part Sb Increase part Sc Short line part

Claims (11)

電解質をアノード電極及びカソード電極で挟んだ構造を有するセル構造体と、
前記セル構造体の両面側に配置する一対のセパレータと、
前記セル構造体及び各セパレータの少なくとも周縁部同士の間を気密的に接合するシール部材とを備え、
前記シール部材が、前記周縁部に沿って連続し且つ連続方向に同一断面形状を有する本線部と、本線部の体積を部分的に増大させる増量部とを備えると共に、前記本線部に対して前記増量部を所定間隔で配置したことを特徴とする燃料電池。
A cell structure having a structure in which an electrolyte is sandwiched between an anode electrode and a cathode electrode;
A pair of separators disposed on both sides of the cell structure;
A seal member for airtightly bonding between at least the peripheral portions of the cell structure and each separator;
The seal member includes a main line portion that is continuous along the peripheral edge portion and has the same cross-sectional shape in the continuous direction, and an increasing portion that partially increases the volume of the main line portion. A fuel cell characterized in that the increasing portions are arranged at predetermined intervals.
前記シール部材の増量部が、本線部からセパレータの面内方向に突出していることを特徴とする請求項1に記載の燃料電池。   2. The fuel cell according to claim 1, wherein the increasing portion of the seal member protrudes from the main line portion in the in-plane direction of the separator. 前記シール部材の本線部が、直線状であると共に、前記増量部が、セパレータの外周側に突出していることを特徴とする請求項2に記載の燃料電池。   3. The fuel cell according to claim 2, wherein a main line portion of the seal member is linear and the increasing portion protrudes toward an outer peripheral side of the separator. 前記シール部材の本線部が、ジグザク状であると共に、前記増量部が、本線部のジグザグ形状の角部に設けてあることを特徴とする請求項1又は2に記載の燃料電池。   3. The fuel cell according to claim 1, wherein the main line portion of the seal member has a zigzag shape, and the increasing portion is provided in a zigzag corner of the main line portion. 前記シール部材の本線部が、分割された複数の短線部から成ると共に、前記増量部が、各短線部の端部同士を接合した部分であることを特徴とする請求項1又は2に記載の燃料電池。   The main line portion of the seal member is composed of a plurality of divided short wire portions, and the increasing portion is a portion where ends of the short wire portions are joined to each other. Fuel cell. 前記シール部材が、連続方向に交差する断面において、厚さ方向への変形を促進する形状を成していることを特徴とする請求項1〜5のいずれか1項に記載の燃料電池。   The fuel cell according to any one of claims 1 to 5, wherein the seal member has a shape that promotes deformation in the thickness direction in a cross section intersecting the continuous direction. 前記セル構造体及びセパレータの少なくとも一方が、本体部とその周縁部であるシール領域との間に、本体部に対してシール領域を変位させる変位促進部を有していることを特徴とする請求項1〜6のいずれか1項に記載の燃料電池。   At least one of the cell structure and the separator has a displacement promoting portion that displaces the seal region with respect to the main body portion between the main body portion and a seal region that is a peripheral portion thereof. Item 7. The fuel cell according to any one of Items 1 to 6. 前記セル構造体及びセパレータの少なくとも一方とシール部材との間に、前記シール部材よりも軟質の補助材を備えていることを特徴とする請求項1〜7のいずれか1項に記載の燃料電池。   The fuel cell according to any one of claims 1 to 7, further comprising an auxiliary material softer than the seal member between at least one of the cell structure and the separator and the seal member. . 前記シール部材を介装したセル構造体及びセパレータの加熱時において相対的に高温になる領域に、前記シール部材の増量部を相対的に多く分布させたことを特徴とする請求項1〜8のいずれか1項に記載の燃料電池。   9. The increasing portion of the sealing member is distributed in a relatively large amount in a region where the temperature is relatively high during heating of the cell structure and the separator interposed with the sealing member. The fuel cell according to any one of the above. 前記セパレータが、シール部材の配置に対応した形状のシール溝を有しており、前記シール溝に、シール部材が配置してあることを特徴とする請求項1〜9のいずれか1項に記載の燃料電池。   The said separator has the seal groove of the shape corresponding to arrangement | positioning of a seal member, The seal member is arrange | positioned in the said seal groove, The any one of Claims 1-9 characterized by the above-mentioned. Fuel cell. 請求項1〜10のいずれか1項に記載の燃料電池を積層した構造を有し、
隣接する燃料電池同士が、相互間のセパレータを共用して夫々の燃料電池を構成していることを特徴とする燃料電池スタック。
It has the structure which laminated the fuel cell of any one of Claims 1-10,
A fuel cell stack, wherein adjacent fuel cells constitute respective fuel cells by sharing a separator between them.
JP2016188972A 2016-09-28 2016-09-28 Fuel cell Active JP6769213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016188972A JP6769213B2 (en) 2016-09-28 2016-09-28 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016188972A JP6769213B2 (en) 2016-09-28 2016-09-28 Fuel cell

Publications (2)

Publication Number Publication Date
JP2018055897A true JP2018055897A (en) 2018-04-05
JP6769213B2 JP6769213B2 (en) 2020-10-14

Family

ID=61836967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016188972A Active JP6769213B2 (en) 2016-09-28 2016-09-28 Fuel cell

Country Status (1)

Country Link
JP (1) JP6769213B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020173973A (en) * 2019-04-10 2020-10-22 トヨタ自動車株式会社 Fuel cell separator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217616A (en) * 2002-01-24 2003-07-31 Uchiyama Mfg Corp Gasket for fuel cell
JP2005317505A (en) * 2004-03-31 2005-11-10 Toyota Motor Corp Fuel cell and its separator
JP2007157431A (en) * 2005-12-02 2007-06-21 Toyota Motor Corp Fuel cell
JP2007165156A (en) * 2005-12-15 2007-06-28 Toyota Motor Corp Fuel cell and gasket
JP2012164588A (en) * 2011-02-09 2012-08-30 Toyota Motor Corp Seal structure of fuel cell separator
JP2016081909A (en) * 2014-10-21 2016-05-16 株式会社日本自動車部品総合研究所 Fuel battery separator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217616A (en) * 2002-01-24 2003-07-31 Uchiyama Mfg Corp Gasket for fuel cell
JP2005317505A (en) * 2004-03-31 2005-11-10 Toyota Motor Corp Fuel cell and its separator
JP2007157431A (en) * 2005-12-02 2007-06-21 Toyota Motor Corp Fuel cell
JP2007165156A (en) * 2005-12-15 2007-06-28 Toyota Motor Corp Fuel cell and gasket
JP2012164588A (en) * 2011-02-09 2012-08-30 Toyota Motor Corp Seal structure of fuel cell separator
JP2016081909A (en) * 2014-10-21 2016-05-16 株式会社日本自動車部品総合研究所 Fuel battery separator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020173973A (en) * 2019-04-10 2020-10-22 トヨタ自動車株式会社 Fuel cell separator
JP7120134B2 (en) 2019-04-10 2022-08-17 トヨタ自動車株式会社 Separator for fuel cell

Also Published As

Publication number Publication date
JP6769213B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
JP5445986B2 (en) Fuel cell
JP5790083B2 (en) Fuel cell
JP5679893B2 (en) Solid oxide fuel cell and method for producing the same
JP6951142B2 (en) Separation plate for fuel cell and fuel cell unit cell
JP6841138B2 (en) Gasket and fuel cell stack using it
WO2014174944A1 (en) Insulating structure, fuel cell and fuel cell stack
US20160190610A1 (en) Membrane electrode assembly with frame, fuel cell single cell, and fuel cell stack
US9799897B2 (en) Fuel cell
US9496574B2 (en) Fuel cell
KR20060133492A (en) Composite sealing structure for sofc modules and stacks and related method
JP6769213B2 (en) Fuel cell
JP6150040B2 (en) Fuel cell and fuel cell stack
US10629922B2 (en) Fuel cell stack
AU2008234276B2 (en) Contact arrangement and method for assembling a fuel cell stack from at least one contact arrangement
JP5727915B2 (en) Solid oxide fuel cell, solid oxide fuel cell main body, and method for producing solid oxide fuel cell
JP4470474B2 (en) Solid oxide fuel cell
JP6150060B2 (en) Membrane electrode assembly with frame, single cell for fuel cell and fuel cell stack
JP7031379B2 (en) Fuel cell stack
JP2021099927A (en) Joined separator for fuel cell
JP2019186052A (en) Fuel cell separator
KR101270456B1 (en) Center plate system for molten carbonate fuel cell having external manifold
WO2024004062A1 (en) Solid oxide fuel battery
JP2010165473A (en) Fuel cell, and method of manufacturing sealing structure for the same
CN110945698B (en) Fuel cell unit
JP6740856B2 (en) Fuel cell and method of manufacturing fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200907

R151 Written notification of patent or utility model registration

Ref document number: 6769213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151