JP6740856B2 - Fuel cell and method of manufacturing fuel cell - Google Patents

Fuel cell and method of manufacturing fuel cell Download PDF

Info

Publication number
JP6740856B2
JP6740856B2 JP2016209279A JP2016209279A JP6740856B2 JP 6740856 B2 JP6740856 B2 JP 6740856B2 JP 2016209279 A JP2016209279 A JP 2016209279A JP 2016209279 A JP2016209279 A JP 2016209279A JP 6740856 B2 JP6740856 B2 JP 6740856B2
Authority
JP
Japan
Prior art keywords
gas
plate
plate member
fuel
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016209279A
Other languages
Japanese (ja)
Other versions
JP2018073524A (en
Inventor
杉原 真一
真一 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016209279A priority Critical patent/JP6740856B2/en
Publication of JP2018073524A publication Critical patent/JP2018073524A/en
Application granted granted Critical
Publication of JP6740856B2 publication Critical patent/JP6740856B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本開示は、燃料電池及び燃料電池の製造方法に関する。 The present disclosure relates to a fuel cell and a fuel cell manufacturing method.

金属部品を使った積層型のSOFC(Solid Oxide Fuel Cell:固体酸化物形燃料電池)では、積層方向に燃料を分配するマニホルド部において、外部にガスが漏れないようにするための「シール」と、上下層の電気的な「絶縁」が必要とされる。このようなシールや絶縁を実現する手法として、例えばマイカガスケットを挟持させる手法(特許文献1参照)や、ガラスを焼成してガスシール部を形成する手法が知られている。 Stacked SOFC (Solid Oxide Fuel Cell) that uses metal parts is called a "seal" to prevent gas from leaking outside in the manifold part that distributes fuel in the stacking direction. , Electrical "insulation" of the upper and lower layers is required. As a method for realizing such sealing and insulation, for example, a method of sandwiching a mica gasket (see Patent Document 1) and a method of firing glass to form a gas seal portion are known.

国際公開第2011/148769号International Publication No. 2011/148769

しかしながら、特許文献1に記載されるマイカガスケットをガスシール部として用いる場合、一般にマイカ板は表面粗さが大きいため、ガスシール部の表面が平滑でなく空隙が生じやすい。このためシールを完全に行うことができずガスリークが撲滅できない場合がある。また、ガラスを焼成してガスシール部を形成する場合、一般にSUS板とガラス層とを積層した状態で焼成をおこなうので、電池を多層化した場合は焼成時のガラス軟化に伴いSUS板が動くので、電池のスタック本体のねじれや傾きなど加工精度に問題が生じる場合がある。 However, when the mica gasket described in Patent Document 1 is used as the gas seal portion, the surface of the gas seal portion is not smooth and voids are likely to occur because the mica plate generally has a large surface roughness. For this reason, it may not be possible to completely seal and the gas leak may not be eliminated. Further, when the glass is fired to form the gas seal portion, the firing is generally performed in a state where the SUS plate and the glass layer are laminated. Therefore, when the battery has a multi-layer structure, the SUS plate moves as the glass softens during firing. Therefore, there may be a problem in processing accuracy such as twisting or tilting of the battery stack body.

本開示は、シール機能を十分に発揮することができる共に、簡易かつ高精度に製造できる燃料電池及び燃料電池の製造方法を提供することを目的とする。 An object of the present disclosure is to provide a fuel cell capable of sufficiently exhibiting a sealing function and capable of being simply and highly accurately manufactured, and a method of manufacturing a fuel cell.

本開示は、複数の平板型の燃料電池セル(110)を積層してなる積層体と、前記積層体の積層方向に沿って形成され、複数の燃料電池セルのそれぞれに供給する燃料ガス及び酸化剤ガスのいずれか一方が流れるガス流路(A1,A3,A4,A6)と、前記ガス流路において、前記積層体のうちの隣接する第1板材(120)と第2板材(220)との間に形成され、前記第1板材と前記第2板材との間の空隙層へ前記ガス流路を流れるガスが流出することを防止するためのガスシール部(140,140A)と、を備え、前記ガスシール部は、前記積層方向に沿って、前記第1板材と当接するガラス部材(141)と、前記ガラス部材と前記空隙層との隙間を塞ぎ、前記第2板材と当接する塞ぎ部材(142,142A,142B)と、が積層されて形成される、燃料電池(10)である。 The present disclosure relates to a laminated body formed by laminating a plurality of flat plate type fuel cell units (110), and a fuel gas and an oxidation gas which are formed along the laminating direction of the laminated body and are supplied to each of the plurality of fuel cell units. A gas flow path (A1, A3, A4, A6) through which either one of the agent gases flows, and a first plate material (120) and a second plate material (220) adjacent to each other in the laminate in the gas flow path. And a gas seal part (140, 140A) for preventing the gas flowing through the gas flow path from flowing out to the void layer between the first plate material and the second plate material. The gas seal portion closes a glass member (141) that comes into contact with the first plate member and a gap between the glass member and the void layer along the stacking direction and comes into contact with the second plate member. (142, 142A, 142B) is a fuel cell (10) formed by stacking.

同様に、本開示は、複数の平板型の燃料電池セル(110)を積層してなる積層体と、前記積層体の積層方向に沿って形成され、複数の燃料電池セルのそれぞれに供給する燃料ガス及び酸化剤ガスのいずれか一方が流れるガス流路(A1,A3,A4,A6)と、前記ガス流路において、前記積層体のうちの隣接する第1板材(120)と第2板材(220)との間に形成され、前記第1板材と前記第2板材との間の空隙層へ前記ガス流路を流れるガスが流出することを防止するためのガスシール部(140,140A)と、を備える燃料電池(10)の製造方法であって、前記積層方向に沿って、前記第1板材と当接するガラス部材(141)と、前記ガラス部材と前記空隙層との隙間を塞ぎ、前記第2板材と当接する塞ぎ部材(142,142A,142B)と、を積層する積層ステップと、前記積層体を焼成する焼成ステップと、前記焼成ステップの結果、前記ガラス部材が軟化収縮すると共に、前記塞ぎ部材の前記積層方向の寸法が増大して、前記ガラス部材と前記塞ぎ部材の合計の積層方向寸法が焼成前後で同一となるよう変形して、前記ガスシール部を形成する形成ステップと、を含む、燃料電池の製造方法である。 Similarly, according to the present disclosure, a stacked body formed by stacking a plurality of flat plate type fuel cells (110) and a fuel formed along the stacking direction of the stacked body and supplied to each of the plurality of fuel cells. A gas flow path (A1, A3, A4, A6) through which one of a gas and an oxidant gas flows, and a first plate material (120) and a second plate material (120) which are adjacent to each other in the laminated body in the gas flow path. 220) and a gas seal portion (140, 140A) for preventing the gas flowing through the gas flow path from flowing out to the void layer between the first plate material and the second plate material. A method for manufacturing a fuel cell (10), comprising: a glass member (141) in contact with the first plate member along the stacking direction; and a gap between the glass member and the void layer, A laminating step of laminating a closing member (142, 142A, 142B) in contact with the second plate member, a firing step of firing the laminate, and as a result of the firing step, the glass member softens and shrinks, and A step of increasing the dimension of the closing member in the stacking direction and deforming the glass member and the closing member so that the total dimension in the stacking direction is the same before and after firing to form the gas seal portion; And a method of manufacturing a fuel cell.

これらの構成により、焼成によってガスシール部のガラス部材が軟化収縮しても、これにより発生する第1板材と第2板材との間の空隙層を塞ぎ部材によって塞ぐことができる。これにより、ガスシール部にシール機能を十分に発揮させることができる。また、塞ぎ部材によってガラス部材の収縮分を補完するので、焼成前後でガラス部材と塞ぎ部材の合計の高さ寸法が変わらないようにでき、第1板材と第2板材と間の空隙層の高さを一定に維持できる。これにより、焼成によって積層体の各層のねじれや傾きなどの不具合を生じにくくすることができ、製品の精度を容易に向上させることができる。この結果、本開示に係る燃料電池は、シール機能を十分に発揮することができる共に、簡易かつ高精度に製造できる。 With these configurations, even if the glass member of the gas seal portion is softened and shrunk by firing, it is possible to close the void layer between the first plate member and the second plate member that is generated by the closing member. As a result, the gas sealing portion can fully exhibit the sealing function. Further, since the shrinkage component of the glass member is complemented by the closing member, the total height dimension of the glass member and the closing member can be kept unchanged before and after firing, and the height of the void layer between the first plate member and the second plate member can be increased. Can be maintained constant. As a result, it is possible to prevent problems such as twist and inclination of each layer of the laminated body due to firing, and it is possible to easily improve the accuracy of the product. As a result, the fuel cell according to the present disclosure can sufficiently exhibit the sealing function and can be manufactured easily and with high accuracy.

本開示によれば、シール機能を十分に発揮することができる共に、簡易かつ高精度に製造できる燃料電池及び燃料電池の製造方法を提供することができる。 According to the present disclosure, it is possible to provide a fuel cell capable of sufficiently exhibiting a sealing function and capable of being easily and accurately manufactured, and a method of manufacturing a fuel cell.

図1は、実施形態に係る燃料電池の構成を示す分解組立図である。FIG. 1 is an exploded view showing the configuration of the fuel cell according to the embodiment. 図2は、図1中のII−II断面図であり、燃料電池のガスシール部の構成を示す断面図である。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1 and is a cross-sectional view showing the configuration of the gas seal portion of the fuel cell. 図3は、図2に示すガスシール部の焼成処理前の状態を示す断面図である。FIG. 3 is a cross-sectional view showing the state of the gas seal portion shown in FIG. 2 before the firing process. 図4は、実施形態の変形例のガスシール部の構成を示す断面図である。FIG. 4 is a cross-sectional view showing a configuration of a gas seal portion of a modified example of the embodiment. 図5は、図4に示すガスシール部の焼成処理前の状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state before the firing process of the gas seal portion shown in FIG.

以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 The present embodiment will be described below with reference to the accompanying drawings. In order to facilitate understanding of the description, the same reference numerals are given to the same constituent elements in each drawing as much as possible, and overlapping description will be omitted.

[実施形態]
図1及び図2を参照しながら、実施形態に係る燃料電池10の構成について説明する。燃料電池10は、燃料ガス及び酸化剤ガスの供給を受けて発電を行う装置であって、本実施形態では固体酸化物形の燃料電池(Solid Oxide Fuel Cell:SOFC)として構成されている。燃料電池10は、所謂「平板型」の単セル110(燃料電池セル)を複数備えており、セパレータ220を介しそれぞれの単セル110を積層し直列接続した構成となっている。尚、図1においては、燃料電池10が備える複数の単セル110のうちの1つと、その上下両側に設けられたセパレータ220のみが描かれている。以下の説明では、単セル110とセパレータ220とが積層される方向(図1では上下方向)を「積層方向」と表記し、図1の上側を「積層方向上側」、図1の下側を「積層方向下側」と表記する。
[Embodiment]
The configuration of the fuel cell 10 according to the embodiment will be described with reference to FIGS. 1 and 2. The fuel cell 10 is an apparatus that receives the supply of a fuel gas and an oxidant gas to generate electric power, and is configured as a solid oxide fuel cell (SOFC) in the present embodiment. The fuel cell 10 includes a plurality of so-called “plate type” single cells 110 (fuel cell), and each single cell 110 is stacked via a separator 220 and connected in series. Note that in FIG. 1, only one of the plurality of unit cells 110 included in the fuel cell 10 and the separators 220 provided on the upper and lower sides thereof are illustrated. In the following description, the direction in which the unit cells 110 and the separator 220 are stacked (vertical direction in FIG. 1) is referred to as the “stacking direction”, the upper side of FIG. 1 is the “upper stacking direction”, and the lower side of FIG. It is described as "lower side in the stacking direction".

単セル110は、電解質と、燃料極と、酸素極と、を有している。電解質は平板状に形成されており、酸素イオン電導性を有する固体電解質である。電解質の材料としては、例えばジルコニアやペロブスカイト酸化物等、公知の材料を用いることができる。 The unit cell 110 has an electrolyte, a fuel electrode, and an oxygen electrode. The electrolyte is formed in a flat plate shape, and is a solid electrolyte having oxygen ion conductivity. As the material of the electrolyte, known materials such as zirconia and perovskite oxide can be used.

燃料極は、電解質の一方の面上に形成された層であって、燃料ガスの供給を受ける部分である。燃料極は、例えばYSZ等の電解質セラミックスと、Ni等の触媒金属と、を含むサーメットにより構成された多孔質層である。燃料極に燃料ガスが供給されると、燃料ガスに含まれる水素と、電解質を通過した酸化物イオンとが反応し、電子が放出される。当該電子が、発電により得られる電流として取り出される。 The fuel electrode is a layer formed on one surface of the electrolyte and is a portion that receives supply of fuel gas. The fuel electrode is a porous layer composed of a cermet containing electrolyte ceramics such as YSZ and a catalytic metal such as Ni. When the fuel gas is supplied to the fuel electrode, hydrogen contained in the fuel gas reacts with oxide ions that have passed through the electrolyte, and electrons are emitted. The electrons are extracted as a current obtained by power generation.

燃料極では、燃料ガスに含まれる炭化水素と水との間における水蒸気改質反応、すなわち内部改質が生じる。内部改質によって生じた水素は、燃料ガスに当初から含まれていた水素と同様に発電に供される。また、水蒸気改質反応は、よく知られているように吸熱反応である。このため、発電で生じた熱が水蒸気改質反応のために用いられると共に、燃料極及びその周辺の温度上昇が抑制される。 At the fuel electrode, a steam reforming reaction, that is, internal reforming occurs between the hydrocarbon contained in the fuel gas and water. The hydrogen generated by the internal reforming is used for power generation in the same manner as the hydrogen originally contained in the fuel gas. The steam reforming reaction is an endothermic reaction, as is well known. Therefore, the heat generated by power generation is used for the steam reforming reaction, and the temperature rise of the fuel electrode and its surroundings is suppressed.

酸素極は、電解質のうち燃料極とは反対側の面上に形成された層であって、酸化剤ガス(本実施形態では空気である)の供給を受ける部分である。酸素極は、例えばペロブスカイト型酸化物のような導電性セラミックスにより構成された多孔質層である。酸素極に空気が供給されると、空気に含まれる酸素が外部から供給される電子を受け取ることにより、酸化物イオンが生じる。酸化物イオンは、電解質を通って燃料極に到達した後、上記のように水素と反応する。 The oxygen electrode is a layer formed on the surface of the electrolyte opposite to the fuel electrode, and is a portion that receives supply of an oxidant gas (air in this embodiment). The oxygen electrode is a porous layer made of a conductive ceramic such as a perovskite type oxide. When air is supplied to the oxygen electrode, oxygen contained in the air receives electrons supplied from the outside to generate oxide ions. After reaching the anode through the electrolyte, the oxide ion reacts with hydrogen as described above.

本実施形態では、単セル110は、積層方向上側(図1の上側)から酸素極、電解質、燃料極、の順で積層されて構成されている。 In the present embodiment, the unit cell 110 is configured by stacking an oxygen electrode, an electrolyte, and a fuel electrode in this order from the upper side (the upper side in FIG. 1) in the stacking direction.

単セル110はセルフレーム120に保持されている。セルフレーム120は、単セル110よりも一回り大きな矩形の板であり、ステンレスにより形成されている。セルフレーム120の中央には、単セル110の外形に沿って矩形の貫通穴が形成されている。単セル110は、当該貫通穴の縁に形成された段部により保持されている。 The unit cell 110 is held in the cell frame 120. The cell frame 120 is a rectangular plate that is slightly larger than the single cell 110 and is made of stainless steel. A rectangular through hole is formed in the center of the cell frame 120 along the outer shape of the unit cell 110. The unit cell 110 is held by a step formed on the edge of the through hole.

図1に示されるように、セルフレーム120のうち単セル110の外側となる位置には、燃料ガス穴121と、燃料ガス穴122と、空気穴123と、空気穴124と、が形成されている。図1には、外部から供給され燃料電池10を通過する燃料ガスの流れが、矢印A1、A2、A3により示されている。また、外部から供給され燃料電池10を通過する空気の流れが、矢印A4、A5、A6により示されている。 As shown in FIG. 1, a fuel gas hole 121, a fuel gas hole 122, an air hole 123, and an air hole 124 are formed at a position outside the unit cell 110 in the cell frame 120. There is. In FIG. 1, the flow of the fuel gas supplied from the outside and passing through the fuel cell 10 is shown by arrows A1, A2, and A3. The flow of air supplied from the outside and passing through the fuel cell 10 is indicated by arrows A4, A5, and A6.

燃料ガス穴121は、セルフレーム120のうち1つの辺に沿って4つ並ぶように形成された貫通穴である。燃料ガスは、燃料ガス穴121を下方から上方に向かって流れながら(矢印A1)、その一部が単セル110の燃料極の下方側に流入し、燃料極に沿って流れる(矢印A2)。これにより、燃料ガスが単セル110の燃料極に供給され、発電に供される。 The fuel gas holes 121 are through holes formed so that four fuel gas holes 121 are arranged along one side of the cell frame 120. The fuel gas flows through the fuel gas hole 121 from the lower side to the upper side (arrow A1), and a part thereof flows into the lower side of the fuel electrode of the single cell 110 and flows along the fuel electrode (arrow A2). As a result, the fuel gas is supplied to the fuel electrode of the single cell 110 for power generation.

燃料ガス穴122は、燃料ガス穴121と同様に、セルフレーム120のうち1つの辺に沿って4つ並ぶように形成された貫通穴である。燃料ガス穴122が形成されている辺と、燃料ガス穴121が形成されている辺とは、互いに平行となっている。燃料ガスは、燃料ガス穴122を上方から下方に向かって流れている(矢印A3)。単セル110の燃料極に沿って流れた燃料ガス(矢印A2)は、燃料ガス穴122に到達し、その後は矢印A3で示される燃料ガスの流れに合流する。 Similar to the fuel gas holes 121, the fuel gas holes 122 are through holes formed so that four of them are arranged along one side of the cell frame 120. The side where the fuel gas hole 122 is formed and the side where the fuel gas hole 121 is formed are parallel to each other. The fuel gas flows through the fuel gas hole 122 from the upper side to the lower side (arrow A3). The fuel gas (arrow A2) flowing along the fuel electrode of the unit cell 110 reaches the fuel gas hole 122, and thereafter merges with the fuel gas flow indicated by the arrow A3.

空気穴123は、セルフレーム120のうち1つの辺に沿って4つ並ぶように形成された貫通穴である。空気穴123が形成されている辺と、燃料ガス穴121が形成されている方の辺とは、互いに垂直となっている。空気は、空気穴123を下方から上方に向かって流れながら(矢印A4)、その一部が単セル110の酸素極の上方側に流入し、酸素極に沿って流れる(矢印A5)。これにより、空気が単セル110の酸素極に供給され、発電に供される。 The air holes 123 are through holes formed so that four air holes 123 are arranged along one side of the cell frame 120. The side where the air hole 123 is formed and the side where the fuel gas hole 121 is formed are perpendicular to each other. The air flows in the air holes 123 from the lower side to the upper side (arrow A4), and a part thereof flows into the upper side of the oxygen electrode of the single cell 110 and flows along the oxygen electrode (arrow A5). As a result, air is supplied to the oxygen electrode of the single cell 110 and used for power generation.

空気穴124は、空気穴123と同様に、セルフレーム120のうち1つの辺に沿って4つ並ぶように形成された貫通穴である。空気穴124が形成されている辺と、空気穴123が形成されている辺とは、互いに平行となっている。空気は、空気穴124を上方から下方に向かって流れている(矢印A6)。単セル110の酸素極に沿って流れた空気(矢印A5)は、空気穴123に到達し、その後は矢印A6で示される空気の流れに合流する。 Similar to the air holes 123, the air holes 124 are through holes formed so that four air holes are arranged along one side of the cell frame 120. The side where the air holes 124 are formed and the side where the air holes 123 are formed are parallel to each other. The air flows through the air holes 124 from above to below (arrow A6). The air (arrow A5) flowing along the oxygen electrode of the unit cell 110 reaches the air hole 123, and thereafter merges with the air flow indicated by the arrow A6.

セパレータ220は、ステンレスにより形成された板状の部材である。上面視におけるセパレータ220の外形は、セルフレーム120の外形と概ね同一である。導電性の部材であるセパレータ220により、積層された全ての単セル110が電気的に直列接続されている。 The separator 220 is a plate-shaped member made of stainless steel. The outer shape of the separator 220 in a top view is substantially the same as the outer shape of the cell frame 120. All the stacked single cells 110 are electrically connected in series by the separator 220, which is a conductive member.

セパレータ220のうち単セル110よりも外側となる位置には、燃料ガス穴221と、燃料ガス穴222と、空気穴223と、空気穴224と、が形成されている。 A fuel gas hole 221, a fuel gas hole 222, an air hole 223, and an air hole 224 are formed at a position outside the unit cell 110 of the separator 220.

燃料ガス穴221は、セルフレーム120の燃料ガス穴121と同様に、セパレータ220のうち1つの辺に沿って4つ並ぶように形成された貫通穴である。それぞれの燃料ガス穴221が形成されている位置は、上面視においてそれぞれの燃料ガス穴121と重なる位置である。このため、矢印A1で示される燃料ガスの流れは、燃料ガス穴121と燃料ガス穴221とを交互に通過する流れとなっている。 Similar to the fuel gas holes 121 of the cell frame 120, the fuel gas holes 221 are through holes formed so that four fuel gas holes 221 are arranged along one side of the separator 220. The position where each fuel gas hole 221 is formed is a position where it overlaps with each fuel gas hole 121 in a top view. Therefore, the flow of the fuel gas indicated by the arrow A1 is a flow that alternately passes through the fuel gas holes 121 and the fuel gas holes 221.

燃料ガス穴222は、セルフレーム120の燃料ガス穴122と同様に、セパレータ220のうち1つの辺に沿って4つ並ぶように形成された貫通穴である。それぞれの燃料ガス穴222が形成されている位置は、上面視においてそれぞれの燃料ガス穴122と重なる位置である。このため、矢印A3で示される燃料ガスの流れは、燃料ガス穴122と燃料ガス穴222とを交互に通過する流れとなっている。 Similar to the fuel gas holes 122 of the cell frame 120, the fuel gas holes 222 are through holes formed so that four fuel gas holes 222 are arranged along one side of the separator 220. The position where each fuel gas hole 222 is formed is a position that overlaps with each fuel gas hole 122 in a top view. Therefore, the flow of the fuel gas indicated by the arrow A3 is a flow that alternately passes through the fuel gas holes 122 and the fuel gas holes 222.

空気穴223は、セルフレーム120の空気穴123と同様に、セパレータ220のうち1つの辺に沿って4つ並ぶように形成された貫通穴である。それぞれの空気穴223が形成されている位置は、上面視においてそれぞれの空気穴123と重なる位置である。このため、矢印A4で示される空気の流れは、空気穴123と空気穴223とを交互に通過する流れとなっている。 Like the air holes 123 of the cell frame 120, the air holes 223 are through holes formed so that four air holes 223 are arranged along one side of the separator 220. The position where each air hole 223 is formed is a position which overlaps with each air hole 123 in a top view. Therefore, the air flow indicated by the arrow A4 is a flow that alternately passes through the air holes 123 and the air holes 223.

空気穴224は、セルフレーム120の空気穴124と同様に、セパレータ220のうち1つの辺に沿って4つ並ぶように形成された貫通穴である。それぞれの空気穴224が形成されている位置は、上面視においてそれぞれの空気穴124と重なる位置である。このため、矢印A6で示される空気の流れは、空気穴124と空気穴224とを交互に通過する流れとなっている。 Like the air holes 124 of the cell frame 120, the air holes 224 are through holes formed so that four air holes 224 are arranged along one side of the separator 220. The position where each air hole 224 is formed is a position which overlaps with each air hole 124 in a top view. Therefore, the air flow indicated by the arrow A6 is a flow that alternately passes through the air holes 124 and the air holes 224.

なお、燃料ガス穴121,221を燃料ガスが通過する流路A1と、燃料ガス穴122,222を燃料ガスが通過する流路A3は、「複数の平板型の単セル110を積層してなる積層体の積層方向に沿って形成され、複数の単セル110のそれぞれに供給する燃料ガスが流れるガス流路A1、A3」とも表現することができる。また、空気穴123,223を空気が通過する流路A4と、空気穴124,224を空気が通過する流路A6は、「複数の平板型の単セル110を積層してなる積層体の積層方向に沿って形成され、複数の単セル110のそれぞれに供給する空気(酸化剤ガス)が流れるガス流路A4,A6」とも表現することができる。 The flow path A1 through which the fuel gas passes through the fuel gas holes 121 and 221 and the flow path A3 through which the fuel gas passes through the fuel gas holes 122 and 222 are composed of "a plurality of flat plate type single cells 110 are stacked. It can also be expressed as “gas flow paths A1, A3” formed along the stacking direction of the stacked body and through which the fuel gas supplied to each of the plurality of unit cells 110 flows. The flow path A4 through which the air passes through the air holes 123 and 223 and the flow path A6 through which the air passes through the air holes 124 and 224 are defined as “a laminated body of a plurality of flat plate-type single cells 110 laminated together. It can also be expressed as “gas flow paths A4, A6” formed along the direction and through which air (oxidant gas) supplied to each of the plurality of unit cells 110 flows.

セパレータ220のうち単セル110の燃料極側(図1では上側)の面211には凹部が形成されており、当該凹部が燃料ガスの流れる流路210となっている。流路210は、単セル110の燃料極に燃料ガスを供給するための流路であるから、図1において矢印A2で示される燃料ガスの流れは、流路210における燃料ガスの流れである。 A recess is formed in the surface 211 of the separator 220 on the fuel electrode side (upper side in FIG. 1) of the single cell 110, and the recess serves as a flow path 210 through which the fuel gas flows. Since the flow path 210 is a flow path for supplying the fuel gas to the fuel electrode of the single cell 110, the flow of the fuel gas indicated by the arrow A2 in FIG. 1 is the flow of the fuel gas in the flow path 210.

セパレータ220のうち単セル110の酸素極側(図1では下側)の面(不図示)と、酸素極との間には、空気の流れる流路250が形成されている。矢印A5で示される空気の流れは、流路250における空気の流れである。 A flow channel 250 through which air flows is formed between a surface (not shown) of the separator 220 on the oxygen electrode side (lower side in FIG. 1) of the single cell 110 and the oxygen electrode. The air flow indicated by the arrow A5 is the air flow in the flow path 250.

このように、本実施形態では、単セル110の燃料極を燃料ガスが流れる方向(矢印A2)と、単セル110の酸素極を空気が流れる方向(矢印A5)とが、互いに直行するようなクロスフロー方式が採用されている。このような態様に替えて、それぞれの流れが互いに同じ方向となるコフロー方式や、それぞれの流れが互いに反対方向となるカウンタフロー方式を採用してもよい。 As described above, in the present embodiment, the direction in which the fuel gas flows through the fuel electrode of the single cell 110 (arrow A2) and the direction in which air flows through the oxygen electrode of the single cell 110 (arrow A5) are orthogonal to each other. The cross flow method is adopted. Instead of such an aspect, a coflow method in which the respective flows are in the same direction or a counterflow method in which the respective flows are in the opposite directions may be adopted.

その他の構成について説明する。セパレータ220のうち単セル110の燃料極側(図1では上面側)と、セルフレーム120との間には、スペーサ230が配置されている。スペーサ230は、セパレータ220とセルフレーム120との間の隙間を所定の大きさに保つよう、両者の間に挿入された板状の部材である。スペーサ230は、セパレータ220とセルフレーム120との間における燃料ガスの流れ、及び空気の流れを妨げることの無いように、上面視において燃料極や燃料ガス穴121等を避ける位置に設けられている。本実施形態では、スペーサ230はステンレスにより形成されている。 Other configurations will be described. A spacer 230 is arranged between the cell frame 120 and the fuel electrode side (upper surface side in FIG. 1) of the unit cell 110 of the separator 220. The spacer 230 is a plate-shaped member inserted between the separator 220 and the cell frame 120 so as to keep the gap between the separator 220 and the cell frame 120 at a predetermined size. The spacer 230 is provided at a position avoiding the fuel electrode, the fuel gas hole 121, and the like in a top view so as not to hinder the flow of fuel gas and the flow of air between the separator 220 and the cell frame 120. .. In this embodiment, the spacer 230 is made of stainless steel.

セパレータ220のうち単セル110の酸素極側(図1では下面側)と、セルフレーム120との間には、スペーサ130が配置されている。スペーサ130は、スペーサ230と同様に、セパレータ220とセルフレーム120との間の隙間を所定の大きさに保つよう、両者の間に挿入された板状の部材である。スペーサ130は、セパレータ220とセルフレーム120との間における燃料ガスの流れ、及び空気の流れを妨げることの無いように、上面視において酸素極や燃料ガス穴121等を避ける位置に設けられている。本実施形態では、スペーサ130はセラミックスにより形成されている。 A spacer 130 is arranged between the oxygen frame side (lower surface side in FIG. 1) of the single cell 110 of the separator 220 and the cell frame 120. Like the spacer 230, the spacer 130 is a plate-shaped member inserted between the separator 220 and the cell frame 120 so as to maintain a predetermined gap therebetween. The spacer 130 is provided at a position avoiding the oxygen electrode, the fuel gas hole 121, and the like in a top view so as not to hinder the flow of fuel gas and the flow of air between the separator 220 and the cell frame 120. .. In this embodiment, the spacer 130 is made of ceramics.

また、ガス流路A1、A3、A4、A6には、セルフレーム120(第1板材)とセパレータ220(第2板材)との間に形成され、セルフレーム120とセパレータ220との間の空隙層へガス流路を流れるガスが流出することを防止するためのガスシール部140が設けられている。なお、図1には、セルフレーム120の燃料ガス穴121と、セパレータ220の燃料ガス穴221との間のみにガスシール部140が図示されているが、実際には、セルフレーム120の燃料ガス穴121,122及び空気穴123,124と、セパレータ220の燃料ガス穴221,222及び空気穴223,224との間にそれぞれ設けられている。 In addition, in the gas flow paths A1, A3, A4, and A6, a gap layer is formed between the cell frame 120 (first plate member) and the separator 220 (second plate member), and is a void layer between the cell frame 120 and the separator 220. A gas seal portion 140 is provided to prevent the gas flowing through the gas flow path from flowing out. Although the gas seal portion 140 is shown only between the fuel gas hole 121 of the cell frame 120 and the fuel gas hole 221 of the separator 220 in FIG. 1, the fuel gas of the cell frame 120 is actually used. The holes 121 and 122 and the air holes 123 and 124 are provided between the fuel gas holes 221 and 222 and the air holes 223 and 224 of the separator 220, respectively.

ガスシール部140は、図2に示すように、積層方向に沿って、積層方向下側のセルフレーム120と当接するガラス部材141と、このガラス部材141と空隙層との隙間を塞ぎ、積層方向上側のセパレータ220と当接する塞ぎ部材142とが、積層されて形成される。ガラス部材141の上側に塞ぎ部材142が積層される構成をとる。 As shown in FIG. 2, the gas seal portion 140 closes the glass member 141 that comes into contact with the cell frame 120 on the lower side in the stacking direction along the stacking direction and the gap between the glass member 141 and the void layer, and stacks in the stacking direction. The closing member 142 that contacts the upper separator 220 is formed by stacking. The closing member 142 is laminated on the upper side of the glass member 141.

また、ガスシール部140は、ガラス部材141及び塞ぎ部材142の外周側に設けられ、セルフレーム120とセパレータ220との間の空隙層の高さを規定すると共に、セルフレーム120とセパレータ220との間を絶縁する高さ調整部材143,144を備える。高さ調整部材は、積層方向下側のセルフレーム120と当接する板状の第1部材143と、積層方向上側のセパレータ220と当接して第1部材143と積層される第2部材144と、を有する。本実施形態では、第1部材143が絶縁性材料(例えばマイカ)で形成されており、第2部材144は、絶縁性材料以外の材料(例えばステンレス)で形成されている。 Further, the gas seal portion 140 is provided on the outer peripheral side of the glass member 141 and the closing member 142, and regulates the height of the void layer between the cell frame 120 and the separator 220, and at the same time, defines the gap between the cell frame 120 and the separator 220. Height adjusting members 143 and 144 for insulating the spaces are provided. The height adjusting member is a plate-shaped first member 143 that contacts the cell frame 120 on the lower side in the stacking direction, and a second member 144 that contacts the separator 220 on the upper side in the stacking direction and is stacked on the first member 143. Have. In this embodiment, the first member 143 is made of an insulating material (for example, mica), and the second member 144 is made of a material other than the insulating material (for example, stainless steel).

また、第1部材143は、第2部材144に対して相対的に内周側(ガラス部材141側)に突出するよう配置されており、第1部材143のこの突出部分がストッパ145として機能する。したがって、ストッパ145は、第1部材143と同様に積層方向下側のセルフレーム120と当接し、積層方向に所定の厚さを有し、かつ、ガラス部材141側に突出して設けられる。 Further, the first member 143 is arranged so as to project relatively to the inner peripheral side (the glass member 141 side) with respect to the second member 144, and this projecting portion of the first member 143 functions as the stopper 145. .. Therefore, the stopper 145 contacts the cell frame 120 on the lower side in the stacking direction similarly to the first member 143, has a predetermined thickness in the stacking direction, and is provided so as to project toward the glass member 141 side.

本実施形態では、塞ぎ部材142は、ガラス部材141の軟化収縮に伴い積層方向に膨張し、かつ、シール性をもつ膨張材料で形成される。塞ぎ部材142は、焼成時に変形した後に、高さ調整部材のストッパ145に突き当たって、セルフレーム120側への増大が規制されるように形成される。 In the present embodiment, the closing member 142 is formed of an expansion material that expands in the stacking direction as the glass member 141 softens and shrinks and has a sealing property. The closing member 142 is formed so that after it is deformed during firing, it abuts against the stopper 145 of the height adjusting member, and its increase toward the cell frame 120 side is restricted.

なお、高さ調整部材143,144は、セルフレーム120とセパレータ220との間を絶縁できればよく、第2部材144が絶縁性材料で形成され、第1部材143は絶縁性材料以外で形成される構成でもよいし、第1部材143及び第2部材144の両方が絶縁性材料で形成されてもよい。また、第1部材143と第2部材144とを積層した形状を一体的な部材で形成して高さ調整部材として用いることもできる。 The height adjusting members 143 and 144 only need to be able to insulate between the cell frame 120 and the separator 220, the second member 144 is made of an insulating material, and the first member 143 is made of a material other than an insulating material. Alternatively, both the first member 143 and the second member 144 may be made of an insulating material. Further, the shape in which the first member 143 and the second member 144 are laminated may be formed as an integral member and used as a height adjusting member.

また、高さ調整部材143,144による絶縁機能は、ガスシール部140が空気層(空気が単セル110の酸素極の上方側を矢印A5の向きに流れる階層)に形成されるときに必須である。しかし、ガスシール部140が、燃料層(燃料ガスが単セル110の燃料極の下方側を矢印A2の向きに流れる階層)に形成される場合には、高さ調整部材143,144の絶縁機能は必須ではなく、第1部材143及び第2部材144が共に絶縁性材料以外で形成されてもよいし、または、高さ調整部材143,144自体を設けない構成としてもよい。 The insulating function of the height adjusting members 143 and 144 is essential when the gas seal portion 140 is formed in an air layer (a layer in which air flows in the direction of arrow A5 above the oxygen electrode of the single cell 110). is there. However, when the gas seal portion 140 is formed in the fuel layer (the layer in which the fuel gas flows in the direction below the fuel electrode of the unit cell 110 in the direction of arrow A2), the insulating function of the height adjusting members 143 and 144 is high. Is not essential, and both the first member 143 and the second member 144 may be formed of a material other than an insulating material, or the height adjusting members 143 and 144 themselves may not be provided.

図2及び図3を参照して、ガスシール部140の製造方法について説明する。ガスシール部140は、積層体を焼成処理することによって形成される。焼成処理では、積層方向に荷重をかけ続けられながら、ガラスが軟化する800℃程度まで積層体が加熱される。焼成前の段階では、図3に示すように、積層体を組み立てた状態で、セルフレーム120とセパレータ220との間隙にガラス部材141と塞ぎ部材142とが積層方向に直列に挿入される(積層ステップ)。このとき、塞ぎ部材142は、セパレータ220と接着されており、セパレータ220と塞ぎ部材142との間のみシールされた状態となっている。また、この間隙に高さ調整部材の第1部材143及び第2部材144も積層方向に直列に配列されて挿入される。第1部材143は、ストッパ145が塞ぎ部材142の端面と対向するように、第2配置に対して相対的に内側(ガラス部材141側)突出して配置される。このとき、セルフレーム120とセパレータ220とは、高さ調整部材143,144によって支持されている。この状態で積層体が焼成される(焼成ステップ)。 A method for manufacturing the gas seal portion 140 will be described with reference to FIGS. 2 and 3. The gas seal portion 140 is formed by baking the laminated body. In the firing process, the laminated body is heated to about 800° C. at which the glass is softened while a load is continuously applied in the laminating direction. At the stage before firing, as shown in FIG. 3, the glass member 141 and the closing member 142 are inserted in series in the stacking direction in the gap between the cell frame 120 and the separator 220 in the assembled state of the stack (stacking). Step). At this time, the closing member 142 is bonded to the separator 220, and only the separator 220 and the closing member 142 are sealed. Further, the first member 143 and the second member 144 of the height adjusting member are also arranged and inserted in series in the stacking direction in the gap. The first member 143 is arranged so as to project inward (toward the glass member 141) relative to the second arrangement so that the stopper 145 faces the end surface of the closing member 142. At this time, the cell frame 120 and the separator 220 are supported by the height adjusting members 143 and 144. The laminated body is fired in this state (firing step).

焼成処理の過程では、ガラス部材141が高温により軟化して、図3に矢印で示すように積層方向下側に向けて収縮しながら結晶化してゆく。その結果、図2に示すように縮小して緻密化され、シール機能を発揮できる状態に遷移する。また、塞ぎ部材142は、このようなガラス部材141の収縮に合わせて高温により膨張し、ガラス部材141を収縮方向に加圧する。塞ぎ部材142は、ガラス部材の収縮変形に追従するように、図3に矢印で示すように積層方向下側に向けてストッパ145と突き当たるまでセルフレーム120側に膨張する。この結果、図2に示すようなガスシール部140が形成される(形成ステップ)。 During the firing process, the glass member 141 is softened by the high temperature and crystallizes while shrinking downward in the stacking direction as shown by the arrow in FIG. As a result, as shown in FIG. 2, the state is reduced and densified, and the state transitions to a state where the sealing function can be exhibited. Further, the closing member 142 expands at high temperature in accordance with the contraction of the glass member 141, and presses the glass member 141 in the contracting direction. The closing member 142 expands toward the cell frame 120 side toward the lower side in the stacking direction until it abuts the stopper 145, as indicated by the arrow in FIG. 3, so as to follow the contracting deformation of the glass member. As a result, the gas seal portion 140 as shown in FIG. 2 is formed (forming step).

次に本実施形態に係る燃料電池10の効果について説明する。本実施形態の燃料電池10は、複数の平板型の単セル110を積層してなる積層体と、積層体の積層方向に沿って形成され、複数の単セル110のそれぞれに供給する燃料ガス及び酸化剤ガスのいずれか一方が流れるガス流路A1,A3,A4,A6と、ガス流路A1,A3,A4,A6において、積層体のうちの隣接するセルフレーム120とセパレータ220との間に形成され、セルフレーム120とセパレータ220との間の空隙層へガス流路A1,A3,A4,A6を流れるガスが流出することを防止するためのガスシール部140と、を備える。ガスシール部140は、積層方向に沿って、セルフレーム120と当接するガラス部材141と、このガラス部材141と空隙層との隙間を塞ぎ、セパレータ220と当接する塞ぎ部材142と、が積層されて形成される。 Next, effects of the fuel cell 10 according to this embodiment will be described. The fuel cell 10 of the present embodiment includes a stacked body formed by stacking a plurality of flat plate type single cells 110, a fuel gas formed along the stacking direction of the stacked body, and a fuel gas supplied to each of the plurality of single cells 110. In the gas flow paths A1, A3, A4, A6 through which any one of the oxidant gases flows, and between the adjacent cell frame 120 and the separator 220 of the stacked body in the gas flow paths A1, A3, A4, A6. And a gas seal portion 140 for preventing the gas flowing through the gas flow paths A1, A3, A4, A6 from flowing out to the void layer formed between the cell frame 120 and the separator 220. The gas seal portion 140 is formed by stacking a glass member 141 that contacts the cell frame 120 and a blocking member 142 that closes the gap between the glass member 141 and the void layer and contacts the separator 220 along the stacking direction. It is formed.

この構成により、焼成によってガスシール部140のガラス部材141が軟化収縮しても、これにより発生するセルフレーム120とセパレータ220との間の空隙層を塞ぎ部材142によって塞ぐことができる。これにより、ガスシール部140にシール機能を十分に発揮させることができる。また、塞ぎ部材142によってガラス部材141の収縮分を補完するので、焼成前後でガラス部材141と塞ぎ部材142の合計の高さ寸法が変わらないようにでき、セルフレーム120とセパレータ220と間の空隙層の高さを一定に維持できる。これにより、焼成によって積層体の各層のねじれや傾きなどの不具合を生じにくくすることができ、製品の精度を容易に向上させることができる。この結果、本実施形態の燃料電池10は、シール機能を十分に発揮することができる共に、簡易かつ高精度に製造できる。 With this configuration, even if the glass member 141 of the gas seal portion 140 is softened and shrunk due to firing, the void layer between the cell frame 120 and the separator 220 generated thereby can be closed by the closing member 142. As a result, the gas seal portion 140 can sufficiently exhibit the sealing function. Further, since the shrinkage amount of the glass member 141 is complemented by the closing member 142, the total height dimension of the glass member 141 and the closing member 142 can be prevented from changing before and after firing, and the gap between the cell frame 120 and the separator 220 can be kept. The layer height can be kept constant. As a result, it is possible to prevent problems such as twist and inclination of each layer of the laminated body due to firing, and it is possible to easily improve the accuracy of the product. As a result, the fuel cell 10 of the present embodiment can sufficiently exhibit the sealing function and can be manufactured easily and with high accuracy.

また、本実施形態の燃料電池10において、ガスシール部140は、ガラス部材141及び塞ぎ部材142の外周側に設けられ、セルフレーム120とセパレータ220との間の空隙層の高さを規定すると共に、セルフレーム120とセパレータ220との間を絶縁する高さ調整部材143,144を備える。 In addition, in the fuel cell 10 of the present embodiment, the gas seal portion 140 is provided on the outer peripheral side of the glass member 141 and the closing member 142, and defines the height of the void layer between the cell frame 120 and the separator 220. The height adjusting members 143 and 144 are provided to insulate the cell frame 120 and the separator 220 from each other.

この構成により、焼成により変形しない高さ調整部材143,144によってセルフレーム120とセパレータ220と間が支持されるので、焼成処理前の段階から焼成後のガスシール部140の最終的な積層方向高さを規定することができ、焼成前後で空隙層の高さの一定化をより一層安定して行うことができる。また、高さ調整部材143,144により、セルフレーム120とセパレータ220との間を絶縁できるので、ガスシール部140に絶縁機能も発揮させることができる。 With this configuration, since the height adjustment members 143 and 144 that are not deformed by firing support the space between the cell frame 120 and the separator 220, the final stacking direction height of the gas seal portion 140 from the stage before the firing process to the stage after the firing process. The height can be regulated, and the height of the void layer can be made more stable before and after firing. Moreover, since the height adjustment members 143 and 144 can insulate the cell frame 120 and the separator 220, the gas seal part 140 can also exhibit an insulating function.

また、本実施形態の燃料電池10において、塞ぎ部材142は、積層体の焼成時に、ガラス部材141の軟化収縮に伴い積層方向の寸法が増大して、ガラス部材141との合計の積層方向寸法が焼成前後で同一となるよう変形する特性を有する。 Further, in the fuel cell 10 of the present embodiment, the size of the closing member 142 in the stacking direction increases due to the softening and shrinking of the glass member 141 during firing of the stacked body, so that the total size in the stacking direction with the glass member 141 is increased. It has the property of deforming to be the same before and after firing.

この構成により、より一層確実に焼成前後でガラス部材141と塞ぎ部材142との合計の高さを一定に保つことができ、加工精度を向上できる。 With this configuration, the total height of the glass member 141 and the closing member 142 can be kept constant before and after firing more reliably, and the processing accuracy can be improved.

また、本実施形態の燃料電池10において、高さ調整部材は、セルフレーム120と当接し、積層方向に所定の厚さを有し、かつ、ガラス部材141側に突出して設けられるストッパ145を有する。塞ぎ部材142は、焼成時に変形した後にストッパ145に突き当たって、セルフレーム120側への増大が規制されるように形成される。 Further, in the fuel cell 10 of the present embodiment, the height adjusting member is in contact with the cell frame 120, has a predetermined thickness in the stacking direction, and has the stopper 145 provided so as to project toward the glass member 141 side. .. The closing member 142 is formed so as to abut against the stopper 145 after being deformed at the time of firing, and the increase toward the cell frame 120 side is restricted.

この構成により、塞ぎ部材142の過度の膨張を防止でき、また、ガラス部材141の最低限の領域を確実に確保できるので、シール機能をより確実にできる。 With this configuration, excessive expansion of the closing member 142 can be prevented, and the minimum area of the glass member 141 can be reliably ensured, so that the sealing function can be made more reliable.

また、本実施形態の燃料電池10において、高さ調整部材が、セルフレーム120と当接してストッパ145を含む第1部材143と、セパレータ220と当接して第1部材143と積層される第2部材144と、を有し、第1部材143が絶縁性材料で形成される。 Further, in the fuel cell 10 of the present embodiment, the height adjusting member is laminated on the first member 143 which is in contact with the cell frame 120 and includes the stopper 145, and is in contact with the separator 220 and which is laminated with the first member 143. And a member 144, and the first member 143 is formed of an insulating material.

この構成により、高さ調整部材が第1部材143と第2部材144の2部材で構成されるので、高さ調整部材の配置や形状の自由度を向上できる。また、高さ調整部材のうち第1部材のみが絶縁性材料で形成されるので、絶縁性材料の割合を少なくでき、低コスト化を図ることができる。 With this configuration, since the height adjusting member is composed of the first member 143 and the second member 144, the degree of freedom in arrangement and shape of the height adjusting member can be improved. Further, since only the first member of the height adjusting member is made of the insulating material, the ratio of the insulating material can be reduced and the cost can be reduced.

また、本実施形態の燃料電池10において、塞ぎ部材142は、ガラス部材141の軟化収縮に伴い積層方向に膨張し、かつ、シール性をもつ膨張材料で形成される。 In addition, in the fuel cell 10 of the present embodiment, the closing member 142 is formed of an expanding material that expands in the stacking direction as the glass member 141 softens and shrinks and has a sealing property.

この構成により、膨張材料を空隙層に挿入して焼成を行うことで、塞ぎ部材142を簡易に製造できる。 With this configuration, the closing member 142 can be easily manufactured by inserting the expansion material into the void layer and performing firing.

[変形例]
図4及び図5を参照して変形例を説明する。上記実施形態では、塞ぎ部材142として膨張材料を適用する構成を例示したが、ガラス部材141と空隙層との隙間を封止することができれば塞ぎ部材は他の形態としてもよい。例えば図4に示すように、ガスシール部140Aにおいて、膨張材料142Aと、この膨張材料142Aを積層方向両側から挟持する接続部材142Bとを組み合わせて、塞ぎ部材として用いる構成としてもよい。
[Modification]
A modified example will be described with reference to FIGS. 4 and 5. In the above embodiment, the configuration in which the expansive material is applied as the closing member 142 is illustrated, but the closing member may have another form as long as the gap between the glass member 141 and the void layer can be sealed. For example, as shown in FIG. 4, in the gas seal portion 140A, the expansive material 142A and the connecting members 142B that sandwich the expansive material 142A from both sides in the stacking direction may be combined and used as a closing member.

膨張材料142Aは、ガラス部材141の軟化収縮に伴い積層方向に膨張する性質をもつ材料であればよく、この構成の場合には上記実施形態の塞ぎ部材142と異なり材料自体にシール性は要しない。このような膨張材料142Aとしては、例えばインタラムマットが挙げられる。 The expansion material 142A may be any material that has the property of expanding in the stacking direction as the glass member 141 softens and shrinks. In this configuration, unlike the closing member 142 of the above-described embodiment, the material itself does not require sealing properties. .. An example of such an expandable material 142A is an interram mat.

接続部材142Bは、膨張材料142Aとガラス部材141との間に介在する第1平面部142Eと、膨張材料142Aとセパレータ220との間に介在する第2平面部142Cと、第1平面部142E及び第2平面部142Cを外周側から連結し、膨張材料142Aの膨張に伴いセルフレーム120側に伸長する箔バネ部142Dとから成る。接続部材142Bは、例えばステンレスで形成される。接続部材142Bは、積層方向下側にて第1平面部142Eがガラス部材141と接着され、また、積層方向上側にて第2平面部142Cがセパレータ220と溶接などによって接着されており、これにより塞ぎ部材のシール性が担保されている。 The connecting member 142B includes a first flat surface portion 142E interposed between the expansion material 142A and the glass member 141, a second flat surface portion 142C interposed between the expansion material 142A and the separator 220, a first flat surface portion 142E, and The second flat surface portion 142C is connected from the outer peripheral side and includes a foil spring portion 142D that extends toward the cell frame 120 side as the expansion material 142A expands. The connection member 142B is made of, for example, stainless steel. In the connection member 142B, the first flat surface portion 142E is bonded to the glass member 141 on the lower side in the stacking direction, and the second flat surface portion 142C is bonded to the separator 220 on the upper side in the stacking direction by welding or the like. The sealing property of the closing member is secured.

また、この構成では、高さ調整部材のうち上記実施形態の第1部材143に相当する要素として、上記実施形態の第1部材143と同様に第2部材144が積層される外周側部材143Aと、ガラス部材141より内周側に配置され箔バネ部142Dが積層される内周側部材143Bとを備える。外周側部材143Aの内周側端部は、図4に示すように接続部材142Bの第1平面部142Eと当接するストッパとして機能している。外周側部材143A及び内周側部材143Bは、上記実施形態の第1部材143と同様に絶縁性材料(例えばマイカ)で形成されている。 Further, in this configuration, as an element corresponding to the first member 143 of the above-described embodiment in the height adjusting member, an outer peripheral member 143A in which the second member 144 is laminated similarly to the first member 143 of the above-described embodiment. And an inner peripheral member 143B arranged on the inner peripheral side of the glass member 141 and on which the foil spring portion 142D is laminated. The inner peripheral side end portion of the outer peripheral side member 143A functions as a stopper that comes into contact with the first flat surface portion 142E of the connection member 142B as shown in FIG. The outer peripheral side member 143A and the inner peripheral side member 143B are formed of an insulating material (for example, mica) like the first member 143 of the above embodiment.

この構成では、図5に示すように、焼成前には、ガラス部材141がセルフレーム120の上に載置され、ガラス部材141とセパレータ220との間の空隙層に接続部材142Bが箔バネ部142Dを圧縮した状態で収容され、さらに膨張材料142Aが接続部材142Bの第1平面部と第2平面部との間に挟持される。このとき、接続部材142Bの第2平面部142Cは、セパレータ220と溶接などによって接着されており、セパレータ220と接続部材142Bとの間のみシールされた状態となっている。そして、焼成処理によって、ガラス部材141が収縮変形に合わせて膨張材料142Aが熱膨張し、接続部材142Bの第1平面部142Eを介してガラス部材141を収縮方向に加圧する。また、膨張材料142Aの膨張に応じて、接続部材142Bの箔バネ部142Dがセルフレーム120側に伸長して、第1平面部142Eが高さ調整部材の外周側部材143Aと突き当たるまで押し下げる。この結果、図4に示すようなガスシール部140Aが形成される。 In this configuration, as shown in FIG. 5, before firing, the glass member 141 is placed on the cell frame 120, and the connection member 142B is provided in the void layer between the glass member 141 and the separator 220. 142D is accommodated in a compressed state, and the expansion material 142A is further sandwiched between the first flat surface portion and the second flat surface portion of the connecting member 142B. At this time, the second plane portion 142C of the connecting member 142B is adhered to the separator 220 by welding or the like, and only the separator 220 and the connecting member 142B are sealed. Then, the expansion material 142A thermally expands in accordance with the contraction deformation of the glass member 141 by the firing process, and presses the glass member 141 in the contraction direction via the first flat surface portion 142E of the connection member 142B. Further, in response to the expansion of the expansion material 142A, the foil spring portion 142D of the connection member 142B extends toward the cell frame 120 side and pushes down until the first flat surface portion 142E abuts the outer peripheral side member 143A of the height adjusting member. As a result, the gas seal portion 140A as shown in FIG. 4 is formed.

上記実施形態の塞ぎ部材142は、この他にも、上記変形例の接続部材142Bのみを用いる構成や、焼成前に収縮した状態でガラス部材141とセパレータ220との間に収容され、ガラス部材141の軟化収縮に伴いセルフレーム120側に伸長する皿バネなどのバネ部材を適用する構成に置き換えることもできる。 In addition to this, the closing member 142 of the above-described embodiment is configured to use only the connecting member 142B of the above-described modification, or is housed between the glass member 141 and the separator 220 in a contracted state before firing, and the glass member 141 is included. It is also possible to replace with a configuration in which a spring member such as a disc spring that expands toward the cell frame 120 side due to the softening and contraction of is applied.

以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The present embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. Those obtained by those skilled in the art who make appropriate design changes to these specific examples are also included in the scope of the present disclosure as long as they have the features of the present disclosure. The elements provided in each of the specific examples described above and the arrangement, conditions, shapes, and the like of the elements are not limited to those illustrated, but can be changed as appropriate. The respective elements included in the above-described specific examples can be appropriately combined as long as there is no technical contradiction.

上記実施形態では、図2などに、下方の第1板材としてセルフレーム120が配置され、上方の第2板材としてセパレータ220が配置され、これらの板材の間にガスシール部140が形成される構成を例示したが、これとは逆に、下方の第1板材としてセパレータ220が配置され、上方の第2板材としてセルフレーム120が配置される構成としてもよい。また、第1板材と第2板材は、セルフレーム120やセパレータ220以外の部材を適用してもよい。 In the above embodiment, the cell frame 120 is arranged as the lower first plate member, the separator 220 is arranged as the upper second plate member, and the gas seal portion 140 is formed between these plate members in FIG. 2 and the like. However, conversely, the separator 220 may be arranged as the lower first plate member and the cell frame 120 may be arranged as the upper second plate member. Further, as the first plate material and the second plate material, members other than the cell frame 120 and the separator 220 may be applied.

10:燃料電池
110:単セル(燃料電池セル)
120:セルフレーム(第1板材)
140,140A:ガスシール部
141:ガラス部材
142:塞ぎ部材
142A:膨張材料(塞ぎ部材)
142B:接続部材(塞ぎ部材)
143,143A,143B,144:高さ調整部材
145:ストッパ
220:セパレータ(第2板材)
A1,A3,A4,A6:ガス流路
10: Fuel cell 110: Single cell (fuel cell)
120: Cell frame (first plate material)
140, 140A: Gas seal part 141: Glass member 142: Closing member 142A: Expansion material (closing member)
142B: Connection member (blocking member)
143, 143A, 143B, 144: Height adjusting member 145: Stopper 220: Separator (second plate material)
A1, A3, A4, A6: Gas flow path

Claims (8)

複数の平板型の燃料電池セル(110)を積層してなる積層体と、
前記積層体の積層方向に沿って形成され、複数の燃料電池セルのそれぞれに供給する燃料ガス及び酸化剤ガスのいずれか一方が流れるガス流路(A1,A3,A4,A6)と、
前記ガス流路において、前記積層体のうちの隣接する第1板材(120)と第2板材(220)との間に形成され、前記第1板材と前記第2板材との間の空隙層へ前記ガス流路を流れるガスが流出することを防止するためのガスシール部(140,140A)と、
を備え、
前記ガスシール部は、
前記積層方向に沿って、前記第1板材と当接するガラス部材(141)と、前記ガラス部材と前記空隙層との隙間を塞ぎ、前記第2板材と当接する塞ぎ部材(142,142A,142B)と、が積層されて形成されると共に
前記ガラス部材及び前記塞ぎ部材の外周側に設けられ、前記第1板材と前記第2板材との間の空隙層の高さを規定すると共に、前記第1板材と前記第2板材との間を絶縁する高さ調整部材(143,143A,143B,144)を備える、
燃料電池(10)。
A laminated body formed by laminating a plurality of flat plate type fuel battery cells (110);
A gas flow path (A1, A3, A4, A6) which is formed along the stacking direction of the stack and through which one of the fuel gas and the oxidant gas supplied to each of the plurality of fuel cells flows.
In the gas flow path, between the first plate member (120) and the second plate member (220) adjacent to each other in the laminated body, the gap layer between the first plate member and the second plate member is formed. A gas seal portion (140, 140A) for preventing the gas flowing through the gas passage from flowing out;
Equipped with
The gas seal part,
A glass member (141) that comes into contact with the first plate member and a closing member (142, 142A, 142B) that comes into contact with the second plate member and closes the gap between the glass member and the void layer along the stacking direction. When, with is formed by stacking,
It is provided on the outer peripheral side of the glass member and the closing member and defines the height of the void layer between the first plate member and the second plate member, and between the first plate member and the second plate member. A height adjusting member (143, 143A, 143B, 144) for insulation is provided,
Fuel cell (10).
前記塞ぎ部材は、前記積層体の焼成時に、前記ガラス部材の軟化収縮に伴い前記積層方向の寸法が増大して、前記ガラス部材との合計の積層方向寸法が焼成前後で同一となるよう変形する特性を有する、
請求項に記載の燃料電池。
When the laminated body is fired, the closing member is deformed so that the dimension in the laminating direction increases as the glass member softens and shrinks, and the total dimension in the laminating direction with the glass member becomes the same before and after firing. Have characteristics,
The fuel cell according to claim 1 .
前記高さ調整部材は、前記第1板材と当接し、積層方向に所定の厚さを有し、かつ、前記ガラス部材側に突出して設けられるストッパ(145)を有し、
前記塞ぎ部材は、焼成時に変形した後に前記ストッパに突き当たって、前記第1板材側への増大が規制されるように形成される、
請求項に記載の燃料電池。
The height adjusting member is in contact with the first plate member, has a predetermined thickness in the stacking direction, and has a stopper (145) provided so as to project toward the glass member,
The closing member is formed so as to abut against the stopper after being deformed at the time of firing, and its increase toward the first plate material side is restricted.
The fuel cell according to claim 2 .
前記高さ調整部材が、前記第1板材と当接して前記ストッパを含む第1部材(143)と、前記第2板材と当接して前記第1部材と積層される第2部材(144)と、を有し、前記第1部材及び前記第2部材の少なくとも一方が絶縁性材料で形成される、
請求項に記載の燃料電池。
A first member (143) in which the height adjusting member comes into contact with the first plate member and includes the stopper; and a second member (144) in contact with the second plate member and stacked with the first member. , And at least one of the first member and the second member is formed of an insulating material.
The fuel cell according to claim 3 .
前記塞ぎ部材(142)は、前記ガラス部材の軟化収縮に伴い前記積層方向に膨張し、かつ、シール性をもつ膨張材料で形成される、
請求項2〜4のいずれか1項に記載の燃料電池。
The closing member (142) is formed of an expansion material that expands in the stacking direction as the glass member softens and shrinks and has a sealing property.
The fuel cell according to any one of claims 2 to 4 .
前記塞ぎ部材は、
前記ガラス部材の軟化収縮に伴い前記積層方向に膨張する膨張材料(142A)と、
前記膨張材料と前記ガラス部材との間に介在する第1平面部と、前記膨張材料と前記第2板材との間に介在する第2平面部と、前記第1平面部及び前記第2平面部を外周側から連結し、前記膨張材料の膨張に伴い前記第1板材側に伸長する箔バネ部とからなる接続部材(142B)と、
を有する、
請求項2〜4のいずれか1項に記載の燃料電池。
The closing member is
An expansive material (142A) that expands in the laminating direction as the glass member softens and shrinks;
A first flat surface portion interposed between the expansion material and the glass member, a second flat surface portion interposed between the expansion material and the second plate member, the first flat surface portion and the second flat surface portion. A connecting member (142B), which is composed of a foil spring portion that is connected to the outer peripheral side and extends toward the first plate material side as the expansion material expands,
Have
The fuel cell according to any one of claims 2 to 4 .
前記塞ぎ部材は、
焼成前に収縮した状態で前記ガラス部材と前記第2板材との間に収容され、前記ガラス部材の軟化収縮に伴い前記第1板材側に伸長するバネ部材からなる、
請求項2〜4のいずれか1項に記載の燃料電池。
The closing member is
A spring member, which is housed between the glass member and the second plate member in a contracted state before firing, and extends toward the first plate member side with softening and contraction of the glass member,
The fuel cell according to any one of claims 2 to 4 .
複数の平板型の燃料電池セル(110)を積層してなる積層体と、
前記積層体の積層方向に沿って形成され、複数の燃料電池セルのそれぞれに供給する燃料ガス及び酸化剤ガスのいずれか一方が流れるガス流路(A1,A3,A4,A6)と、
前記ガス流路において、前記積層体のうちの隣接する第1板材(120)と第2板材(220)との間に形成され、前記第1板材と前記第2板材との間の空隙層へ前記ガス流路を流れるガスが流出することを防止するためのガスシール部(140,140A)と、を備える燃料電池(10)の製造方法であって、
前記積層方向に沿って、前記第1板材と当接するガラス部材(141)と、前記ガラス部材と前記空隙層との隙間を塞ぎ、前記第2板材と当接する塞ぎ部材(142,142A,142B)と、を積層する積層ステップと、
前記積層体を焼成する焼成ステップと、
前記焼成ステップの結果、前記ガラス部材が軟化収縮すると共に、前記塞ぎ部材の前記積層方向の寸法が増大して、前記ガラス部材と前記塞ぎ部材の合計の積層方向寸法が焼成前後で同一となるよう変形して、前記ガスシール部を形成する形成ステップと、
を含む、燃料電池の製造方法。
A laminated body formed by laminating a plurality of flat plate type fuel battery cells (110);
A gas flow path (A1, A3, A4, A6) which is formed along the stacking direction of the stack and through which one of the fuel gas and the oxidant gas supplied to each of the plurality of fuel cells flows.
In the gas flow path, between the first plate member (120) and the second plate member (220) adjacent to each other in the laminated body, the gap layer between the first plate member and the second plate member is formed. A method of manufacturing a fuel cell (10), comprising: a gas seal part (140, 140A) for preventing the gas flowing through the gas channel from flowing out,
A glass member (141) that comes into contact with the first plate member and a closing member (142, 142A, 142B) that comes into contact with the second plate member and closes the gap between the glass member and the void layer along the stacking direction. And a laminating step of laminating,
A firing step of firing the laminate,
As a result of the firing step, the glass member softens and shrinks, and the dimension of the closing member in the stacking direction increases, so that the total dimension of the glass member and the closing member in the stacking direction becomes the same before and after firing. A forming step of deforming to form the gas seal portion;
A method of manufacturing a fuel cell, comprising:
JP2016209279A 2016-10-26 2016-10-26 Fuel cell and method of manufacturing fuel cell Active JP6740856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016209279A JP6740856B2 (en) 2016-10-26 2016-10-26 Fuel cell and method of manufacturing fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016209279A JP6740856B2 (en) 2016-10-26 2016-10-26 Fuel cell and method of manufacturing fuel cell

Publications (2)

Publication Number Publication Date
JP2018073524A JP2018073524A (en) 2018-05-10
JP6740856B2 true JP6740856B2 (en) 2020-08-19

Family

ID=62115644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016209279A Active JP6740856B2 (en) 2016-10-26 2016-10-26 Fuel cell and method of manufacturing fuel cell

Country Status (1)

Country Link
JP (1) JP6740856B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5007918B2 (en) * 2006-03-30 2012-08-22 日産自動車株式会社 Gas seal part for fuel cell and manufacturing method thereof
JP2012243437A (en) * 2011-05-17 2012-12-10 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
JP5741943B2 (en) * 2011-08-31 2015-07-01 アイシン精機株式会社 Solid oxide fuel cell device
DE102013014083A1 (en) * 2013-08-27 2015-03-05 Elcomax Gmbh Process for producing a membrane-electrode assembly with circumferential seal and membrane-electrode assembly
WO2018020684A1 (en) * 2016-07-29 2018-02-01 日産自動車株式会社 Fuel cell

Also Published As

Publication number Publication date
JP2018073524A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP4800439B1 (en) Fuel cell structure
JP6092060B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP5198797B2 (en) Solid electrolyte fuel cell
JP2008510288A (en) SOFC stack concept
JP6131426B2 (en) Fuel cell seal structure
JP4481423B2 (en) Polymer electrolyte fuel cell stack
JPWO2016199223A1 (en) Solid oxide fuel cell
JP4883733B1 (en) Fuel cell structure
JP4900364B2 (en) Fuel cell
JP6702585B2 (en) Flat electrochemical cell stack
JP6118230B2 (en) Fuel cell stack
JP5881594B2 (en) Fuel cell stack and manufacturing method thereof
JP2017517837A (en) Electrically insulating three-layer gasket for SFOC unit
JP5116182B1 (en) Fuel cell structure
JP6740856B2 (en) Fuel cell and method of manufacturing fuel cell
US8481226B2 (en) Sheet body of solid oxide fuel cell, and solid oxide fuel cell
JP6415371B2 (en) Solid oxide fuel cell
JP5584278B2 (en) Solid electrolyte fuel cell
JP7087624B2 (en) Fuel cell stack
JP2005317241A (en) Supporting film type solid oxide fuel cell stack, and manufacturing method of the same
JP5756653B2 (en) Fuel cell stack
JPS5998473A (en) Molten carbonate type fuel cell
CN107431217B (en) Array of electrochemical cells and uses thereof
JP6452516B2 (en) Separator for solid oxide fuel cell and solid oxide fuel cell
JP2011198704A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200706

R151 Written notification of patent or utility model registration

Ref document number: 6740856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250