WO2024004062A1 - Solid oxide fuel battery - Google Patents

Solid oxide fuel battery Download PDF

Info

Publication number
WO2024004062A1
WO2024004062A1 PCT/JP2022/025857 JP2022025857W WO2024004062A1 WO 2024004062 A1 WO2024004062 A1 WO 2024004062A1 JP 2022025857 W JP2022025857 W JP 2022025857W WO 2024004062 A1 WO2024004062 A1 WO 2024004062A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide fuel
solid oxide
metal support
fuel cell
support layer
Prior art date
Application number
PCT/JP2022/025857
Other languages
French (fr)
Japanese (ja)
Inventor
敬士 市原
利春 大和
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2022/025857 priority Critical patent/WO2024004062A1/en
Publication of WO2024004062A1 publication Critical patent/WO2024004062A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to solid oxide fuel cells.
  • SOFC solid oxide fuel cell
  • US2011-0104586A1 discloses a solid oxide fuel cell with a porous metal support.
  • the density of a part of the metal support is increased, and the sealing member is surface-bonded to the high-density part of the metal support, thereby preventing gas leakage from the metal support. Prevents gas leaks from between the frame and the frame.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a solid oxide fuel cell in which the airtightness of the power generation cell is ensured.
  • the first electrode layer, the solid electrolyte layer stacked on the first electrode layer, the second electrode layer stacked on the solid electrolyte layer, and the first electrode layer are supported.
  • a solid oxide fuel cell is provided in which a plurality of power generation cells each including a porous metal support layer are stacked.
  • This solid oxide fuel cell includes a metal frame provided under a porous metal support layer, and the porous metal support layer has a filling part, which is an area where the pores are filled with a filler, formed in the porous metal support layer. It is provided on the outer periphery of the metal support layer.
  • the metal frame is joined to the filling part of the porous metal support layer via a joint, and the joint includes a first joint formed along the outer periphery of the porous metal support layer, and a first joint.
  • the first joint part includes a second joint part disposed at a distance from the first joint part on the outer peripheral side.
  • FIG. 1 is an exploded perspective view of a solid oxide fuel cell according to a first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the cell unit.
  • FIG. 3 is an enlarged schematic diagram of the joint portion between the power generation cell and the frame.
  • FIG. 4 is a cross-sectional view of the porous metal support layer.
  • FIG. 5 is an enlarged schematic diagram of a joint portion between a power generation cell and a frame according to a modified example.
  • FIG. 6 is a cross-sectional view of a porous metal support layer in a solid oxide fuel cell according to a first modification of the first embodiment.
  • FIG. 7 is a cross-sectional view of a porous metal support layer in a solid oxide fuel cell according to another modification.
  • FIG. 1 is an exploded perspective view of a solid oxide fuel cell according to a first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the cell unit.
  • FIG. 3 is an enlarged schematic diagram of the joint portion between
  • FIG. 8 is a cross-sectional view of a porous metal support layer in a solid oxide fuel cell according to a second modification of the first embodiment.
  • FIG. 9 is a cross-sectional view of a porous metal support layer in a solid oxide fuel cell according to a third modification of the first embodiment.
  • FIG. 10 is a cross-sectional view of a porous metal support layer in a solid oxide fuel cell according to another modification.
  • FIG. 11 is a cross-sectional view of a porous metal support layer in a solid oxide fuel cell according to a fourth modification of the first embodiment.
  • FIG. 12 is a cross-sectional view of a porous metal support layer in a solid oxide fuel cell according to another modification.
  • FIG. 13 is a cross-sectional view of a porous metal support layer in a solid oxide fuel cell according to another modification.
  • FIG. 14 is an enlarged schematic diagram of the joint portion between the power generating cell and the frame in the solid oxide fuel cell according to the second embodiment.
  • FIG. 15 is an enlarged schematic diagram of a joint portion between a power generation cell and a frame in a solid oxide fuel cell according to a third embodiment.
  • FIG. 16 is a cross-sectional view of a porous metal support layer in a solid oxide fuel cell according to a third embodiment.
  • FIG. 1 is an exploded perspective view showing a solid oxide fuel cell 100 (hereinafter also simply referred to as a "fuel cell”) according to a first embodiment of the present invention.
  • the solid oxide fuel cell 100 is constructed by stacking a plurality of cell units 1 in the vertical direction. Note that, although the solid oxide fuel cell 100 of this embodiment is mainly mounted on a vehicle or the like, it is not limited thereto.
  • FIG. 2 is an exploded perspective view of the cell unit 1 that constitutes the solid oxide fuel cell 100.
  • the cell unit 1 includes a power generation cell 2, a frame 3, an anode flow path forming member 4, a cathode flow path forming member 5, a separator 6, an anode spacer 41, a cathode spacer 51, and the like.
  • the power generation cell 2 is constituted by a membrane electrode assembly in which an anode electrode layer (first electrode layer) is arranged on one surface of a solid electrolyte layer and a cathode electrode layer (second electrode layer) is arranged on the other surface.
  • the lower surface side of the power generation cell 2 is an anode electrode layer
  • the upper surface side is a cathode electrode layer.
  • Anode gas (fuel gas) and cathode gas (air) are supplied to the power generation cell 2, and the power generation cell 2 generates power based on electrode reactions in the anode electrode layer and the cathode electrode layer.
  • the power generation cell 2 includes a porous metal support layer that supports the electrode layer. That is, the solid oxide fuel cell 100 of this embodiment is a so-called metal support type fuel cell.
  • the power generation cell 2 has its peripheral edge joined and supported by a frame (frame body) 3 made of metal provided below the power generation cell 2, whereby the power generation cell 2 is connected to the frame (metal frame) 3. is fixed.
  • the frame 3 has a plurality of protrusions extending from the outer periphery, and holes 31 are formed in the protrusions.
  • the anode flow path forming member 4 is made of a conductive material such as metal, and is disposed between the anode electrode layer of the power generation cell 2 and a separator 6, which will be described later, and allows fuel gas to flow toward the anode electrode layer side of the power generation cell 2. Form an anode flow path.
  • the anode flow path forming member 4 is formed into a so-called wavy shape in which unevenness extending linearly in the width direction of the power generation cell 2 is repeatedly provided in the longitudinal direction. Thereby, a plurality of anode channels are defined between the anode electrode layer of the power generation cell 2 and the separator 6.
  • the cathode flow path forming member 5 is made of a conductive material such as metal, and is arranged between the cathode electrode layer of the power generation cell 2 and the separator 6 (of the adjacent cell unit 1), and is located on the cathode electrode layer side of the power generation cell 2.
  • a cathode flow path is formed through which cathode gas (air) flows.
  • the cathode flow path forming member 5 is formed in a wavy shape, and a plurality of cathode flow paths are defined between the cathode electrode layer of the power generation cell 2 and the separator 6.
  • the anode flow path forming member 4 forming the anode flow path and the cathode flow path forming member 5 forming the cathode flow path are each divided into two parts and separated from each other. Not limited. For example, two divided flow path members may be arranged close to each other without leaving a gap. Alternatively, the anode channel and the cathode channel may each be formed by one member.
  • the separator 6 is an electrically conductive plate-like member, and one surface (upper surface) is electrically bonded to the anode channel forming member 4. Thereby, the separator 6 and the anode electrode of the power generation cell 2 are electrically connected via the anode flow path forming member 4. On the other hand, the other surface (lower surface) of the separator 6 is joined to the cathode channel forming member 5 of the adjacent cell unit 1.
  • the separator 6 has a plurality of protrusions extending and protruding from the outer peripheral edge, and a hole 61 is formed in the protrusion at a position corresponding to the hole 31 of the frame 3.
  • the holes 61 of the separator 6 and the holes 31 of the frame 3 overlap to form holes through which fuel gas is supplied to the anode flow path and holes through which fuel gas exits from the anode flow path.
  • a sealing member 11 is provided around a hole formed by overlapping the hole 61 of the separator 6 and the hole 31 of the frame 3.
  • the anode spacer 41 is a frame layered on the outer periphery of the separator 6, and is arranged between the power generation cell 2 and the separator 6 to ensure the height of the anode flow path.
  • the anode spacer 41 is arranged so that its outer shape overlaps the frame 3 and the separator 6 to which the power generation cell 2 is fixed.
  • the cathode spacers 51 are arranged at both longitudinal ends of the cathode flow path forming member 5 to ensure the height of the cathode flow path and sealing both longitudinal ends of the cathode flow path forming member 5.
  • fuel gas anode gas
  • cathode flow path to the cathode electrode layer side of the power generation cell 2.
  • Air cathode gas
  • a frame is generally assembled under the power generation cell and a seal is formed between the power generation cell and the frame to prevent gas leakage.
  • the power generation cell includes a porous metal support layer that supports electrodes, even if the frame provided under the metal support layer and the metal support layer are sealed, the porous There is a risk of gas leaking from the sides of the metal support layer.
  • the power generation cell it is possible to prevent gas leaks from the sides and between the power generation cells and the frame.
  • the frame and power generation cell are made thinner in order to reduce size and weight, the power generation cell (metal support layer) will be easily deformed due to gas pressure difference and heating, and there is a risk that the seal portion may peel off. . That is, there is still a possibility that gas leakage may occur.
  • a filling part which is a region where pores are filled with a filling material, is provided on the outer peripheral part of the porous metal support layer that supports the electrode layer, and the frame 3 is connected to the two joint parts. It was decided that it would be joined to the filling part through the insulator. Specifically, a first bonding portion is formed along the outer periphery of the porous metal support layer, and a second bonding portion is disposed on the outer periphery side of the first bonding portion and spaced apart from the first bonding portion. The frame 3 is joined to the filling part by the joint part.
  • FIG. 3 is an enlarged schematic diagram of the joint portion between the power generation cell 2 and the frame 3, and is a sectional view taken along the line AA in FIG. 2.
  • the power generation cell 2 includes a solid electrolyte layer 21, an anode electrode layer (first electrode layer) 22 disposed on one surface of the solid electrolyte layer 21, and an anode electrode layer (first electrode layer) 22 disposed on one surface of the solid electrolyte layer 21.
  • a porous metal support layer (metal support, hereinafter also simply referred to as metal support layer) 24 that supports the anode electrode layer 22 is included.
  • the solid electrolyte layer 21 is formed of a dense ceramic layer.
  • ceramics refers to sintered bodies of inorganic substances, and is a concept that includes not only nonmetal oxides but also metal oxides.
  • the solid electrolyte layer 21 may be configured to be able to conduct oxide ions but not allow gas to pass therethrough.
  • the solid electrolyte layer 21 can be formed of solid oxide ceramics.
  • Solid oxide ceramics are not particularly limited, but include, for example, zirconia-containing materials. Examples of the zirconia-containing material include stabilized zirconia doped with yttria, neodymium oxide, samarium, gadolinium, scandium, and the like.
  • the anode electrode layer 22 has a porous structure and is formed of, for example, a metal such as nickel (Ni) and an oxide such as yttria-stabilized zirconia (YSZ), but is not limited to these and may be formed of any known material. May be used.
  • a metal such as nickel (Ni) and an oxide such as yttria-stabilized zirconia (YSZ), but is not limited to these and may be formed of any known material. May be used.
  • the cathode electrode layer 23 has a porous structure and is formed of, for example, lanthanum strontium cobalt composite oxide (LSC), lanthanum strontium cobalt iron oxide (LSCF), etc., but is not limited to these, and may be made of any known material. may also be used.
  • LSC lanthanum strontium cobalt composite oxide
  • LSCF lanthanum strontium cobalt iron oxide
  • the metal support layer 24 has a porous structure and is formed of, for example, ferritic stainless steel, but is not limited to this, and any known material may be used.
  • the metal support layer 24 is provided to support the anode electrode layer 22 and functions as a structural member for reinforcing the strength of the power generation cell 2.
  • the metal support layer 24 has a filled part 241, which is a region in which pores are filled with a filler, and a porous part 242, which is a region not filled with a filler.
  • the filling portion 241 is formed on the outer periphery of the metal support layer 24 .
  • the filling material filled in the filling part 241 is made of an insulating material with a coefficient of linear expansion smaller than that of the material forming the metal support layer 24, such as alumina, zirconia (ZrO 2 ), yttria-stabilized zirconia (YSZ), etc. ), scandia-stabilized zirconia (ScSZ), and the like can be used.
  • a metal frame 3 that supports and fixes the power generation cell 2 is provided below the metal support layer 24.
  • the metal support layer 24 includes a first joint 71 disposed on the inner circumference side of the filling part 241, and a first joint part 71 disposed on the outer circumference side of the filler part 241 at a distance from the first joint part 71.
  • a second joint portion 72 is formed.
  • the frame 3 is welded (joined) to the metal support layer 24 at a first joint 71 and a second joint 72 .
  • the average particle size of the filler filled in the pores is smaller than the average pore size of the core pores of the metal support layer 24. Thereby, the metal support layer 24 can be densely filled with the filler.
  • the filler is also filled in the space (gap) S surrounded by the first joint 71, the second joint 72, the metal support layer 24, and the frame 3. This further improves the airtightness between the filling part 241 and the frame 3.
  • the metal support layer 24 and the frame 3 may be joined without any gap (that is, without any space S).
  • the filler has a smaller coefficient of linear expansion than the material constituting the metal support layer 24, so even if the filler thermally expands at high temperatures, the metal support layer 24 will not be pushed. That is, the metal support layer 24 is prevented from being pushed and damaged due to thermal expansion of the filler.
  • the filler is made of an insulating material, even if the filler leaks from the side surface of the metal support layer 24 and connects to the electrode layer, no short circuit occurs.
  • the filler is filled from the side surface of the metal support layer 24.
  • the pores on the outer peripheral side of the metal support layer 24 can be reliably filled, and gas leaks from the side surfaces of the metal support layer 24 can be more reliably prevented.
  • the filler by filling the metal support layer 24 with the filler after welding, it is possible to prevent quality deterioration caused by welding the metal support layer 24 with the insulating material (filler) mixed therein.
  • FIG. 4 is a cross-sectional view of the entire metal support layer 24 along line BB in FIG. 3.
  • the first joint portion 71 where the frame 3 and the metal support layer 24 are joined is located along the outer periphery (filling portion 241) of the metal support layer 24 when viewed in the stacking direction of the cell unit 1. It is formed continuously over the entire circumference on one annular line (first annular line 32).
  • the second joint portion 72 where the frame 3 and the metal support layer 24 are joined is located at the outer periphery of the metal support layer 24 ( It is formed continuously over the entire circumference on a line (second annular line 33) that forms one annular shape along the filling portion 241).
  • the frame 3 has the first joint 71 formed along the outer periphery of the metal support layer 24 and the first joint 71 located on the outer periphery side of the first joint 71 and spaced apart from the first joint 71 . It is joined to the filling part 241 of the metal support layer 24 via the disposed second joint part 72 . Since the frame 3 and the filling part 241 are joined by the two joining parts 71 and 72, displacement (deformation) of the filling part 241 due to gas pressure difference, heating, etc. is suppressed, and the filling part 241 and the frame 3 are separated. This will be prevented. That is, gas leakage between the metal support layer 24 and the frame 3 can be prevented.
  • the filling portion 241 formed on the outer periphery of the metal support layer 24 prevents gas leakage from the side surface of the metal support layer 24, and the first joint portion is formed along the outer periphery of the metal support layer 24. 71 and the second joint 72 prevent gas leakage between the metal support layer 24 and the frame 3. Therefore, the airtightness of the power generation cell 2 is ensured, and a decrease in power generation performance is prevented.
  • the power generation cell 2 includes a porous metal support layer 24 that supports an anode electrode layer 22 (first electrode layer), and the porous metal support layer 24 has a filler on its outer periphery. It has a filling part 241 which is a region filled with pores. Moreover, the metal frame 3 provided under the porous metal support layer 24 is joined to the filling part 241 of the porous metal support layer 24 via a joint.
  • the bonding portion includes a first bonding portion 71 formed along the outer periphery of the porous metal support layer 24 and a spaced apart from the first bonding portion 71 on the outer circumferential side of the first bonding portion 71 . and a second joint portion 72 arranged therein.
  • the solid oxide fuel cell 100 has first and second joint parts 71 and 72 that join the metal frame 3 and the porous metal support layer 24, and the first joint part 71 has porous
  • the second bonding portion 72 is disposed on the first annular line 32 that is annular along the outer periphery of the solid metal support layer 24
  • the second joint 72 is disposed on the second annular line 32 that is located on the outer periphery of the first annular line 32 . It is arranged on the circular line 33.
  • the solid oxide fuel cell 100 has first and second joint parts 71 and 72 that join the metal frame 3 and the porous metal support layer 24 , and the first joint part 71 connects the porous metal support layer 24 to the first joint part 71 , 72 .
  • the second joint part 72 is continuously provided on the first annular line 32 along the outer periphery of the first annular line 32, and the second joint part 72 is continuously provided on the second annular line 33 located on the outer periphery of the first annular line 32. Continuously placed around the circumference. As a result, displacement (deformation) of the filling part 241 due to gas pressure difference, heating, etc. is suppressed over the entire outer circumference of the porous metal support layer 24, and separation of the filling part 241 and the frame 3 is further prevented. be done.
  • the porous metal support layer 24 has a filling part 241 in which pores are filled with a filler in the outer peripheral part, and the linear expansion coefficient of the filler is equal to that of the porous metal support. It is smaller than the linear expansion coefficient of the porous metal material that constitutes the layer 24. This prevents the metal support layer 24 from being pushed and damaged due to thermal expansion of the filler.
  • the lower surface side of the power generation cell 2 is the anode electrode layer (first electrode layer), and the upper surface side is the cathode electrode layer (second electrode layer), but this is not necessarily the case.
  • the lower surface side may be used as a cathode electrode layer, and the upper surface side may be used as an anode electrode layer.
  • the metal support layer 24 is provided on the anode electrode layer 22 side, but the structure is not necessarily limited to this. That is, it is sufficient that the metal support layer 24 is provided on at least one electrode side, and the metal support layer 24 and the metal frame 3 are bonded.
  • FIG. 2 the configurations of the anode flow path, cathode flow path, etc. described in FIG. 2 are merely examples, and are not particularly limited thereto.
  • the first joint portion 71 is formed at a certain position of the filling portion 241, but the first joint portion 71 is not necessarily limited to this.
  • the first joint portion 71 may be formed across the filling portion 241 and the porous portion 242, or may be formed in the porous portion 242 near the filling portion 241.
  • the metal frame 3 is joined to the porous metal support layer 24 by welding, but the joining method is not necessarily limited to this.
  • the metal frame 3 may be joined to the porous metal support layer 24 by brazing.
  • the metal support layer 24 is filled with a filler to form the filling portion 241 in the metal support layer 24, but the present invention is not necessarily limited to this.
  • the metal support layer 24 not only the metal support layer 24 but also the electrode layer (anode electrode layer 22) laminated on the metal support layer 24 may be filled with the filler to form a filling portion in the electrode layer as well.
  • the electrode layer is much thinner than the metal support layer 24, gas leakage can be prevented even with the configuration of this embodiment in which the filling portion 241 is formed only in the metal support layer 24.
  • a solid oxide fuel cell 100 according to a first modification of the first embodiment will be described with reference to FIG. 6.
  • This embodiment differs from the first embodiment in that the second joint portion 72 is formed discontinuously. Note that the same elements as in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
  • FIG. 6 is a sectional view of the porous metal support layer 24 in the solid oxide fuel cell 100 according to this modification, and corresponds to a sectional view of the entire metal support layer 24 along line BB in FIG. 3.
  • the second joint portions 72 are arranged discontinuously on the second annular line 33. Specifically, the second joint portions 72 are arranged in a dotted line shape with intervals. That is, the frame 3 is welded to the metal support layer 24 in a dotted line shape at the second joint portion 72 on the second annular line 33 . This suppresses deformation of the metal support layer 24 due to thermal strain during welding, compared to the case where the second joint portions 72 are formed continuously. Therefore, the airtightness of the power generation cell 2 is strengthened, and gas leakage between the porous metal support layer 24 and the metal frame 3 is further prevented.
  • the second joint portions 72 are arranged in a dotted line shape with intervals, but the arrangement is not necessarily limited to this.
  • the porous metal support layer 24 in FIG. It may be provided so as to extend in a direction perpendicular to the other direction. Also in such a configuration, deformation of the metal support layer 24 due to thermal strain during welding is suppressed.
  • a solid oxide fuel cell 100 according to a second modification of the first embodiment will be described with reference to FIG. 8.
  • This embodiment differs from other embodiments in that the first joint portion 71 is formed discontinuously. Note that the same elements as in other embodiments are denoted by the same reference numerals, and the explanation thereof will be omitted.
  • FIG. 8 is a sectional view of the porous metal support layer 24 in the solid oxide fuel cell 100 according to this modification, and corresponds to a sectional view of the entire metal support layer 24 along line BB in FIG. 3.
  • the first joint portions 71 are arranged discontinuously on the first annular line 32. Specifically, the first joint portions 71 are arranged in a dotted line shape with intervals. That is, the frame 3 is welded to the metal support layer 24 in a dotted line shape at the first joint 71 on the first annular line 32 .
  • the second joint portions 72 are also arranged in a dotted line shape with intervals, similar to the first modification of the first embodiment. That is, the frame 3 is welded to the metal support layer 24 in a dotted line shape at the second joint portion 72 on the second annular line 33 .
  • first joint portion 71 and the second joint portion 72 are arranged in a staggered manner when viewed in the stacking direction of the cell unit 1 so that the portions where the joint portions are interrupted do not overlap. That is, the first bonding portion 71 and the second bonding portion 72 are arranged such that the bonding portion exists at least on either the outer circumferential side or the inner circumferential side of the filling portion 241 of the metal support layer 24 when viewed in the stacking direction. It is located.
  • first joint portion 71 and the second joint portion 72 are arranged in a staggered manner so that the joint portion exists at least on either the outer circumferential side or the inner circumferential side of the filling portion 241 of the metal support layer 24 when viewed in the stacking direction. Since the filling portion 241 is disposed in the same direction, displacement of the filling portion 241 due to gas pressure difference or heating is suppressed. Therefore, the airtightness of the power generation cell 2 is strengthened, and gas leakage between the porous metal support layer 24 and the metal frame 3 is further prevented.
  • both the first joint portion 71 and the second joint portion 72 are arranged in a dotted line shape with an interval between them, but this is not necessarily the case.
  • the second joint portion 72 may be arranged in a dotted line shape, and the second joint portion 72 may be continuously provided on the second annular line 33 over the entire circumference.
  • the first joint portions 71 are arranged in a dotted line shape with intervals, and a plurality of second joint portions 72 are arranged at intervals on the second annular line 33, and on the first annular line 32. It may be provided so as to extend in a direction perpendicular to the other direction. Even with such a configuration, deformation of the metal support layer 24 due to thermal strain during welding is suppressed.
  • a solid oxide fuel cell 100 according to a third modification of the first embodiment will be described with reference to FIG. 9.
  • This embodiment differs from other embodiments in that the first joint portion 71 is formed discontinuously at the corner. Note that the same elements as in other embodiments are denoted by the same reference numerals, and the explanation thereof will be omitted.
  • FIG. 9 is a sectional view of the porous metal support layer 24 in the solid oxide fuel cell 100 according to this modification, and corresponds to a sectional view of the entire metal support layer 24 along line BB in FIG. 3.
  • the first joint portion 71 is arranged on the first annular line 32 so that the corner portions are discontinuous. That is, the frame 3 is not joined to the metal support layer 24 at the corners of the first annular wire 32 . Normally, if there is a bending part in the joint part, joining work (welding etc.) becomes difficult, but in this modification, since there is no bending part in the first joint part 71, the frame 3 and the metal support layer 24 are Joining (welding, etc.) becomes easier.
  • the second joint portions 72 are arranged in a dotted line shape with intervals, but the arrangement is not limited thereto.
  • the second joint portions 72 may be arranged continuously over the entire circumference on the second annular line 33, or as shown in FIG. 10, the second joint portions 72 may be arranged at intervals, A plurality of them may be arranged so as to extend in a direction perpendicular to the first annular line 32.
  • a solid oxide fuel cell 100 according to a fourth modification of the first embodiment will be described with reference to FIG. 11.
  • This embodiment differs from the third modification of the first embodiment in that the second joint 72 includes a diagonal joint 721 formed to extend diagonally at a corner. Note that the same elements as in other embodiments are denoted by the same reference numerals, and the explanation thereof will be omitted.
  • FIG. 11 is a cross-sectional view of the porous metal support layer 24 in the solid oxide fuel cell 100 according to this modification.
  • the first joint 71 is disposed on the first annular line 32 so that the corner is discontinuous
  • the second joint 72 is disposed on the second annular line 32. They are arranged in a dotted line shape on the line 33.
  • the second joint portion 72 has a diagonal joint portion 721 formed to extend diagonally at the corner of the second annular line 33 .
  • the airtightness of the power generation cell 2 is strengthened, and gas leakage between the porous metal support layer 24 and the metal frame 3 is further prevented. Moreover, since there is no bending part in either the first joint part 71 or the second joint part 72, the joining (welding, etc.) between the frame 3 and the metal support layer 24 becomes easy.
  • the second joint parts 72 are arranged in a dotted line shape with intervals, but the invention is not limited to this.
  • the invention may be formed only from diagonal joints 721 that are formed to extend diagonally at the corners of the annular wire 33.
  • the shapes of the joint portions described in the first embodiment and the first to fourth modifications of the first embodiment are each described as a single embodiment, they may be combined as appropriate. That is, the first and second joints 71 and 72 may have any shape, such as a continuous shape over the entire circumference, a dotted line shape with intervals, a shape extending in the vertical direction, or a shape with discontinuous corners. The combination may be arbitrary. Furthermore, the first and second joints 71 and 72 may have different shapes in the longitudinal direction and the lateral direction of the metal support layer 24. For example, as shown in FIG.
  • a plurality of second joint portions 72 are arranged at intervals in the longitudinal direction of the metal support layer 24 and extend in a direction perpendicular to the first annular line 32, and They may be arranged in a dotted line shape with intervals in the direction.
  • a solid oxide fuel cell 100 according to a second embodiment will be described with reference to FIG. 14.
  • This embodiment differs from the first embodiment in that the first joint 71 and the second joint 72 have different welding depths. Note that the same elements as in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
  • FIG. 14 is an enlarged schematic diagram of the joint portion between the power generation cell 2 and the frame 3, and corresponds to a cross-sectional view taken along line AA in FIG. 2.
  • the frame 3 is welded to the metal support layer 24 at a first joint 71 on the inner peripheral side and a second joint 72 on the outer peripheral side of the filling part 241.
  • the welding depth (penetration depth) at the first joint portion 71 is larger than the welding depth (penetration depth) at the second joint portion 72 by H.
  • the second joint 72 prevents the filling of the filler. This prevents interference and makes it easier to fill the metal support layer 24 with the filler from the side surface.
  • the welding depth of the first joint part 71 on the inner peripheral side is made larger, the first joint part 71 suppresses the filler from entering the central part of the power generation cell 2. That is, the insulating filler is prevented from entering the center of the power generation cell 2 and reducing the area of the active area (portion that contributes to power generation) of the power generation cell 2.
  • the metal frame 3 is welded to the porous metal support layer 24 at a first joint 71 and a second joint 72 disposed on the outer peripheral side of the first joint 71.
  • the welding depth at the first joint 71 is greater than the welding depth at the second joint 72. In this way, since the welding depth of the second joint part 72 on the outer circumferential side is made smaller, it becomes easier to fill the filler from the side surface of the porous metal support layer 24, and the filling part 241 is more reliably filled. It can be done.
  • the welding depth of the first joint 71 on the inner peripheral side is made larger, the intrusion of the filler material into the center of the power generation cell 2 is suppressed, and the area of the active area of the power generation cell 2 is reduced. can be suppressed.
  • a solid oxide fuel cell 100 according to a third embodiment will be described with reference to FIGS. 15 and 16.
  • This embodiment differs from other embodiments in that the metal frame 3 has an opening 34. Note that the same elements as in other embodiments are denoted by the same reference numerals, and the explanation thereof will be omitted.
  • FIG. 15 is an enlarged schematic diagram of the joint portion between the power generation cell 2 and the frame 3, and corresponds to a cross-sectional view taken along the line AA in FIG. 2. Further, FIG. 16 is a cross-sectional view of the entire porous metal support layer 24 along line CC in FIG. 15.
  • the frame 3 is welded to the metal support layer 24 at a first joint 71 on the inner peripheral side and a second joint 72 on the outer peripheral side of the filling part 241. Further, the frame 3 has a plurality of openings 34 opened downward between the first joint 71 and the second joint 72.
  • the frame 3 has the opening 34 between the first joint part 71 and the second joint part 72, when the filler is filled from the side surface of the metal support layer 24, the first When the entire metal support layer 24 (namely, the filling portion 241) between the bonding portion 71 and the second bonding portion 72 is filled with the filler, the filler reaches the opening 34. That is, it can be confirmed from the opening 34 that the filler has been filled between the first joint 71 and the second joint 72. Therefore, the filling portion 241 can be filled more reliably.
  • the welding depth at the first joint 71 is preferably greater than the welding depth at the second joint 72, but is not necessarily limited to this.
  • the welding depths of the first joint portion 71 and the second joint portion 72 may be the same.
  • the metal frame 3 has an opening 34 between the first joint 71 and the second joint 72. Thereby, it can be confirmed from the opening 34 that the filler is filled between the first joint part 71 and the second joint part 72, and the filling part 241 can be filled more reliably. . That is, gas leakage from the side surfaces of the metal support layer 24 can be further prevented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

Provided is a solid oxide fuel battery formed by laminating a plurality of power generation cells that are each composed of a first electrode layer, a solid electrolyte layer laminated on the first electrode layer, a second electrode layer laminated on the solid electrolyte layer, and a porous metal support layer for supporting the first electrode layer. This solid oxide fuel battery is provided with a metal frame provided below the porous metal support layer. The porous metal support layer has a filled part, which is a region where pores are filled with a filling material, at the outer peripheral part of the porous metal support layer. The metal frame is joined to the filled part of the porous metal support layer through joining parts. The joining parts include a first joining part formed so as to be along the outer peripheral part of the porous metal support layer, and a second joining part that is disposed to be spaced apart from the first joining part on the outer peripheral side as compared to the first joining part.

Description

固体酸化物形燃料電池solid oxide fuel cell
 本発明は、固体酸化物形燃料電池に関する。 The present invention relates to solid oxide fuel cells.
 平板型の発電セルを備える固体酸化物形燃料電池(SOFC)では、一般的に、発電セルの下に、ガス供給用のマニホールドを形成するフレームを組み付け、気密性を保つために発電セルとフレーム間をシールする。 In a solid oxide fuel cell (SOFC) equipped with a flat power generation cell, a frame that forms a gas supply manifold is generally assembled below the power generation cell, and the power generation cell and frame are assembled to maintain airtightness. Seal between.
 しかしながら、発電セルが電極を支持する多孔質の金属支持層を備えるSOFCにおいては、金属支持層の下に設けられたフレームと金属支持層の間をシールしても、金属支持層の側面からガスがリークする虞がある。 However, in a SOFC in which the power generation cell has a porous metal support layer that supports the electrodes, even if the frame provided below the metal support layer and the metal support layer are sealed, gas cannot be removed from the side of the metal support layer. There is a risk of leakage.
 一方、発電セルにおける緻密な電解質面にフレームを接合する場合、発電セルの側面からのガスリークは防止されるが、電解質面とフレームとの接合境界において電解質にクラックが発生しやすくなり、発電性能が低下する虞がある。 On the other hand, when a frame is bonded to the dense electrolyte surface of a power generation cell, gas leakage from the side of the power generation cell is prevented, but cracks are likely to occur in the electrolyte at the bonding boundary between the electrolyte surface and the frame, which reduces power generation performance. There is a risk that it will decline.
 US2011-0104586A1には、多孔質の金属支持体を備える固体酸化物燃料セルが開示されている。この固体酸化物燃料セルでは、金属支持体の一部の密度を高くして、金属支持体における密度の高い部分にシール部材を面接合させることで、金属支持体からのガスリーク及び金属支持体とフレームとの間からのガスリークを防止している。 US2011-0104586A1 discloses a solid oxide fuel cell with a porous metal support. In this solid oxide fuel cell, the density of a part of the metal support is increased, and the sealing member is surface-bonded to the high-density part of the metal support, thereby preventing gas leakage from the metal support. Prevents gas leaks from between the frame and the frame.
 US2011-0104586A1に記載の固体酸化物燃料セルでは、小型化、軽量化のためにフレームや発電セルを薄くすると、ガス差圧や加熱により、発電セル(金属支持体)が変形しやすくなり、シール部が剥離しやすくなる。即ち、依然として発電セルからフレームまでの間の気密性を確保できなくなる虞がある。 In the solid oxide fuel cell described in US2011-0104586A1, when the frame and power generation cell are made thinner in order to reduce size and weight, the power generation cell (metal support) becomes easily deformed due to gas differential pressure and heating, and the seal parts may peel off easily. That is, there is still a possibility that airtightness between the power generation cells and the frame cannot be ensured.
 本発明は上記課題に鑑みたものであり、発電セルの気密性を確保した固体酸化物形燃料電池を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a solid oxide fuel cell in which the airtightness of the power generation cell is ensured.
 本発明の一態様によれば、第1電極層と、第1電極層上に積層された固体電解質層と、固体電解質層上に積層された第2電極層と、第1電極層を支持する多孔質金属支持層とからなる発電セルが複数積層された固体酸化物形燃料電池が提供される。この固体酸化物形燃料電池は、多孔質金属支持層の下に設けられた金属フレームを備え、多孔質金属支持層は、充填材により空孔が充填されている領域である充填部を当該多孔質金属支持層の外周部に有している。金属フレームは、接合部を介して多孔質金属支持層の充填部に接合され、接合部は、多孔質金属支持層の外周部に沿うように形成される第1接合部と、第1接合部よりも外周側に、第1接合部と間隔を置いて配置された第2接合部とを含む。 According to one aspect of the present invention, the first electrode layer, the solid electrolyte layer stacked on the first electrode layer, the second electrode layer stacked on the solid electrolyte layer, and the first electrode layer are supported. A solid oxide fuel cell is provided in which a plurality of power generation cells each including a porous metal support layer are stacked. This solid oxide fuel cell includes a metal frame provided under a porous metal support layer, and the porous metal support layer has a filling part, which is an area where the pores are filled with a filler, formed in the porous metal support layer. It is provided on the outer periphery of the metal support layer. The metal frame is joined to the filling part of the porous metal support layer via a joint, and the joint includes a first joint formed along the outer periphery of the porous metal support layer, and a first joint. The first joint part includes a second joint part disposed at a distance from the first joint part on the outer peripheral side.
図1は、本発明の第1実施形態による固体酸化物形燃料電池の分解斜視図である。FIG. 1 is an exploded perspective view of a solid oxide fuel cell according to a first embodiment of the present invention. 図2は、セルユニットの分解斜視図である。FIG. 2 is an exploded perspective view of the cell unit. 図3は、発電セルとフレームの接合部分の拡大模式図である。FIG. 3 is an enlarged schematic diagram of the joint portion between the power generation cell and the frame. 図4は、多孔質金属支持層の断面図である。FIG. 4 is a cross-sectional view of the porous metal support layer. 図5は、変形例による発電セルとフレームの接合部分の拡大模式図である。FIG. 5 is an enlarged schematic diagram of a joint portion between a power generation cell and a frame according to a modified example. 図6は、第1実施形態の第1変形例による固体酸化物形燃料電池における多孔質金属支持層の断面図である。FIG. 6 is a cross-sectional view of a porous metal support layer in a solid oxide fuel cell according to a first modification of the first embodiment. 図7は、その他の変形例による固体酸化物形燃料電池における多孔質金属支持層の断面図である。FIG. 7 is a cross-sectional view of a porous metal support layer in a solid oxide fuel cell according to another modification. 図8は、第1実施形態の第2変形例による固体酸化物形燃料電池における多孔質金属支持層の断面図である。FIG. 8 is a cross-sectional view of a porous metal support layer in a solid oxide fuel cell according to a second modification of the first embodiment. 図9は、第1実施形態の第3変形例による固体酸化物形燃料電池における多孔質金属支持層の断面図である。FIG. 9 is a cross-sectional view of a porous metal support layer in a solid oxide fuel cell according to a third modification of the first embodiment. 図10は、その他の変形例による固体酸化物形燃料電池における多孔質金属支持層の断面図である。FIG. 10 is a cross-sectional view of a porous metal support layer in a solid oxide fuel cell according to another modification. 図11は、第1実施形態の第4変形例による固体酸化物形燃料電池における多孔質金属支持層の断面図である。FIG. 11 is a cross-sectional view of a porous metal support layer in a solid oxide fuel cell according to a fourth modification of the first embodiment. 図12は、その他の変形例による固体酸化物形燃料電池における多孔質金属支持層の断面図である。FIG. 12 is a cross-sectional view of a porous metal support layer in a solid oxide fuel cell according to another modification. 図13は、その他の変形例による固体酸化物形燃料電池における多孔質金属支持層の断面図である。FIG. 13 is a cross-sectional view of a porous metal support layer in a solid oxide fuel cell according to another modification. 図14は、第2実施形態による固体酸化物形燃料電池における、発電セルとフレームの接合部分の拡大模式図である。FIG. 14 is an enlarged schematic diagram of the joint portion between the power generating cell and the frame in the solid oxide fuel cell according to the second embodiment. 図15は、第3実施形態による固体酸化物形燃料電池における、発電セルとフレームの接合部分の拡大模式図である。FIG. 15 is an enlarged schematic diagram of a joint portion between a power generation cell and a frame in a solid oxide fuel cell according to a third embodiment. 図16は、第3実施形態による固体酸化物形燃料電池における、多孔質金属支持層の断面図である。FIG. 16 is a cross-sectional view of a porous metal support layer in a solid oxide fuel cell according to a third embodiment.
 以下、図面等を参照しながら、本発明の実施形態について説明する。 Embodiments of the present invention will be described below with reference to the drawings and the like.
 [第1実施形態]
 図1は、本発明の第1実施形態による固体酸化物形燃料電池100(以下、単に「燃料電池」ともいう)を示す分解斜視図である。図1に示すように、固体酸化物形燃料電池100は、複数のセルユニット1を上下方向に積層して構成される。なお、本実施形態の固体酸化物形燃料電池100は、主に車両等に搭載されるが、これに限定されるものではない。
[First embodiment]
FIG. 1 is an exploded perspective view showing a solid oxide fuel cell 100 (hereinafter also simply referred to as a "fuel cell") according to a first embodiment of the present invention. As shown in FIG. 1, the solid oxide fuel cell 100 is constructed by stacking a plurality of cell units 1 in the vertical direction. Note that, although the solid oxide fuel cell 100 of this embodiment is mainly mounted on a vehicle or the like, it is not limited thereto.
 図2は、固体酸化物形燃料電池100を構成するセルユニット1の分解斜視図である。図2に示すように、セルユニット1は、発電セル2、フレーム3、アノード流路形成部材4、カソード流路形成部材5、セパレータ6、アノードスペーサ41及びカソードスペーサ51等を含む。 FIG. 2 is an exploded perspective view of the cell unit 1 that constitutes the solid oxide fuel cell 100. As shown in FIG. 2, the cell unit 1 includes a power generation cell 2, a frame 3, an anode flow path forming member 4, a cathode flow path forming member 5, a separator 6, an anode spacer 41, a cathode spacer 51, and the like.
 発電セル2は、固体電解質層の一方の面にアノード電極層(第1電極層)を、他方の面にカソード電極層(第2電極層)を配置した膜電極接合体により構成される。本実施形態では、発電セル2の下面側をアノード電極層、上面側をカソード電極層とする。発電セル2には、アノードガス(燃料ガス)及びカソードガス(空気)が供給され、発電セル2は、アノード電極層及びカソード電極層での電極反応に基づき発電する。また、後述するように、発電セル2は、電極層を支持する多孔質金属支持層を含む。即ち、本実施形態の固体酸化物形燃料電池100は、いわゆるメタルサポート式の燃料電池である。 The power generation cell 2 is constituted by a membrane electrode assembly in which an anode electrode layer (first electrode layer) is arranged on one surface of a solid electrolyte layer and a cathode electrode layer (second electrode layer) is arranged on the other surface. In this embodiment, the lower surface side of the power generation cell 2 is an anode electrode layer, and the upper surface side is a cathode electrode layer. Anode gas (fuel gas) and cathode gas (air) are supplied to the power generation cell 2, and the power generation cell 2 generates power based on electrode reactions in the anode electrode layer and the cathode electrode layer. Further, as described later, the power generation cell 2 includes a porous metal support layer that supports the electrode layer. That is, the solid oxide fuel cell 100 of this embodiment is a so-called metal support type fuel cell.
 また、発電セル2は、周縁部が、発電セル2の下に設けられた金属からなるフレーム(枠体)3により接合及び支持されており、これにより、発電セル2はフレーム(金属フレーム)3に固定されている。フレーム3は、外周縁から延設された複数の突出部を有し、突出部には、穴部31が形成されている。 In addition, the power generation cell 2 has its peripheral edge joined and supported by a frame (frame body) 3 made of metal provided below the power generation cell 2, whereby the power generation cell 2 is connected to the frame (metal frame) 3. is fixed. The frame 3 has a plurality of protrusions extending from the outer periphery, and holes 31 are formed in the protrusions.
 アノード流路形成部材4は、金属等の導電性材料からなり、発電セル2のアノード電極層と後述のセパレータ6との間に配置され、発電セル2のアノード電極層側に、燃料ガスが流れるアノード流路を形成する。アノード流路形成部材4は、発電セル2の幅方向に直線的に延びる凹凸が長手方向に繰り返し設けられる、いわゆる波型形状に形成される。これにより、発電セル2のアノード電極層とセパレータ6との間に複数のアノード流路が区画される。 The anode flow path forming member 4 is made of a conductive material such as metal, and is disposed between the anode electrode layer of the power generation cell 2 and a separator 6, which will be described later, and allows fuel gas to flow toward the anode electrode layer side of the power generation cell 2. Form an anode flow path. The anode flow path forming member 4 is formed into a so-called wavy shape in which unevenness extending linearly in the width direction of the power generation cell 2 is repeatedly provided in the longitudinal direction. Thereby, a plurality of anode channels are defined between the anode electrode layer of the power generation cell 2 and the separator 6.
 カソード流路形成部材5は、金属等の導電性材料からなり、発電セル2のカソード電極層と(隣接するセルユニット1の)セパレータ6との間に配置され、発電セル2のカソード電極層側にカソードガス(空気)が流れるカソード流路を形成する。カソード流路形成部材5は、アノード流路形成部材4と同様に、波型形状に形成され、発電セル2のカソード電極層とセパレータ6との間に複数のカソード流路が区画される。 The cathode flow path forming member 5 is made of a conductive material such as metal, and is arranged between the cathode electrode layer of the power generation cell 2 and the separator 6 (of the adjacent cell unit 1), and is located on the cathode electrode layer side of the power generation cell 2. A cathode flow path is formed through which cathode gas (air) flows. Like the anode flow path forming member 4, the cathode flow path forming member 5 is formed in a wavy shape, and a plurality of cathode flow paths are defined between the cathode electrode layer of the power generation cell 2 and the separator 6.
 なお、図2に示すように、アノード流路を形成するアノード流路形成部材4及びカソード流路を形成するカソード流路形成部材5は、それぞれ2つに分割され離間しているが、これに限られない。例えば、分割された2つの流路部材を、隙間を開けずに近接させて配置してもよい。また、それぞれ1つの部材でアノード流路、カソード流路を形成してもよい。 As shown in FIG. 2, the anode flow path forming member 4 forming the anode flow path and the cathode flow path forming member 5 forming the cathode flow path are each divided into two parts and separated from each other. Not limited. For example, two divided flow path members may be arranged close to each other without leaving a gap. Alternatively, the anode channel and the cathode channel may each be formed by one member.
 セパレータ6は、導電性を有する板状の部材で、一方の面(上面)がアノード流路形成部材4に導電接合される。これにより、セパレータ6と発電セル2のアノード電極とは、アノード流路形成部材4を介して電気的に接続される。一方、セパレータ6の他方の面(下面)は、隣接するセルユニット1のカソード流路形成部材5に接合される。 The separator 6 is an electrically conductive plate-like member, and one surface (upper surface) is electrically bonded to the anode channel forming member 4. Thereby, the separator 6 and the anode electrode of the power generation cell 2 are electrically connected via the anode flow path forming member 4. On the other hand, the other surface (lower surface) of the separator 6 is joined to the cathode channel forming member 5 of the adjacent cell unit 1.
 また、セパレータ6は、外周縁から延設されて突出する複数の突出部を有し、当該突出部には、フレーム3の穴部31と対応する位置に穴部61が形成されている。セパレータ6の穴部61と、フレーム3の穴部31とが重なることで、アノード流路に供給される燃料ガスが流れる孔と、アノード流路から出ていく燃料ガスが流れる孔とが形成される。セパレータ6の穴部61と、フレーム3の穴部31とが重なることで形成される孔の周囲には、シール部材11が設けられる。 Furthermore, the separator 6 has a plurality of protrusions extending and protruding from the outer peripheral edge, and a hole 61 is formed in the protrusion at a position corresponding to the hole 31 of the frame 3. The holes 61 of the separator 6 and the holes 31 of the frame 3 overlap to form holes through which fuel gas is supplied to the anode flow path and holes through which fuel gas exits from the anode flow path. Ru. A sealing member 11 is provided around a hole formed by overlapping the hole 61 of the separator 6 and the hole 31 of the frame 3.
 アノードスペーサ41は、セパレータ6の外周上に積層される枠体であり、発電セル2とセパレータ6との間に配置され、アノード流路の高さを確保する。アノードスペーサ41は、外形が発電セル2を固定するフレーム3及びセパレータ6と重なり合うように配置される。 The anode spacer 41 is a frame layered on the outer periphery of the separator 6, and is arranged between the power generation cell 2 and the separator 6 to ensure the height of the anode flow path. The anode spacer 41 is arranged so that its outer shape overlaps the frame 3 and the separator 6 to which the power generation cell 2 is fixed.
 カソードスペーサ51は、カソード流路形成部材5の長手方向両端に配置され、カソード流路の高さを確保するとともに、カソード流路形成部材5の長手方向両端をシールする。 The cathode spacers 51 are arranged at both longitudinal ends of the cathode flow path forming member 5 to ensure the height of the cathode flow path and sealing both longitudinal ends of the cathode flow path forming member 5.
 上記のように構成された固体酸化物形燃料電池100では、アノード流路から発電セル2のアノード電極層側に燃料ガス(アノードガス)が供給され、カソード流路から発電セル2のカソード電極層側に空気(カソードガス)が供給される。 In the solid oxide fuel cell 100 configured as described above, fuel gas (anode gas) is supplied from the anode flow path to the anode electrode layer side of the power generation cell 2, and from the cathode flow path to the cathode electrode layer side of the power generation cell 2. Air (cathode gas) is supplied to the side.
 ところで、アノード電極層に供給される燃料ガス(アノードガス)と、カソード電極層に供給されるカソードガスとが混合すると、発電性能が低下する虞がある。このため、発電セル2やガス流路(アノード流路、カソード流路)からガスがリークしないようなシーリング構造を設ける必要がある。 By the way, if the fuel gas (anode gas) supplied to the anode electrode layer and the cathode gas supplied to the cathode electrode layer mix, there is a possibility that power generation performance will deteriorate. Therefore, it is necessary to provide a sealing structure that prevents gas from leaking from the power generation cell 2 and the gas flow paths (anode flow path, cathode flow path).
 この点、平板型の発電セルを備える固体酸化物形燃料電池では、一般的に、発電セルの下にフレームを組み付け、発電セルとフレーム間をシールすることで、ガスのリークを防止する。 In this regard, in a solid oxide fuel cell equipped with a flat power generation cell, a frame is generally assembled under the power generation cell and a seal is formed between the power generation cell and the frame to prevent gas leakage.
 しかしながら、発電セルが、電極を支持する多孔質の金属支持層を備える固体酸化物形燃料電池においては、金属支持層の下に設けられたフレームと金属支持層の間をシールしても、多孔質である金属支持層の側面からガスがリークする虞がある。 However, in solid oxide fuel cells in which the power generation cell includes a porous metal support layer that supports electrodes, even if the frame provided under the metal support layer and the metal support layer are sealed, the porous There is a risk of gas leaking from the sides of the metal support layer.
 一方、発電セルにおける緻密な電解質面にフレームを接合し、電解質面とフレームとの間をシールする場合、発電セルの側面からのガスリークは防止されるが、接合境界において電解質にクラックが発生しやすくなり、発電性能が低下する虞がある。 On the other hand, when a frame is bonded to the dense electrolyte surface of a power generation cell and a seal is created between the electrolyte surface and the frame, gas leakage from the sides of the power generation cell is prevented, but cracks are likely to occur in the electrolyte at the bonding boundary. Therefore, there is a possibility that the power generation performance will deteriorate.
 これに対し、金属支持層の一部の密度を高くし、金属支持層における密度の高い部分に、金属支持層とフレームの間のガスリークを防止するシール部材を面接合させることで、発電セルの側面からのガスリーク及び発電セルとフレーム間のガスリークを防止することが考えられる。しかしながら、この場合でも、小型化、軽量化のためにフレームや発電セルを薄くすると、ガス差圧や加熱により、発電セル(金属支持層)が変形しやすくなり、シール部が剥離する虞がある。即ち、依然としてガスリークが生じる虞がある。 On the other hand, by increasing the density of a part of the metal support layer and surface-bonding the high-density part of the metal support layer with a sealing member that prevents gas leakage between the metal support layer and the frame, the power generation cell It is possible to prevent gas leaks from the sides and between the power generation cells and the frame. However, even in this case, if the frame and power generation cell are made thinner in order to reduce size and weight, the power generation cell (metal support layer) will be easily deformed due to gas pressure difference and heating, and there is a risk that the seal portion may peel off. . That is, there is still a possibility that gas leakage may occur.
 そこで、本実施形態においては、電極層を支持する多孔質金属支持層の外周部に、充填材により空孔が充填されている領域である充填部を設け、フレーム3を、2つの接合部を介して当該充填部に接合することとした。具体的には、多孔質金属支持層の外周部に沿うように形成される第1接合部と、第1接合部よりも外周側に、第1接合部と間隔を置いて配置された第2接合部とにより、フレーム3を充填部に接合する。このように、多孔質金属支持層に空孔が充填された充填部を設けることで、多孔質金属支持層の側面からのガスリークが防止される。また、充填部に、フレーム3と多孔質金属支持層を接合する2つの接合部を設けることで、充填部の変位(変形)が防止され、発電セル2とフレーム3との間におけるガスリークが防止される。従って、発電セル2の気密性が確保され、発電性能の低下が防止される。 Therefore, in this embodiment, a filling part, which is a region where pores are filled with a filling material, is provided on the outer peripheral part of the porous metal support layer that supports the electrode layer, and the frame 3 is connected to the two joint parts. It was decided that it would be joined to the filling part through the insulator. Specifically, a first bonding portion is formed along the outer periphery of the porous metal support layer, and a second bonding portion is disposed on the outer periphery side of the first bonding portion and spaced apart from the first bonding portion. The frame 3 is joined to the filling part by the joint part. In this manner, by providing the filling portion filled with pores in the porous metal support layer, gas leakage from the side surfaces of the porous metal support layer is prevented. In addition, by providing two joints in the filling part that join the frame 3 and the porous metal support layer, displacement (deformation) of the filling part is prevented, and gas leakage between the power generation cell 2 and the frame 3 is prevented. be done. Therefore, the airtightness of the power generation cell 2 is ensured, and a decrease in power generation performance is prevented.
 以下、発電セル2とフレーム3との接合構造の詳細を説明する。 Hereinafter, details of the joining structure between the power generation cell 2 and the frame 3 will be explained.
 図3は、発電セル2とフレーム3の接合部分の拡大模式図であり、図2のA-A線に沿った断面図である。 FIG. 3 is an enlarged schematic diagram of the joint portion between the power generation cell 2 and the frame 3, and is a sectional view taken along the line AA in FIG. 2.
 図3に示すように、発電セル2は、固体電解質層21と、固体電解質層21の一方の面に配置されたアノード電極層(第1電極層)22と、固体電解質層21の他方の面に配置されたカソード電極層(第2電極層)23と、アノード電極層22を支持する多孔質金属支持層(メタルサポート、以下、単に金属支持層ともいう)24とを含む。 As shown in FIG. 3, the power generation cell 2 includes a solid electrolyte layer 21, an anode electrode layer (first electrode layer) 22 disposed on one surface of the solid electrolyte layer 21, and an anode electrode layer (first electrode layer) 22 disposed on one surface of the solid electrolyte layer 21. A porous metal support layer (metal support, hereinafter also simply referred to as metal support layer) 24 that supports the anode electrode layer 22 is included.
 固体電解質層21は、緻密セラミックス層により形成される。なお、セラミックスとは、無機物の焼結体をいい、非金属酸化物だけでなく、金属酸化物をも包含する概念である。固体電解質層21は、酸化物イオンが伝導可能であり、一方でガスについては透過させないように構成されていればよい。例えば、固体電解質層21は、固体酸化物セラミックスにより形成することができる。固体酸化物セラミックスとしては、特に限定されないが、例えば、ジルコニア含有材料を挙げることができる。ジルコニア含有材料としては、イットリア、酸化ネオジム、サマリウム、ガドリニウム、及びスカンジウム等をドープした安定化ジルコニアなどを挙げることができる。 The solid electrolyte layer 21 is formed of a dense ceramic layer. Note that ceramics refers to sintered bodies of inorganic substances, and is a concept that includes not only nonmetal oxides but also metal oxides. The solid electrolyte layer 21 may be configured to be able to conduct oxide ions but not allow gas to pass therethrough. For example, the solid electrolyte layer 21 can be formed of solid oxide ceramics. Solid oxide ceramics are not particularly limited, but include, for example, zirconia-containing materials. Examples of the zirconia-containing material include stabilized zirconia doped with yttria, neodymium oxide, samarium, gadolinium, scandium, and the like.
 アノード電極層22は、多孔質構造を有し、例えば、ニッケル(Ni)等の金属及びイットリア安定化ジルコニア(YSZ)等の酸化物により形成されるが、これらに限られず、既知の如何なる材料を用いてもよい。 The anode electrode layer 22 has a porous structure and is formed of, for example, a metal such as nickel (Ni) and an oxide such as yttria-stabilized zirconia (YSZ), but is not limited to these and may be formed of any known material. May be used.
 カソード電極層23は、多孔質構造を有し、例えば、ランタンストロンチウムコバルト複合酸化物(LSC)、ランタンストロンチウムコバルト鉄酸化物(LSCF)等により形成されるが、これらに限られず、既知の如何なる材料を用いてもよい。 The cathode electrode layer 23 has a porous structure and is formed of, for example, lanthanum strontium cobalt composite oxide (LSC), lanthanum strontium cobalt iron oxide (LSCF), etc., but is not limited to these, and may be made of any known material. may also be used.
 金属支持層24は、多孔質構造を有し、例えば、フェライト系ステンレスにより形成されるが、これに限られず、既知の如何なる材料を用いてもよい。金属支持層24は、アノード電極層22を支持するように設けられ、発電セル2の強度を補強するための構造部材として機能する。 The metal support layer 24 has a porous structure and is formed of, for example, ferritic stainless steel, but is not limited to this, and any known material may be used. The metal support layer 24 is provided to support the anode electrode layer 22 and functions as a structural member for reinforcing the strength of the power generation cell 2.
 また、金属支持層24は、充填材により空孔が充填されている領域である充填部241と、充填材が充填されていない領域である多孔質部242とを有している。充填部241は、金属支持層24の外周部に形成されている。充填部241に充填される充填材は、金属支持層24を構成する材料よりも線膨張係数が小さい絶縁性の材料により構成され、例えば、アルミナ、ジルコニア(ZrO)、イットリア安定化ジルコニア(YSZ)、スカンジア安定化ジルコニア(ScSZ)等からなる粒子を用いることができる。 Further, the metal support layer 24 has a filled part 241, which is a region in which pores are filled with a filler, and a porous part 242, which is a region not filled with a filler. The filling portion 241 is formed on the outer periphery of the metal support layer 24 . The filling material filled in the filling part 241 is made of an insulating material with a coefficient of linear expansion smaller than that of the material forming the metal support layer 24, such as alumina, zirconia (ZrO 2 ), yttria-stabilized zirconia (YSZ), etc. ), scandia-stabilized zirconia (ScSZ), and the like can be used.
 このように、金属支持層24の外周部に充填材が充填された緻密な充填部241が形成されているため、金属支持層24の側面からのガスリークが防止される。 In this way, since the dense filling portion 241 filled with the filler is formed on the outer peripheral portion of the metal support layer 24, gas leakage from the side surface of the metal support layer 24 is prevented.
 金属支持層24の下には、発電セル2を支持及び固定する金属製のフレーム3が備えられている。図3に示すように、金属支持層24には、充填部241の内周側に配置された第1接合部71、充填部241の外周側に、第1接合部71と間隔を置いて配置された第2接合部72が形成されている。フレーム3は、第1接合部71及び第2接合部72において、金属支持層24に溶接(接合)されている。 A metal frame 3 that supports and fixes the power generation cell 2 is provided below the metal support layer 24. As shown in FIG. 3, the metal support layer 24 includes a first joint 71 disposed on the inner circumference side of the filling part 241, and a first joint part 71 disposed on the outer circumference side of the filler part 241 at a distance from the first joint part 71. A second joint portion 72 is formed. The frame 3 is welded (joined) to the metal support layer 24 at a first joint 71 and a second joint 72 .
 このように、金属支持層24の充填部241とフレーム3とは、2つの接合部71,72を介して接合されているため、充填部241の変位(変形)が抑制され、充填部241とフレーム3とが剥離することが防止される。 In this way, since the filling part 241 of the metal support layer 24 and the frame 3 are joined via the two joint parts 71 and 72, the displacement (deformation) of the filling part 241 is suppressed, and the filling part 241 and This prevents the frame 3 from peeling off.
 なお、空孔に充填される充填材の平均粒径は、金属支持層24の核空孔の空孔径の平均よりも小さい。これにより、充填材を金属支持層24に、緻密に充填することができる。 Note that the average particle size of the filler filled in the pores is smaller than the average pore size of the core pores of the metal support layer 24. Thereby, the metal support layer 24 can be densely filled with the filler.
 また、図3に示すように、充填材は、第1接合部71と、第2接合部72と、金属支持層24と、フレーム3とで囲まれる空間(空隙)Sにも充填される。これにより、充填部241とフレーム3との間の気密性がより高まる。但し、金属支持層24とフレーム3とは、隙間なく(即ち、空間Sが存在しないように)接合されていてもよい。 Further, as shown in FIG. 3, the filler is also filled in the space (gap) S surrounded by the first joint 71, the second joint 72, the metal support layer 24, and the frame 3. This further improves the airtightness between the filling part 241 and the frame 3. However, the metal support layer 24 and the frame 3 may be joined without any gap (that is, without any space S).
 また、前述の通り、充填材は、金属支持層24を構成する材料よりも線膨張係数が小さいため、高温時に充填材が熱膨張しても、金属支持層24は押されない。即ち、充填材の熱膨張により金属支持層24が押されて破損することが防止される。 Furthermore, as described above, the filler has a smaller coefficient of linear expansion than the material constituting the metal support layer 24, so even if the filler thermally expands at high temperatures, the metal support layer 24 will not be pushed. That is, the metal support layer 24 is prevented from being pushed and damaged due to thermal expansion of the filler.
 また、充填材は絶縁性の材料により構成されているため、充填材が金属支持層24の側面から漏出して電極層と接続した場合にも、短絡が生じない。 Moreover, since the filler is made of an insulating material, even if the filler leaks from the side surface of the metal support layer 24 and connects to the electrode layer, no short circuit occurs.
 なお、製造工程として、充填材は、フレーム3を金属支持層24に溶接した後に、金属支持層24の側面から充填される。これにより、金属支持層24の外周側の空孔を確実に充填することができ、金属支持層24の側面からのガスリークをより確実に防止することができる。また、溶接後に充填材を充填することで、金属支持層24に絶縁材(充填材)が混合した状態で溶接することによる品質低下を防止することができる。 In addition, as a manufacturing process, after the frame 3 is welded to the metal support layer 24, the filler is filled from the side surface of the metal support layer 24. Thereby, the pores on the outer peripheral side of the metal support layer 24 can be reliably filled, and gas leaks from the side surfaces of the metal support layer 24 can be more reliably prevented. Further, by filling the metal support layer 24 with the filler after welding, it is possible to prevent quality deterioration caused by welding the metal support layer 24 with the insulating material (filler) mixed therein.
 図4は、図3のB-B線に沿った金属支持層24全体の断面図である。 FIG. 4 is a cross-sectional view of the entire metal support layer 24 along line BB in FIG. 3.
 図4に示すように、フレーム3と金属支持層24とが接合される第1接合部71は、セルユニット1の積層方向視で、金属支持層24の外周部(充填部241)に沿って一つの環状になる線(第1環状線32)上に、全周に渡って連続して形成されている。 As shown in FIG. 4, the first joint portion 71 where the frame 3 and the metal support layer 24 are joined is located along the outer periphery (filling portion 241) of the metal support layer 24 when viewed in the stacking direction of the cell unit 1. It is formed continuously over the entire circumference on one annular line (first annular line 32).
 また、フレーム3と金属支持層24とが接合される第2接合部72は、第1環状線32よりも外周に位置する、セルユニット1の積層方向視で、金属支持層24の外周部(充填部241)に沿って一つの環状になる線(第2環状線33)上に、全周に渡って連続して形成されている。 In addition, the second joint portion 72 where the frame 3 and the metal support layer 24 are joined is located at the outer periphery of the metal support layer 24 ( It is formed continuously over the entire circumference on a line (second annular line 33) that forms one annular shape along the filling portion 241).
 このように、フレーム3は、金属支持層24の外周部に沿うように形成される第1接合部71と、第1接合部71よりも外周側に、第1接合部71と間隔を置いて配置された第2接合部72とを介して金属支持層24の充填部241に接合されている。フレーム3と充填部241とが2つの接合部71,72により接合されているため、ガス差圧や加熱等による充填部241の変位(変形)が抑制され、充填部241とフレーム3が剥離することが防止される。即ち、金属支持層24とフレーム3との間におけるガスリークを防止することができる。 In this way, the frame 3 has the first joint 71 formed along the outer periphery of the metal support layer 24 and the first joint 71 located on the outer periphery side of the first joint 71 and spaced apart from the first joint 71 . It is joined to the filling part 241 of the metal support layer 24 via the disposed second joint part 72 . Since the frame 3 and the filling part 241 are joined by the two joining parts 71 and 72, displacement (deformation) of the filling part 241 due to gas pressure difference, heating, etc. is suppressed, and the filling part 241 and the frame 3 are separated. This will be prevented. That is, gas leakage between the metal support layer 24 and the frame 3 can be prevented.
 以上のとおり、金属支持層24の外周部に形成された充填部241により金属支持層24の側面からのガスリークが防止され、金属支持層24の外周部に沿うように形成される第1接合部71及び第2接合部72により金属支持層24とフレーム3との間におけるガスリークが防止される。従って、発電セル2の気密性が確保され、発電性能の低下が防止される。 As described above, the filling portion 241 formed on the outer periphery of the metal support layer 24 prevents gas leakage from the side surface of the metal support layer 24, and the first joint portion is formed along the outer periphery of the metal support layer 24. 71 and the second joint 72 prevent gas leakage between the metal support layer 24 and the frame 3. Therefore, the airtightness of the power generation cell 2 is ensured, and a decrease in power generation performance is prevented.
 上記した第1実施形態の固体酸化物形燃料電池100によれば、以下の効果を得ることができる。 According to the solid oxide fuel cell 100 of the first embodiment described above, the following effects can be obtained.
 固体酸化物形燃料電池100は、発電セル2がアノード電極層22(第1電極層)を支持する多孔質金属支持層24を備え、多孔質金属支持層24は、外周部に、充填材により空孔が充填されている領域である充填部241を有している。また、多孔質金属支持層24の下に設けられた金属フレーム3は、接合部を介して多孔質金属支持層24の充填部241に接合されている。そして、接合部は、多孔質金属支持層24の外周部に沿うように形成される第1接合部71と、第1接合部71よりも外周側に、第1接合部71と間隔を置いて配置された第2接合部72とを含む。このように、多孔質金属支持層24の外周部に、空孔が充填されている充填部241を形成することで、多孔質金属支持層24の側面からのガスリークが防止される。また、2つの接合部71,72により、金属フレーム3と多孔質金属支持層24の充填部241とが接合されているため、ガス差圧や加熱等による充填部241の変位(変形)が抑制され、充填部241とフレーム3が剥離することが防止される。即ち、多孔質金属支持層24と金属フレーム3との間におけるガスリークが防止される。従って、発電セル2の気密性が確保され、発電性能の低下が防止される。 In the solid oxide fuel cell 100, the power generation cell 2 includes a porous metal support layer 24 that supports an anode electrode layer 22 (first electrode layer), and the porous metal support layer 24 has a filler on its outer periphery. It has a filling part 241 which is a region filled with pores. Moreover, the metal frame 3 provided under the porous metal support layer 24 is joined to the filling part 241 of the porous metal support layer 24 via a joint. The bonding portion includes a first bonding portion 71 formed along the outer periphery of the porous metal support layer 24 and a spaced apart from the first bonding portion 71 on the outer circumferential side of the first bonding portion 71 . and a second joint portion 72 arranged therein. In this way, gas leakage from the side surfaces of the porous metal support layer 24 is prevented by forming the filling portion 241 filled with pores in the outer peripheral portion of the porous metal support layer 24 . In addition, since the metal frame 3 and the filling part 241 of the porous metal support layer 24 are joined by the two joining parts 71 and 72, displacement (deformation) of the filling part 241 due to gas pressure difference, heating, etc. is suppressed. This prevents the filling portion 241 and the frame 3 from peeling off. That is, gas leakage between the porous metal support layer 24 and the metal frame 3 is prevented. Therefore, the airtightness of the power generation cell 2 is ensured, and a decrease in power generation performance is prevented.
 固体酸化物形燃料電池100は、金属フレーム3と多孔質金属支持層24とを接合する第1及び第2接合部71,72を有し、第1接合部71は、積層方向視で、多孔質金属支持層24の外周部に沿って一つの環状になる第1環状線32上に配置され、第2接合部72は、第1環状線32よりも外周に位置する環状線である第2環状線33上に配置される。このように、金属フレーム3と多孔質金属支持層24とを接合する接合部71,72が多孔質金属支持層24の外周部における環状線32,33上に配置されるため、ガス差圧や加熱等による充填部241の変位(変形)が多孔質金属支持層24の外周部全周に渡って抑制され、充填部241とフレーム3が剥離することが、より防止される。 The solid oxide fuel cell 100 has first and second joint parts 71 and 72 that join the metal frame 3 and the porous metal support layer 24, and the first joint part 71 has porous The second bonding portion 72 is disposed on the first annular line 32 that is annular along the outer periphery of the solid metal support layer 24 , and the second joint 72 is disposed on the second annular line 32 that is located on the outer periphery of the first annular line 32 . It is arranged on the circular line 33. In this way, since the joint parts 71 and 72 that join the metal frame 3 and the porous metal support layer 24 are arranged on the annular lines 32 and 33 at the outer peripheral part of the porous metal support layer 24, the gas pressure difference and Displacement (deformation) of the filling part 241 due to heating or the like is suppressed over the entire outer circumference of the porous metal support layer 24, and separation of the filling part 241 and the frame 3 is further prevented.
 固体酸化物形燃料電池100は、金属フレーム3と多孔質金属支持層24とを接合する第1及び第2接合部71,72を有し、第1接合部71は、多孔質金属支持層24の外周部に沿った第1環状線32上に全周に渡って連続して設けられ、第2接合部72は、第1環状線32よりも外周に位置する第2環状線33上に全周に渡って連続して設けられる。これにより、ガス差圧や加熱等による充填部241の変位(変形)が多孔質金属支持層24の外周部全周に渡って抑制され、充填部241とフレーム3が剥離することが、より防止される。 The solid oxide fuel cell 100 has first and second joint parts 71 and 72 that join the metal frame 3 and the porous metal support layer 24 , and the first joint part 71 connects the porous metal support layer 24 to the first joint part 71 , 72 . The second joint part 72 is continuously provided on the first annular line 32 along the outer periphery of the first annular line 32, and the second joint part 72 is continuously provided on the second annular line 33 located on the outer periphery of the first annular line 32. Continuously placed around the circumference. As a result, displacement (deformation) of the filling part 241 due to gas pressure difference, heating, etc. is suppressed over the entire outer circumference of the porous metal support layer 24, and separation of the filling part 241 and the frame 3 is further prevented. be done.
 固体酸化物形燃料電池100は、多孔質金属支持層24が、外周部に、充填材により空孔が充填されている充填部241を有し、充填材の線膨張係数は、多孔質金属支持層24を構成する多孔質金属材料の線膨張係数よりも小さい。これにより、充填材の熱膨張により金属支持層24が押されて破損することが防止される。 In the solid oxide fuel cell 100, the porous metal support layer 24 has a filling part 241 in which pores are filled with a filler in the outer peripheral part, and the linear expansion coefficient of the filler is equal to that of the porous metal support. It is smaller than the linear expansion coefficient of the porous metal material that constitutes the layer 24. This prevents the metal support layer 24 from being pushed and damaged due to thermal expansion of the filler.
 なお、本実施形態では、発電セル2の下面側をアノード電極層(第1電極層)、上面側をカソード電極層(第2電極層)としたが、必ずしもこれに限られず、発電セル2の下面側をカソード電極層、上面側をアノード電極層としてもよい。 In this embodiment, the lower surface side of the power generation cell 2 is the anode electrode layer (first electrode layer), and the upper surface side is the cathode electrode layer (second electrode layer), but this is not necessarily the case. The lower surface side may be used as a cathode electrode layer, and the upper surface side may be used as an anode electrode layer.
 また、本実施形態では、アノード電極層22側に金属支持層24を備える構成としたが、必ずしもこれに限られない。即ち、金属支持層24が少なくとも一方の電極側に設けられており、金属支持層24と金属フレーム3とが接合されていればよい。 Further, in this embodiment, the metal support layer 24 is provided on the anode electrode layer 22 side, but the structure is not necessarily limited to this. That is, it is sufficient that the metal support layer 24 is provided on at least one electrode side, and the metal support layer 24 and the metal frame 3 are bonded.
 また、図2で説明したアノード流路及びカソード流路等の構成は一例であり、特にこれに限られるものではない。 Furthermore, the configurations of the anode flow path, cathode flow path, etc. described in FIG. 2 are merely examples, and are not particularly limited thereto.
 また、本実施形態では、第1接合部71は、充填部241のある位置に形成されているが、必ずしもこれに限られない。例えば、第1接合部71は、充填部241と多孔質部242とに跨って形成されていてもよく、また、充填部241近傍の多孔質部242に形成されていてもよい。 Further, in the present embodiment, the first joint portion 71 is formed at a certain position of the filling portion 241, but the first joint portion 71 is not necessarily limited to this. For example, the first joint portion 71 may be formed across the filling portion 241 and the porous portion 242, or may be formed in the porous portion 242 near the filling portion 241.
 また、本実施形態のように、金属フレーム3は溶接により多孔質金属支持層24に接合されていることが好ましいが、接合方法は必ずしもこれに限られない。例えば、図5に示す発電セル2の断面図のように、金属フレーム3は、ろう付けにより多孔質金属支持層24に接合されていてもよい。 Further, as in this embodiment, it is preferable that the metal frame 3 is joined to the porous metal support layer 24 by welding, but the joining method is not necessarily limited to this. For example, as shown in the cross-sectional view of the power generation cell 2 shown in FIG. 5, the metal frame 3 may be joined to the porous metal support layer 24 by brazing.
 また、本実施形態では、充填材を金属支持層24に充填して、金属支持層24に充填部241を形成しているが、必ずしもこれに限られない。例えば、金属支持層24だけでなく、金属支持層24に積層された電極層(アノード電極層22)にも充填材を充填して、電極層にも充填部を形成させてもよい。これにより、多孔質構造を有する電極層からのガスリークを防止することができ、発電セル2の気密性をより確保することができる。但し、電極層は金属支持層24に比べて非常に薄いため、金属支持層24のみに充填部241を形成した本実施形態の構成であっても、ガスリークを防止することができる。 Further, in this embodiment, the metal support layer 24 is filled with a filler to form the filling portion 241 in the metal support layer 24, but the present invention is not necessarily limited to this. For example, not only the metal support layer 24 but also the electrode layer (anode electrode layer 22) laminated on the metal support layer 24 may be filled with the filler to form a filling portion in the electrode layer as well. Thereby, gas leakage from the electrode layer having a porous structure can be prevented, and the airtightness of the power generation cell 2 can be further ensured. However, since the electrode layer is much thinner than the metal support layer 24, gas leakage can be prevented even with the configuration of this embodiment in which the filling portion 241 is formed only in the metal support layer 24.
 [第1実施形態の第1変形例]
 図6を参照して第1実施形態の第1変形例による固体酸化物形燃料電池100を説明する。本実施形態では、第2接合部72が不連続に形成されている点が第1実施形態と異なる。なお、第1実施形態と同様の要素には同一の符号を付し、その説明を省略する。
[First modification of the first embodiment]
A solid oxide fuel cell 100 according to a first modification of the first embodiment will be described with reference to FIG. 6. This embodiment differs from the first embodiment in that the second joint portion 72 is formed discontinuously. Note that the same elements as in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
 図6は、本変形例による固体酸化物形燃料電池100における多孔質金属支持層24の断面図であり、図3のB-B線に沿った金属支持層24全体の断面図に相当する。 FIG. 6 is a sectional view of the porous metal support layer 24 in the solid oxide fuel cell 100 according to this modification, and corresponds to a sectional view of the entire metal support layer 24 along line BB in FIG. 3.
 図6に示すように、本変形例においては、第2接合部72が、第2環状線33上において、不連続に配置されている。具体的には、第2接合部72は、間隔を置いた点線状に配置されている。即ち、フレーム3は、第2環状線33上の第2接合部72において、金属支持層24に点線状に溶接されている。これにより、第2接合部72が連続して形成される場合に比べ、溶接時に金属支持層24が熱歪により変形することが抑制される。従って、発電セル2の気密性が強化され、多孔質金属支持層24と金属フレーム3との間のガスリークがより防止される。 As shown in FIG. 6, in this modification, the second joint portions 72 are arranged discontinuously on the second annular line 33. Specifically, the second joint portions 72 are arranged in a dotted line shape with intervals. That is, the frame 3 is welded to the metal support layer 24 in a dotted line shape at the second joint portion 72 on the second annular line 33 . This suppresses deformation of the metal support layer 24 due to thermal strain during welding, compared to the case where the second joint portions 72 are formed continuously. Therefore, the airtightness of the power generation cell 2 is strengthened, and gas leakage between the porous metal support layer 24 and the metal frame 3 is further prevented.
 また、金属支持層24の外周部の第2接合部72が途切れている部位も、充填材によりシールされているため、当該部位においても、充填材により多孔質金属支持層24と金属フレーム3との間のガスリークが防止される。 In addition, since the part where the second joint part 72 on the outer periphery of the metal support layer 24 is interrupted is also sealed with the filler, the porous metal support layer 24 and the metal frame 3 are connected by the filler at this part as well. This prevents gas leaks during
 なお、本変形例では、第2接合部72を、間隔を置いた点線状に配置しているが、必ずしもこれに限られない。例えば、図7の多孔質金属支持層24の断面図に示すように、第2接合部72は、第2環状線33上において、間隔を置いて複数配置されるとともに、第1環状線32に対し垂直な方向に延びるように設けられていてもよい。このような構成においても、溶接時に金属支持層24が熱歪により変形することが抑制される。 Note that in this modification, the second joint portions 72 are arranged in a dotted line shape with intervals, but the arrangement is not necessarily limited to this. For example, as shown in the cross-sectional view of the porous metal support layer 24 in FIG. It may be provided so as to extend in a direction perpendicular to the other direction. Also in such a configuration, deformation of the metal support layer 24 due to thermal strain during welding is suppressed.
 [第1実施形態の第2変形例]
 図8を参照して第1実施形態の第2変形例による固体酸化物形燃料電池100を説明する。本実施形態では、第1接合部71が不連続に形成されている点が他の実施形態と異なる。なお、他の実施形態と同様の要素には同一の符号を付し、その説明を省略する。
[Second modification of the first embodiment]
A solid oxide fuel cell 100 according to a second modification of the first embodiment will be described with reference to FIG. 8. This embodiment differs from other embodiments in that the first joint portion 71 is formed discontinuously. Note that the same elements as in other embodiments are denoted by the same reference numerals, and the explanation thereof will be omitted.
 図8は、本変形例による固体酸化物形燃料電池100における多孔質金属支持層24の断面図であり、図3のB-B線に沿った金属支持層24全体の断面図に相当する。 FIG. 8 is a sectional view of the porous metal support layer 24 in the solid oxide fuel cell 100 according to this modification, and corresponds to a sectional view of the entire metal support layer 24 along line BB in FIG. 3.
 図8に示すように、本変形例においては、第1接合部71が、第1環状線32上において、不連続に配置されている。具体的には、第1接合部71は、間隔を置いた点線状に配置されている。即ち、フレーム3は、第1環状線32上の第1接合部71において、金属支持層24に点線状に溶接されている。 As shown in FIG. 8, in this modification, the first joint portions 71 are arranged discontinuously on the first annular line 32. Specifically, the first joint portions 71 are arranged in a dotted line shape with intervals. That is, the frame 3 is welded to the metal support layer 24 in a dotted line shape at the first joint 71 on the first annular line 32 .
 一方、第2接合部72も、第1実施形態の第1変形例と同様に、間隔を置いた点線状に配置されている。即ち、フレーム3は、第2環状線33上の第2接合部72において、金属支持層24に点線状に溶接されている。 On the other hand, the second joint portions 72 are also arranged in a dotted line shape with intervals, similar to the first modification of the first embodiment. That is, the frame 3 is welded to the metal support layer 24 in a dotted line shape at the second joint portion 72 on the second annular line 33 .
 また、第1接合部71と、第2接合部72とは、接合部が途切れる部位が重畳しないように、セルユニット1の積層方向視で千鳥状に配置されている。即ち、第1接合部71と第2接合部72とは、積層方向視で、少なくとも金属支持層24の充填部241の外周側及び内周側のいずれか一方に接合部が存在するように、配置されている。 Further, the first joint portion 71 and the second joint portion 72 are arranged in a staggered manner when viewed in the stacking direction of the cell unit 1 so that the portions where the joint portions are interrupted do not overlap. That is, the first bonding portion 71 and the second bonding portion 72 are arranged such that the bonding portion exists at least on either the outer circumferential side or the inner circumferential side of the filling portion 241 of the metal support layer 24 when viewed in the stacking direction. It is located.
 このように、第1接合部71及び第2接合部72のいずれも間隔を置いた点線状に配置することで、溶接時に金属支持層24が熱歪により変形することが、より抑制される。また、積層方向視で、少なくとも金属支持層24の充填部241の外周側及び内周側のいずれか一方に接合部が存在するように、第1接合部71と第2接合部72を千鳥状に配置しているため、ガス差圧や加熱による充填部241の変位が抑制される。従って、発電セル2の気密性が強化され、多孔質金属支持層24と金属フレーム3との間のガスリークがより防止される。 In this way, by arranging both the first joint portion 71 and the second joint portion 72 in a dotted line shape with an interval between them, deformation of the metal support layer 24 due to thermal strain during welding is further suppressed. In addition, the first joint portion 71 and the second joint portion 72 are arranged in a staggered manner so that the joint portion exists at least on either the outer circumferential side or the inner circumferential side of the filling portion 241 of the metal support layer 24 when viewed in the stacking direction. Since the filling portion 241 is disposed in the same direction, displacement of the filling portion 241 due to gas pressure difference or heating is suppressed. Therefore, the airtightness of the power generation cell 2 is strengthened, and gas leakage between the porous metal support layer 24 and the metal frame 3 is further prevented.
 なお、本変形例では、第1接合部71及び第2接合部72のいずれも間隔を置いた点線状に配置しているが、必ずしもこれに限られず、第1接合部71のみを間隔を置いた点線状に配置し、第2接合部72は、第2環状線33上に全周に渡って連続して設けられていてもよい。また、第1接合部71を、間隔を置いた点線状に配置し、第2接合部72は、第2環状線33上において、間隔を置いて複数配置されるとともに、第1環状線32に対し垂直な方向に延びるように設けられていてもよい。このような構成であっても、溶接時に金属支持層24が熱歪により変形することが、抑制される。 Note that in this modification, both the first joint portion 71 and the second joint portion 72 are arranged in a dotted line shape with an interval between them, but this is not necessarily the case. The second joint portion 72 may be arranged in a dotted line shape, and the second joint portion 72 may be continuously provided on the second annular line 33 over the entire circumference. Further, the first joint portions 71 are arranged in a dotted line shape with intervals, and a plurality of second joint portions 72 are arranged at intervals on the second annular line 33, and on the first annular line 32. It may be provided so as to extend in a direction perpendicular to the other direction. Even with such a configuration, deformation of the metal support layer 24 due to thermal strain during welding is suppressed.
 [第1実施形態の第3変形例]
 図9を参照して第1実施形態の第3変形例による固体酸化物形燃料電池100を説明する。本実施形態では、第1接合部71が角部において不連続に形成されている点が他の実施形態と異なる。なお、他の実施形態と同様の要素には同一の符号を付し、その説明を省略する。
[Third modification of first embodiment]
A solid oxide fuel cell 100 according to a third modification of the first embodiment will be described with reference to FIG. 9. This embodiment differs from other embodiments in that the first joint portion 71 is formed discontinuously at the corner. Note that the same elements as in other embodiments are denoted by the same reference numerals, and the explanation thereof will be omitted.
 図9は、本変形例による固体酸化物形燃料電池100における多孔質金属支持層24の断面図であり、図3のB-B線に沿った金属支持層24全体の断面図に相当する。 FIG. 9 is a sectional view of the porous metal support layer 24 in the solid oxide fuel cell 100 according to this modification, and corresponds to a sectional view of the entire metal support layer 24 along line BB in FIG. 3.
 図9に示すように、本変形例においては、第1接合部71が、第1環状線32上において、角部が不連続になるように配置されている。即ち、第1環状線32の角部においては、金属支持層24にフレーム3を接合していない。通常、接合部に曲がる部位が存在すると、接合作業(溶接等)が難しくなるが、本変形例においては、第1接合部71に曲がる部位が存在しないため、フレーム3と金属支持層24との接合(溶接等)が容易になる。 As shown in FIG. 9, in this modification, the first joint portion 71 is arranged on the first annular line 32 so that the corner portions are discontinuous. That is, the frame 3 is not joined to the metal support layer 24 at the corners of the first annular wire 32 . Normally, if there is a bending part in the joint part, joining work (welding etc.) becomes difficult, but in this modification, since there is no bending part in the first joint part 71, the frame 3 and the metal support layer 24 are Joining (welding, etc.) becomes easier.
 なお、図9では、第2接合部72を、間隔を置いた点線状に配置しているが、これに限られない。例えば、第2接合部72を第2環状線33上に全周に渡って連続して配置してもよく、また、図10に示すように、第2接合部72を、間隔を置いて、第1環状線32に対し垂直な方向に延びるように複数配置してもよい。 Note that in FIG. 9, the second joint portions 72 are arranged in a dotted line shape with intervals, but the arrangement is not limited thereto. For example, the second joint portions 72 may be arranged continuously over the entire circumference on the second annular line 33, or as shown in FIG. 10, the second joint portions 72 may be arranged at intervals, A plurality of them may be arranged so as to extend in a direction perpendicular to the first annular line 32.
 [第1実施形態の第4変形例]
 図11を参照して第1実施形態の第4変形例による固体酸化物形燃料電池100を説明する。本実施形態では、第2接合部72が角部において対角線上に延びるように形成される対角線状接合部721を含む点が第1実施形態の第3変形例と異なる。なお、他の実施形態と同様の要素には同一の符号を付し、その説明を省略する。
[Fourth modification of the first embodiment]
A solid oxide fuel cell 100 according to a fourth modification of the first embodiment will be described with reference to FIG. 11. This embodiment differs from the third modification of the first embodiment in that the second joint 72 includes a diagonal joint 721 formed to extend diagonally at a corner. Note that the same elements as in other embodiments are denoted by the same reference numerals, and the explanation thereof will be omitted.
 図11は、本変形例による固体酸化物形燃料電池100における多孔質金属支持層24の断面図である。 FIG. 11 is a cross-sectional view of the porous metal support layer 24 in the solid oxide fuel cell 100 according to this modification.
 図11に示すように、本変形例においては、第1接合部71が、第1環状線32上において、角部が不連続になるように配置され、第2接合部72は、第2環状線33上に点線状に配置されている。また、第2接合部72は、第2環状線33の角部において対角線上に延びるように形成された対角線状接合部721を有している。これにより、第1接合部71が途切れている角部において、対角線状接合部721によりフレーム3と金属支持層24の充填部241との接合が強化されているため、ガス差圧や加熱による充填部241の変位が抑制される。従って、発電セル2の気密性が強化され、多孔質金属支持層24と金属フレーム3との間のガスリークがより防止される。また、第1接合部71及び第2接合部72のいずれも、曲がる部位が存在しないため、フレーム3と金属支持層24との接合(溶接等)が容易になる。 As shown in FIG. 11, in this modification, the first joint 71 is disposed on the first annular line 32 so that the corner is discontinuous, and the second joint 72 is disposed on the second annular line 32. They are arranged in a dotted line shape on the line 33. Further, the second joint portion 72 has a diagonal joint portion 721 formed to extend diagonally at the corner of the second annular line 33 . As a result, at the corner where the first joint part 71 is interrupted, the connection between the frame 3 and the filling part 241 of the metal support layer 24 is strengthened by the diagonal joint part 721. Displacement of the portion 241 is suppressed. Therefore, the airtightness of the power generation cell 2 is strengthened, and gas leakage between the porous metal support layer 24 and the metal frame 3 is further prevented. Moreover, since there is no bending part in either the first joint part 71 or the second joint part 72, the joining (welding, etc.) between the frame 3 and the metal support layer 24 becomes easy.
 なお、本変形例では、第2接合部72を、間隔を置いた点線状に配置しているが、これに限られず、例えば、図12に示すように、第2接合部72は、第2環状線33の角部において対角線上に延びるように形成された対角線状接合部721のみから形成されていてもよい。 In addition, in this modification, the second joint parts 72 are arranged in a dotted line shape with intervals, but the invention is not limited to this. For example, as shown in FIG. It may be formed only from diagonal joints 721 that are formed to extend diagonally at the corners of the annular wire 33.
 上記の第1実施形態及び第1実施形態の第1~第4変形例で説明した接合部の形状は、それぞれ単独の実施形態として説明したが、適宜組み合わせてもよい。即ち、第1及び第2接合部71,72は、全周に渡って連続した形状、間隔を置いた点線状、垂直方向に延びる形状、角部が不連続な形状等のいずれの形状を有していてもよく、組合せも任意である。さらに、第1及び第2接合部71,72は、金属支持層24の長手方向と短手方向とで異なる形状を有するようにしてもよい。例えば、図13に示すように、第2接合部72を、金属支持層24の長手方向においては間隔を置いて、第1環状線32に対し垂直な方向に延びるように複数配置し、短手方向においては間隔を置いた点線状に配置してもよい。 Although the shapes of the joint portions described in the first embodiment and the first to fourth modifications of the first embodiment are each described as a single embodiment, they may be combined as appropriate. That is, the first and second joints 71 and 72 may have any shape, such as a continuous shape over the entire circumference, a dotted line shape with intervals, a shape extending in the vertical direction, or a shape with discontinuous corners. The combination may be arbitrary. Furthermore, the first and second joints 71 and 72 may have different shapes in the longitudinal direction and the lateral direction of the metal support layer 24. For example, as shown in FIG. 13, a plurality of second joint portions 72 are arranged at intervals in the longitudinal direction of the metal support layer 24 and extend in a direction perpendicular to the first annular line 32, and They may be arranged in a dotted line shape with intervals in the direction.
 [第2実施形態]
 図14を参照して、第2実施形態の固体酸化物形燃料電池100を説明する。本実施形態では、第1接合部71と第2接合部72とで、溶接深さが異なる点が第1実施形態と異なる。なお、第1実施形態と同様の要素には同一の符号を付し、その説明を省略する。
[Second embodiment]
A solid oxide fuel cell 100 according to a second embodiment will be described with reference to FIG. 14. This embodiment differs from the first embodiment in that the first joint 71 and the second joint 72 have different welding depths. Note that the same elements as in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
 図14は、発電セル2とフレーム3の接合部分の拡大模式図であり、図2のA-A線に沿った断面図に相当する。 FIG. 14 is an enlarged schematic diagram of the joint portion between the power generation cell 2 and the frame 3, and corresponds to a cross-sectional view taken along line AA in FIG. 2.
 図14に示すように、フレーム3は、充填部241の内周側の第1接合部71及び外周側の第2接合部72において、金属支持層24に溶接されている。第1接合部71における溶接深さ(溶け込み深さ)は、第2接合部72における溶接深さ(溶け込み深さ)よりも、Hだけ大きい。 As shown in FIG. 14, the frame 3 is welded to the metal support layer 24 at a first joint 71 on the inner peripheral side and a second joint 72 on the outer peripheral side of the filling part 241. The welding depth (penetration depth) at the first joint portion 71 is larger than the welding depth (penetration depth) at the second joint portion 72 by H.
 このように、外周側の第2接合部72の溶接深さをより小さくしているため、金属支持層24の側面から充填材を充填する際に、第2接合部72により充填材の充填が妨げられることが抑制され、金属支持層24の側面から充填材を充填しやすくなる。一方、内周側の第1接合部71の溶接深さをより大きくしているため、第1接合部71により、発電セル2の中央部に充填材が侵入することが抑制される。即ち、絶縁性の充填材が発電セル2の中央部に侵入して、発電セル2のアクティブエリア(発電に寄与する部分)の面積が減少することが抑制される。 In this way, since the welding depth of the second joint 72 on the outer circumferential side is made smaller, when filling the filler from the side surface of the metal support layer 24, the second joint 72 prevents the filling of the filler. This prevents interference and makes it easier to fill the metal support layer 24 with the filler from the side surface. On the other hand, since the welding depth of the first joint part 71 on the inner peripheral side is made larger, the first joint part 71 suppresses the filler from entering the central part of the power generation cell 2. That is, the insulating filler is prevented from entering the center of the power generation cell 2 and reducing the area of the active area (portion that contributes to power generation) of the power generation cell 2.
 上記した第2実施形態の固体酸化物形燃料電池100によれば、以下の効果を得ることができる。 According to the solid oxide fuel cell 100 of the second embodiment described above, the following effects can be obtained.
 固体酸化物形燃料電池100は、金属フレーム3が、第1接合部71と、第1接合部71よりも外周側に配置された第2接合部72とにおいて多孔質金属支持層24に溶接され、第1接合部71における溶接深さは、第2接合部72における溶接深さよりも大きい。このように、外周側の第2接合部72の溶接深さをより小さくしているため、多孔質金属支持層24の側面から充填材を充填しやすくなり、充填部241への充填をより確実にすることができる。 In the solid oxide fuel cell 100, the metal frame 3 is welded to the porous metal support layer 24 at a first joint 71 and a second joint 72 disposed on the outer peripheral side of the first joint 71. , the welding depth at the first joint 71 is greater than the welding depth at the second joint 72. In this way, since the welding depth of the second joint part 72 on the outer circumferential side is made smaller, it becomes easier to fill the filler from the side surface of the porous metal support layer 24, and the filling part 241 is more reliably filled. It can be done.
 また、内周側の第1接合部71の溶接深さをより大きくしているため、発電セル2の中央部に充填材が侵入することが抑制され、発電セル2のアクティブエリアの面積の減少を抑制することができる。 In addition, since the welding depth of the first joint 71 on the inner peripheral side is made larger, the intrusion of the filler material into the center of the power generation cell 2 is suppressed, and the area of the active area of the power generation cell 2 is reduced. can be suppressed.
 [第3実施形態]
 図15及び図16を参照して、第3実施形態の固体酸化物形燃料電池100を説明する。本実施形態では、金属フレーム3が開口部34を有している点が、他の実施形態と異なる。なお、他の実施形態と同様の要素には同一の符号を付し、その説明を省略する。
[Third embodiment]
A solid oxide fuel cell 100 according to a third embodiment will be described with reference to FIGS. 15 and 16. This embodiment differs from other embodiments in that the metal frame 3 has an opening 34. Note that the same elements as in other embodiments are denoted by the same reference numerals, and the explanation thereof will be omitted.
 図15は、発電セル2とフレーム3の接合部分の拡大模式図であり、図2のA-A線に沿った断面図に相当する。また、図16は、図15のC-C線に沿った多孔質金属支持層24全体の断面図である。 FIG. 15 is an enlarged schematic diagram of the joint portion between the power generation cell 2 and the frame 3, and corresponds to a cross-sectional view taken along the line AA in FIG. 2. Further, FIG. 16 is a cross-sectional view of the entire porous metal support layer 24 along line CC in FIG. 15.
 図15及び図16に示すように、フレーム3は、充填部241の内周側の第1接合部71及び外周側の第2接合部72において、金属支持層24に溶接されている。また、フレーム3は、第1接合部71と第2接合部72との間に、下方向かって開口された複数の開口部34を有している。 As shown in FIGS. 15 and 16, the frame 3 is welded to the metal support layer 24 at a first joint 71 on the inner peripheral side and a second joint 72 on the outer peripheral side of the filling part 241. Further, the frame 3 has a plurality of openings 34 opened downward between the first joint 71 and the second joint 72.
 このように、フレーム3が、第1接合部71と第2接合部72との間に開口部34を有しているため、金属支持層24の側面から充填材を充填した際に、第1接合部71と第2接合部72との間の金属支持層24(即ち、充填部241)全体に充填材が充填されると、充填材は開口部34まで到達する。即ち、充填材が第1接合部71と第2接合部72との間に充填されたことを開口部34から確認することができる。従って、充填部241への充填をより確実にすることができる。 In this way, since the frame 3 has the opening 34 between the first joint part 71 and the second joint part 72, when the filler is filled from the side surface of the metal support layer 24, the first When the entire metal support layer 24 (namely, the filling portion 241) between the bonding portion 71 and the second bonding portion 72 is filled with the filler, the filler reaches the opening 34. That is, it can be confirmed from the opening 34 that the filler has been filled between the first joint 71 and the second joint 72. Therefore, the filling portion 241 can be filled more reliably.
 なお、本実施形態においても、図15のように、第1接合部71における溶接深さは、第2接合部72における溶接深さよりも大きいことが好ましいが、必ずしもこれに限られず、例えば、第1接合部71及び第2接合部72の溶接深さが同等であってもよい。 In this embodiment as well, as shown in FIG. 15, the welding depth at the first joint 71 is preferably greater than the welding depth at the second joint 72, but is not necessarily limited to this. The welding depths of the first joint portion 71 and the second joint portion 72 may be the same.
 上記した第3実施形態の固体酸化物形燃料電池100によれば、以下の効果を得ることができる。 According to the solid oxide fuel cell 100 of the third embodiment described above, the following effects can be obtained.
 固体酸化物形燃料電池100は、金属フレーム3が、第1接合部71及び第2接合部72との間に開口部34を有している。これにより、充填材が第1接合部71と第2接合部72との間に充填されたことを開口部34から確認することができ、充填部241への充填をより確実にすることができる。即ち、金属支持層24の側面からのガスリークをより防止することができる。 In the solid oxide fuel cell 100, the metal frame 3 has an opening 34 between the first joint 71 and the second joint 72. Thereby, it can be confirmed from the opening 34 that the filler is filled between the first joint part 71 and the second joint part 72, and the filling part 241 can be filled more reliably. . That is, gas leakage from the side surfaces of the metal support layer 24 can be further prevented.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 Although the embodiments of the present invention have been described above, the above embodiments merely show a part of the application examples of the present invention, and are not intended to limit the technical scope of the present invention to the specific configurations of the above embodiments. do not have.
 上記した各実施形態は、それぞれ単独の実施形態として説明したが、適宜組み合わせてもよい。 Although each of the embodiments described above has been described as a single embodiment, they may be combined as appropriate.

Claims (11)

  1.  第1電極層と、前記第1電極層上に積層された固体電解質層と、前記固体電解質層上に積層された第2電極層と、前記第1電極層を支持する多孔質金属支持層とからなる発電セルが複数積層された固体酸化物形燃料電池であって、
     前記多孔質金属支持層の下に設けられた金属フレームを備え、
     前記多孔質金属支持層は、充填材により空孔が充填されている領域である充填部を当該多孔質金属支持層の外周部に有し、
     前記金属フレームは、接合部を介して前記多孔質金属支持層の前記充填部に接合され、
     前記接合部は、前記多孔質金属支持層の外周部に沿うように形成される第1接合部と、前記第1接合部よりも外周側に、前記第1接合部と間隔を置いて配置された第2接合部とを含む、
     固体酸化物形燃料電池。
    a first electrode layer, a solid electrolyte layer laminated on the first electrode layer, a second electrode layer laminated on the solid electrolyte layer, and a porous metal support layer supporting the first electrode layer. A solid oxide fuel cell in which a plurality of power generation cells are stacked,
    a metal frame provided under the porous metal support layer;
    The porous metal support layer has a filling part, which is a region in which pores are filled with a filler, on the outer periphery of the porous metal support layer,
    The metal frame is joined to the filling part of the porous metal support layer via a joint part,
    The bonding portion includes a first bonding portion formed along the outer periphery of the porous metal support layer, and a first bonding portion disposed on the outer circumferential side of the first bonding portion and spaced apart from the first bonding portion. a second joint,
    Solid oxide fuel cell.
  2.  請求項1に記載の固体酸化物形燃料電池であって、
     前記金属フレームは、前記第1接合部及び前記第2接合部において前記多孔質金属支持層に溶接され、
     前記第1接合部における溶接深さは、前記第2接合部における溶接深さよりも大きい、
     固体酸化物形燃料電池。
    The solid oxide fuel cell according to claim 1,
    the metal frame is welded to the porous metal support layer at the first joint and the second joint;
    the welding depth at the first joint is greater than the welding depth at the second joint;
    Solid oxide fuel cell.
  3.  請求項1または2に記載の固体酸化物形燃料電池であって、
     前記第1接合部は、積層方向視で、一つの環状になる第1環状線上に配置され、
     前記第2接合部は、前記第1環状線よりも外周に位置する環状線である第2環状線上に配置される、
     固体酸化物形燃料電池。
    The solid oxide fuel cell according to claim 1 or 2,
    The first joint portion is arranged on a first annular line forming one annular shape when viewed in the stacking direction,
    The second joint portion is arranged on a second annular line that is an annular line located on an outer periphery of the first annular line.
    Solid oxide fuel cell.
  4.  請求項3に記載の固体酸化物形燃料電池であって、
     前記第1接合部は、前記第1環状線上に全周に渡って連続して設けられ、
     前記第2接合部は、前記第2環状線上に全周に渡って連続して設けられる、
     固体酸化物形燃料電池。
    The solid oxide fuel cell according to claim 3,
    The first joint portion is provided continuously over the entire circumference on the first annular line,
    The second joint portion is provided continuously over the entire circumference on the second annular line,
    Solid oxide fuel cell.
  5.  請求項3に記載の固体酸化物形燃料電池であって、
     前記第2接合部は、前記第2環状線上において、間隔を置いた点線状に配置される、
     固体酸化物形燃料電池。
    The solid oxide fuel cell according to claim 3,
    The second joint portions are arranged in dotted lines at intervals on the second annular line,
    Solid oxide fuel cell.
  6.  請求項3に記載の固体酸化物形燃料電池であって、
     前記第2接合部は、前記第2環状線上において、間隔を置いて複数配置されるとともに、前記第1環状線に対し垂直な方向に延びるように設けられる、
     固体酸化物形燃料電池。
    The solid oxide fuel cell according to claim 3,
    A plurality of the second joints are arranged at intervals on the second annular line, and are provided so as to extend in a direction perpendicular to the first annular line.
    Solid oxide fuel cell.
  7.  請求項3に記載の固体酸化物形燃料電池であって、
     前記第1接合部は、前記第1環状線上において、間隔を置いた点線状に配置される、
     固体酸化物形燃料電池。
    The solid oxide fuel cell according to claim 3,
    The first joint portions are arranged in dotted lines at intervals on the first annular line,
    Solid oxide fuel cell.
  8.  請求項3に記載の固体酸化物形燃料電池であって、
     前記第2接合部は、前記第2環状線上において、間隔を置いた点線状に配置され、
     前記第1接合部は、前記第1環状線上において、間隔を置いた点線状に配置され、
     前記第1接合部と、前記第2接合部とは、積層方向視で、千鳥状に配置される、
     固体酸化物形燃料電池。
    The solid oxide fuel cell according to claim 3,
    The second joint portion is arranged in a dotted line shape at intervals on the second annular line,
    The first joint portions are arranged in dotted lines at intervals on the first annular line,
    The first joint portion and the second joint portion are arranged in a staggered manner when viewed in the stacking direction.
    Solid oxide fuel cell.
  9.  請求項3に記載の固体酸化物形燃料電池であって、
     前記第1接合部は、前記第1環状線上において、角部が不連続になるように配置される、
     固体酸化物形燃料電池。
    The solid oxide fuel cell according to claim 3,
    The first joint portion is arranged such that the corner portion is discontinuous on the first annular line.
    Solid oxide fuel cell.
  10.  請求項1または2に記載の固体酸化物形燃料電池であって、
     前記金属フレームは、前記第1接合部と前記第2接合部との間に開口部を有している、
     固体酸化物形燃料電池。
    The solid oxide fuel cell according to claim 1 or 2,
    The metal frame has an opening between the first joint part and the second joint part,
    Solid oxide fuel cell.
  11.  請求項1または2に記載の固体酸化物形燃料電池であって、
     前記充填材の線膨張係数は、前記多孔質金属支持層を構成する多孔質金属材料の線膨張係数よりも小さい、
     固体酸化物形燃料電池。
    The solid oxide fuel cell according to claim 1 or 2,
    The coefficient of linear expansion of the filler is smaller than the coefficient of linear expansion of the porous metal material constituting the porous metal support layer.
    Solid oxide fuel cell.
PCT/JP2022/025857 2022-06-28 2022-06-28 Solid oxide fuel battery WO2024004062A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025857 WO2024004062A1 (en) 2022-06-28 2022-06-28 Solid oxide fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025857 WO2024004062A1 (en) 2022-06-28 2022-06-28 Solid oxide fuel battery

Publications (1)

Publication Number Publication Date
WO2024004062A1 true WO2024004062A1 (en) 2024-01-04

Family

ID=89382281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025857 WO2024004062A1 (en) 2022-06-28 2022-06-28 Solid oxide fuel battery

Country Status (1)

Country Link
WO (1) WO2024004062A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159428A (en) * 2006-12-25 2008-07-10 Nissan Motor Co Ltd Porous structure, and solid oxide fuel cell and fuel cell stack using the same
JP2009146882A (en) * 2007-10-05 2009-07-02 Topsoee Fuel Cell As Seal for fuel cell support
JP2011518416A (en) * 2008-04-18 2011-06-23 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Integrated seal for high temperature electrochemical devices
JP2016207630A (en) * 2015-04-24 2016-12-08 株式会社村田製作所 Metal support solid oxide fuel cell and manufacturing method therefor
JP2020181763A (en) * 2019-04-26 2020-11-05 日産自動車株式会社 Forming method of metal support cell conjugate, and metal support cell conjugate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159428A (en) * 2006-12-25 2008-07-10 Nissan Motor Co Ltd Porous structure, and solid oxide fuel cell and fuel cell stack using the same
JP2009146882A (en) * 2007-10-05 2009-07-02 Topsoee Fuel Cell As Seal for fuel cell support
JP2011518416A (en) * 2008-04-18 2011-06-23 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Integrated seal for high temperature electrochemical devices
JP2016207630A (en) * 2015-04-24 2016-12-08 株式会社村田製作所 Metal support solid oxide fuel cell and manufacturing method therefor
JP2020181763A (en) * 2019-04-26 2020-11-05 日産自動車株式会社 Forming method of metal support cell conjugate, and metal support cell conjugate

Similar Documents

Publication Publication Date Title
JP5679893B2 (en) Solid oxide fuel cell and method for producing the same
JP5198797B2 (en) Solid electrolyte fuel cell
JP2008066264A (en) Laminating property improving structure of metal separator for fuel cell stack
JP6020413B2 (en) Terminal plate and fuel cell for fuel cell
JP6147606B2 (en) Solid oxide fuel cell stack
JP5198799B2 (en) Solid electrolyte fuel cell
JP2021527298A (en) Solid oxide fuel cell stack with low leakage unit cells
JP2002015751A (en) Fuel cell and its separator
JP4883733B1 (en) Fuel cell structure
WO2024004062A1 (en) Solid oxide fuel battery
JP5835991B2 (en) Fuel cell
JP2011222393A (en) Fuel cell
KR101180844B1 (en) Contact arrangement and method for assembling a fuel cell stack from at least one contact arrangement
JP5705636B2 (en) Solid oxide fuel cell
JP4470474B2 (en) Solid oxide fuel cell
JP2014038758A (en) Fuel cell and fuel cell stack
JP7031379B2 (en) Fuel cell stack
JP6452516B2 (en) Separator for solid oxide fuel cell and solid oxide fuel cell
JP6452766B1 (en) Manifold and cell stack device
CN109478660B (en) Fuel cell
JP6637939B2 (en) Fuel cell and cell stack device
JP2005174716A (en) Solid electrolyte fuel cell
JP5338512B2 (en) Gasket for fuel cell, laminated member for fuel cell, and fuel cell
JP2008004427A (en) Fuel cell
JP5650019B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949338

Country of ref document: EP

Kind code of ref document: A1