JP2018053271A - Martensitic free cutting stainless steel excellent in rolling contact fatigue life characteristics - Google Patents

Martensitic free cutting stainless steel excellent in rolling contact fatigue life characteristics Download PDF

Info

Publication number
JP2018053271A
JP2018053271A JP2016186516A JP2016186516A JP2018053271A JP 2018053271 A JP2018053271 A JP 2018053271A JP 2016186516 A JP2016186516 A JP 2016186516A JP 2016186516 A JP2016186516 A JP 2016186516A JP 2018053271 A JP2018053271 A JP 2018053271A
Authority
JP
Japan
Prior art keywords
stainless steel
fatigue life
life characteristics
martensitic
rolling contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016186516A
Other languages
Japanese (ja)
Other versions
JP6849360B2 (en
Inventor
真理 妙瀬田
Mari Myoseda
真理 妙瀬田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2016186516A priority Critical patent/JP6849360B2/en
Publication of JP2018053271A publication Critical patent/JP2018053271A/en
Application granted granted Critical
Publication of JP6849360B2 publication Critical patent/JP6849360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a martensitic free cutting stainless steel suitable for a member such a sliding member and a bearing to which rolling contact fatigue life characteristics and corrosion resistance is required, in particular, a member which undergoes cutting work, the martensitic free cutting stainless steel being excellent in rolling contact fatigue life characteristics and corrosion resistance.SOLUTION: The martensitic free cutting stainless steel excellent in rolling contact fatigue life characteristics is provided, containing, by mass%, C:0.50 to 1.20%, Si:0.10 to 0.60%, Mn:0.01 to 0.40%, P:≤0.040%, S:0.09 to 0.20%, Cr:9.00 to 17.00% and the balance Fee with inevitable impurities, having a relationship of Mn/S≤2.5, and further having 50 to 250 pieces of sulfide with major axis of 20 μm or more per 1 mmdispersed in a surface forming a rolling surface.SELECTED DRAWING: None

Description

本願は、摺動部品や軸受等において転動疲労寿命特性と耐食性が要求される部材で、特に切削加工を受ける部材へ用いられる転動疲労寿命特性に優れたマルテンサイト系快削ステンレス鋼に関する。   The present application relates to a martensitic free-cutting stainless steel that is excellent in rolling fatigue life characteristics and is used for members that require rolling fatigue life characteristics and corrosion resistance in sliding parts, bearings, and the like, and is particularly used for members subjected to cutting.

従来、転動疲労寿命特性と耐食性が求められる部材にはSUS440C等の高硬度マルテンサイト系ステンレス鋼が用いられてきた。SUS440C等の高硬度マルテンサイト系ステンレス鋼は被削性に乏しく、焼入焼戻し処理を行っていない状態であっても微細な穴加工等が困難である。そこで、被削性向上のために快削元素であるSを添加したマルテンサイト系快削ステンレス鋼であるSUS440FがJIS G4303に登録されている。SUS440Fは、快削元素であるSを添加することでステンレス鋼中にMnSを分散させており、切削加工時にMnSが応力集中源となり、亀裂の発生と伝播を助けることで被削性が向上する。しかし、このMnSは耐食性が悪く、被削性を向上させるためにステンレス鋼中のMnS分散量を増加させると、耐食性が悪化してしまうこととなる。
Conventionally, high hardness martensitic stainless steels such as SUS440C have been used for members that require rolling fatigue life characteristics and corrosion resistance. High-hardness martensitic stainless steel such as SUS440C has poor machinability, and fine hole machining is difficult even if it is not subjected to quenching and tempering. Therefore, SUS440F, which is a martensitic free-cutting stainless steel to which S, which is a free-cutting element, is added to improve machinability, is registered in JIS G4303. In SUS440F, M, which is a free-cutting element, is added to disperse MnS in stainless steel. MnS becomes a stress concentration source at the time of cutting, and the machinability is improved by assisting the generation and propagation of cracks. . However, this MnS has poor corrosion resistance, and if the amount of MnS dispersion in stainless steel is increased in order to improve machinability, the corrosion resistance will deteriorate.

これに対して、快削元素であるSの添加を行わずにマルテンサイト系ステンレス鋼中の共晶炭化物の98%をCr236に制御し、その共晶炭化物の長径を30μm以下、円相当直径を0.3〜1.6μm、面積率を2〜7%に制御することで耐食性を悪化させずに被削性を改善させたマルテンサイト系ステンレス鋼が提案されている(例えば、特許文献1参照。)。しかし、炭化物形態を制御するためには、特別な工程追加が必要となるため、コスト増を招き、さらに、ドリル寿命性については考慮されておらず、生産性が低い。 On the other hand, 98% of the eutectic carbide in the martensitic stainless steel is controlled to Cr 23 C 6 without adding S which is a free-cutting element, the major axis of the eutectic carbide is 30 μm or less, There has been proposed a martensitic stainless steel having improved machinability without deterioration of corrosion resistance by controlling the equivalent diameter to 0.3 to 1.6 μm and the area ratio to 2 to 7% (for example, patents) Reference 1). However, in order to control a carbide | carbonized_material form, since a special process addition is required, it causes a cost increase, Furthermore, it is not considered about drill lifetime, and productivity is low.

また、Cr、Mn、Sの含有量を制御し、硫化物を高耐食化させることで、耐食性と被削性を両立させたマルテンサイト系ステンレス鋼が提案されている(例えば、特許文献2参照。)。しかしながら、この提案では、硫化物の分散状態については言及されておらず、転動疲労寿命特性は考慮されていない。   In addition, martensitic stainless steel that has both corrosion resistance and machinability by controlling the content of Cr, Mn, and S and making sulfides highly resistant to corrosion has been proposed (see, for example, Patent Document 2). .) However, this proposal does not mention the state of dispersion of sulfides and does not consider rolling fatigue life characteristics.

特開2004−92742号公報JP 2004-92742 A 特開2013−104075号公報JP 2013-104075 A

本願が解決しようとする課題は、転動疲労寿命特性に優れたマルテンサイト系快削ステンレス鋼を提供することである。   The problem to be solved by the present application is to provide a martensitic free-cutting stainless steel excellent in rolling fatigue life characteristics.

上記の課題を解決するための本発明の手段は、第1の手段では、質量%で、C:0.50〜1.20%、Si:0.10〜0.60%、Mn:0.01〜0.40%、P:≦0.040%、S:0.09〜0.20%、Cr:9.00〜17.00%を含有し、残部がFeおよび不可避不純物からなる鋼であり、かつ、上記におけるMnとSはMn/S≦2.5の関係を有し、さらに、転動面を形成する表面には長径20μm以上の硫化物が1mm2当り50〜250個分散していることを特徴とする転動疲労寿命特性に優れたマルテンサイト系快削ステンレス鋼である。 The means of the present invention for solving the above-mentioned problems is, in the first means, in mass%, C: 0.50 to 1.20%, Si: 0.10 to 0.60%, Mn: 0.00. A steel containing 01 to 0.40%, P: ≤0.040%, S: 0.09 to 0.20%, Cr: 9.00 to 17.00%, the balance being Fe and inevitable impurities In addition, Mn and S in the above have a relationship of Mn / S ≦ 2.5, and 50 to 250 sulfides having a major axis of 20 μm or more are dispersed on 1 mm 2 on the surface forming the rolling surface. It is a martensitic free-cutting stainless steel with excellent rolling fatigue life characteristics.

第2の手段では、第1の手段の化学成分に加えて、質量%で、Ni:0.01〜1.00%、Mo:0.01〜1.00%、Cu:0.01〜1.00%のいずれか1種若しくは2種以上を含有し、残部がFeおよび不可避不純物からなる鋼であり、かつ、上記におけるMnとSはMn/S≦2.5の関係を有し、さらに、転動面を形成する表面には長径20μm以上の硫化物が1mm2当り50〜250個分散していることを特徴とする転動疲労寿命特性に優れたマルテンサイト系快削ステンレス鋼である。 In the second means, in addition to the chemical components of the first means, in mass%, Ni: 0.01 to 1.00%, Mo: 0.01 to 1.00%, Cu: 0.01 to 1 0.001% of any one or two or more types of steel, the balance being Fe and inevitable impurities, and Mn and S in the above has a relationship of Mn / S ≦ 2.5, A martensitic free-cutting stainless steel excellent in rolling fatigue life characteristics, characterized in that 50 to 250 sulfides having a major axis of 20 μm or more are dispersed per mm 2 on the surface forming the rolling surface. .

第3の手段では、第1の手段の化学成分または第2の手段の化学成分に加えて、質量%で、Ca:0.001〜0.010%、Mg:0.001〜0.010%のいずれか1種若しくは2種を含有し、残部がFeおよび不可避不純物からなる鋼であり、かつ、上記におけるMnとSはMn/S≦2.5の関係を有し、さらに、転動面を形成する表面には長径20μm以上の硫化物が1mm2当り50〜250個分散していることを特徴とする転動疲労寿命特性に優れたマルテンサイト系快削ステンレス鋼である。 In the third means, in addition to the chemical component of the first means or the chemical component of the second means, by mass%, Ca: 0.001 to 0.010%, Mg: 0.001 to 0.010% Any one or two of the above, with the balance being Fe and inevitable impurities, and Mn and S in the above have a relationship of Mn / S ≦ 2.5, Is a martensitic free-cutting stainless steel excellent in rolling fatigue life characteristics, characterized in that 50 to 250 sulfides having a major axis of 20 μm or more are dispersed per 1 mm 2 on the surface of the surface.

上記の手段とすることで、摺動部材や軸受等において転動疲労寿命特性と耐食性が要求され、特に切削加工を受ける部材に好適で、転動疲労寿命特性と耐食性に優れたマルテンサイト系快削ステンレス鋼を提供することができる。   By adopting the above-mentioned means, rolling fatigue life characteristics and corrosion resistance are required for sliding members and bearings, etc., which are particularly suitable for members subjected to cutting work, and martensite-based freezing excellent in rolling fatigue life characteristics and corrosion resistance. Sharpened stainless steel can be provided.

発明を実施するための形態の説明に先立って、本願の各請求項における化学成分の限定理由、および、転動面を形成する表面に存在する長径20μm以上の硫化物個数の限定理由について説明する。   Prior to the description of the mode for carrying out the invention, the reason for limiting the chemical components in each claim of the present application and the reason for limiting the number of sulfides having a major axis of 20 μm or more existing on the surface forming the rolling surface will be described. .

C:0.50〜1.20%
Cは、強度を付与し、転動疲労寿命特性を確保するために必要な元素である。そのためには、Cは0.50%以上とする必要がある。しかしながら、Cは1.20%を超えて含有させると被削性が低下する。そこで、Cは0.50〜1.20%とする。
C: 0.50 to 1.20%
C is an element necessary for imparting strength and ensuring rolling fatigue life characteristics. For that purpose, C needs to be 0.50% or more. However, if C is contained in excess of 1.20%, the machinability is lowered. Therefore, C is set to 0.50 to 1.20%.

Si:0.10〜0.60%
Siは、脱酸元素であり、その効果を得るにはSiは0.10%以上を必要とする。しかしながら、Siが0.60%より多いと、素材硬さが上昇し、靱性が低下する。そこで、Siは0.10〜0.60%とする。
Si: 0.10 to 0.60%
Si is a deoxidizing element. In order to obtain the effect, Si needs to be 0.10% or more. However, when Si is more than 0.60%, the material hardness increases and the toughness decreases. Therefore, Si is set to 0.10 to 0.60%.

Mn:0.01〜0.40%
Mnは、Siと同様に脱酸元素であり、その効果を得るには、0.10%以上を必要とする。しかしながら、Mnが0.40%より多いと、耐食性が低下する。そこで、Mnは0.01〜0.40%とする。
Mn: 0.01-0.40%
Mn is a deoxidizing element like Si, and 0.10% or more is required to obtain the effect. However, if Mn is more than 0.40%, the corrosion resistance decreases. Therefore, Mn is set to 0.01 to 0.40%.

P:≦0.040%
Pは、不純物元素であり、0.040%より多いと熱間加工性を低下させる。そこで、Pは0.040%以下とする。
P: ≦ 0.040%
P is an impurity element, and when it exceeds 0.040%, hot workability is reduced. Therefore, P is set to 0.040% or less.

S:0.09〜0.20%
Sは、ステンレス鋼の被削性を確保するために必要な元素である。そのためには、Sは0.09%以上とする。しかしながら、Sを0.20%を超えて含有させると熱間加工性が低下する。そこで、Sは0.09〜0.20%とする。
S: 0.09 to 0.20%
S is an element necessary for ensuring the machinability of stainless steel. For that purpose, S is made 0.09% or more. However, when S is contained exceeding 0.20%, hot workability deteriorates. Therefore, S is set to 0.09 to 0.20%.

Cr:9.00〜17.00%
Crは、ステンレス鋼の耐食性を確保するために必要な元素である。そのためには、Crは9.00%以上とする。しかしながら、Crを17.00%を超えて含有させると靱性が低下する。そこで、Crは9.00〜17.00%とする。
Cr: 9.00 to 17.00%
Cr is an element necessary for ensuring the corrosion resistance of stainless steel. For that purpose, Cr is made 9.00% or more. However, when Cr is contained exceeding 17.00%, the toughness is lowered. Therefore, Cr is set to 9.00 to 17.00%.

Mn/S≦2.5
MnとSはステンレス鋼中において、硫化物であるMnSを形成し、被削性を改善させる。またCr濃度の高いステンレス鋼中においては、一部のMnがCrと入れ替わり、(Mn,Cr)Sを形成する。この(Mn,Cr)SはMnSと比較して、一般に耐食性が良好である。しかし、硫化物中のMn濃度が高まるに伴って硫化物中のCr濃度が低くなり、それを含有するステンレス鋼の耐食性が悪化することとなる。この耐食性の悪化を回避するためには、鋼中のMnとSの濃度比を制限する必要がある。そこで鋼中のMnとSの質量比はMn/S≦2.5を満足するものとする。
Mn / S ≦ 2.5
Mn and S form a sulfide MnS in stainless steel and improve machinability. In stainless steel having a high Cr concentration, a part of Mn is replaced with Cr to form (Mn, Cr) S. This (Mn, Cr) S generally has better corrosion resistance than MnS. However, as the Mn concentration in the sulfide increases, the Cr concentration in the sulfide decreases, and the corrosion resistance of the stainless steel containing it decreases. In order to avoid this deterioration of corrosion resistance, it is necessary to limit the concentration ratio of Mn and S in the steel. Therefore, the mass ratio of Mn and S in the steel satisfies Mn / S ≦ 2.5.

転動面を形成する表面に存在する長径20μm以上の硫化物の個数:1mm2当り50〜250個
転動疲労環境下ではステンレス鋼と硫化物の界面が応力緩和位置として作用することで、転動疲労による亀裂を生じ難くさせ、また、転動疲労により発生した亀裂が延伸した硫化物と交差する際に硫化物が亀裂先端を鈍化させることで剥離を生じ難くさせるために転動疲労特性は向上する。そのためには、転動面を形成する表面に該硫化物を1mm2当り50個以上分散させる必要がある。しかしながら、該硫化物を1mm2当り250個を超えて分散させると熱間加工性が低下する。以上が第1の手段の構成要件である。
Number of sulfides with a major axis of 20 μm or more present on the surface forming the rolling surface: 50 to 250 per 1 mm 2 In the rolling fatigue environment, the interface between stainless steel and sulfide acts as a stress relaxation position. In order to make it difficult for cracks due to dynamic fatigue to occur, and for cracks caused by rolling fatigue to cross the stretched sulfide, sulfides blunt the crack tip, making rolling fatigue characteristics less likely to occur. improves. For this purpose, it is necessary to disperse 50 or more sulfides per 1 mm 2 on the surface forming the rolling contact surface. However, when more than 250 sulfides are dispersed per 1 mm 2 , hot workability is lowered. The above is the configuration requirement of the first means.

Ni:0.01〜1.00%、Mo:0.01〜1.00%、Cu:0.01〜1.00%のいずれか1種若しくは2種以上を含有
Ni、Mo、Cuはそれぞれ耐食性を向上させる元素であり、このためにはNi、Mo、Cuのいずれか1種若しくは2種以上を0.01%以上添加させる必要がある。しかしながらこれらの元素において、Niを1.00%を超えて含有させると被削性が低下し、Moを1.00%を超えて含有させると、靱性が低下し、Cuを1.00%を超えて含有させると熱間加工性が低下する。そこで、Niは0.01〜1.00%、Moは0.01〜1.00%、Cuは0.01〜1.00%のいずれか1種若しくは2種以上の含有とする。以上が第1の手段の構成要件に加えて第2の手段とすべき構成要件である。
Ni: 0.01 to 1.00%, Mo: 0.01 to 1.00%, Cu: 0.01 to 1.00% containing one or more kinds Ni, Mo and Cu are each It is an element that improves corrosion resistance. To this end, it is necessary to add 0.01% or more of any one or more of Ni, Mo, and Cu. However, in these elements, if Ni is contained in excess of 1.00%, the machinability is lowered, and if Mo is contained in excess of 1.00%, the toughness is reduced and Cu is reduced to 1.00%. If it is contained in excess, hot workability is lowered. Therefore, Ni is contained in an amount of 0.01 to 1.00%, Mo is contained in an amount of 0.01 to 1.00%, and Cu is contained in an amount of one or more of 0.01 to 1.00%. The above is the configuration requirements for the second means in addition to the configuration requirements for the first means.

Ca:0.001〜0.010%、Mg:0.001〜0.010%のいずれか1種若しくは2種を含有
Ca、Mgはそれぞれ熱間加工性を向上させる元素である。このためには、CaとMgのいずれか1種若しくは2種を0.001%以上含有させる必要がある。しかしながら、これらの元素において、0.010%を超えて含有させても熱間加工性を向上させる効果は飽和する。そこで、Caは0.001〜0.010%、Mgは0.001〜0.010%のいずれか1種若しくは2種の含有とする。以上が第1の手段の構成要件に加えて第3の手段とすべき構成要件である。
Ca: 0.001 to 0.010%, Mg: 0.001 to 0.010% Any one or two of Ca and Mg are elements that improve hot workability. For this purpose, it is necessary to contain 0.001% or more of any one or two of Ca and Mg. However, even if these elements are contained in an amount exceeding 0.010%, the effect of improving hot workability is saturated. Therefore, the content of Ca is 0.001 to 0.010%, and Mg is 0.001 to 0.010%. The above is the configuration requirements to be the third means in addition to the configuration requirements of the first means.

ここで、発明を実施するための形態について説明する。表1に記載の化学成分値からなる発明鋼と比較鋼を100kg真空誘導溶解炉で溶製し、鋳造してそれぞれの鋼とした。   Here, the form for inventing is demonstrated. Invention steels and comparative steels having the chemical composition values shown in Table 1 were melted in a 100 kg vacuum induction melting furnace and cast into respective steels.

Figure 2018053271
Figure 2018053271

(1)得られた鋼を1150℃に加熱し、60mm幅×12mm厚さに減面率94%で鍛伸し、次いで、この鍛伸材を1030℃から油冷により焼入れし、150℃で焼戻し空冷した。これを、外形60mm、内径20mm、厚さ5.8mmのスラスト型寿命試験片に加工し、試験面をラップ加工により、Ra≦0.03μmの表面粗さに仕上げた。   (1) The obtained steel is heated to 1150 ° C., forged to a width of 60 mm × 12 mm with a reduction in area of 94%, and then this forged material is quenched from 1030 ° C. by oil cooling, at 150 ° C. Tempered and air cooled. This was processed into a thrust type life test piece having an outer diameter of 60 mm, an inner diameter of 20 mm, and a thickness of 5.8 mm, and the test surface was finished to a surface roughness of Ra ≦ 0.03 μm by lapping.

(1’)表1の開発鋼のNo.8から得られた鋼を1150℃に加熱し、80mm幅×50mm厚さに減面率65%で鍛伸し、次いで、この鍛伸材を1030℃〜油冷により焼入れし150℃で焼戻し空冷した。これを、外形60mm、内径20mm、厚さ5.8mmのスラスト型転動疲労試験片に加工し、試験面をラップ加工によりRa≦0.03μmの表面仕上げ粗さに仕上げた。これからなる試験片を比較鋼のNo.8’として表1および表2に示す。   (1 ') No. of developed steel in Table 1. The steel obtained from No. 8 was heated to 1150 ° C., forged to 80 mm width × 50 mm thickness with a reduction in area of 65%, and then this forged material was quenched from 1030 ° C. to oil cooling and tempered by air cooling at 150 ° C. did. This was processed into a thrust type rolling fatigue test piece having an outer diameter of 60 mm, an inner diameter of 20 mm, and a thickness of 5.8 mm, and the test surface was finished to a surface finish roughness of Ra ≦ 0.03 μm by lapping. The test piece made of this was used as a comparative steel No. It is shown in Table 1 and Table 2 as 8 '.

(2)得られた鋼を1150℃に加熱し、80mm幅×50mm厚さに鍛伸し、次いで、この鍛伸材を870℃で焼なまして徐冷した。これを80mm幅×50mm厚さ×100mm長さのドリル寿命試験片に加工した。   (2) The obtained steel was heated to 1150 ° C. and forged to 80 mm width × 50 mm thickness, and then this forged material was annealed at 870 ° C. and gradually cooled. This was processed into a drill life test piece of 80 mm width × 50 mm thickness × 100 mm length.

(3)得られた鋼を1150℃に加熱し、20mm径の棒鋼に鍛伸し、次いで、この鍛伸材を1030℃から油冷により焼入れし、150℃で焼戻し空冷した。これを径12mm×21mm長さの腐食試験片に加工した。   (3) The obtained steel was heated to 1150 ° C. and forged into a steel bar having a diameter of 20 mm, and then this forged material was quenched from 1030 ° C. by oil cooling and tempered and air cooled at 150 ° C. This was processed into a corrosion test piece having a diameter of 12 mm × 21 mm.

上記で作製したスラスト型転動疲労試験片に対し、最大接触面圧5.3GPaでスラスト型転動疲労試験機を用いて、剥離までの転動疲労寿命の測定を行い、L10寿命を測定した。L10寿命が6.0×106サイクル以上を○、6.0×106サイクル未満を×として、転動疲労寿命特性を評価した。なお、108サイクルで剥離が生じない場合には、剥離なしとして108サイクルで試験を終えた。 Using the thrust type rolling fatigue tester with the maximum contact surface pressure of 5.3 GPa, measure the rolling fatigue life until delamination and measure the L 10 life for the thrust type rolling fatigue test piece produced above. did. The rolling fatigue life characteristics were evaluated by assuming that the L 10 life was 6.0 × 10 6 cycles or more and ○ and less than 6.0 × 10 6 cycles. The release in 10 8 cycles if not occur, finished test at 108 cycles as no delamination.

ドリル寿命試験は材種SKH50、ドリル径5mmのドリルを用い、周速1911rpm、送り0.1mm/revで、穿孔深さ15mm、止まり穴のドリル穿孔を乾式にて行い、ドリルが折損するまでの穴数を求めた。ドリル寿命が30穴以上を○とし、30穴未満を×として被削性を評価した。なお、100穴でドリルの折損が生じない場合には、100穴で試験を終えた。   The drill life test uses a drill with a grade of SKH50 and a drill diameter of 5 mm, a peripheral speed of 1911 rpm, a feed of 0.1 mm / rev, a drilling depth of 15 mm, and a blind hole is drilled in a dry manner until the drill breaks. The number of holes was determined. The machinability was evaluated with a drill life of 30 holes or more as ◯ and less than 30 holes as x. In addition, when the breakage of the drill did not occur with 100 holes, the test was completed with 100 holes.

耐食性は、相対湿度90%の雰囲気下にて、腐食試験片を20℃の1.5時間保持と、50℃の4.5時間保持を20サイクル繰り返し、腐食試験片の発銹状況を調査し、発銹なしのものを○、発銹ありのものを×として耐食性を評価した。以上の試験結果を表2に示す。   Corrosion resistance is determined by investigating the corrosion state of the corrosion test piece by repeating 20 cycles of holding the corrosion test piece at 20 ° C for 1.5 hours and holding at 50 ° C for 4.5 hours in an atmosphere with a relative humidity of 90%. The corrosion resistance was evaluated with ◯ indicating no wrinkling and × indicating wrinkling. The test results are shown in Table 2.

Figure 2018053271
Figure 2018053271

Claims (3)

質量%で、C:0.50〜1.20%、Si:0.10〜0.60%、Mn:0.01〜0.40%、P:≦0.040%、S:0.09〜0.20%、Cr:9.00〜17.00%を含有し、残部がFeおよび不可避不純物からなる鋼であり、かつ、上記におけるMnとSはMn/S≦2.5の関係を有し、さらに、転動面を形成する表面には長径20μm以上の硫化物が1mm2当り50〜250個分散していることを特徴とする転動疲労寿命特性に優れたマルテンサイト系快削ステンレス鋼。 In mass%, C: 0.50-1.20%, Si: 0.10-0.60%, Mn: 0.01-0.40%, P: ≦ 0.040%, S: 0.09 -0.20%, Cr: 9.00-17.00% is contained, the balance is steel composed of Fe and inevitable impurities, and Mn and S in the above have a relationship of Mn / S≤2.5 Furthermore, martensitic free cutting excellent in rolling fatigue life characteristics characterized in that 50 to 250 sulfides having a major axis of 20 μm or more are dispersed per 1 mm 2 on the surface forming the rolling surface. Stainless steel. 請求項1の化学成分に加えて、質量%で、Ni:0.01〜1.00%、Mo:0.01〜1.00%、Cu:0.01〜1.00%のいずれか1種若しくは2種以上を含有し、残部がFeおよび不可避不純物からなる鋼であり、かつ、上記におけるMnとSはMn/S≦2.5の関係を有し、さらに、転動面を形成する表面には長径20μm以上の硫化物が1mm2当り50〜250個分散していることを特徴とする転動疲労寿命特性に優れたマルテンサイト系快削ステンレス鋼。 In addition to the chemical component of claim 1, any one of Ni: 0.01 to 1.00%, Mo: 0.01 to 1.00%, Cu: 0.01 to 1.00% in mass%. It is a steel containing seeds or two or more, the balance being Fe and inevitable impurities, and Mn and S in the above have a relationship of Mn / S ≦ 2.5, and further form a rolling surface A martensitic free-cutting stainless steel excellent in rolling fatigue life characteristics, characterized in that 50 to 250 sulfides having a major axis of 20 μm or more are dispersed on the surface per 1 mm 2 . 請求項1の化学成分または請求項2の化学成分に加えて、質量%で、Ca:0.001〜0.010%、Mg:0.001〜0.010%のいずれか1種若しくは2種を含有し、残部がFeおよび不可避不純物からなる鋼であり、かつ、上記におけるMnとSはMn/S≦2.5の関係を有し、さらに、転動面を形成する表面には長径20μm以上の硫化物が1mm2当り50〜250個分散していることを特徴とする転動疲労寿命特性に優れたマルテンサイト系快削ステンレス鋼。 In addition to the chemical component of claim 1 or the chemical component of claim 2, by mass%, any one or two of Ca: 0.001-0.010%, Mg: 0.001-0.010% In which the balance is Fe and inevitable impurities, and Mn and S in the above have a relationship of Mn / S ≦ 2.5, and the surface forming the rolling surface has a major axis of 20 μm. A martensitic free-cutting stainless steel excellent in rolling fatigue life characteristics, characterized in that 50 to 250 of the above sulfides are dispersed per 1 mm 2 .
JP2016186516A 2016-09-26 2016-09-26 Martensitic free-cutting stainless steel with excellent rolling fatigue life characteristics Active JP6849360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016186516A JP6849360B2 (en) 2016-09-26 2016-09-26 Martensitic free-cutting stainless steel with excellent rolling fatigue life characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016186516A JP6849360B2 (en) 2016-09-26 2016-09-26 Martensitic free-cutting stainless steel with excellent rolling fatigue life characteristics

Publications (2)

Publication Number Publication Date
JP2018053271A true JP2018053271A (en) 2018-04-05
JP6849360B2 JP6849360B2 (en) 2021-03-24

Family

ID=61835306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016186516A Active JP6849360B2 (en) 2016-09-26 2016-09-26 Martensitic free-cutting stainless steel with excellent rolling fatigue life characteristics

Country Status (1)

Country Link
JP (1) JP6849360B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111989418A (en) * 2018-06-13 2020-11-24 日铁不锈钢株式会社 Martensitic S free-cutting stainless steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282183A (en) * 1999-03-29 2000-10-10 Daido Steel Co Ltd High hardness steel excellent in machinability and corrosion resistance
JP2001123254A (en) * 1999-10-22 2001-05-08 Sanyo Special Steel Co Ltd Method for producing martensitic corrosion resistant steel free from production of network carbide
JP2013104075A (en) * 2011-11-11 2013-05-30 Sanyo Special Steel Co Ltd Free-cutting stainless steel having diplophase inclusion
JP2015137381A (en) * 2014-01-21 2015-07-30 山陽特殊製鋼株式会社 Stainless steel having excellent machinability, hardness, abrasion resistance and corrosion resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282183A (en) * 1999-03-29 2000-10-10 Daido Steel Co Ltd High hardness steel excellent in machinability and corrosion resistance
JP2001123254A (en) * 1999-10-22 2001-05-08 Sanyo Special Steel Co Ltd Method for producing martensitic corrosion resistant steel free from production of network carbide
JP2013104075A (en) * 2011-11-11 2013-05-30 Sanyo Special Steel Co Ltd Free-cutting stainless steel having diplophase inclusion
JP2015137381A (en) * 2014-01-21 2015-07-30 山陽特殊製鋼株式会社 Stainless steel having excellent machinability, hardness, abrasion resistance and corrosion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111989418A (en) * 2018-06-13 2020-11-24 日铁不锈钢株式会社 Martensitic S free-cutting stainless steel

Also Published As

Publication number Publication date
JP6849360B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
JP5862802B2 (en) Carburizing steel
JP2015096657A (en) Case hardened steel and carburized material
WO2013084800A1 (en) Rolling bearing and method for producing same
JP2013011010A (en) Rolling bearing and method of manufacturing the same
JP6207408B2 (en) Stainless steel with excellent machinability, hardness, wear resistance and corrosion resistance
JP5260032B2 (en) Induction hardened steel excellent in cold workability, rolling member made of the steel, and linear motion device using the rolling member
JP6433341B2 (en) Age-hardening bainite non-tempered steel
JP4847681B2 (en) Ti-containing case-hardened steel
JP5071038B2 (en) Steel for CVJ ball cage
JP5643622B2 (en) Case-hardened steel and machine structural parts using the same
JP6301694B2 (en) Steel material for vacuum carburizing and manufacturing method thereof
JP2015147962A (en) Sleeve dog gear
JP2018053271A (en) Martensitic free cutting stainless steel excellent in rolling contact fatigue life characteristics
JP5141313B2 (en) Steel material with excellent black skin peripheral turning and torsional strength
JP6265048B2 (en) Case-hardened steel
JP2019026881A (en) Steel member
JP6109730B2 (en) Steel material excellent in bending fatigue characteristics after carburizing, manufacturing method thereof and carburized parts
JP6347926B2 (en) Hardened steel for gears with excellent pitting resistance under hydrogen environment
JP2013072104A (en) Steel excellent in toughness and wear resistance
JP6635100B2 (en) Case hardened steel
JP5077814B2 (en) Shaft and manufacturing method thereof
EP1496132A1 (en) Steel for case hardening bearing excellent in toughness and rolling fatigue life in quasi-high temperature region
JP4616148B2 (en) Bearing steel
JP2021028414A (en) Steel for carburized gear, carburized gear, and manufacturing method of carburized gear
JP2008088482A (en) Roller or ball in bearing having excellent rolling fatigue property and crushing strength, and bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210304

R150 Certificate of patent or registration of utility model

Ref document number: 6849360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250