JP6301694B2 - Steel material for vacuum carburizing and manufacturing method thereof - Google Patents

Steel material for vacuum carburizing and manufacturing method thereof Download PDF

Info

Publication number
JP6301694B2
JP6301694B2 JP2014060210A JP2014060210A JP6301694B2 JP 6301694 B2 JP6301694 B2 JP 6301694B2 JP 2014060210 A JP2014060210 A JP 2014060210A JP 2014060210 A JP2014060210 A JP 2014060210A JP 6301694 B2 JP6301694 B2 JP 6301694B2
Authority
JP
Japan
Prior art keywords
less
fatigue strength
steel material
carburizing
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014060210A
Other languages
Japanese (ja)
Other versions
JP2015183227A (en
Inventor
正樹 貝塚
正樹 貝塚
新堂 陽介
陽介 新堂
成朗 岡本
成朗 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014060210A priority Critical patent/JP6301694B2/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to CN201580014824.7A priority patent/CN106103777B/en
Priority to PCT/JP2015/057833 priority patent/WO2015146703A1/en
Priority to CN201710880483.2A priority patent/CN107653420A/en
Priority to KR1020167028788A priority patent/KR101860658B1/en
Priority to MX2016012061A priority patent/MX2016012061A/en
Priority to TW104109189A priority patent/TWI544088B/en
Publication of JP2015183227A publication Critical patent/JP2015183227A/en
Application granted granted Critical
Publication of JP6301694B2 publication Critical patent/JP6301694B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like

Description

本発明は、真空浸炭用鋼材に関し、より詳しくは真空浸炭後の面疲労特性及び曲げ疲労特性に優れた浸炭部品を得るための鋼材に関し、更にその製造方法及び該鋼材を用いた浸炭部品、並びに該部品の製造方法に関する。本発明の鋼材は、自動車や建築機械、その他の各種産業機械に使用される歯車やシャフト類等の素材として有用なものであり、以下では自動車用歯車に適用する場合を例に挙げて説明するが、これに限定する趣旨ではない。   The present invention relates to a steel material for vacuum carburizing, and more particularly to a steel material for obtaining a carburized part excellent in surface fatigue characteristics and bending fatigue characteristics after vacuum carburizing, and further a manufacturing method thereof, a carburized part using the steel material, and The present invention relates to a method for manufacturing the component. The steel material of the present invention is useful as a material for gears and shafts used in automobiles, construction machines, and other various industrial machines, and will be described below by taking an example of application to automobile gears. However, it is not intended to be limited to this.

自動車、建築機械、その他の各種産業機械を取り巻く環境は、省エネルギー化や一層の性能向上が社会的に要請されており、近年、自動車車体の軽量化やエンジン出力の増大への取り組みが益々進められている。このため、自動車や建築機械等に使用される歯車、特に駆動系伝達部に使用されている歯車の使用環境は一層過酷になっており、優れた疲労強度を備えた歯車が要求されている。   The environment surrounding automobiles, construction machinery, and other various industrial machines is demanded by society to save energy and improve performance. In recent years, efforts to reduce the weight of automobile bodies and increase engine output have been increasingly promoted. ing. For this reason, the use environment of the gear used for a motor vehicle, a construction machine, etc., especially the gear used for the drive-train transmission part has become severer, and the gear provided with the outstanding fatigue strength is requested | required.

従来の歯車は、これを作製する歯車用鋼として、クロム鋼であるJIS−SCr420鋼(SCr420H鋼も含む)、あるいはクロムモリブデン鋼であるJIS−SCM420鋼(SCM420H鋼も含む)等の肌焼鋼が採用されている。これらの肌焼鋼は、歯車形状に成形された後、浸炭、焼入れ焼戻し処理(以下では、浸炭、焼入れ、焼戻しを総括して「浸炭処理」と呼ぶことがある)が施され、いわゆる浸炭歯車として用いられる。   Conventional gears are case-hardened steel such as JIS-SCr420 steel (including SCr420H steel) that is chromium steel or JIS-SCM420 steel (including SCM420H steel) that is chromium molybdenum steel. Is adopted. These case-hardened steels are formed into gear shapes and then subjected to carburizing, quenching and tempering treatment (hereinafter, carburizing, quenching and tempering may be collectively referred to as “carburizing treatment”), so-called carburized gears. Used as

しかしながら、上記した従来の歯車においては、次のような問題点が指摘されている。すなわち、近年、自動車や建設機械等に要求されている自動車車体の軽量化やエンジンの高出力要求が益々強くなっていることから、従来鋼を従来の基準で浸炭処理しただけの浸炭歯車では、面疲労強度及び曲げ疲労強度を満足できない状況になりつつある。   However, the following problems have been pointed out in the conventional gear described above. In other words, in recent years, car body gears that are required for automobiles, construction machines, etc., have become more and more demanding for lightweight car bodies and high output of engines. The surface fatigue strength and bending fatigue strength cannot be satisfied.

例えば、特許文献1には、所定の化学組成を満足するとともに、浸炭もしくは浸炭窒化後にショットピーニングが施され、所定の表層部の硬さ及び硬化層深さを有する浸炭部品又は浸炭窒化部品が開示されている。しかし、表層部の軟化特性の向上は十分ではなく、表面付近の硬化技術では、昨今要求されている部品の小型化、高応力負荷に十分対応できる面疲労強度及び曲げ疲労強度を得ることができない。   For example, Patent Document 1 discloses a carburized component or a carbonitrided component that satisfies a predetermined chemical composition, is shot peened after carburizing or carbonitriding, and has a predetermined surface layer hardness and hardened layer depth. Has been. However, the improvement of the softening properties of the surface layer is not sufficient, and the surface hardening technology cannot provide the surface fatigue strength and bending fatigue strength that can sufficiently cope with the downsizing of parts and the high stress load that are required recently. .

また、特許文献2には、所定の化学組成を満足する高強度歯車用肌焼鋼が開示されている。該肌焼鋼には、ガス浸炭、真空浸炭、浸炭窒化、高濃度浸炭(過共析浸炭)などの表面硬化処理や、ショットピーニングを行ってもよい旨が記載されているが、特許文献2の技術では表層部の軟化特性の向上は十分ではないと考えられる。従って、特許文献2の技術によっても昨今要求されている部品の小型化、高応力負荷に十分対応できる面疲労強度及び曲げ疲労強度を得ることができない。   Patent Document 2 discloses a case-hardened steel for high-strength gears that satisfies a predetermined chemical composition. The case-hardened steel describes that surface hardening treatment such as gas carburizing, vacuum carburizing, carbonitriding, high-concentration carburizing (hypereutectoid carburizing), and shot peening may be performed. In this technique, it is considered that the softening property of the surface layer is not sufficiently improved. Therefore, even with the technique of Patent Document 2, it is not possible to obtain the surface fatigue strength and bending fatigue strength that can sufficiently cope with the downsizing of parts and the high stress load that are required recently.

特開2008−261037号公報JP 2008-261037 A 特開2005−163148号公報JP 2005-163148 A

本発明は上記のような課題に鑑みてなされたものであり、その目的は十分な面疲労強度を有する浸炭部品、更には面疲労強度と曲げ疲労強度を有する浸炭部品を得るとともに、該浸炭部品を得るための鋼材を得ることにある。   The present invention has been made in view of the problems as described above, and the object thereof is to obtain a carburized part having sufficient surface fatigue strength, and further to obtain a carburized part having surface fatigue strength and bending fatigue strength, and the carburized part. It is to obtain a steel material for obtaining.

上記課題を達成した本発明は、
C :0.15〜0.35%(質量%の意味。以下、化学成分組成について同じ。)、
Si:0.6〜2.0%、
Mn:0.3〜1.3%、
S :0.020%以下(0%を含まない)、
P :0.015%以下(0%を含まない)、
Cr:0.7〜1.7%、
Mo:0.3〜0.8%、
V :0.10〜0.4%、
Al:0.005〜0.05%、
N :0.004〜0.025%
を含有し、残部が鉄および不可避不純物であって、
バナジウム炭化物の平均円相当径が25nm以下であることを特徴とする真空浸炭用鋼材である。
The present invention that has achieved the above problems
C: 0.15 to 0.35% (meaning mass%, hereinafter the same for chemical composition)
Si: 0.6-2.0%,
Mn: 0.3 to 1.3%
S: 0.020% or less (excluding 0%),
P: 0.015% or less (excluding 0%),
Cr: 0.7 to 1.7%,
Mo: 0.3-0.8%
V: 0.10 to 0.4%,
Al: 0.005 to 0.05%,
N: 0.004 to 0.025%
The balance is iron and inevitable impurities,
It is a steel material for vacuum carburizing characterized in that the average equivalent circle diameter of vanadium carbide is 25 nm or less.

本発明は、更にNb:0.06%以下(0%を含まない)及びTi:0.2%以下(0%を含まない)の1種以上や、B:0.005%以下(0%を含まない)を含有することも好ましい。   The present invention further includes at least one of Nb: 0.06% or less (not including 0%) and Ti: 0.2% or less (not including 0%), or B: 0.005% or less (0% It is also preferable to contain.

本発明は、上記した鋼材の製造方法も包含し、該製造方法とは具体的に、
上記したいずれかに記載の化学成分組成を有する鋼を、
1200℃以上で30〜300分保持して分塊圧延し、
熱間圧延前の加熱温度を950℃以上、加熱保持時間を30分〜5時間として熱間圧延することを特徴とする真空浸炭用鋼材の製造方法である。
The present invention also includes a method for producing the above-described steel material, and specifically, the production method includes:
Steel having the chemical composition described in any of the above,
Hold for 30 to 300 minutes at 1200 ° C. or higher, and perform batch rolling.
A method for producing a steel material for vacuum carburizing, characterized by performing hot rolling at a heating temperature before hot rolling of 950 ° C. or higher and a heating holding time of 30 minutes to 5 hours.

本発明は、上記した真空浸炭用鋼材から得られる浸炭部品も包含し、該浸炭部品とは具体的には、
上記したいずれかに記載の化学成分組成を有し、
表面粒界酸化層深さが3μm以下であり、
400℃で焼戻した時の表面硬さがビッカース硬さで600以上である浸炭部品である。該浸炭部品は面疲労強度に優れている。
The present invention also includes a carburized part obtained from the above steel for vacuum carburizing, and specifically, the carburized part is:
Having any of the chemical component compositions described above,
The surface grain boundary oxide layer depth is 3 μm or less,
It is a carburized part whose surface hardness when tempered at 400 ° C. is 600 or more in terms of Vickers hardness. The carburized parts are excellent in surface fatigue strength.

更に、前記浸炭部品に更にショットピーニングを施した部品も本発明に包含され、該部品は具体的には、
上記したいずれかに記載の化学成分組成を有し、
表面粒界酸化層深さが3μm以下であり、
表面から30μm深さ位置までの残留応力積分値が40MPa・mm以上であり、
400℃で焼戻した時の表面硬さがビッカース硬さで600以上である浸炭部品である。該部品は面疲労強度及び曲げ疲労強度に優れている。
Furthermore, a part obtained by further shot peening the carburized part is also included in the present invention.
Having any of the chemical component compositions described above,
The surface grain boundary oxide layer depth is 3 μm or less,
The residual stress integral value from the surface to the 30 μm depth position is 40 MPa · mm or more,
It is a carburized part whose surface hardness when tempered at 400 ° C. is 600 or more in terms of Vickers hardness. The part is excellent in surface fatigue strength and bending fatigue strength.

本発明は、上記したショットピーニングを施した部品の製造方法も包含し、該製造方法とは具体的に、
上記したいずれかに記載の真空浸炭用鋼材を、真空浸炭、焼入れ焼戻し及びショットピーニングする浸炭部品の製造方法であって、
ショットピーニングの投射材の粒径が0.10〜0.5mmであり、
前記投射材の硬さがビッカース硬さで800〜1000である面疲労強度及び曲げ疲労強度に優れた浸炭部品の製造方法である。
The present invention also includes a method of manufacturing a part subjected to the above-described shot peening, and specifically the manufacturing method,
A steel material for vacuum carburizing according to any one of the above, vacuum carburizing, quenching and tempering and shot peening carburizing parts manufacturing method,
The particle size of the shot peening projection material is 0.10 to 0.5 mm,
It is a manufacturing method of the carburized component excellent in the surface fatigue strength and bending fatigue strength whose hardness of the said projection material is 800-1000 in Vickers hardness.

本発明の真空浸炭用鋼材によれば、化学成分組成を適切に調整するとともに、バナジウム炭化物の平均円相当径を所定以下にしているため、真空浸炭処理後の面疲労強度に優れると共に、真空浸炭及びショットピーニング後の曲げ疲労強度に優れた浸炭部品を得ることができる。   According to the steel material for vacuum carburizing of the present invention, the chemical component composition is appropriately adjusted and the average equivalent circle diameter of vanadium carbide is set to a predetermined value or less, so that the surface carburizing strength after vacuum carburizing treatment is excellent, and the vacuum carburizing is performed. And carburized parts excellent in bending fatigue strength after shot peening can be obtained.

図1は、後述する実施例における曲げ疲労試験用の試験片の形状を示す図である。FIG. 1 is a diagram showing the shape of a test piece for a bending fatigue test in Examples described later. 図2は、後述する実施例における曲げ疲労試験の要領を示した概略図である。FIG. 2 is a schematic view showing a procedure for a bending fatigue test in Examples to be described later. 図3は、後述する実施例における曲げ疲労試験における10万回強度の意味を説明した図である。FIG. 3 is a diagram for explaining the meaning of 100,000 times strength in a bending fatigue test in Examples described later.

本発明者らは、浸炭部品の面疲労強度、更には曲げ疲労強度を確保するため、様々な角度から検討した。その結果、下記の(i)〜(v)のような知見が得られた。   The present inventors have studied from various angles in order to ensure the surface fatigue strength and further the bending fatigue strength of carburized parts. As a result, the following findings (i) to (v) were obtained.

(i)昨今、自動車の低燃費化に伴い、油の低粘度化や部品への高面圧負荷が進む環境の中では、面疲労強度を向上させるためには、部品における接触面の軟化抵抗性を高めることが重要であり、特に400℃での焼戻し硬さを向上させることが有効であることが分かった。特に部品表面の400℃での焼戻し硬さをビッカース硬さでHV600以上とすることで、面疲労強度を大幅に向上できる。   (I) In recent years, in an environment where low oil viscosity and high surface pressure load are applied to parts due to the reduction in fuel consumption of automobiles, in order to improve surface fatigue strength, softening resistance of contact surfaces on parts It has been found that it is important to improve the properties, and in particular, it is effective to improve the tempering hardness at 400 ° C. In particular, by setting the tempering hardness of the component surface at 400 ° C. to HV600 or more in terms of Vickers hardness, the surface fatigue strength can be greatly improved.

また、本発明の浸炭部品は、真空浸炭することにより得られる点にも特徴を有している。真空浸炭を実施せず、ガス浸炭、ガス浸炭窒化等を実施した場合には、表面に粒界酸化層が生成し、面疲労強度及び後述する曲げ疲労強度が低下する。真空浸炭により得られる本発明の浸炭部品では、表面粒界酸化層深さを3μm以下とできる。   The carburized component of the present invention is also characterized in that it is obtained by vacuum carburizing. When vacuum carburization is not performed and gas carburization, gas carbonitriding, or the like is performed, a grain boundary oxide layer is generated on the surface, and surface fatigue strength and bending fatigue strength described later are reduced. In the carburized component of the present invention obtained by vacuum carburizing, the surface grain boundary oxide layer depth can be 3 μm or less.

(ii)部品表面の400℃での焼戻し硬さをHV600以上とするためには、浸炭前の鋼材において、Si、Mo及びVを所定範囲に調整するとともに、バナジウム炭化物の大きさを調整する必要がある。Siは焼戻し時の、ε炭化物、χ炭化物、η炭化物などの炭化物生成を抑制し、Mo及びVは焼戻し時にMo2CやVCを析出させて二次硬化に寄与する。浸炭前の鋼材におけるSi、Mo及びVの量は夫々、Si:0.6〜2.0%、Mo:0.3〜1.3%、V:0.10〜0.4%である。 (Ii) In order to set the tempering hardness at 400 ° C. of the component surface to HV600 or more, it is necessary to adjust Si, Mo and V to a predetermined range and to adjust the size of vanadium carbide in the steel material before carburizing. There is. Si suppresses the formation of carbides such as ε carbide, χ carbide, and η carbide during tempering, and Mo and V precipitate Mo 2 C and VC during tempering and contribute to secondary hardening. The amounts of Si, Mo, and V in the steel material before carburizing are Si: 0.6 to 2.0%, Mo: 0.3 to 1.3%, and V: 0.10 to 0.4%, respectively.

更に、浸炭前の鋼材において、バナジウム炭化物の平均円相当径を25nm以下にする必要がある。バナジウム炭化物の平均円相当径を25nm以下にすることによって、真空浸炭処理中にバナジウム炭化物を十分に固溶させることができ、焼戻し時や部品使用時にバナジウム炭化物を析出させて部品を二次硬化させ、その結果面疲労強度を高めることができる。   Furthermore, in the steel material before carburizing, the average equivalent circle diameter of vanadium carbide needs to be 25 nm or less. By setting the average equivalent circle diameter of vanadium carbide to 25 nm or less, vanadium carbide can be sufficiently dissolved during vacuum carburizing treatment, and vanadium carbide is precipitated during tempering or when the part is used, and the part is secondarily cured. As a result, the surface fatigue strength can be increased.

(iii)浸炭前の鋼材においてバナジウム炭化物の平均円相当径を25nm以下とするためには、圧延前の加熱条件を適切に調整する必要がある。すなわち、圧延前の加熱温度及び保持時間を所定以上とすることによって、圧延前に析出していたバナジウム炭化物を十分に固溶させることができ、圧延後の冷却で微細なバナジウム炭化物を確保(すなわち、バナジウム炭化物の平均円相当径が25nm以下である)することができる。   (Iii) In order to set the average equivalent circle diameter of vanadium carbide to 25 nm or less in the steel material before carburizing, it is necessary to appropriately adjust the heating conditions before rolling. That is, by setting the heating temperature and holding time before rolling to a predetermined value or more, vanadium carbide precipitated before rolling can be sufficiently dissolved, and fine vanadium carbide is ensured by cooling after rolling (that is, The average equivalent circle diameter of the vanadium carbide is 25 nm or less).

(iv)浸炭部品の面疲労強度に加えて、更に曲げ疲労強度を向上させるためには、鋼材を真空浸炭して得られた部品に、ショットピーニングを施し、所定の残留応力を付与することが有効である。具体的には、浸炭部品の表面から30μm深さ位置までの残留応力積分値を40MPa・mm以上とすることによって、初期亀裂の発生及び亀裂伝播を抑制し、曲げ疲労強度を大幅に向上できる。   (Iv) In order to further improve the bending fatigue strength in addition to the surface fatigue strength of the carburized component, shot peening is applied to the component obtained by vacuum carburizing the steel material to give a predetermined residual stress. It is valid. Specifically, by setting the residual stress integral value from the surface of the carburized part to a depth position of 30 μm to 40 MPa · mm or more, the occurrence of initial cracks and crack propagation can be suppressed, and the bending fatigue strength can be greatly improved.

(v)浸炭部品の表面から30μm深さ位置までの残留応力積分値を40MPa・mm以上とするためには、真空浸炭の後に行うショットピーニングで、投射材のサイズ及び硬さを適切に調整する必要がある。投射材の粒径は0.10〜0.5mmであり、硬さはビッカース硬さでHV800〜1000である。   (V) In order to set the residual stress integral value from the surface of the carburized part to a depth of 30 μm to 40 MPa · mm or more, the size and hardness of the projection material are appropriately adjusted by shot peening performed after vacuum carburizing. There is a need. The particle diameter of the projection material is 0.10 to 0.5 mm, and the hardness is HV800 to 1000 in terms of Vickers hardness.

本発明の鋼材(熱間圧延後であって真空浸炭前の鋼材)は、上述した通り、鋼中のバナジウム炭化物の大きさを規定した点に特徴を有するが、浸炭部品としての基本的な特性を発揮させるためには、鋼材の化学成分組成についても適切に調整する必要がある。以下に、本発明の鋼材の化学成分組成について説明する。   The steel material of the present invention (steel material after hot rolling and before vacuum carburizing) is characterized in that the size of the vanadium carbide in the steel is defined as described above, but the basic characteristics as a carburized part. Therefore, it is necessary to appropriately adjust the chemical composition of the steel material. Below, the chemical component composition of the steel material of this invention is demonstrated.

C:0.15〜0.35%
Cは、鋼材に強度を付与できる元素である。必要な強度を得るため、C量を0.15%以上と定めた。C量は、好ましくは0.17%以上であり、より好ましくは0.19%以上である。一方、C量が過剰になると被削性及び靭性が低下する。従ってC量を0.35%以下と定めた。C量は、好ましくは0.33%以下であり、より好ましくは0.31%以下である。
C: 0.15-0.35%
C is an element that can impart strength to the steel material. In order to obtain the required strength, the C content is set to 0.15% or more. The amount of C is preferably 0.17% or more, and more preferably 0.19% or more. On the other hand, when the amount of C is excessive, machinability and toughness are reduced. Therefore, the C content is set to 0.35% or less. The amount of C is preferably 0.33% or less, and more preferably 0.31% or less.

Si:0.6〜2.0%
Siは、焼戻し軟化抵抗向上元素として作用し、歯車などにおいて駆動中に接触部位の温度が上昇した際に、軟化抑制によって硬さを維持し、ピッチング強度などの疲労強度向上、耐摩耗性向上に寄与する。こうした効果を有効に発揮させるため、Si量を0.6%以上と定めた。Si量は、好ましくは0.8%以上であり、より好ましくは1.0%以上である。しかしながら、Si量が過剰になると強度上昇が著しくなって、冷間加工性及び被削性が低下する。そこで、Si量を2.0%以下と定めた。Si量は、好ましくは1.8%以下であり、より好ましくは1.6%以下である。
Si: 0.6-2.0%
Si acts as a temper softening resistance improving element, and when the temperature of the contact part rises during driving in gears, etc., it maintains hardness by suppressing softening, and improves fatigue strength such as pitching strength and wear resistance. Contribute. In order to exhibit such an effect effectively, the Si amount was determined to be 0.6% or more. The amount of Si is preferably 0.8% or more, and more preferably 1.0% or more. However, when the amount of Si becomes excessive, the strength rises remarkably and cold workability and machinability deteriorate. Therefore, the Si amount is set to 2.0% or less. The amount of Si is preferably 1.8% or less, and more preferably 1.6% or less.

Mn:0.3〜1.3%
Mnは、脱酸剤や脱硫剤、および焼入れ性向上元素として添加される。そのような効果を有効に発揮させるため、Mn量を0.3%以上と定めた。Mn量は、好ましくは0.4%以上であり、より好ましくは0.5%以上である。しかしながら、Mn量が過剰になると、冷間鍛造性や靭性の低下を招くと共に、被削性も劣化する。そこで、Mn量は1.3%以下と定めた。Mn量は、好ましくは1.2%以下であり、より好ましくは1.1%以下である。
Mn: 0.3 to 1.3%
Mn is added as a deoxidizer, desulfurizer, and hardenability improving element. In order to exhibit such an effect effectively, the amount of Mn was determined to be 0.3% or more. The amount of Mn is preferably 0.4% or more, more preferably 0.5% or more. However, when the amount of Mn is excessive, cold forgeability and toughness are lowered and machinability is also deteriorated. Therefore, the amount of Mn is set to 1.3% or less. The amount of Mn is preferably 1.2% or less, more preferably 1.1% or less.

S:0.020%以下(0%を含まない)
Sは、不可避不純物として鋼中に含まれる元素であり、MnSとして析出し、疲労特性や衝撃特性を低下させるため極力低減することが望ましい。しかしながら、極端に低減することは製鋼コストの増大を招くことになる。こうした観点から、S量を0.020%以下と定めた。S量は、好ましくは0.015%以下であり、より好ましくは0.010%以下である。上述の通り、Sは不可避的に含まれる不純物であり、その量を0%にすることは工業生産上困難であり、S量の下限は0.0005%程度である。
S: 0.020% or less (excluding 0%)
S is an element contained in steel as an unavoidable impurity, and it is desirable to reduce it as much as possible because it precipitates as MnS and deteriorates fatigue characteristics and impact characteristics. However, extremely reducing causes an increase in steelmaking cost. From this point of view, the S content is determined to be 0.020% or less. The amount of S is preferably 0.015% or less, more preferably 0.010% or less. As described above, S is an unavoidable impurity, and it is difficult to make the amount 0% in industrial production, and the lower limit of the amount of S is about 0.0005%.

P:0.015%以下(0%を含まない)
Pは、不可避不純物として鋼中に含まれる元素であり、粒界に偏析し、加工性や疲労特性を低下させるため極力低減することが望ましい。しかしながら、極端に低減することは製鋼コストの増大を招くことになる。こうした観点から、P量を0.015%以下と定めた。P量は、好ましくは0.010%以下であり、より好ましくは0.008%以下である。上述の通り、Pは不可避的に含まれる不純物であり、その量を0%にすることは工業生産上困難であり、P量の下限は0.0005%程度である。
P: 0.015% or less (excluding 0%)
P is an element contained in steel as an inevitable impurity, and it is desirable to reduce it as much as possible because it segregates at the grain boundary and deteriorates workability and fatigue characteristics. However, extremely reducing causes an increase in steelmaking cost. From this point of view, the P content is set to 0.015% or less. The amount of P is preferably 0.010% or less, and more preferably 0.008% or less. As described above, P is an unavoidable impurity, and it is difficult to make the amount 0% in industrial production, and the lower limit of the P amount is about 0.0005%.

Cr:0.7〜1.7%
Crは、Mnと同様に焼入れ性向上元素として添加され、また焼戻し軟化抵抗元素として作用する。こうした効果を有効に発揮させるため、Cr量を0.7%以上と定めた。C量は、好ましくは0.8%以上であり、より好ましくは0.9%以上である。しかしながら、Cr量が過剰になると、冷間鍛造性や靭性の低下を招くと共に、被削性も劣化させる。こうした観点から、Cr量を1.7%以下と定めた。Cr量は、好ましくは1.6%以下であり、より好ましくは1.5%以下である。
Cr: 0.7-1.7%
Cr, like Mn, is added as a hardenability improving element and acts as a temper softening resistance element. In order to exhibit such an effect effectively, the Cr content is set to 0.7% or more. The amount of C is preferably 0.8% or more, and more preferably 0.9% or more. However, when the amount of Cr becomes excessive, cold forgeability and toughness are lowered and machinability is also deteriorated. From this point of view, the Cr content is set to 1.7% or less. The amount of Cr is preferably 1.6% or less, and more preferably 1.5% or less.

Mo:0.3〜0.8%
Moは、焼戻し時にMo2Cを析出することで、軟化抵抗を向上させる効果を有し、歯車などにおいて駆動中に接触部位の温度が上昇した際に、軟化抑制によって硬さを維持し、ピッチング強度などの疲労強度向上に寄与する。また、Moは靭性を向上させる効果も有している。こうした効果を有効に発揮させるため、Mo量を0.3%以上と定めた。Mo量は、好ましくは0.35%以上であり、より好ましくは0.4%以上である。一方、Mo量が過剰になると、強度上昇が著しくなって、冷間加工性及び被削性が低下する。そこで、Mo量を0.8%以下と定めた。Mo量は、好ましくは0.75%以下であり、より好ましくは0.7%以下である。
Mo: 0.3 to 0.8%
Mo has the effect of improving the softening resistance by precipitating Mo 2 C during tempering. When the temperature of the contact part rises during driving in a gear or the like, the hardness is maintained by suppressing the softening and pitching. Contributes to improving fatigue strength such as strength. Mo also has the effect of improving toughness. In order to effectively exhibit such an effect, the Mo amount is set to 0.3% or more. The amount of Mo is preferably 0.35% or more, and more preferably 0.4% or more. On the other hand, when the amount of Mo becomes excessive, the strength rises remarkably and cold workability and machinability deteriorate. Therefore, the Mo amount is set to 0.8% or less. Mo amount becomes like this. Preferably it is 0.75% or less, More preferably, it is 0.7% or less.

V:0.10〜0.4%
Vは、焼戻し時にバナジウム炭化物を析出することで、軟化抵抗を向上させる効果を有し、歯車などにおいて駆動中に接触部位の温度が上昇した際に、軟化抑制によって硬さを維持し、ピッチング強度などの疲労強度向上に寄与する。こうした効果を有効に発揮させるため、V量を0.10%以上と定めた。V量は、好ましくは0.15%以上であり、より好ましくは0.2%以上である。しかしながら、V量が過剰になると強度上昇が著しくなって、冷間加工性及び被削性が低下し、さらに圧延後に粗大なバナジウム炭化物が析出し、真空浸炭処理後の軟化抵抗性向上に寄与しない。そこで、V量を0.4%以下と定めた。V量は、好ましくは0.35%以下であり、より好ましくは0.3%以下である。
V: 0.10 to 0.4%
V has the effect of improving the softening resistance by precipitating vanadium carbide during tempering. When the temperature of the contact part rises during driving in a gear or the like, the hardness is maintained by suppressing the softening, and the pitching strength This contributes to improving fatigue strength. In order to exhibit such an effect effectively, the V amount is set to 0.10% or more. The amount of V is preferably 0.15% or more, and more preferably 0.2% or more. However, when the amount of V is excessive, the strength increases remarkably, cold workability and machinability decrease, and coarse vanadium carbide precipitates after rolling, which does not contribute to the improvement of softening resistance after vacuum carburizing treatment. . Therefore, the V amount is set to 0.4% or less. V amount becomes like this. Preferably it is 0.35% or less, More preferably, it is 0.3% or less.

Al:0.005〜0.05%
Alは、脱酸剤であると同時に、微細なAl系窒化物を形成することにより、結晶粒を微細化し、靭性を向上させる効果も有している。こうした効果を有効に発揮させるため、Al量を0.005%以上と定めた。Al量は、好ましくは0.01%以上であり、より好ましくは0.012%以上である。しかしながら、Al量が過剰になると被削性に悪影響を及ぼし、加工性を低下させる他、粗大な窒化物が生成するため、ピンニング粒子として寄与せず、結晶粒粗大化を引き起こすこととなる。こうした観点から、Al量を0.05%以下と定めた。Al量は、好ましくは0.045%以下であり、より好ましくは0.043%以下である。
Al: 0.005 to 0.05%
At the same time as Al is a deoxidizer, it also has the effect of reducing crystal grains and improving toughness by forming fine Al-based nitrides. In order to exhibit such an effect effectively, the Al content is set to 0.005% or more. The amount of Al is preferably 0.01% or more, and more preferably 0.012% or more. However, when the amount of Al is excessive, the machinability is adversely affected, the workability is lowered, and coarse nitrides are generated. Therefore, the Al content does not contribute as pinning particles and causes coarsening of crystal grains. From this point of view, the Al content is determined to be 0.05% or less. The amount of Al is preferably 0.045% or less, and more preferably 0.043% or less.

N:0.004〜0.025%
Nは、Al等と窒化物を形成し、結晶粒を微細化し、靭性を向上させる効果を発揮する。こうした効果を有効に発揮させるため、N量を0.004%以上と定めた。N量は、好ましくは0.0060%以上であり、より好ましくは0.010%以上である。しかしながら、N量が過剰になると、粗大な窒化物(特にAl系窒化物)が生成してピンニング粒子として寄与せず、結晶粒粗大化を引き起こすこととなる。こうした観点から、N量を0.025%以下と定めた。N量は、好ましくは0.020%以下であり、より好ましくは0.017%以下である。
N: 0.004 to 0.025%
N forms nitrides with Al and the like, refines crystal grains, and exhibits the effect of improving toughness. In order to exhibit such an effect effectively, the N content is set to 0.004% or more. The amount of N is preferably 0.0060% or more, and more preferably 0.010% or more. However, when the amount of N is excessive, coarse nitrides (particularly Al-based nitrides) are generated and do not contribute as pinning particles, which causes crystal grain coarsening. From this point of view, the N content is determined to be 0.025% or less. The N amount is preferably 0.020% or less, more preferably 0.017% or less.

本発明の真空浸炭用鋼材の基本成分は上記の通りであり、残部は実質的に鉄である。但し、原材料、資材、製造設備等の状況によって持ち込まれる、P、S以外の不可避不純物が鋼中に含まれることは当然に許容される。さらに本発明では、本発明の作用を阻害しない範囲で必要に応じて以下の任意元素を含有していても良い。以下の元素の種類に応じて鋼材の特性が更に改善される。   The basic components of the steel for vacuum carburization of the present invention are as described above, and the balance is substantially iron. However, as a matter of course, it is permissible for steel to contain inevitable impurities other than P and S, which are brought in depending on the situation of raw materials, materials, manufacturing facilities, and the like. Furthermore, in this invention, you may contain the following arbitrary elements as needed in the range which does not inhibit the effect | action of this invention. The properties of the steel are further improved according to the types of the following elements.

Nb:0.06%以下(0%を含まない)及びTi:0.2%以下(0%を含まない)の1種以上
NbおよびTiは、浸炭後の結晶粒を微細化し、鋼材の靭性を向上させると共に、曲げ疲労強度を向上させるのに有用である。これらの元素は、必要に応じていずれか1種または2種を含有することによって上記の効果が発揮される。こうした効果を有効に発揮させるため、Nb量は0.01%以上が好ましく、Ti量は0.005%以上が好ましい。好ましいNb量及びTi量は、いずれも0.015%以上である。しかしながら、これらの元素が過剰になると、その効果が飽和するだけでなく、粗大な析出物を形成し、強度を低下させる。そこで、Nb量は0.06%以下が好ましく、Ti量は0.2%以下が好ましい。Nb量は0.05%以下がより好ましく、Ti量は0.1%以下がより好ましく、0.08%以下が更に好ましい。
One or more types of Nb: 0.06% or less (excluding 0%) and Ti: 0.2% or less (not including 0%) Nb and Ti refine crystal grains after carburizing, and toughness of steel materials This is useful for improving the bending fatigue strength. These elements exhibit the above effects by containing either one or two of them as necessary. In order to effectively exhibit these effects, the Nb content is preferably 0.01% or more, and the Ti content is preferably 0.005% or more. The preferable Nb amount and Ti amount are both 0.015% or more. However, when these elements become excessive, not only the effect is saturated, but also coarse precipitates are formed and the strength is lowered. Therefore, the Nb content is preferably 0.06% or less, and the Ti content is preferably 0.2% or less. The Nb content is more preferably 0.05% or less, the Ti content is more preferably 0.1% or less, and even more preferably 0.08% or less.

B:0.005%以下(0%を含まない)
Bは、浸炭処理における焼入れ性を高める作用を有し、また粒界を強化して曲げ疲労強度を向上させる元素である。Bは微量添加により焼入れ性の向上が可能であるため、加工性等への影響が低い。こうした作用を有効に発揮させるため、B量は0.0005%以上が好ましく、より好ましくは0.0008%以上である。しかしながら、B量が過剰になるとNとの結合によりBNを生成して、浸炭部品の強度が低下する。従って、B量は0.005%以下が好ましく、より好ましくは0.0045%以下であり、更に好ましくは0.0040%以下である。
B: 0.005% or less (excluding 0%)
B is an element that has the effect of enhancing the hardenability in the carburizing treatment and also enhances the bending fatigue strength by strengthening the grain boundary. Since B can improve the hardenability by adding a trace amount, the influence on workability and the like is low. In order to effectively exhibit these actions, the B content is preferably 0.0005% or more, more preferably 0.0008% or more. However, when the amount of B is excessive, BN is generated by the combination with N, and the strength of the carburized component is lowered. Accordingly, the B content is preferably 0.005% or less, more preferably 0.0045% or less, and still more preferably 0.0040% or less.

本発明の真空浸炭用鋼材では、バナジウム炭化物の平均円相当径が25nm以下である。バナジウム炭化物は焼戻し時の加熱によって、また部品使用時に生じる摺動発熱によって析出し軟化抵抗を向上させる効果を有する。つまり、歯車などにおいて駆動中に接触部位の温度が上昇した際に、バナジウム炭化物による軟化抑制によって硬さを維持し、ピッチング強度などの疲労強度の向上に寄与する。このような効果を発揮させるためには、熱間圧延後であって真空浸炭前の鋼材にバナジウム炭化物を微細に分散させ、真空浸炭時に固溶させる必要がある。真空浸炭用鋼材のバナジウム炭化物が粗大であると、真空浸炭処理後の軟化抵抗性向上に寄与しないため、バナジウム炭化物の平均円相当径は25nm以下とする。バナジウム炭化物の平均円相当径は、好ましくは20nm以下であり、より好ましくは15nm以下である。バナジウム炭化物の平均円相当径の下限は特に限定されないが、通常1nm程度である。なお、本発明におけるバナジウム炭化物とは、V(バナジウム)とC(炭素)とが検出される析出物を意味し、V及びC以外の元素が含まれる場合も含む意味である。   In the steel material for vacuum carburization of the present invention, the average equivalent circle diameter of vanadium carbide is 25 nm or less. Vanadium carbide is precipitated by heating during tempering and by sliding heat generated during use of parts, and has the effect of improving softening resistance. That is, when the temperature of the contact portion rises during driving in a gear or the like, the hardness is maintained by suppressing softening by vanadium carbide, which contributes to improvement of fatigue strength such as pitching strength. In order to exert such an effect, it is necessary to finely disperse vanadium carbide in the steel material after hot rolling and before vacuum carburizing, and to dissolve it at the time of vacuum carburizing. If the vanadium carbide of the steel for vacuum carburization is coarse, it does not contribute to the improvement of the softening resistance after the vacuum carburization treatment, so the average equivalent circle diameter of the vanadium carbide is 25 nm or less. The average equivalent circle diameter of vanadium carbide is preferably 20 nm or less, and more preferably 15 nm or less. The lower limit of the average equivalent circle diameter of vanadium carbide is not particularly limited, but is usually about 1 nm. In addition, the vanadium carbide in this invention means the precipitate from which V (vanadium) and C (carbon) are detected, and includes the case where elements other than V and C are contained.

上記したバナジウム炭化物を調整するためには、通常の溶製法に従って鋼を溶製し、分塊圧延した後に、熱間圧延をするという一連の製造工程において、熱間圧延前の加熱条件を調整することが重要である。熱間圧延前の加熱温度は950℃以上が好ましい。熱間圧延前の加熱温度が950℃未満になると、圧延前に存在するバナジウム炭化物を十分に固溶させることができず、未固溶のバナジウム炭化物が粗大化することとなり、圧延後のバナジウム炭化物の平均円相当径を25nm以下にできない。加熱温度は、より好ましくは1000℃以上、さらに好ましくは1050℃以上である。加熱温度の上限は、脱炭の観点から、1250℃以下が好ましく、より好ましくは1200℃以下である。   In order to adjust the vanadium carbide described above, the heating conditions before hot rolling are adjusted in a series of manufacturing steps in which the steel is melted in accordance with a normal melting method, subjected to ingot rolling, and then hot rolled. This is very important. The heating temperature before hot rolling is preferably 950 ° C. or higher. When the heating temperature before hot rolling is less than 950 ° C., the vanadium carbide existing before rolling cannot be sufficiently dissolved, and the undissolved vanadium carbide becomes coarse, and the vanadium carbide after rolling The average equivalent circle diameter cannot be made 25 nm or less. The heating temperature is more preferably 1000 ° C. or higher, and still more preferably 1050 ° C. or higher. The upper limit of the heating temperature is preferably 1250 ° C. or less, more preferably 1200 ° C. or less from the viewpoint of decarburization.

また、熱間圧延前の加熱保持時間は30分〜5時間が好ましい。加熱保持時間が30分未満では、圧延前に存在するバナジウム炭化物を十分に固溶させることができず、未固溶のバナジウム炭化物が粗大化することとなり、圧延後のバナジウム炭化物の平均円相当径を25nm以下にできない。加熱保持時間は、より好ましくは1時間以上であり、さらに好ましくは1.5時間以上である。一方、加熱保持時間が5時間を超えると、バナジウム炭化物がオストワルド成長により粗大化し、圧延後のバナジウム炭化物の平均円相当径を25nm以下にできない。加熱保持時間は、より好ましくは4.5時間以下であり、更に好ましくは4時間以下である。   The heating and holding time before hot rolling is preferably 30 minutes to 5 hours. If the heating and holding time is less than 30 minutes, the vanadium carbide existing before rolling cannot be sufficiently dissolved, and the undissolved vanadium carbide becomes coarse, and the average equivalent circle diameter of the vanadium carbide after rolling. Cannot be 25 nm or less. The heating and holding time is more preferably 1 hour or longer, and further preferably 1.5 hours or longer. On the other hand, if the heating and holding time exceeds 5 hours, the vanadium carbide becomes coarse due to Ostwald growth, and the average equivalent circle diameter of the vanadium carbide after rolling cannot be made 25 nm or less. The heating and holding time is more preferably 4.5 hours or less, and further preferably 4 hours or less.

なお、上記した分塊圧延の条件は特に限定されず、例えば1200℃以上(好ましくは1250℃以上)で30〜300分保持して分塊圧延を行えば良い。分塊圧延の加熱温度の上限は特に限定されないが、例えば1300℃以下である。   In addition, the above-described conditions of the partial rolling are not particularly limited, and for example, the partial rolling may be performed by holding at 1200 ° C. or higher (preferably 1250 ° C. or higher) for 30 to 300 minutes. Although the upper limit of the heating temperature of a block rolling is not specifically limited, For example, it is 1300 degrees C or less.

上述した化学成分組成及びバナジウム炭化物の大きさを調整した本発明の鋼材を、真空浸炭することによって面疲労強度に優れた部品を得ることができ、更に真空浸炭の後に所定の条件を備えたショットピーニングをすることによって曲げ疲労強度に優れた浸炭部品を得ることができる。   A part having excellent surface fatigue strength can be obtained by vacuum carburizing the steel material of the present invention in which the chemical component composition and the vanadium carbide size are adjusted as described above, and a shot having predetermined conditions after vacuum carburizing. Carburized parts having excellent bending fatigue strength can be obtained by peening.

本発明では、浸炭処理として真空浸炭を採用する。本発明の浸炭用鋼材では、上述の通り、Si量を0.6%以上に高めている。このような鋼材を、真空浸炭以外のガス浸炭、ガス浸炭窒化などによって浸炭処理すると、表面に粒界酸化層が生成し、部品の面疲労強度が低下し、更には部品の曲げ疲労強度も低下する。真空浸炭して得られた本発明の部品は、表面粒界酸化層深さが3μm以下である。表面粒界酸化層深さは、好ましくは2μm以下、より好ましくは1μm以下であり、最も好ましくは0μmである。真空浸炭処理の条件は特に限定されず、例えば浸炭温度を900〜1000℃(好ましくは930〜980℃)とすれば良い。浸炭後は、(a)直接焼入れしても良いし、(b)浸炭放冷後、再加熱焼入れしても良い。更に前記(a)、(b)いずれの場合も、50〜150℃(好ましくは60〜130℃)程度の油浴などに投入して焼入れを行った後に、例えば150〜200℃(好ましくは160〜180℃)程度で焼戻しを行えば良い。また前記(a)の場合は、真空浸炭後、750〜900℃(好ましくは780〜880℃)まで炉冷した後、焼入れ焼戻しを行えば良い。   In the present invention, vacuum carburizing is adopted as the carburizing treatment. In the carburizing steel material of the present invention, as described above, the Si content is increased to 0.6% or more. When such steel is carburized by gas carburizing or gas carbonitriding other than vacuum carburizing, a grain boundary oxide layer is formed on the surface, reducing the surface fatigue strength of the component, and further reducing the bending fatigue strength of the component. To do. The parts of the present invention obtained by vacuum carburization have a surface grain boundary oxide layer depth of 3 μm or less. The surface grain boundary oxide layer depth is preferably 2 μm or less, more preferably 1 μm or less, and most preferably 0 μm. The conditions for the vacuum carburizing treatment are not particularly limited. For example, the carburizing temperature may be 900 to 1000 ° C. (preferably 930 to 980 ° C.). After carburizing, (a) quenching may be performed directly, or (b) carburizing and cooling may be performed followed by reheating and quenching. Further, in both cases (a) and (b), after being put into an oil bath of about 50 to 150 ° C. (preferably 60 to 130 ° C.) and quenched, for example, 150 to 200 ° C. (preferably 160 Tempering may be performed at about ~ 180 ° C. In the case of (a), after vacuum carburization, the furnace is cooled to 750 to 900 ° C. (preferably 780 to 880 ° C.), and then quenched and tempered.

浸炭部品の、ピッチング強度などの疲労強度を高めるためには、硬さを高めることが有効である。しかし、歯車などにおいて駆動中に接触部位の温度が上昇すると硬さが低下するため、初期硬さではなく、発熱温度付近(400℃)での硬さを高めることが、疲労強度の向上に有効である。本発明の真空浸炭用鋼材を真空浸炭して得られる本発明の部品は、400℃で焼戻した時の表面硬さをビッカース硬さでHV600以上にできる。前記表面硬さは好ましくはHV620以上であり、より好ましくはHV650以上である。前記表面硬さの上限は特に限定されないが、通常HV900程度である。   In order to increase the fatigue strength such as the pitching strength of the carburized component, it is effective to increase the hardness. However, since the hardness decreases when the temperature of the contact part rises during driving in gears, etc., increasing the hardness near the heat generation temperature (400 ° C), not the initial hardness, is effective in improving the fatigue strength. It is. The parts of the present invention obtained by vacuum carburizing the steel for vacuum carburization of the present invention can have a surface hardness of HV600 or higher in terms of Vickers hardness when tempered at 400 ° C. The surface hardness is preferably HV620 or more, and more preferably HV650 or more. The upper limit of the surface hardness is not particularly limited, but is usually about HV900.

真空浸炭により得られた部品は、更にショットピーニングを施すことによって圧縮残留応力を付与できる。圧縮残留応力は、繰返し応力が加わった際の初期亀裂の発生及び亀裂伝播を抑制し、曲げ疲労強度を大幅に向上できる。このような効果を発揮させるためには、表面から30μm深さ位置までの残留応力積分値を40MPa・mm以上とする必要がある。残留応力積分値は、好ましくは42MPa・mm以上であり、より好ましくは45MPa・mm以上である。残留応力積分値の上限は特に限定されないが、通常100MPa・mm程度である。   Parts obtained by vacuum carburizing can be further imparted with compressive residual stress by performing shot peening. The compressive residual stress can suppress the occurrence of initial cracks and crack propagation when a repeated stress is applied, and can greatly improve the bending fatigue strength. In order to exert such an effect, it is necessary that the residual stress integrated value from the surface to the 30 μm depth position be 40 MPa · mm or more. The residual stress integral value is preferably 42 MPa · mm or more, and more preferably 45 MPa · mm or more. The upper limit of the residual stress integral value is not particularly limited, but is usually about 100 MPa · mm.

浸炭部品に、上記のような圧縮残留応力を付与するためには、ショットピーニングで用いる投射材の粒径と硬さを適切に制御する必要がある。投射材の粒径は0.10〜0.5mmとする。粒径が0.10mm未満では、表層のみに圧縮残留応力が付与されるため、表面から30μm深さ位置までの圧縮残留応力を高めることができない。また、粒径が0.5mmを超えると内部側に圧縮残留応力が付与され、表面から30μm深さ位置までの圧縮残留応力を上記の範囲にすることができない。   In order to give the above-mentioned compressive residual stress to the carburized component, it is necessary to appropriately control the particle size and hardness of the projection material used in shot peening. The particle size of the projection material is 0.10 to 0.5 mm. When the particle size is less than 0.10 mm, compressive residual stress is imparted only to the surface layer, so that the compressive residual stress from the surface to a depth of 30 μm cannot be increased. If the particle size exceeds 0.5 mm, compressive residual stress is applied to the inner side, and the compressive residual stress from the surface to a depth of 30 μm cannot be set in the above range.

投射材の硬さは、ビッカース硬さでHV800〜1000とする。硬さがHV800未満では、圧縮残留応力が十分に付与されず、表面から30μm深さ位置までの圧縮残留応力を上記の範囲にすることができない。投射材の硬さは、好ましくはHV820以上であり、より好ましくはHV850以上である。また硬さがHV1000超となると、鋼材の削食量が増加するため、所定の部品形状が得られない。投射材の硬さは、好ましくはHV980以下であり、より好ましくはHV950以下である。   The projection material has a Vickers hardness of HV 800 to 1000. When the hardness is less than HV800, the compressive residual stress is not sufficiently applied, and the compressive residual stress from the surface to the 30 μm depth position cannot be within the above range. The hardness of a projection material becomes like this. Preferably it is HV820 or more, More preferably, it is HV850 or more. If the hardness exceeds HV1000, the amount of corrosion of the steel material increases, and a predetermined part shape cannot be obtained. The hardness of a projection material becomes like this. Preferably it is HV980 or less, More preferably, it is HV950 or less.

本発明の真空浸炭用鋼材は、真空浸炭することによって面疲労強度に優れた部品を得ることができ、更に真空浸炭の後にショットピーニングをすることによって、曲げ疲労強度に優れた部品を得ることができる。面疲労強度は例えば、ローラーピッチング試験における100万回強度(100万回試験した際に破損しない最大の応力)で3.3GPa以上
(好ましくは3.4GPa以上)とでき、曲げ疲労強度は、4点曲げ疲労試験における10万回強度(10万回試験した際に破損しない最大の応力)で1260MPa以上(好ましくは1300MPa以上)とできる。従って、このような部品は、自動車や建築機械、その他の各種産業機械にしようされる歯車やシャフト類に好適であり、産業上有用である。
The steel material for vacuum carburizing of the present invention can obtain a part having excellent surface fatigue strength by vacuum carburizing, and further obtaining a part having excellent bending fatigue strength by shot peening after vacuum carburizing. it can. The surface fatigue strength can be set to 3.3 GPa or more (preferably 3.4 GPa or more), for example, with a 1,000,000 times strength (maximum stress that does not break when tested 1,000,000 times) in a roller pitching test, and a bending fatigue strength of 4 It can be set to 1260 MPa or more (preferably 1300 MPa or more) at 100,000 times strength (maximum stress that does not break when tested 100,000 times) in the point bending fatigue test. Therefore, such components are suitable for gears and shafts used in automobiles, construction machines, and other various industrial machines, and are industrially useful.

以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited by the following examples, and can of course be implemented with appropriate modifications within a range that can be adapted to the above-described gist. Included in the range.

下記表1に示す化学成分組成(残部は鉄及び不可避不純物)の鋼を溶製し、1250℃で30分〜300分保持した後に分塊圧延した。その後、表2、3に示す通り、圧延前加熱温度を920℃〜1100℃、加熱保持時間を0.3〜6時間として熱間圧延を行い、φ32mmの熱間圧延材(棒鋼)を得た。なお、表1に示した鋼No.1は、従来鋼のSCr420H相当鋼である。   Steel having the chemical composition shown in the following Table 1 (the balance is iron and inevitable impurities) was melted and held at 1250 ° C. for 30 minutes to 300 minutes, and then rolled into pieces. Thereafter, as shown in Tables 2 and 3, hot rolling was performed at a heating temperature before rolling of 920 ° C. to 1100 ° C. and a heating holding time of 0.3 to 6 hours to obtain a hot rolled material (bar steel) having a diameter of 32 mm. . The steel No. 1 shown in Table 1 was used. Reference numeral 1 denotes a conventional steel, SCr420H equivalent steel.

得られた各熱間圧延材について、バナジウム炭化物の大きさを下記(1)の方法で測定した。また、上記の熱間圧延材を、表2、3で示した浸炭条件(真空浸炭又はガス浸炭)で浸炭した後、試験No.26〜34については更に表3に示した粒径及び硬さの投射材を用いてショットピーニングを行い、試験片を作製した。真空浸炭処理は、表2、3に記載の930〜980℃の温度範囲で真空浸炭処理を行い、その後、780〜880℃まで炉冷した後、60〜130℃の油に投入して焼入れし、170℃に再加熱して焼戻しを実施した。ショットピーニングは、投射圧:0.4MPa、カバレージ:400%以上で、表3に記載の投射材を用いて行った。前記投射材は篩いによって分級された、0.05〜0.06mm、0.11〜0.13mm、0.18〜0.21mm、0.36〜0.43mmおよび0.60〜0.71mmの粒度のものを用いた。
なお、比較となるガス浸炭は、Cp(カーボンポテンシャル:0.8%の浸炭ガス雰囲気中、930℃で浸炭処理した後、油冷し、更に170℃で2時間の焼戻し処理を行った。
About each obtained hot-rolled material, the magnitude | size of vanadium carbide was measured by the method of following (1). Moreover, after carburizing said hot-rolled material on the carburizing conditions (vacuum carburizing or gas carburizing) shown in Tables 2 and 3, it was tested No. About 26-34, the shot peening was further performed using the projection material of the particle size and hardness shown in Table 3, and the test piece was produced. The vacuum carburizing treatment is performed in the temperature range of 930 to 980 ° C. shown in Tables 2 and 3, and then cooled to 780 to 880 ° C. and then poured into oil at 60 to 130 ° C. and quenched. And tempering by reheating to 170 ° C. Shot peening was performed using the projection material shown in Table 3 at a projection pressure of 0.4 MPa and a coverage of 400% or more. The blasting material was classified by sieving, in a range of 0.05 to 0.06 mm, 0.11 to 0.13 mm, 0.18 to 0.21 mm, 0.36 to 0.43 mm and 0.60 to 0.71 mm. Particle size was used.
In addition, the gas carburizing used for comparison was Cp (carbon potential: carburizing gas atmosphere of 0.8% carburizing treatment at 930 ° C., oil cooling, and further tempering treatment at 170 ° C. for 2 hours.

これら試験片について下記の方法で、(2)400℃焼戻し硬さ、(3)表面から30μm深さ位置の残留応力積分値及び(4)表面粒界酸化層の深さを測定するとともに、(5)ローラーピッチング疲労特性及び(6)曲げ疲労特性を評価した。   For these specimens, (2) 400 ° C. tempering hardness, (3) residual stress integral value at a depth of 30 μm from the surface, and (4) depth of the surface grain boundary oxide layer are measured ( 5) Roller pitting fatigue characteristics and (6) bending fatigue characteristics were evaluated.

(1)熱間圧延材におけるバナジウム炭化物の大きさの測定
熱間圧延材の、D/4位置(Dは圧延材の直径)を横断面に切出し、研磨した後、カーボン蒸着を行い、FE−TEM(Field−Emission Transmission Electron Microscope)によるレプリカ観察を実施した。この際、TEMのEDX(Energy Dispersive X−ray Analysis)によりV及びCの検出される析出物を特定し、10万倍の倍率にて1.0μm×1.2μmの視野の観察を行った。観察は任意の3視野について行い、観察されたバナジウム炭化物の円相当径の算術平均値を、バナジウム炭化物の平均円相当径とした。なお、FE−TEMの測定限界から、測定対象としたバナジウム炭化物の大きさの下限は円相当径でおよそ1nm程度である。
(1) Measurement of vanadium carbide size in hot-rolled material After cutting and polishing the D / 4 position (D is the diameter of the rolled material) of the hot-rolled material in a cross section, carbon deposition is performed, and FE- Replica observation by TEM (Field-Emission Transmission Electron Microscope) was performed. At this time, precipitates in which V and C were detected were identified by TEM EDX (Energy Dispersive X-ray Analysis), and a 1.0 μm × 1.2 μm field of view was observed at a magnification of 100,000 times. Observation was performed for three arbitrary visual fields, and the arithmetic average value of the observed equivalent circle diameter of vanadium carbide was defined as the average equivalent circle diameter of vanadium carbide. In addition, from the measurement limit of FE-TEM, the minimum of the magnitude | size of the vanadium carbide used as the measuring object is about 1 nm in a circle equivalent diameter.

(2)400℃焼戻し硬さの測定
上記した熱間圧延材の表面を研磨してφ26.02mmとしてから浸炭し、再度研磨してφ26mmとした。試験No.26〜34についてはさらにショットピーニングし、400℃焼戻し硬さの測定用の試験片とした。試験No.1〜25については浸炭後の試験片、No.26〜34については浸炭及びショットピーニング後の試験片について、400℃で3時間焼戻しを行い、横断面において表面から50μm位置について、ビッカース硬さ計で硬さを測定した。ビッカース硬さ計の試験荷重は300gfとし、5箇所測定してその算術平均値を求め、これを各試験片の400℃焼戻し硬さとした。
(2) Measurement of tempering hardness at 400 ° C. The surface of the hot-rolled material described above was polished to φ26.02 mm, carburized, and polished again to φ26 mm. Test No. 26 to 34 were further shot peened to obtain test pieces for measuring 400 ° C. tempering hardness. Test No. For Nos. 1 to 25, test pieces after carburization, No. About 26-34, about the test piece after carburizing and shot peening, tempering was performed at 400 degreeC for 3 hours, and hardness was measured with the Vickers hardness meter about the 50 micrometer position from the surface in the cross section. The test load of the Vickers hardness tester was 300 gf, and five points were measured to obtain the arithmetic average value. This was the 400 ° C. tempered hardness of each test piece.

(3)表面から30μm深さ位置の残留応力積分値の測定
後述する図1の4点曲げ試験片を浸炭し、試験No.26〜34についてはさらにショットピーニングし、残留応力測定用の試験片とした。試験No.1〜25については浸炭後の試験片、No.26〜34については浸炭及びショットピーニング後の試験片について、PSPC(Position−Sensitive Proportional Counter)微小部X線応力測定装置を用いて、試験片のノッチ底表面からそれぞれ10μm、20μm、30μmの位置の残留応力を測定し、下記の計算式によって表面から30μm深さ位置までの残留応力積分値を算出した。PSPC微小部X線応力測定装置の測定条件は、コリメーター径:φ1mm、測定部位:軸方向中央位置、測定方向:円周方向である。
表面から30μm深さ位置までの残留応力積分値σ
={σ(0mm)+σ(0.01mm)}/2×0.01mm
+{σ(0.01mm)+σ(0.02mm)}/2×0.01mm
+{σ(0.02mm)+σ(0.03mm)}/2×0.01mm
但し、σ(Xmm)は、表面からXmmの位置での残留応力の値を意味する。
(3) Measurement of integrated value of residual stress at 30 μm depth from the surface A 4-point bending test piece of FIG. 26 to 34 were further subjected to shot peening and used as test pieces for residual stress measurement. Test No. For Nos. 1 to 25, test pieces after carburization, No. For samples 26 to 34, the specimens after carburization and shot peening were measured at positions of 10 μm, 20 μm, and 30 μm from the notch bottom surface of the specimen using a PSPC (Position-Sensitive Proportional Counter) micro part X-ray stress measurement device, respectively. Residual stress was measured, and the integrated value of residual stress from the surface to the 30 μm depth position was calculated by the following formula. The measurement conditions of the PSPC minute part X-ray stress measurement apparatus are collimator diameter: φ1 mm, measurement site: axial center position, measurement direction: circumferential direction.
Residual stress integrated value from surface to 30 μm depth σ
= {Σ (0 mm) + σ (0.01 mm)} / 2 × 0.01 mm
+ {Σ (0.01 mm) + σ (0.02 mm)} / 2 × 0.01 mm
+ {Σ (0.02 mm) + σ (0.03 mm)} / 2 × 0.01 mm
However, (sigma) (Xmm) means the value of the residual stress in the position of Xmm from the surface.

(4)表面粒界酸化層の深さの測定
上記した熱間圧延材の表面を研磨してφ26.02mmとしてから浸炭し、再度研磨してφ26mmとした。試験No.26〜34についてはさらにショットピーニングし、試験片とした。試験No.1〜25については浸炭後の試験片、No.26〜34については浸炭及びショットピーニング後の試験片について、圧延方向に垂直に切出し、樹脂に埋め込んで研磨した後、試験片の最表面を光学顕微鏡(倍率:1000倍)で観察し、粒界酸化層の最も深い位置の深さを測定した。
(4) Measurement of depth of surface grain boundary oxide layer The surface of the hot-rolled material described above was polished to φ26.02 mm, carburized, and polished again to φ26 mm. Test No. 26 to 34 were further shot peened to obtain test pieces. Test No. For Nos. 1 to 25, test pieces after carburization, No. For No. 26 to No. 34, after carburizing and shot peening, the test piece was cut out perpendicular to the rolling direction, embedded in the resin and polished, and then the outermost surface of the test piece was observed with an optical microscope (magnification: 1000 times). The depth of the deepest position of the oxide layer was measured.

(5)ローラーピッチング疲労特性の評価
上記(4)と同様の試験片を準備し、得られた試験片を、面圧:2.7、3.0、3.3GPa、回転数:1500rpm、すべり率:−40%、オートマチックオイル(油温:80℃)使用の条件でローラーピッチング試験を行って、応力S−繰返し数N線図(以下、S−N線図)を作成し、100万回強度(100万回試験した際に破損しない最大の応力を意味する)によりピッチング強度を評価した。このとき用いた相手ローラは、SUJ2からなる調質品(表面硬さ:HV700、クラウニングR:150mm)を用いた。
(5) Evaluation of roller pitting fatigue characteristics A test piece similar to the above (4) was prepared, and the obtained test piece was subjected to surface pressure: 2.7, 3.0, 3.3 GPa, rotation speed: 1500 rpm, and slip. Rate: -40%, roller pitching test was performed under the condition of using automatic oil (oil temperature: 80 ° C), and stress S-repetition number N diagram (hereinafter referred to as S-N diagram) was created, 1 million times Pitting strength was evaluated by strength (meaning the maximum stress that does not break when tested 1 million times). The mating roller used at this time was a tempered product (surface hardness: HV700, crowning R: 150 mm) made of SUJ2.

(6)曲げ疲労特性の評価
上記した熱間圧延材から図1に示す形状の試験片を切出してから浸炭し、試験No.26〜34についてはさらにショットピーニングし、曲げ疲労試験用の試験片とした。この試験片を用い、図2に示す通り、4点支持となる治具によって、周波数20Hz、最大応力(繰返し負荷応力):1371、1523、1675、1828MPaの条件で、S−N線図を作成し、このS−N線図に基づいて図3に示す通り10万回強度を求め、その値を曲げ疲労強度とした。
(6) Evaluation of bending fatigue characteristics A test piece having the shape shown in FIG. The samples 26 to 34 were further shot peened to obtain test pieces for a bending fatigue test. Using this test piece, as shown in FIG. 2, an S—N diagram was created using a four-point support jig under the conditions of frequency 20 Hz, maximum stress (repeated load stress): 1371, 1523, 1675, and 1828 MPa. Then, based on this SN diagram, the strength was determined 100,000 times as shown in FIG. 3, and the value was taken as the bending fatigue strength.

上記(1)〜(6)の結果を表2、3に示す。   The results of the above (1) to (6) are shown in Tables 2 and 3.

試験No.3、5、14〜18、22〜29、31〜34は、本発明で規定の化学成分組成を満足し、適切な熱間圧延条件で得られた鋼材である。従って、これらはVCの平均円相当径が25nm以下であり、真空浸炭して得られた鋼又は真空浸炭及びショットピーニングして得られた鋼は400℃で焼戻した時の表面硬さがビッカース硬さで600以上であり、面疲労強度(100万回強度)が3.3GPa以上であり、試験No.1と比べて1.20倍以上の面疲労強度を達成できた。この中で、特に試験No.26、31〜34は、真空浸炭の後に、適切な条件でショットピーニングを行った例であり、圧縮残留応力を十分に付与することができたため、曲げ疲労強度(10万回強度)が1260MPa以上であり、試験No.1と比べて1.20倍以上の曲げ疲労強度を達成できた。なお、ショットピーニングを行わなかった3、5、14〜18、22〜25、及びショットピーニングの投射材の特性が適切に調整されなかったNo.27〜29は、上述の通り面疲労強度は良好であったものの、曲げ疲労強度はNo.26、31〜34に比べると劣る結果となった。   Test No. 3, 5, 14-18, 22-29, 31-34 are steel materials that satisfy the chemical composition defined in the present invention and obtained under appropriate hot rolling conditions. Therefore, the average equivalent circle diameter of VC is 25 nm or less, and the steel obtained by vacuum carburizing or the steel obtained by vacuum carburizing and shot peening has a surface hardness when tempered at 400 ° C. The surface fatigue strength (1,000,000 times strength) is 3.3 GPa or more. Compared to 1, the surface fatigue strength was 1.20 times or more. Among these, in particular, Test No. Nos. 26, 31 to 34 are examples in which shot peening was performed under appropriate conditions after vacuum carburization, and since compressive residual stress could be sufficiently applied, bending fatigue strength (100,000 times strength) was 1260 MPa or more. Test No. Compared to 1, it was possible to achieve a bending fatigue strength of 1.20 times or more. In addition, the characteristic of the projection material of 3, 5, 14-18, 22-25 which did not perform shot peening, and shot peening was not adjusted appropriately. Nos. 27 to 29 had good surface fatigue strength as described above, but the bending fatigue strength was No. 27. Compared with 26, 31-34, the result was inferior.

試験No.1、2は、Si、V及びMoが少なかった例であり、バナジウム炭化物が形成されず、浸炭後の400℃焼戻し硬さが低かったため、面疲労強度(100万回強度)が劣る結果となった。またNo.1では浸炭処理としてガス浸炭を採用したため、粒界酸化層が形成しており、No.2よりも更に面疲労強度が劣っていた。No.4はガス浸炭を採用したため、粒界酸化層が形成し、面疲労強度が劣っていた。   Test No. Nos. 1 and 2 are examples in which the amount of Si, V and Mo was small, vanadium carbide was not formed, and the 400 ° C. tempering hardness after carburization was low, resulting in poor surface fatigue strength (million times strength). It was. No. No. 1 employs gas carburizing as the carburizing treatment, and therefore a grain boundary oxide layer is formed. The surface fatigue strength was inferior to 2. No. Since No. 4 employs gas carburization, a grain boundary oxide layer was formed, and the surface fatigue strength was inferior.

No.6はSi量が少なかった例、No.7はCr量が少なかった例、No.8はMn量が少なかった例、No.9はP量が多かった例、No.10はS量が多かった例、No.11はV量が少なかった例、No.12はV量が多かった例、No.13はMo量が少なかった例であり、いずれも面疲労強度が劣る結果となった。   No. No. 6 is an example in which the amount of Si was small. No. 7 is an example in which the amount of Cr was small. No. 8 is an example where the amount of Mn was small, No. 8; No. 9 is an example in which the amount of P was large. No. 10 is an example with a large amount of S, No. 10; No. 11 is an example in which the amount of V was small, No. 11. No. 12 is an example with a large amount of V, No. 12; No. 13 was an example in which the amount of Mo was small, and in all cases, the surface fatigue strength was inferior.

No.19は、熱間圧延前の加熱温度が低かった例、No.20は熱間圧延前の加熱保持時間が短かった例、No.21は熱間圧延前の加熱保持時間が長かった例であり、いずれもバナジウム炭化物の平均円相当径が大きくなって、面疲労強度が劣る結果となった。No.30は、ガス浸炭を行った例であり、粒界酸化層が形成されて面疲労強度が劣る結果となった。
No. No. 19 is an example in which the heating temperature before hot rolling was low, No. 20 is an example in which the heating and holding time before hot rolling was short. No. 21 is an example in which the heating and holding time before hot rolling was long. In either case, the average equivalent circle diameter of vanadium carbide was increased, resulting in poor surface fatigue strength. No. 30 is an example in which gas carburization was performed, and a grain boundary oxide layer was formed, resulting in poor surface fatigue strength.

Claims (7)

C :0.15〜0.35%(質量%の意味。以下、化学成分組成について同じ。)、 Si:0.6〜2.0%、
Mn:0.3〜1.3%、
S :0.020%以下(0%を含まない)、
P :0.015%以下(0%を含まない)、
Cr:0.7〜1.7%、
Mo:0.3〜0.8%、
V :0.10〜0.4%、
Al:0.005〜0.05%、
N :0.004〜0.025%
を含有し、残部が鉄および不可避不純物であって、
バナジウム炭化物の平均円相当径が25nm以下であることを特徴とする真空浸炭用鋼材。
C: 0.15-0.35% (meaning mass%; hereinafter the same for chemical component composition), Si: 0.6-2.0%,
Mn: 0.3 to 1.3%
S: 0.020% or less (excluding 0%),
P: 0.015% or less (excluding 0%),
Cr: 0.7 to 1.7%,
Mo: 0.3-0.8%
V: 0.10 to 0.4%,
Al: 0.005 to 0.05%,
N: 0.004 to 0.025%
The balance is iron and inevitable impurities,
A steel material for vacuum carburizing, wherein an average equivalent circle diameter of vanadium carbide is 25 nm or less.
更に、
Nb:0.06%以下(0%を含まない)及びTi:0.2%以下(0%を含まない)の1種以上を含有する請求項1に記載の真空浸炭用鋼材。
Furthermore,
The steel material for vacuum carburizing according to claim 1, comprising at least one of Nb: 0.06% or less (not including 0%) and Ti: 0.2% or less (not including 0%).
更に、
B:0.005%以下(0%を含まない)を含有する請求項1又は2に記載の真空浸炭用鋼材。
Furthermore,
B: Steel material for vacuum carburizing according to claim 1 or 2 containing 0.005% or less (not including 0%).
請求項1〜3のいずれかに記載の化学成分組成を有する鋼を、
1200℃以上で30〜300分保持して分塊圧延し、
熱間圧延前の加熱温度を950℃以上、加熱保持時間を30分〜5時間として熱間圧延することを特徴とする請求項1〜3のいずれかに記載の真空浸炭用鋼材の製造方法。
Steel having the chemical composition according to any one of claims 1 to 3,
Hold for 30 to 300 minutes at 1200 ° C. or higher, and perform batch rolling.
The method for producing a steel material for vacuum carburizing according to any one of claims 1 to 3, wherein hot rolling is performed at a heating temperature before hot rolling of 950 ° C or higher and a heating holding time of 30 minutes to 5 hours.
請求項1〜3のいずれかに記載の化学成分組成を有し、
表面粒界酸化層深さが3μm以下であり、
400℃で焼戻した時の表面硬さがビッカース硬さで600以上であることを特徴とする面疲労強度に優れた真空浸炭部品。
The chemical component composition according to claim 1,
The surface grain boundary oxide layer depth is 3 μm or less,
A vacuum carburized component having excellent surface fatigue strength, wherein the surface hardness when tempered at 400 ° C. is 600 or more in terms of Vickers hardness.
請求項1〜3のいずれかに記載の化学成分組成を有し、
表面粒界酸化層深さが3μm以下であり、
表面から30μm深さ位置までの残留応力積分値が40MPa・mm以上であり、
400℃で焼戻した時の表面硬さがビッカース硬さで600以上であることを特徴とする面疲労強度及び曲げ疲労強度に優れた真空浸炭部品。
The chemical component composition according to claim 1,
The surface grain boundary oxide layer depth is 3 μm or less,
The residual stress integral value from the surface to the 30 μm depth position is 40 MPa · mm or more,
A vacuum carburized component excellent in surface fatigue strength and bending fatigue strength, characterized in that the surface hardness when tempered at 400 ° C. is 600 or more in terms of Vickers hardness.
請求項1〜3のいずれかに記載の鋼材を、真空浸炭、焼入れ焼戻し及びショットピーニングする浸炭部品の製造方法であって、
ショットピーニングの投射材の粒径が0.10〜0.5mmであり、
前記投射材の硬さがビッカース硬さで800〜1000であることを特徴とする面疲労強度及び曲げ疲労強度に優れた浸炭部品の製造方法。
A steel material according to any one of claims 1 to 3, which is a carburized part manufacturing method for vacuum carburizing, quenching and tempering, and shot peening,
The particle size of the shot peening projection material is 0.10 to 0.5 mm,
The method for producing a carburized part excellent in surface fatigue strength and bending fatigue strength, wherein the projection material has a Vickers hardness of 800 to 1000.
JP2014060210A 2014-03-24 2014-03-24 Steel material for vacuum carburizing and manufacturing method thereof Expired - Fee Related JP6301694B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2014060210A JP6301694B2 (en) 2014-03-24 2014-03-24 Steel material for vacuum carburizing and manufacturing method thereof
PCT/JP2015/057833 WO2015146703A1 (en) 2014-03-24 2015-03-17 Steel material for vacuum carburizing and method for producing same
CN201710880483.2A CN107653420A (en) 2014-03-24 2015-03-17 Vacuum carburization steel and its manufacture method
KR1020167028788A KR101860658B1 (en) 2014-03-24 2015-03-17 Steel material for vacuum carburizing and method for producing same
CN201580014824.7A CN106103777B (en) 2014-03-24 2015-03-17 Vacuum carburization steel and its manufacturing method
MX2016012061A MX2016012061A (en) 2014-03-24 2015-03-17 Steel material for vacuum carburizing and method for producing same.
TW104109189A TWI544088B (en) 2014-03-24 2015-03-23 Vacuum carburizing steel and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014060210A JP6301694B2 (en) 2014-03-24 2014-03-24 Steel material for vacuum carburizing and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015183227A JP2015183227A (en) 2015-10-22
JP6301694B2 true JP6301694B2 (en) 2018-03-28

Family

ID=54195226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014060210A Expired - Fee Related JP6301694B2 (en) 2014-03-24 2014-03-24 Steel material for vacuum carburizing and manufacturing method thereof

Country Status (6)

Country Link
JP (1) JP6301694B2 (en)
KR (1) KR101860658B1 (en)
CN (2) CN106103777B (en)
MX (1) MX2016012061A (en)
TW (1) TWI544088B (en)
WO (1) WO2015146703A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179394A (en) * 2016-03-28 2017-10-05 株式会社神戸製鋼所 Case hardened steel
JP6929535B2 (en) * 2017-05-25 2021-09-01 株式会社不二製作所 Surface treatment method for steel products
WO2020202406A1 (en) * 2019-03-29 2020-10-08 日本製鉄株式会社 Carburized part and method for manufacturing same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04201128A (en) * 1990-11-30 1992-07-22 Daido Steel Co Ltd Manufacture of high bearing part
JP4229609B2 (en) * 2001-12-25 2009-02-25 新日本製鐵株式会社 Carburized and hardened gear and manufacturing method thereof
JP2005163148A (en) 2003-12-04 2005-06-23 Sanyo Special Steel Co Ltd Case hardening steel for high strength gear
DE102005061946B4 (en) * 2004-12-27 2013-03-21 Nippon Steel Corp. Case hardened steel having excellent tooth surface fatigue strength, gear using the same, and methods of making same
JP2006183095A (en) * 2004-12-27 2006-07-13 Nippon Steel Corp Method for producing gear excellent in fatigue strength on tooth surface
JP4853366B2 (en) 2007-04-13 2012-01-11 住友金属工業株式会社 Steel carburized or carbonitrided parts with shot peening
CN101827673B (en) * 2007-08-17 2013-07-17 Gkn烧结金属有限公司 Variable case depth powder metal gear and method thereof
CN102471842A (en) * 2010-03-10 2012-05-23 新日本制铁株式会社 Carburized steel component excellent in low-cycle bending fatigue strength
WO2012108460A1 (en) * 2011-02-10 2012-08-16 新日本製鐵株式会社 Steel for carburizing, carburized steel component, and method for producing same
JP5620336B2 (en) * 2011-05-26 2014-11-05 新日鐵住金株式会社 Steel parts for high fatigue strength and high toughness machine structure and manufacturing method thereof

Also Published As

Publication number Publication date
CN107653420A (en) 2018-02-02
CN106103777B (en) 2018-07-27
CN106103777A (en) 2016-11-09
WO2015146703A1 (en) 2015-10-01
TWI544088B (en) 2016-08-01
MX2016012061A (en) 2017-01-19
KR101860658B1 (en) 2018-05-23
TW201540849A (en) 2015-11-01
KR20160133549A (en) 2016-11-22
JP2015183227A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP5862802B2 (en) Carburizing steel
JP4688727B2 (en) Carburized parts and manufacturing method thereof
JP2013112827A (en) Gear excellent in pitching resistance and manufacturing method therefor
JP5299118B2 (en) Vacuum carburizing steel and vacuum carburized parts
JP5886119B2 (en) Case-hardened steel
KR20130140193A (en) Steel with excellent rolling fatigue characteristics
JP4923776B2 (en) Rolling and sliding parts and manufacturing method thereof
JP6241136B2 (en) Case-hardened steel
JP5258458B2 (en) Gears with excellent surface pressure resistance
JP4853366B2 (en) Steel carburized or carbonitrided parts with shot peening
JP6301694B2 (en) Steel material for vacuum carburizing and manufacturing method thereof
JP4970811B2 (en) High surface pressure parts and manufacturing method thereof
JP6055397B2 (en) Bearing parts having excellent wear resistance and manufacturing method thereof
JP6225613B2 (en) Case-hardened steel
JP7436779B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP6265048B2 (en) Case-hardened steel
JP6109730B2 (en) Steel material excellent in bending fatigue characteristics after carburizing, manufacturing method thereof and carburized parts
JP2011208262A (en) Method for producing case hardening steel having high fatigue strength
JP2017039971A (en) Case hardening steel for high strength cold forging
JP6172378B2 (en) Case-hardened steel wire
JP2020002447A (en) Carburization member
JP7368697B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP7156021B2 (en) Steel for carburized steel parts
JP6043078B2 (en) Electric car motor gear with excellent seizure resistance
JP2008088482A (en) Roller or ball in bearing having excellent rolling fatigue property and crushing strength, and bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170210

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180301

R150 Certificate of patent or registration of utility model

Ref document number: 6301694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees