JP2018052378A - Electronic control device for automobile - Google Patents

Electronic control device for automobile Download PDF

Info

Publication number
JP2018052378A
JP2018052378A JP2016192532A JP2016192532A JP2018052378A JP 2018052378 A JP2018052378 A JP 2018052378A JP 2016192532 A JP2016192532 A JP 2016192532A JP 2016192532 A JP2016192532 A JP 2016192532A JP 2018052378 A JP2018052378 A JP 2018052378A
Authority
JP
Japan
Prior art keywords
bus
transmission path
microcomputer
control device
electronic control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016192532A
Other languages
Japanese (ja)
Other versions
JP6617091B2 (en
Inventor
匡彰 日野
Masaaki Hino
匡彰 日野
滋之 由布
Shigeyuki Yufu
滋之 由布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2016192532A priority Critical patent/JP6617091B2/en
Publication of JP2018052378A publication Critical patent/JP2018052378A/en
Application granted granted Critical
Publication of JP6617091B2 publication Critical patent/JP6617091B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a diagnostic device capable of detecting that bus-off detection operates normally.SOLUTION: An electronic control device for an automobile of the present invention has a microcomputer for controlling vehicle functions, a CAN transmission line for communicating with a microcomputer of a communications partner, and a failed state detection function of detecting a failed state of the CAN transmission line. The electronic control device is provided with a diagnostic device which puts the CAN transmission line in a failed state in arbitrary timing and can detect that bus-off detection operates normally.SELECTED DRAWING: Figure 1

Description

本発明は、自動車用電子制御装置に関し、特に、バスオフ検知機能の動作を保証する技術に関する。   The present invention relates to an automobile electronic control device, and more particularly to a technique for guaranteeing the operation of a bus-off detection function.

車載ネットワークの代表的なものとしてCAN(Controller Area Network)が知られている。CAN通信において、伝送路の短絡や断線が発生した場合、通信自体ができなくなるため、伝送路の故障か機器の故障か等を判断することができない。   CAN (Controller Area Network) is known as a typical in-vehicle network. In CAN communication, when a short circuit or disconnection of a transmission path occurs, communication itself cannot be performed, so it cannot be determined whether the transmission path is faulty or a device is faulty.

これに対して、CANプロトコルに従った通信を実行するノードに搭載され、通信フレームを送受信する伝送路の異常を検出するものが提案されている。(例えば、特許文献1参照)。   On the other hand, a device that is mounted on a node that performs communication according to the CAN protocol and detects an abnormality in a transmission path for transmitting and receiving communication frames has been proposed. (For example, refer to Patent Document 1).

特開2016−020185号公報JP, 2006-020185, A

ところが、特許文献1に記載の技術では、伝送路異常の原因を識別する技術を提供できるが、バスオフ時にバスオフ検知が正しく機能することには記載されていない。   However, although the technique described in Patent Document 1 can provide a technique for identifying the cause of the transmission line abnormality, it is not described that the bus off detection functions correctly when the bus is off.

本発明はこの様な事情を考慮してなされたものであり、従ってその目的は、バスオフ状態を作り出し、バスオフ検知機能が正常に動作することを検出できる診断装置を提供することにある。   The present invention has been made in view of such circumstances. Accordingly, an object of the present invention is to provide a diagnostic device that can create a bus-off state and detect that the bus-off detection function operates normally.

上記課題を解決するために本発明の自動車用電子制御装置は、車両機能を制御するマイコンを有し、通信相手となるマイコンと通信するためのCAN伝送路を有し、前記CAN伝送路の故障状態を検知する故障状態検知機能を有する自動車用電子制御装置であって、
任意のタイミングにおいて前記CAN伝送路を故障状態にすることを特徴とする。
In order to solve the above-described problems, an automotive electronic control device of the present invention includes a microcomputer that controls a vehicle function, a CAN transmission path for communicating with a microcomputer that is a communication partner, and a failure of the CAN transmission path. An automotive electronic control device having a failure state detection function for detecting a state,
The CAN transmission path is set in a failure state at an arbitrary timing.

本発明によれば、伝送路が異常状態になった場合においてもバスオフをはじめとする伝送路異常検出装置が正常に動作し、異常時に異常を検知することを保証する技術を提供する。   According to the present invention, there is provided a technique for guaranteeing that a transmission line abnormality detection device such as a bus-off operates normally even when a transmission line is in an abnormal state, and that abnormality is detected at the time of abnormality.

バスオフ検知機能診断装置を有する自動車用電子制御装置の概略図である。It is the schematic of the electronic controller for motor vehicles which has a bus-off detection function diagnostic apparatus. バスオフ診断処理を示すフローチャートである。It is a flowchart which shows a bus-off diagnosis process. 単体ノードでのバスオフ診断処理を示すフローチャートである。It is a flowchart which shows the bus-off diagnosis process in a single node. 全ノードでのバスオフ診断処理を示すフローチャートである。It is a flowchart which shows the bus-off diagnosis process in all the nodes. CAN_H(13)が電源電圧への短絡による固着と同等の状況を作り出す回路構成を示した説明図である。It is explanatory drawing which showed the circuit structure which produces the situation equivalent to CAN_H (13) adhering by the short circuit to a power supply voltage. CAN_H(13)とCAN_L(14)が電源電圧への短絡による固着と同等の状況を作り出す回路構成を示した説明図である。FIG. 5 is an explanatory diagram showing a circuit configuration in which CAN_H (13) and CAN_L (14) create a situation equivalent to fixing due to a short circuit to a power supply voltage. CAN_H(13)が電源電圧への短絡による固着、CAN_L(14)がGND電圧への短絡による固着と同等の状況を作り出す回路構成を示した説明図である。It is explanatory drawing which showed the circuit structure which produces the situation equivalent to CAN_H (13) fixation by the short circuit to a power supply voltage, and CAN_L (14) by the short circuit to a GND voltage. CAN_H(13)が電源とGNDに接続(ON)された状況を示す説明図である。It is explanatory drawing which shows the condition where CAN_H (13) was connected (ON) to a power supply and GND. CAN_H(13)とCAN_L(14)が短絡した状況を示す説明図である。It is explanatory drawing which shows the condition where CAN_H (13) and CAN_L (14) short-circuited.

以下に本発明が適用された実施形態について、図面を用いて説明する。   Embodiments to which the present invention is applied will be described below with reference to the drawings.

[全体構成]
本発明が適用されたバスオフ検知機能診断装置を有する自動車用電子制御装置(1)は、図1に示すように、送信データ、受信データの処理を行うマイコン(2)を備え、前記マイコン(2)にはCANプロトコルの機能を実現するためのCANコントローラ(3)とバスオフ検知機能(4)を内蔵している。
[overall structure]
As shown in FIG. 1, an automotive electronic control device (1) having a bus-off detection function diagnostic device to which the present invention is applied includes a microcomputer (2) for processing transmission data and reception data. ) Incorporates a CAN controller (3) and a bus-off detection function (4) for realizing the CAN protocol function.

伝送路CAN_H(13)と伝送路CAN_L(14)にデータを送信するための電圧の発生や調整を行う機能や他のマイコンから伝送路CAN_H(13)と伝送路CAN_L(14)を介して送信された信号を受信する機能を有するCANトランシーバ(5)と、伝送路CAN_H(13)と伝送路CAN_L(14)上の反射電圧の抑制やバスレベル調整用途で使用される終端抵抗(6)を備える。   A function for generating and adjusting a voltage for transmitting data to the transmission path CAN_H (13) and the transmission path CAN_L (14) and transmission from another microcomputer via the transmission path CAN_H (13) and the transmission path CAN_L (14) A CAN transceiver (5) having a function of receiving the received signal, and a terminating resistor (6) used for suppressing reflection voltage on the transmission path CAN_H (13) and the transmission path CAN_L (14) and for adjusting the bus level. Prepare.

終端抵抗(6)は、伝送路CAN_H(13)と伝送路CAN_L(14)間に接続され、CAN伝送路を所定の抵抗値で終端する。CANトランシーバ(5)は、CANで規定された電気信号を送受信する。この電気信号では、両伝送路CAN_H(13)とCAN_L(14)の電位差が閾値以下である場合がレセッシブであり閾値より大きい場合がドミナントである。   The terminating resistor (6) is connected between the transmission line CAN_H (13) and the transmission line CAN_L (14), and terminates the CAN transmission line with a predetermined resistance value. The CAN transceiver (5) transmits and receives electrical signals defined by CAN. In this electrical signal, the case where the potential difference between both transmission lines CAN_H (13) and CAN_L (14) is less than or equal to the threshold is recessive, and the case where the potential difference is greater than the threshold is dominant.

伝送路CAN_H(13)は、電源電圧への短絡による固着と同等の状況を作り出すためのスイッチ(7)と、GND電圧への短絡による固着と同等の状況を作り出すためのスイッチ(10)が接続される。スイッチ(7)とスイッチ(10)は、前記マイコン(2)により制御される。   The transmission line CAN_H (13) is connected to a switch (7) for creating a situation equivalent to the fixation due to a short circuit to the power supply voltage and a switch (10) for creating a situation equivalent to the fixation due to a short circuit to the GND voltage. Is done. The switches (7) and (10) are controlled by the microcomputer (2).

伝送路CAN_L(14)は、電源電圧への短絡による固着と同等の状況を作り出すためのスイッチ(8)と、GND電圧への短絡による固着と同等の状況を作り出すためのスイッチ(9)が接続される。スイッチ(8)とスイッチ(9)は、前記マイコン(2)により制御される。   The transmission line CAN_L (14) is connected to a switch (8) for creating a situation equivalent to fixing due to a short circuit to the power supply voltage and a switch (9) for creating a situation equivalent to fixing to the GND voltage due to a short circuit. Is done. The switches (8) and (9) are controlled by the microcomputer (2).

伝送路CAN_H(13)と伝送路CAN_L(14)が短絡した状況を作り出すためのスイッチ(11)が、伝送路CAN_H(13)と伝送路CAN_L(14)の間に接続され、前記マイコン(2)により制御される。   A switch (11) for creating a situation in which the transmission path CAN_H (13) and the transmission path CAN_L (14) are short-circuited is connected between the transmission path CAN_H (13) and the transmission path CAN_L (14), and the microcomputer (2 ).

バスオフ検知機能診断を単体のノードで実施する際に伝送路CAN_H(13)と伝送路CAN_L(14)の接続断するためのスイッチ(12)が接続され前記マイコン(2)により制御される。   A switch (12) for disconnecting the transmission path CAN_H (13) and the transmission path CAN_L (14) is connected and controlled by the microcomputer (2) when the bus-off detection function diagnosis is performed by a single node.

[バスオフ診断処理シーケンス]
次にマイコン(2)が実行するバスオフ診断処理シーケンスについて、図2のフローチャートを用いて説明する。
[Bus-off diagnosis processing sequence]
Next, the bus-off diagnosis processing sequence executed by the microcomputer (2) will be described with reference to the flowchart of FIG.

本処理では、バスオフ検知機能を保証するために単体ノードでのバスオフ診断処理(S20)を実施し、その後全ノードでのバスオフ診断処理(S50)を実施する。   In this process, in order to guarantee the bus-off detection function, a bus-off diagnosis process (S20) is performed at a single node, and then a bus-off diagnosis process (S50) is performed at all nodes.

次にマイコン(2)が実行する単体ノードにおけるバスオフ検知機能を診断するために、
バスオフ状態を作り出す処理について、図3のフローチャートを用いて説明する。
Next, in order to diagnose the bus off detection function in the single node executed by the microcomputer (2),
Processing for creating a bus-off state will be described with reference to the flowchart of FIG.

バスオフ状態を作り出す処理では、まず、単体ノードでバスオフ診断処理を実施するにあたり、CAN通信が正常に行われていることが前提であるため、バス接続スイッチ(12)を伝送路CAN_H(13)、CAN_L(14)のそれぞれに接続する(S21)。   In the process of creating the bus off state, first, it is assumed that the CAN communication is normally performed when the bus off diagnosis process is performed in the single node. Therefore, the bus connection switch (12) is connected to the transmission path CAN_H (13), Connection is made to each CAN_L (14) (S21).

正常にCAN通信ができるか確認するために、通常のCAN通信送受信を実施し、問題が発生しないことを以下の方法で確認する(S22)。   In order to confirm whether CAN communication can be normally performed, normal CAN communication transmission / reception is performed, and it is confirmed by the following method that no problem occurs (S22).

CAN通信通常送信確認では、あらかじめ用意したデータをCAN伝送路に送信し、次のエラーが発生しないことを確認する。受信側ノードがACKを返すこと(ACKエラーなし)、アービトレーション・フィールドとACKスロットを除き、マイコン(2)が出力したビット状態と実際のCAN伝送路の状態が同様であること(ビットエラーなし)。   In the CAN communication normal transmission confirmation, data prepared in advance is transmitted to the CAN transmission path to confirm that the next error does not occur. The receiving node returns ACK (no ACK error), except for the arbitration field and ACK slot, the bit state output by the microcomputer (2) is the same as the actual CAN transmission path state (no bit error) .

CAN通信通常受信確認では、あらかじめ用意されたデータを他のノードがCAN伝送路に送信し、次のエラーが発生しないことを確認する。受信したCRC値と受信データから再計算したCRCが同じであること(CRCエラーなし)、EOF,IFS,CRCDEL,ACKDELでドミナントを検出しないこと(フォーマットエラー)、SOFからCRCDELの間で5ビット以上連続して同一のデータビットが送信された場合は6ビット目が補数ビットであること(スタッフエラーなし)。   In the CAN communication normal reception confirmation, other nodes transmit data prepared in advance to the CAN transmission path to confirm that the next error does not occur. The received CRC value and the CRC recalculated from the received data are the same (no CRC error), no dominant is detected in EOF, IFS, CRCDEL, ACKDEL (format error), 5 bits or more between SOF and CRCDEL If the same data bit is transmitted continuously, the sixth bit is a complement bit (no stuff error).

また、これらの正常送受信チェック処理の結果を累積し、その累積結果が閾値を超えなければ正常と判断してもよい。例えば、CANコントローラ(3)で管理される送信エラーカウントTEC(Transmit Error Counter)や受信エラーカウンターREC(Receive Error Couner)により閾値の判断を行ってもよい。   Further, the results of these normal transmission / reception check processes may be accumulated, and if the accumulated result does not exceed the threshold value, it may be determined as normal. For example, the threshold may be determined by a transmission error count TEC (Transmit Error Counter) or a reception error counter REC (Receive Error Counter) managed by the CAN controller (3).

ここで送受信チェック(S22)がNGと判断した場合は、マイコン(2)やCANコントローラ(3)が既に異常状態であると推測されるため、エラー情報を記録(S27)し、バス接続スイッチ(12)を接続(S28)した後、単体ノードでのバスオフ診断処理を終了する。   If it is determined that the transmission / reception check (S22) is NG, it is presumed that the microcomputer (2) and the CAN controller (3) are already in an abnormal state, so error information is recorded (S27), and the bus connection switch ( 12) is connected (S28), the bus-off diagnosis process at the single node is terminated.

送受信チェック(S22)がOKと判断した場合には、次に、単体ノードでバスオフ検知機能を診断するために、他のノードと切り離すためのバス接続スイッチ(12)を伝送路CAN_H(13)、CAN_L(14)それぞれから未接続(OFF)状態にする(S23)。   If it is determined that the transmission / reception check (S22) is OK, then in order to diagnose the bus off detection function in the single node, the bus connection switch (12) for disconnecting from other nodes is set to the transmission path CAN_H (13), The CAN_L (14) is set in an unconnected (OFF) state (S23).

他のノードと切り離された状態で自動車用電子制御装置(1)においてバスオフ検知機能診断を行うためにバスオフ状態を作成する(S24)。ここでバスオフ状態作成方法について図5、図6、図7、図8、図9を用いて説明する。   A bus-off state is created in order to perform a bus-off detection function diagnosis in the automotive electronic control device (1) in a state disconnected from other nodes (S24). Here, the bus-off state creation method will be described with reference to FIGS. 5, 6, 7, 8, and 9.

図5では伝送路CAN_H(13)に電源電圧への短絡による固着と同等の状況を作り出すためのスイッチ(7)を接続し、異常状態を表している。   In FIG. 5, a switch (7) for creating a situation equivalent to fixing due to a short circuit to the power supply voltage is connected to the transmission line CAN_H (13) to indicate an abnormal state.

正常状態からスイッチ(7)を伝送路CAN_H(13)に接続すると伝送路CAN_H(13)は電源電圧への短絡による固着と同等の状況となり、CAN通信が正常に行われなくなる。そのため、TEC(Transmit Error Counter)はカウントアップされ閾値以上となった時にマイコン(2)に内蔵されるバスオフ検知機能(4)が正しく検知できることを確認する(S25)。バスオフ検知が正常に行われなかった場合は、バスオフ検知エラー情報を記録し(S27)、バス接続スイッチ(12)を接続(S28)した後、単体ノードでのバスオフ診断処理を終了する。   If the switch (7) is connected to the transmission line CAN_H (13) from the normal state, the transmission line CAN_H (13) becomes equivalent to a situation where it is fixed due to a short circuit to the power supply voltage, and CAN communication is not normally performed. Therefore, when the TEC (Transmit Error Counter) is counted up and exceeds the threshold, it is confirmed that the bus off detection function (4) built in the microcomputer (2) can be detected correctly (S25). If the bus-off detection is not normally performed, the bus-off detection error information is recorded (S27), the bus connection switch (12) is connected (S28), and then the bus-off diagnosis process at the single node is terminated.

図6では伝送路CAN_H(13)に電源電圧への短絡による固着と同等の状況を作り出すためのスイッチ(7)を接続し、且つ伝送路CAN_L(14)に電源電圧への短絡による固着と同等の状況を作り出すためのスイッチ(8)を接続する。   In FIG. 6, a switch (7) is connected to the transmission line CAN_H (13) to create a situation equivalent to the fixation due to the short circuit to the power supply voltage, and the transmission line CAN_L (14) is equivalent to the fixation due to the short circuit to the power supply voltage. The switch (8) for creating the situation is connected.

また、CAN伝送路の状態を正常動作時とスイッチ(7)及びスイッチ(8)を伝送路CAN_H(13)と伝送路CAN_L(14)に接続した場合の異常状態を表している。   Further, the CAN transmission path is shown in an abnormal state when the normal operation is performed and when the switch (7) and the switch (8) are connected to the transmission path CAN_H (13) and the transmission path CAN_L (14).

正常状態からスイッチ(7)を伝送路CAN_H(13)に接続すると伝送路CAN_H(13)は電源電圧への短絡による固着と同等の状況となり、また、スイッチ(8)を伝送路CAN_L(14)に接続すると伝送路CAN_L(14)は電源電圧への短絡による固着と同等の状況となり、CAN通信が正常に行われなくなる。これにより、TEC(Transmit Error Counter)はカウントアップされ閾値以上となった時にマイコン(2)に内蔵されるバスオフ検知機能(4)が正しく検知できることを確認する(S25)。バスオフ検知が正常に行われなかった場合は、バスオフ検知エラー情報を記録し(S27)、バス接続スイッチ(12)を接続(S28)した後、単体でのバスオフ診断処理を終了する。   When the switch (7) is connected to the transmission line CAN_H (13) from the normal state, the transmission line CAN_H (13) is in a situation equivalent to fixing due to a short circuit to the power supply voltage, and the switch (8) is connected to the transmission line CAN_L (14). When connected to the transmission line, the transmission path CAN_L (14) is in a situation equivalent to that due to a short circuit to the power supply voltage, and CAN communication is not normally performed. Thereby, when the TEC (Transmit Error Counter) is counted up and exceeds the threshold value, it is confirmed that the bus off detection function (4) built in the microcomputer (2) can be detected correctly (S25). If the bus-off detection is not normally performed, the bus-off detection error information is recorded (S27), the bus connection switch (12) is connected (S28), and then the bus-off diagnosis process alone is terminated.

図7では伝送路CAN_H(13)に電源電圧への短絡による固着と同等の状況を作り出すためのスイッチ(7)を接続し、且つ伝送路CAN_L(14)にGND電圧への短絡による固着と同等の状況を作り出すためのスイッチ(9)を接続する。また、CAN伝送路の状態を正常動作時とスイッチ(7)及びスイッチ(9)を伝送路CAN_H(13)と伝送路CAN_L(14)に接続した場合の異常状態を表している。   In FIG. 7, a switch (7) is connected to the transmission line CAN_H (13) to create a situation equivalent to the fixation due to the short circuit to the power supply voltage, and the transmission line CAN_L (14) is equivalent to the fixation due to the short circuit to the GND voltage. The switch (9) for creating the situation is connected. Further, the CAN transmission path is shown in an abnormal state when the normal operation is performed and when the switch (7) and the switch (9) are connected to the transmission path CAN_H (13) and the transmission path CAN_L (14).

正常状態からスイッチ(7)を伝送路CAN_H(13)に接続すると伝送路CAN_H(13)は電源電圧への短絡による固着と同等の状況となり、また、スイッチ(9)を伝送路CAN_L(14)に接続すると伝送路CAN_L(14)はGND電圧への短絡による固着と同等の状況となり、CAN通信が正常に行われなくなる。これにより、TECはカウントアップされ閾値以上となった時にマイコン(2)に内蔵されるバスオフ検知機能(4)が正しく検知できることを確認する(S25)。バスオフ検知が正常に行われなかった場合は、バスオフ検知エラー情報を記録し(S27)、バス接続スイッチ(12)を接続(S28)した後、単体ノードでのバスオフ診断処理を終了する。   When the switch (7) is connected to the transmission line CAN_H (13) from the normal state, the transmission line CAN_H (13) is in a situation equivalent to fixing due to a short circuit to the power supply voltage, and the switch (9) is connected to the transmission line CAN_L (14). When connected to, the transmission path CAN_L (14) is in a situation equivalent to that due to a short circuit to the GND voltage, and CAN communication is not normally performed. Thereby, it is confirmed that the bus off detection function (4) built in the microcomputer (2) can be correctly detected when the TEC is counted up and exceeds the threshold (S25). If the bus-off detection is not normally performed, the bus-off detection error information is recorded (S27), the bus connection switch (12) is connected (S28), and then the bus-off diagnosis process at the single node is terminated.

図8では伝送路CAN_H(13)に電源電圧への短絡による固着と同等の状況を作り出すためのスイッチ(7)を接続し、且つ伝送路CAN_H(13)にGND電圧への短絡による固着と同等の状況を作り出すためのスイッチ(10)を接続する。   In FIG. 8, the switch (7) is connected to the transmission line CAN_H (13) to create a situation equivalent to the fixation due to the short circuit to the power supply voltage, and the transmission line CAN_H (13) is equivalent to the fixation due to the short circuit to the GND voltage. The switch (10) for creating the situation is connected.

また、CAN伝送路の状態を正常動作時とスイッチ(7)及びスイッチ(10)を伝送路CAN_H(13)に接続した場合の異常状態を表している。   Further, the CAN transmission path is shown in an abnormal state when it is operating normally and when the switch (7) and the switch (10) are connected to the transmission path CAN_H (13).

正常状態からスイッチ(7)とスイッチ(10)を伝送路CAN_H(13)に接続すると伝送路CAN_H(13)はプルアップ抵抗、プルダウン抵抗が同じであれば中間電圧で固着と同等の状況となり、CAN通信が正常に行われなくなる。これにより、TEC(Transmit Error Counter)はカウントアップされ閾値以上となった時にマイコン(2)に内蔵されるバスオフ検知機能(4)が正しく検知できることを確認する(S25)。バスオフ検知が正常に行われなかった場合は、バスオフ検知エラー情報を記録し(S27)、バス接続スイッチ(12)を接続(S28)した後、単体でのバスオフ診断処理を終了する。   When the switch (7) and the switch (10) are connected to the transmission line CAN_H (13) from the normal state, the transmission line CAN_H (13) is equivalent to fixing with an intermediate voltage if the pull-up resistance and the pull-down resistance are the same. CAN communication is not performed normally. Thereby, when the TEC (Transmit Error Counter) is counted up and exceeds the threshold value, it is confirmed that the bus off detection function (4) built in the microcomputer (2) can be detected correctly (S25). If the bus-off detection is not normally performed, the bus-off detection error information is recorded (S27), the bus connection switch (12) is connected (S28), and then the bus-off diagnosis process alone is terminated.

図9では伝送路CAN_H(13)と伝送路CAN_L(14)を短絡するための状況を作り出すためのスイッチ(11)を接続する。また、CAN伝送路の状態を正常動作時とスイッチ(11)を伝送路CAN_H(13)と伝送路CAN_L(14)を接続した場合の異常状態を表している。   In FIG. 9, a switch (11) for creating a situation for short-circuiting the transmission path CAN_H (13) and the transmission path CAN_L (14) is connected. Further, the CAN transmission path is in an abnormal state when the transmission line CAN_H (13) and the transmission path CAN_L (14) are connected with the switch (11) during normal operation.

正常状態からスイッチ(11)を接続することにより伝送路CAN_H(13)と伝送路CAN_L(14)が接続され、CAN通信が正常に行われなくなる。これにより、TEC(Transmit Error Counter)はカウントアップされ閾値以上となった時にマイコン(2)に内蔵されるバスオフ検知機能(4)が正しく検知できることを確認する(S25)。バスオフ検知が正常に行われなかった場合は、バスオフ検知エラー情報を記録し(S27)、バス接続スイッチ(12)を接続(S28)した後、単体でのバスオフ診断処理を終了する。   By connecting the switch (11) from the normal state, the transmission path CAN_H (13) and the transmission path CAN_L (14) are connected, and the CAN communication is not normally performed. Thereby, when the TEC (Transmit Error Counter) is counted up and exceeds the threshold value, it is confirmed that the bus off detection function (4) built in the microcomputer (2) can be detected correctly (S25). If the bus-off detection is not normally performed, the bus-off detection error information is recorded (S27), the bus connection switch (12) is connected (S28), and then the bus-off diagnosis process alone is terminated.

図5、図6、図7、図8、図9で示したバスオフ状態作成方法でバスオフ状態にしたのち、正常状態へ復帰するために、ノードをCAN伝送路に接続するためのスイッチ(12)以外のスイッチ(7)、スイッチ(8)、スイッチ(9)、スイッチ(10)、スイッチ(11)をOFFにし正常状態へ復帰する(S26)。またノードをCAN伝送路に接続するためのスイッチ(12)を接続する(S28)。   A switch (12) for connecting a node to a CAN transmission line in order to return to a normal state after the bus is turned off by the bus off state creation method shown in FIGS. 5, 6, 7, 8, and 9. The other switches (7), (8), (9), (10) and (11) are turned off to return to the normal state (S26). Further, a switch (12) for connecting the node to the CAN transmission path is connected (S28).

次に図4で全ノードでのバスオフ診断処理を行うが、バス接続スイッチ(12)を接続(S51)した状態で正常送受信チェック(S52)、バスオフ状態作成(S53)、バスオフ状態でのバスオフ検知(S54)、バスオフ状態から正常状態へ復帰(S55)するものであり上記説明と同等である。   Next, in FIG. 4, the bus off diagnosis process is performed in all nodes. With the bus connection switch (12) connected (S51), the normal transmission / reception check (S52), the bus off state creation (S53), and the bus off detection in the bus off state are performed. (S54), returning from the bus-off state to the normal state (S55), which is equivalent to the above description.

[効果]
以上詳述したように、伝送路CAN_H(13)と伝送路CAN_L(14)に異常状態を作り出すことにより伝送路異常検出装置が正常に動作しているかが判別でき、さらに異常時に異常を検知することを保証することができる。
[effect]
As described above in detail, it is possible to determine whether the transmission line abnormality detection device is operating normally by creating an abnormal state in the transmission line CAN_H (13) and the transmission line CAN_L (14), and to detect an abnormality when an abnormality occurs. Can be guaranteed.

[他の実施形態]
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されることなく、種々の形態をとり得る。
(1) 上記実施形態では、単体ノードでのバスオフ診断処理(S20)と全ノードでの
バスオフ診断処理(S50)を実施したが、単体ノードでのバスオフ診断処理(S20)のみや全ノードでのバスオフ診断処理(S50)のみと個別で実施でもよい。
(2) 上記実施形態では、正常送受信チェック(S22)NG時、バスオフ状態でのバスオフ検知(S25)及びバスオフ状態から正常状態へ復帰(S26)時にNGとなった場合にエラー記録を行っているが、例えば2回以上連続してNGとなった場合にエラー記録をするようにしてもよい。
(3) 上記実施形態のおける一つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を一つの構成要素に統合させたりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を他の上記実施形態の構成に対して付加又は置換してもよい。ほお、特許請求の範囲に記載した文言のみによって特定される技術思想に含まれるあらゆる形態が本発明の実施形態である。
[Other embodiments]
As mentioned above, although embodiment of this invention was described, this invention can take a various form, without being limited to the said embodiment.
(1) In the above embodiment, the bus-off diagnosis process (S20) at a single node and the bus-off diagnosis process (S50) at all nodes are performed. However, only the bus-off diagnosis process (S20) at a single node or at all nodes is performed. Only the bus-off diagnosis process (S50) may be performed separately.
(2) In the above embodiment, error recording is performed when the normal transmission / reception check (S22) is NG, the bus off is detected in the bus off state (S25), and when the bus is off from the bus off state to the normal state (S26). However, for example, error recording may be performed when NG occurs continuously two or more times.
(3) The functions of one component in the above embodiment may be distributed as a plurality of components, or the functions of a plurality of components may be integrated into one component. Moreover, you may abbreviate | omit a part of structure of the said embodiment. Further, at least a part of the configuration of the above embodiment may be added to or replaced with the configuration of the other embodiment. Any form included in the technical idea specified only by the words described in the claims is an embodiment of the present invention.

1…自動車用電子制御装置
2…マイクロコンピュータ(マイコン)
3…CANコントローラ
4…バスオフ検知機能
5…CANトランシーバ
6…終端抵抗
7…伝送路CAN_Hと電源電圧を接続するためのスイッチ
8…伝送路CAN_Lと電源電圧を接続するためのスイッチ
9…伝送路CAN_LとGND電圧を接続するためのスイッチ
10…伝送路CAN_HとGND電圧を接続するためのスイッチ
11…伝送路CAN_Hと伝送路CAN_Lを短絡するためのスイッチ
12…ノードをCAN伝送路に接続するためのスイッチ
DESCRIPTION OF SYMBOLS 1 ... Automotive electronic control apparatus 2 ... Microcomputer (microcomputer)
DESCRIPTION OF SYMBOLS 3 ... CAN controller 4 ... Bus-off detection function 5 ... CAN transceiver 6 ... Termination resistor 7 ... Switch for connecting transmission line CAN_H and power supply voltage 8 ... Switch for connecting transmission line CAN_L and power supply voltage 9 ... Transmission path CAN_L 10 for connecting the GND voltage to the transmission path CAN_H and the switch 11 for connecting the GND voltage to the switch 12 for switching the transmission path CAN_H and the transmission path CAN_L to connect the node to the CAN transmission path. switch

Claims (7)

車両機能を制御するマイコンを有し、
通信相手となるマイコンと通信するためのCAN伝送路を有し、
前記CAN伝送路の故障状態を検知する故障状態検知機能を有する自動車用電子制御装置であって、
任意のタイミングにおいて前記CAN伝送路を故障状態にする
ことを特徴とする自動車用電子制御装置
Has a microcomputer to control the vehicle function,
It has a CAN transmission line for communicating with the microcomputer that is the communication partner,
An automotive electronic control device having a failure state detection function of detecting a failure state of the CAN transmission path,
An electronic control device for an automobile, characterized in that the CAN transmission path is brought into a failure state at an arbitrary timing.
前記マイコンの制御により、前記CAN伝送路を故障状態にする
ことを特徴とする請求項1に記載の自動車用電子制御装置。
The automotive electronic control device according to claim 1, wherein the CAN transmission path is brought into a failure state under the control of the microcomputer.
前記マイコンの制御により、前記CAN伝送路を電圧の印加により故障状態にする
ことを特徴とする請求項1又は2に記載の自動車用電子制御装置。
The automotive electronic control device according to claim 1, wherein the CAN transmission path is brought into a failure state by applying a voltage under the control of the microcomputer.
前記マイコンの制御により、前記CAN伝送路に設けられたスイッチの制御により故障状態にすることを特徴とする請求項1又は2に記載の自動車用電子制御装置。   The vehicle electronic control device according to claim 1 or 2, wherein a failure state is established by controlling a switch provided in the CAN transmission path under the control of the microcomputer. 前記CAN伝送路の故障状態を、
前記マイコンの制御により故障状態から復帰する
ことを特徴とする請求項1又は2に記載の自動車用電子制御装置
The failure state of the CAN transmission path is
The automobile electronic control device according to claim 1, wherein the vehicle is restored from a failure state under the control of the microcomputer.
前記CAN伝送路の故障状態を、
前記マイコンの制御により故障状態から復帰する際に電圧印加を解除してから前記CAN伝送路に設けられたスイッチを接続することを特徴とする請求項3に記載の自動車用電子制御装置。
The failure state of the CAN transmission path is
4. The electronic control device for an automobile according to claim 3, wherein a switch provided in the CAN transmission line is connected after the voltage application is canceled when the microcomputer is restored from the failure state.
前記故障状態はバスオフ状態である
ことを特徴とする請求項1から3に記載の自動車用電子制御装置
The automotive electronic control device according to claim 1, wherein the failure state is a bus-off state.
JP2016192532A 2016-09-30 2016-09-30 Electronic control unit for automobile Active JP6617091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016192532A JP6617091B2 (en) 2016-09-30 2016-09-30 Electronic control unit for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016192532A JP6617091B2 (en) 2016-09-30 2016-09-30 Electronic control unit for automobile

Publications (2)

Publication Number Publication Date
JP2018052378A true JP2018052378A (en) 2018-04-05
JP6617091B2 JP6617091B2 (en) 2019-12-04

Family

ID=61834892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016192532A Active JP6617091B2 (en) 2016-09-30 2016-09-30 Electronic control unit for automobile

Country Status (1)

Country Link
JP (1) JP6617091B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161947A (en) * 2010-02-04 2011-08-25 Suzuki Motor Corp Automatic inspection system of electronic controller
JP2016020185A (en) * 2014-07-15 2016-02-04 株式会社デンソー Transmission line abnormality detector
JP2016126716A (en) * 2015-01-08 2016-07-11 株式会社デンソー Electronic control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161947A (en) * 2010-02-04 2011-08-25 Suzuki Motor Corp Automatic inspection system of electronic controller
JP2016020185A (en) * 2014-07-15 2016-02-04 株式会社デンソー Transmission line abnormality detector
JP2016126716A (en) * 2015-01-08 2016-07-11 株式会社デンソー Electronic control device

Also Published As

Publication number Publication date
JP6617091B2 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
JP4952212B2 (en) Communication interference prevention device, communication system node, communication system, vehicle fault diagnosis device, and in-vehicle device
US9965426B2 (en) System and method for a low emission network
EP2800313B1 (en) Devices and methods for an enhanced driver mode for a shared bus
KR101519793B1 (en) Network system for vehicle and data transmission method of a different kind communication controller in the same system
JP2851124B2 (en) Multiplex transmission method
US20040158781A1 (en) Method for determining line faults in a bus system and bus system
CN110892681B (en) Transmitting/receiving device, bus system and method for identifying short circuit
KR102415141B1 (en) Subscriber station for a bus system, and method for adjusting the timing of a transmit signal for a bus system
KR20180136645A (en) Operation method of communication node for diagnosing in vehicle network
CN112217704A (en) Communication between transceiver and microcontroller
CN113726623A (en) Controller area network controller and transceiver
CN114144996B (en) Apparatus for subscriber station of serial bus system and method for communication in serial bus system
EP2680476B1 (en) Communications apparatus, system and method with error mitigation
US11095475B2 (en) Communication failure detection device
JP6617091B2 (en) Electronic control unit for automobile
JP4968169B2 (en) Communication system and communication method
CN111164937B (en) Transmitting/receiving device for a bus system and method for reducing the tendency of oscillations during transitions between different bit states
JP2009111911A (en) Communication apparatus, communication system, and communication method
JP2017041693A (en) Communication device and communication system
US7046722B2 (en) Transceiver with means for error management
CN111555946B (en) Subscriber station for a bus system and method for data transmission in a bus system
CN115441889A (en) Transceiver device
JP4877203B2 (en) COMMUNICATION DEVICE, COMMUNICATION SYSTEM, AND COMMUNICATION METHOD
CN113852391A (en) CAN transceiver
EP1989630B1 (en) Interface between busses of different physical layers

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161003

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191111

R150 Certificate of patent or registration of utility model

Ref document number: 6617091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250