JP2018050351A - Temperature control circuit for crystal oscillator with thermostatic chamber - Google Patents

Temperature control circuit for crystal oscillator with thermostatic chamber Download PDF

Info

Publication number
JP2018050351A
JP2018050351A JP2018001008A JP2018001008A JP2018050351A JP 2018050351 A JP2018050351 A JP 2018050351A JP 2018001008 A JP2018001008 A JP 2018001008A JP 2018001008 A JP2018001008 A JP 2018001008A JP 2018050351 A JP2018050351 A JP 2018050351A
Authority
JP
Japan
Prior art keywords
temperature control
resistor
control circuit
power supply
operational amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018001008A
Other languages
Japanese (ja)
Other versions
JP6537645B2 (en
Inventor
甲史郎 本宮
Koshiro Motomiya
甲史郎 本宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2018001008A priority Critical patent/JP6537645B2/en
Publication of JP2018050351A publication Critical patent/JP2018050351A/en
Application granted granted Critical
Publication of JP6537645B2 publication Critical patent/JP6537645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature control circuit capable of achieving a stable output frequency by suppressing an adverse effect of fluctuations in a power supply voltage for stable temperature control.SOLUTION: The temperature control circuit is configured so that an operational amplifier 10 outputs a difference between a reference voltage input into a plus terminal and a voltage corresponding to a temperature from a thermistor input into a minus terminal and so that a PNP type power transistor Tr1 inputs an output from the operational amplifier 10 into a base and to control an electric current of a heater resistor connected with an emitter, and includes a bridge resistor circuit whose one end is connected with a power supply voltage and the other end is grounded and in which a part of the power supply voltage is added to a reference voltage input into the plus terminal of the operational amplifier, thereby maintaining a voltage between the base and the emitter of the PNP type power transistor Tr1 constant even if the power supply voltage fluctuates.SELECTED DRAWING: Figure 1

Description

本発明は、恒温槽付水晶発振器の温度制御回路に係り、特に電源電圧の変動の影響を抑え、安定した温度制御を行って出力周波数を安定させることができる温度制御回路に関する。   The present invention relates to a temperature control circuit of a crystal oscillator with a thermostatic bath, and more particularly to a temperature control circuit capable of stabilizing the output frequency by suppressing the influence of fluctuations in power supply voltage and performing stable temperature control.

[先行技術の説明:図3]
恒温槽付水晶発振器(OCXO;Oven Controlled Crystal Oscillator)は、恒温槽内に水晶振動子等の発振素子と、温度制御回路等の周辺回路とを収納し、恒温槽内部の温度を一定に保持することにより、外部の温度変化の影響を抑え、出力周波数の安定化を図るものである。
[Description of Prior Art: FIG. 3]
The Oven Controlled Crystal Oscillator (OCXO) contains an oscillation element such as a crystal resonator and a peripheral circuit such as a temperature control circuit in the thermostat, and keeps the temperature inside the thermostat constant. As a result, the influence of an external temperature change is suppressed and the output frequency is stabilized.

従来の恒温槽付水晶発振器に用いられる温度制御回路の例について図3を用いて説明する。図3は、従来の恒温槽付水晶発振器の温度制御回路の例を示す回路図である。
図3に示すように、従来のOCXOの温度制御回路は、基本的に、サーミスタ(TH)と、オペアンプ10と、パワートランジスタTr1と、ヒータ抵抗HRと、電源電圧Vccと、安定化電源Vregとを備えている。
An example of a temperature control circuit used in a conventional crystal oscillator with a thermostat will be described with reference to FIG. FIG. 3 is a circuit diagram showing an example of a temperature control circuit of a conventional crystal oscillator with a thermostatic bath.
As shown in FIG. 3, a conventional OCXO temperature control circuit basically includes a thermistor (TH), an operational amplifier 10, a power transistor Tr1, a heater resistor HR, a power supply voltage Vcc, and a stabilized power supply Vreg. It has.

従来の温度制御回路の各部及び接続関係について具体的に説明する。
サーミスタTHは、温度によって抵抗値が変化する感温素子であり、発振素子の温度を検出し、温度に応じた電圧を出力する。
サーミスタTHの一端には、抵抗R1を介して安定化電源Vregが印加され、他端が接地されている。また、サーミスタTHの一端は、抵抗R4を介してオペアンプ10のマイナス(−)端子(反転入力端子)に入力されている。
Each part and connection relation of the conventional temperature control circuit will be specifically described.
The thermistor TH is a temperature-sensitive element whose resistance value varies with temperature, detects the temperature of the oscillation element, and outputs a voltage corresponding to the temperature.
A stabilized power supply Vreg is applied to one end of the thermistor TH via a resistor R1, and the other end is grounded. One end of the thermistor TH is input to the minus (−) terminal (inverted input terminal) of the operational amplifier 10 via the resistor R4.

サーミスタTHに並列に設けられた直列接続の抵抗R2とR3の一端に、安定化電源Vregが印加され、他端が接地されると共に、抵抗R2とR3の間の点がオペアンプ10のプラス(+)端子(非反転入力端子)に接続され、基準電圧となっている。   The stabilized power supply Vreg is applied to one end of series-connected resistors R2 and R3 provided in parallel to the thermistor TH, the other end is grounded, and the point between the resistors R2 and R3 is a plus (+ ) Terminal (non-inverting input terminal) and is a reference voltage.

更に、オペアンプ10の出力は、抵抗R6を介してパワートランジスタTr1のベースに入力されると共に、抵抗R5を介してオペアンプ10の−端子に帰還している。   Further, the output of the operational amplifier 10 is input to the base of the power transistor Tr1 through the resistor R6 and is fed back to the negative terminal of the operational amplifier 10 through the resistor R5.

ヒータ抵抗HRは、流れる電流に応じて発熱する。
ヒータ抵抗HRの一端には、電源電圧Vccが印加され、ヒータ抵抗HRの他端は、パワートランジスタTr1のエミッタに接続され、パワートランジスタTr1のコレクタは接地されている。
パワートランジスタTr1はPNP型のトランジスタであり、ベースには、R6を介してオペアンプ10の出力が印加されている。
尚、パワートランジスタTr1として、PチャネルMOSFET(Metal-Oxide Semiconductor Field-Effect Transistor)を用いてもよい。
The heater resistance HR generates heat according to the flowing current.
The power supply voltage Vcc is applied to one end of the heater resistor HR, the other end of the heater resistor HR is connected to the emitter of the power transistor Tr1, and the collector of the power transistor Tr1 is grounded.
The power transistor Tr1 is a PNP transistor, and the output of the operational amplifier 10 is applied to the base via R6.
A P-channel MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor) may be used as the power transistor Tr1.

上記構成の温度制御回路においては、オペアンプ10において、基準電圧とサーミスタからの水晶振動子の温度に応じた電圧との差分が増幅されて出力され、当該差分の電圧がパワートランジスタTr1のベースに印加されて、ベース−エミッタ間の電圧に応じて電流が流れ、ヒータ抵抗HRとパワートランジスタTr1が発熱して恒温槽内の温度を一定に保つものである。   In the temperature control circuit having the above configuration, the operational amplifier 10 amplifies and outputs the difference between the reference voltage and the voltage corresponding to the temperature of the crystal resonator from the thermistor, and applies the voltage of the difference to the base of the power transistor Tr1. Then, a current flows according to the voltage between the base and the emitter, and the heater resistor HR and the power transistor Tr1 generate heat to keep the temperature in the thermostatic chamber constant.

[電源電圧の変動]
ところで、図3に示した温度制御回路のように、パワートランジスタTr1としてPNP型のトランジスタを用いた場合、電源電圧Vccが急激に変動すると、パワートランジスタTr1のベース−エミッタ間の電圧が急激に変化し、それに伴ってヒータ抵抗に流れる電流が一時的に大きく変動して、恒温槽の温度制御が不安定になることがあった。
[Changes in power supply voltage]
Incidentally, when a PNP transistor is used as the power transistor Tr1 as in the temperature control circuit shown in FIG. 3, when the power supply voltage Vcc fluctuates rapidly, the voltage between the base and the emitter of the power transistor Tr1 changes abruptly. As a result, the current flowing through the heater resistor fluctuates greatly temporarily, and the temperature control of the thermostat may become unstable.

[従来の電源変動特性:図4]
従来の温度制御回路における電源変動特性の例について図4を用いて説明する。図4は、従来の温度制御回路における電源変動特性例を示す特性図である。
図4に示すように、電源電圧(Vcc)が変動する場合、変化するタイミングで温度制御回路の消費電流値が急激に変動しており、急峻な立ち下りや立ち上がりが認められる。これは、一時的にオーブンの制御が崩れ、不安定になっていることを示している。
[Conventional power fluctuation characteristics: Fig. 4]
An example of power supply fluctuation characteristics in a conventional temperature control circuit will be described with reference to FIG. FIG. 4 is a characteristic diagram showing an example of power supply fluctuation characteristics in a conventional temperature control circuit.
As shown in FIG. 4, when the power supply voltage (Vcc) fluctuates, the current consumption value of the temperature control circuit fluctuates abruptly at the changing timing, and steep falling and rising are recognized. This indicates that the control of the oven is temporarily broken and unstable.

[関連技術]
尚、恒温槽付水晶発振器の温度制御回路に関する従来技術としては、特開2001−117645号公報「温度制御回路」(東洋通信機株式会社、特許文献1)、特開2005−165630号公報「温度制御回路とそれを用いた恒温槽型圧電発振器」(東洋通信機株式会社、特許文献2)、特開2012−253660号公報「恒温槽付水晶発振器」(日本電波工業株式会社、特許文献3)、特開2012−257195号公報「恒温槽付水晶発振器の温度制御回路」(日本電波工業株式会社、特許文献4)がある。
[Related technologies]
In addition, as a prior art regarding the temperature control circuit of the crystal oscillator with a thermostat, Unexamined-Japanese-Patent No. 2001-117645 "Temperature control circuit" (Toyo Tsushinki Co., Ltd., patent document 1), Unexamined-Japanese-Patent No. 2005-165630 "Temperature" Control circuit and thermostatic chamber type piezoelectric oscillator using the same ”(Toyo Tsushinki Co., Ltd., Patent Document 2), Japanese Patent Application Laid-Open No. 2012-253660,“ Quartz Oscillator with Thermostatic Chamber ”(Nippon Denpa Kogyo Co., Ltd., Patent Document 3) JP 2012-257195 A “Cooling Temperature Control Circuit for Crystal Oscillator with Thermostatic Bath” (Nippon Radio Industry Co., Ltd., Patent Document 4).

特許文献1には、温度制御回路において、電源電圧の変動に応じて変動する差動増幅器の出力をトランジスタのベースに入力し、エミッタ出力の一部を差動増幅器の入力にネガティブフィードバックすることが記載されている。   In Patent Document 1, in a temperature control circuit, an output of a differential amplifier that fluctuates according to fluctuations in a power supply voltage is input to the base of a transistor, and a part of the emitter output is negatively fed back to the input of the differential amplifier. Have been described.

また、特許文献2には、温度制御回路において、電力用FETのドレインと差動増幅器ICの+入力間にコンデンサC7を接続し、コンデンサC7による積分回路によって電力用FETのドレイン電流の急激な変化を抑えることが記載されている。   In Patent Document 2, in the temperature control circuit, a capacitor C7 is connected between the drain of the power FET and the + input of the differential amplifier IC, and the drain current of the power FET is rapidly changed by an integration circuit using the capacitor C7. It is described that suppresses.

特許文献3には、恒温槽付水晶発振器において、感度調整用の抵抗を設けて、水晶振動子ごとのZTC(ゼロ温度係数点)温度の違いに対応して周囲温度の変化による制御目標の温度の変化を防止することが記載されている。   In Patent Document 3, in a crystal oscillator with a thermostatic chamber, a resistance for adjusting sensitivity is provided, and a temperature of a control target due to a change in ambient temperature corresponding to a difference in ZTC (zero temperature coefficient point) temperature for each crystal resonator. It is described to prevent the change of.

特許文献4には、温度制御回路において、第1のデジタルポテンショメータが水晶振動子の頂点温度を調整し、第2のデジタルポテンショメータが第1のデジタルポテンショメータの温度傾斜を打ち消すよう、それぞれ抵抗値を可変とすることが記載されている。   In Patent Document 4, in the temperature control circuit, the first digital potentiometer adjusts the vertex temperature of the crystal resonator, and the second digital potentiometer changes the resistance value so as to cancel the temperature gradient of the first digital potentiometer. It is described that.

特開2001−117645号公報JP 2001-117645 A 特開2005−165630号公報JP 2005-165630 A 特開2012−253660号公報JP 2012-253660 A 特開2012−257195号公報JP2012-257195A

上述したように、パワートランジスタとしてPNP型トランジスタを用いた従来の温度制御回路では、電源電圧の変動に応じてパワートランジスタのエミッタ電圧が変動し、それに伴って、ベース−エミッタ間の電圧が変動して恒温槽の温度制御が不安定になってしまうという問題点があった。   As described above, in the conventional temperature control circuit using the PNP type transistor as the power transistor, the emitter voltage of the power transistor varies according to the variation of the power supply voltage, and accordingly, the voltage between the base and the emitter varies. As a result, the temperature control of the thermostatic chamber becomes unstable.

尚、特許文献1,2は、電源電圧の変動によって変化したトランジスタ出力を用いて差動増幅器にフィードバックする構成となっており、パワートランジスタの出力を用いずに、電源電圧を直接オペアンプに反映させることは記載されていない。同様に、特許文献3,4にも記載されていない。   Note that Patent Documents 1 and 2 are configured to feed back to a differential amplifier using a transistor output that has changed due to fluctuations in the power supply voltage, and directly reflect the power supply voltage to the operational amplifier without using the output of the power transistor. That is not described. Similarly, it is not described in Patent Documents 3 and 4.

本発明は上記実状に鑑みて為されたもので、電源電圧の変動によりPNP型パワートランジスタのベース−エミッタ間の電圧が変動するのを抑え、安定した温度制御を実現し、周波数特性を向上させることができる温度制御回路を提供することを目的とする。   The present invention has been made in view of the above circumstances, and suppresses fluctuation of the voltage between the base and the emitter of the PNP type power transistor due to fluctuation of the power supply voltage, realizes stable temperature control, and improves frequency characteristics. An object of the present invention is to provide a temperature control circuit capable of performing the above.

上記従来例の問題点を解決するための本発明は、恒温槽付水晶発振器の温度制御回路であって、恒温槽内の温度を検出して検出温度に相当する電圧を出力するサーミスタと、基準電圧が入力されるプラス端子と、サーミスタが接続するマイナス端子とを有し、当該両端子に入力される電圧の差分を出力するオペアンプと、オペアンプからの出力をベースに入力するPNP型パワートランジスタと、一端が電源電圧に接続し、他端がPNP型パワートランジスタのエミッタに接続するヒータ抵抗と、一端が電源電圧に接続し、他端が接地され、電源電圧の一部を、前記オペアンプのプラス端子に入力される基準電圧に加算するブリッジ抵抗回路とを備えたことを特徴としている。 The present invention for solving the problems of the above conventional example is a temperature control circuit for a crystal oscillator with a thermostat, which detects the temperature in the thermostat and outputs a voltage corresponding to the detected temperature, and a reference An operational amplifier having a positive terminal to which a voltage is input and a negative terminal to which the thermistor is connected, which outputs a difference between voltages input to both terminals, and a PNP power transistor which is input based on an output from the operational amplifier; one end connected to the power supply voltage, a heater resistance and the other end is connected to the emitter of the PNP power transistor, one end is connected to the power supply voltage, the other end is grounded, the part of the supply voltage, plus the operational amplifier And a bridge resistor circuit for adding to the reference voltage input to the terminal .

また、本発明は、上記温度制御回路において、ブリッジ抵抗回路が、第1の抵抗と第2の抵抗の直列回路で構成され、第1の抵抗と第2の抵抗との間の点が、オペアンプのプラス端子に接続されることを特徴としている。 Further, according to the present invention, in the above temperature control circuit, the bridge resistor circuit is configured by a series circuit of a first resistor and a second resistor, and a point between the first resistor and the second resistor is an operational amplifier. It is connected to the positive terminal .

また、本発明は、上記温度制御回路において、第1の抵抗と第2の抵抗との間の点と、オペアンプのプラス端子とが第3の抵抗を介して接続されていることを特徴としている。 According to the present invention, in the above temperature control circuit, a point between the first resistor and the second resistor is connected to the plus terminal of the operational amplifier via a third resistor . .

本発明によれば、恒温槽付水晶発振器の温度制御回路であって、恒温槽内の温度を検出して検出温度に相当する電圧を出力するサーミスタと、基準電圧が入力されるプラス端子と、サーミスタが接続するマイナス端子とを有し、当該両端子に入力される電圧の差分を出力するオペアンプと、オペアンプからの出力をベースに入力するPNP型パワートランジスタと、一端が電源電圧に接続し、他端がPNP型パワートランジスタのエミッタに接続するヒータ抵抗と、一端が電源電圧に接続し、他端が接地され、電源電圧の一部を、前記オペアンプのプラス端子に入力される基準電圧に加算するブリッジ抵抗回路とを備えた温度制御回路としているので、電源電圧が変動した場合に、PNP型パワートランジスタのベース電圧をエミッタ電圧と同方向に変化させて、ベース−エミッタ間の電圧を一定に保持することができ、電源電圧が急激に変化しても、安定した温度制御を行って出力周波数信号を安定させることができる効果がある。 According to the present invention, a temperature control circuit for a crystal oscillator with a thermostatic chamber, which detects the temperature in the thermostatic chamber and outputs a voltage corresponding to the detected temperature, a plus terminal to which a reference voltage is input, An operational amplifier that has a negative terminal to which the thermistor is connected , outputs a difference between voltages input to both terminals, a PNP power transistor that is input based on an output from the operational amplifier, and one end connected to the power supply voltage; The other end is connected to the emitter of the PNP-type power transistor, the other end is connected to the power supply voltage, the other end is grounded, and a part of the power supply voltage is added to the reference voltage input to the positive terminal of the operational amplifier since the temperature control circuit that includes a bridge resistor circuit, if the supply voltage fluctuates, and the emitter voltage of the base voltage of the PNP power transistor The voltage between the base and the emitter can be kept constant by changing the direction, and the output frequency signal can be stabilized by performing stable temperature control even when the power supply voltage changes suddenly. .

本発明の実施の形態に係る温度制御回路の回路図である。It is a circuit diagram of the temperature control circuit which concerns on embodiment of this invention. 本温度制御回路の電源変動特性例を示す特性図である。It is a characteristic view which shows the example of a power supply fluctuation characteristic of this temperature control circuit. 従来の恒温槽付水晶発振器の温度制御回路の例を示す回路図である。It is a circuit diagram which shows the example of the temperature control circuit of the conventional crystal oscillator with a thermostat. 従来の温度制御回路における電源変動特性例を示す特性図である。It is a characteristic view which shows the example of a power supply fluctuation characteristic in the conventional temperature control circuit.

本発明の実施の形態について図面を参照しながら説明する。
[実施の形態の概要]
本発明の実施の形態に係る恒温槽付水晶発振器の温度制御回路は、サーミスタで検出された温度に相当する電圧と、基準電圧との差分を出力するオペアンプの出力を、PNP型パワートランジスタのベースに入力して、エミッタにヒータ抵抗を接続した温度制御回路で、電源電圧の一部をブリッジ抵抗回路を介してオペアンプの基準電圧に加算するものであり、電源電圧が変動した場合に、PNP型パワートランジスタのベース電圧をエミッタ電圧と同方向に変化させることにより、ベース−エミッタ間の電圧を一定に保持することができ、電源電圧が急激に変化しても、安定した温度制御を行って出力周波数を安定させることができるものである。
Embodiments of the present invention will be described with reference to the drawings.
[Outline of the embodiment]
The temperature control circuit for the crystal oscillator with a thermostatic bath according to the embodiment of the present invention uses the output of the operational amplifier that outputs the difference between the voltage corresponding to the temperature detected by the thermistor and the reference voltage as the base of the PNP type power transistor. Is a temperature control circuit in which a heater resistor is connected to the emitter, and a part of the power supply voltage is added to the reference voltage of the operational amplifier via the bridge resistor circuit. When the power supply voltage fluctuates, the PNP type By changing the base voltage of the power transistor in the same direction as the emitter voltage, the base-emitter voltage can be kept constant, and even if the power supply voltage changes suddenly, stable temperature control is performed and output. The frequency can be stabilized.

[実施の形態に係る温度制御回路:図1]
本発明の実施の形態に係る恒温槽付水晶発振器の温度制御回路について図1を用いて説明する。図1は、本発明の実施の形態に係る温度制御回路の回路図である。
図1に示すように、本発明の実施の形態に係る温度制御回路(本温度制御回路)は、図3に示した従来の温度制御回路と同様の基本的な部分として、サーミスタ(TH)と、オペアンプ10と、PNP型のパワートランジスタTr1と、ヒータ抵抗HRと、電源電圧Vccと、安定化電源Vregとを備えている。
そして、本温度制御回路の特徴として、抵抗R11,抵抗R12,抵抗R13から成るブリッジ抵抗回路11を備えている。
[Temperature Control Circuit According to Embodiment: FIG. 1]
A temperature control circuit of the thermostatic crystal oscillator according to the embodiment of the present invention will be described with reference to FIG. FIG. 1 is a circuit diagram of a temperature control circuit according to an embodiment of the present invention.
As shown in FIG. 1, the temperature control circuit (this temperature control circuit) according to the embodiment of the present invention has a thermistor (TH) and a basic part similar to the conventional temperature control circuit shown in FIG. , An operational amplifier 10, a PNP power transistor Tr1, a heater resistor HR, a power supply voltage Vcc, and a stabilized power supply Vreg.
As a feature of the temperature control circuit, a bridge resistor circuit 11 including a resistor R11, a resistor R12, and a resistor R13 is provided.

ブリッジ抵抗回路11以外の部分の接続関係は、図3と同じであるため、説明は省略する。
ブリッジ抵抗回路11は、一端が電源電圧Vccに接続される抵抗R11と、一端が接地される抵抗R12と、一端が抵抗R2及び抵抗R3の間の点に接続される抵抗R13とを備え、抵抗R11,R12,R13の他端が一点で接続された構成である。
Since the connections other than the bridge resistor circuit 11 are the same as those in FIG. 3, the description thereof is omitted.
The bridge resistor circuit 11 includes a resistor R11 having one end connected to the power supply voltage Vcc, a resistor R12 having one end grounded, and a resistor R13 having one end connected to a point between the resistor R2 and the resistor R3. In this configuration, the other ends of R11, R12, and R13 are connected at one point.

そして、電源電圧Vccが分岐されて、ブリッジ抵抗回路11の抵抗R11の一端に印加されている。
分岐された電源電圧Vccは、抵抗R11とR12の間の点に接続された抵抗R13を介して、抵抗R2と抵抗R3との間の点に入力されている。
The power supply voltage Vcc is branched and applied to one end of the resistor R11 of the bridge resistor circuit 11.
The branched power supply voltage Vcc is input to a point between the resistors R2 and R3 through a resistor R13 connected to a point between the resistors R11 and R12.

図3で説明したように、抵抗R2と抵抗R3との間の点は、安定化電源Vregに接続されると共にオペアンプ10の+端子に接続されており、基準電圧を供給している。
つまり、本温度制御回路では、基準電圧に、電源電圧Vccを加算してオペアンプの+端子に供給しているものである。
As described with reference to FIG. 3, the point between the resistor R2 and the resistor R3 is connected to the stabilized power supply Vreg and to the + terminal of the operational amplifier 10 to supply a reference voltage.
That is, in this temperature control circuit, the power supply voltage Vcc is added to the reference voltage and supplied to the + terminal of the operational amplifier.

これにより、電源電圧Vccが変動した場合には、それに応じてパワートランジスタTr1のエミッタ電圧が変動するが、その変動分が基準電圧に加算されて、オペアンプ10の出力に反映され、パワートランジスタTr1のベースに入力されて、ベース電圧がエミッタ電圧と同じ方向に変動することになる。   Thereby, when the power supply voltage Vcc fluctuates, the emitter voltage of the power transistor Tr1 fluctuates accordingly, and the fluctuation is added to the reference voltage and reflected in the output of the operational amplifier 10, and the power transistor Tr1 When input to the base, the base voltage fluctuates in the same direction as the emitter voltage.

そのため、電源電圧Vccが変動しても、PNP型のパワートランジスタTr1のベース−エミッタ間電圧を一定に保持することができ、ヒータ抵抗HRに流れる電流量が大きく変動するのを防ぐことができるものである。   Therefore, even if the power supply voltage Vcc fluctuates, the base-emitter voltage of the PNP type power transistor Tr1 can be kept constant, and the amount of current flowing through the heater resistor HR can be prevented from fluctuating greatly. It is.

[本温度制御回路の特性:図2]
次に、本温度制御回路の電源変動特性と、本温度制御回路を用いた恒温槽付水晶発振器の周波数安定度について図2を用いて説明する。図2は、本温度制御回路の電源変動特性例を示す特性図である。
図2に示すように、本温度制御回路では、電源電圧Vccが変動しても、消費電流の変動は小さく、急峻な立ち下りや立ち上がりは発生しない。
図4に示した従来の温度制御回路の特性と比較して、大幅に改善されており、オーブンの制御が安定していることを示している。
[Characteristics of this temperature control circuit: Fig. 2]
Next, the power supply fluctuation characteristics of the temperature control circuit and the frequency stability of the thermostatic crystal oscillator using the temperature control circuit will be described with reference to FIG. FIG. 2 is a characteristic diagram showing an example of power supply fluctuation characteristics of the temperature control circuit.
As shown in FIG. 2, in this temperature control circuit, even if the power supply voltage Vcc fluctuates, the fluctuation of the consumption current is small and no steep falling or rising occurs.
Compared with the characteristics of the conventional temperature control circuit shown in FIG. 4, the characteristics are greatly improved, indicating that the control of the oven is stable.

[実施の形態の効果]
本発明の実施の形態に係る温度制御回路によれば、オペアンプ10が、抵抗R2及びR3の間の点から出力される基準電圧と、サーミスタからの温度に応じた電圧との差分を出力し、PNP型のパワートランジスタTr1が、オペアンプ10からの出力をベースに入力し、エミッタに接続するヒータ抵抗の電流を制御する温度制御回路であって、一端が電源電圧Vccに接続し、抵抗R11とR12とが直列接続されたブリッジ抵抗回路11を備え、ブリッジ抵抗回路11の抵抗R11とR12の間の点が、抵抗R13を介して、基準電圧を供給する抵抗R2とR3の間の点に接続された構成としているので、電源電圧Vccが変動した場合に、PNP型のパワートランジスタTr1のベース電圧をエミッタ電圧と同じ方向に変化させて、ベース−エミッタ間の電圧を一定に保持することができ、電源電圧Vccが変動しても安定した温度制御を行って出力周波数を安定させることができる効果がある。
[Effect of the embodiment]
According to the temperature control circuit according to the embodiment of the present invention, the operational amplifier 10 outputs the difference between the reference voltage output from the point between the resistors R2 and R3 and the voltage corresponding to the temperature from the thermistor, A PNP-type power transistor Tr1 is a temperature control circuit that inputs the output from the operational amplifier 10 and controls the current of the heater resistor connected to the emitter, one end of which is connected to the power supply voltage Vcc, and resistors R11 and R12 Are connected in series, and a point between the resistors R11 and R12 of the bridge resistor circuit 11 is connected to a point between the resistors R2 and R3 supplying the reference voltage via the resistor R13. Therefore, when the power supply voltage Vcc fluctuates, the base voltage of the PNP type power transistor Tr1 is changed in the same direction as the emitter voltage to Scan - the voltage between the emitter can be kept constant, there is an effect capable of stabilizing the output frequency by performing a temperature control of the power supply voltage Vcc is stabilized vary.

本発明は、電源電圧の変動の影響を抑え、安定した温度制御を行って出力周波数を安定させることができる温度制御回路に適している。   The present invention is suitable for a temperature control circuit that can suppress the influence of fluctuations in the power supply voltage and perform stable temperature control to stabilize the output frequency.

10…オペアンプ、 11…ブリッジ抵抗回路、 R1,R2,R3,R4,R5,R6,R11,R12,R13…抵抗、 HR…ヒータ抵抗、 TH…サーミスタ、 Tr1…パワートランジスタ   DESCRIPTION OF SYMBOLS 10 ... Operational amplifier 11 ... Bridge resistance circuit R1, R2, R3, R4, R5, R6, R11, R12, R13 ... Resistance, HR ... Heater resistance, TH ... Thermistor, Tr1 ... Power transistor

Claims (3)

恒温槽付水晶発振器の温度制御回路であって、
恒温槽内の温度を検出して検出温度に相当する電圧を出力するサーミスタと、
基準電圧が入力されるプラス端子と、前記サーミスタが接続するマイナス端子とを有し、当該両端子に入力される電圧の差分を出力するオペアンプと、
前記オペアンプからの出力をベースに入力するPNP型パワートランジスタと、
一端が電源電圧に接続し、他端が前記PNP型パワートランジスタのエミッタに接続するヒータ抵抗と、
一端が電源電圧に接続し、他端が接地され、前記電源電圧の一部を、前記オペアンプのプラス端子に入力される基準電圧に加算するブリッジ抵抗回路とを備えたことを特徴とする温度制御回路。
A temperature control circuit for a crystal oscillator with a thermostatic bath,
A thermistor that detects the temperature in the thermostat and outputs a voltage corresponding to the detected temperature;
An operational amplifier having a positive terminal to which a reference voltage is input and a negative terminal to which the thermistor is connected, and outputting a difference between voltages input to both terminals;
A PNP-type power transistor that inputs the output from the operational amplifier as a base;
A heater resistor having one end connected to the power supply voltage and the other end connected to the emitter of the PNP-type power transistor;
A temperature control comprising: a bridge resistor circuit having one end connected to a power supply voltage, the other end grounded, and adding a part of the power supply voltage to a reference voltage input to a plus terminal of the operational amplifier circuit.
ブリッジ抵抗回路が、第1の抵抗と第2の抵抗の直列回路で構成され、前記第1の抵抗と前記第2の抵抗との間の点が、オペアンプのプラス端子に接続されることを特徴とする請求項1記載の温度制御回路。   The bridge resistor circuit is configured by a series circuit of a first resistor and a second resistor, and a point between the first resistor and the second resistor is connected to a plus terminal of an operational amplifier. The temperature control circuit according to claim 1. 第1の抵抗と第2の抵抗との間の点と、オペアンプのプラス端子とが第3の抵抗を介して接続されていることを特徴とする請求項2記載の温度制御回路。   3. The temperature control circuit according to claim 2, wherein a point between the first resistor and the second resistor is connected to a plus terminal of the operational amplifier via a third resistor.
JP2018001008A 2018-01-09 2018-01-09 Temperature control circuit of crystal oscillator with thermostat Active JP6537645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018001008A JP6537645B2 (en) 2018-01-09 2018-01-09 Temperature control circuit of crystal oscillator with thermostat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018001008A JP6537645B2 (en) 2018-01-09 2018-01-09 Temperature control circuit of crystal oscillator with thermostat

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014047510A Division JP6274919B2 (en) 2014-03-11 2014-03-11 Temperature control circuit of crystal oscillator with thermostatic chamber

Publications (2)

Publication Number Publication Date
JP2018050351A true JP2018050351A (en) 2018-03-29
JP6537645B2 JP6537645B2 (en) 2019-07-03

Family

ID=61766664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018001008A Active JP6537645B2 (en) 2018-01-09 2018-01-09 Temperature control circuit of crystal oscillator with thermostat

Country Status (1)

Country Link
JP (1) JP6537645B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109342860A (en) * 2018-12-04 2019-02-15 交通运输部公路科学研究所 Full size circuit dynamic response data acquisition device
CN114545998A (en) * 2022-04-27 2022-05-27 成都世源频控技术股份有限公司 Self-adaptive protection temperature control circuit of constant temperature crystal oscillator and implementation method
CN116073819A (en) * 2023-03-07 2023-05-05 成都世源频控技术股份有限公司 Temperature control circuit of rapid stable constant-temperature crystal oscillator and implementation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214929A (en) * 1998-01-20 1999-08-06 Toyo Commun Equip Co Ltd Piezoelectric oscillator
JP2005093257A (en) * 2003-09-18 2005-04-07 Toyo Commun Equip Co Ltd Temperature control circuit
US20140009235A1 (en) * 2012-07-09 2014-01-09 Nihon Dempa Kogyo Co., Ltd. Oven controlled crystal oscillator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214929A (en) * 1998-01-20 1999-08-06 Toyo Commun Equip Co Ltd Piezoelectric oscillator
JP2005093257A (en) * 2003-09-18 2005-04-07 Toyo Commun Equip Co Ltd Temperature control circuit
US20140009235A1 (en) * 2012-07-09 2014-01-09 Nihon Dempa Kogyo Co., Ltd. Oven controlled crystal oscillator
JP2014033431A (en) * 2012-07-09 2014-02-20 Nippon Dempa Kogyo Co Ltd Crystal oscillator with thermostatic chamber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109342860A (en) * 2018-12-04 2019-02-15 交通运输部公路科学研究所 Full size circuit dynamic response data acquisition device
CN109342860B (en) * 2018-12-04 2023-11-21 交通运输部公路科学研究所 Full-scale loop dynamic response data acquisition device
CN114545998A (en) * 2022-04-27 2022-05-27 成都世源频控技术股份有限公司 Self-adaptive protection temperature control circuit of constant temperature crystal oscillator and implementation method
CN116073819A (en) * 2023-03-07 2023-05-05 成都世源频控技术股份有限公司 Temperature control circuit of rapid stable constant-temperature crystal oscillator and implementation method thereof

Also Published As

Publication number Publication date
JP6537645B2 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
US8026460B2 (en) Control circuit for thermostatic oven in oven controlled crystal oscillator
TWI528705B (en) Oven-controlled crystal oscillator
US8981260B2 (en) Temperature control circuit of oven-controlled crystal oscillator
JP6537645B2 (en) Temperature control circuit of crystal oscillator with thermostat
JP6274919B2 (en) Temperature control circuit of crystal oscillator with thermostatic chamber
JP3634228B2 (en) Oscillator using a thermostatic chamber
JP5882606B2 (en) Oscillator circuit
JP2012257195A (en) Temperature control circuit of crystal oscillator with thermostatic oven
JP2015173315A (en) Temperature control circuit of oscillator with thermostatic bath
JP2005117093A (en) Temperature control circuit and high stability crystal oscillator employing the same
JP2007318394A (en) Offset voltage adjusting circuit
JPH10303645A (en) Thermostatic chamber type piezoelectric oscillator
JP2005093257A (en) Temperature control circuit
JP5640418B2 (en) Temperature control circuit and constant temperature type piezoelectric oscillator
JP2009053069A (en) Temperature detection circuit
JP6112829B2 (en) Temperature control circuit of crystal oscillator with thermostatic chamber
TWI604688B (en) Temperature controlling circuit and oven controlled crystal oscillator
JP5764922B2 (en) Temperature control circuit, thermostatic chamber type piezoelectric oscillator, electronic device, and temperature control method
JP2001117645A (en) Temperature control circuit
JP2022170106A (en) Temperature control circuit for crystal oscillator with thermostatic tank
JP5437110B2 (en) Automatic bias adjustment circuit for FET
CN115800958B (en) Relaxation oscillator circuit
JP2001196857A (en) Crystal oscillator
JP2018157369A (en) Crystal oscillator with constant temperature oven
JP2005092793A (en) Electronic appliance circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190604

R150 Certificate of patent or registration of utility model

Ref document number: 6537645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250