JP2018048390A - Manufacturing method of carbon-containing non-burned agglomerated ore for blast furnace - Google Patents

Manufacturing method of carbon-containing non-burned agglomerated ore for blast furnace Download PDF

Info

Publication number
JP2018048390A
JP2018048390A JP2016186255A JP2016186255A JP2018048390A JP 2018048390 A JP2018048390 A JP 2018048390A JP 2016186255 A JP2016186255 A JP 2016186255A JP 2016186255 A JP2016186255 A JP 2016186255A JP 2018048390 A JP2018048390 A JP 2018048390A
Authority
JP
Japan
Prior art keywords
carbon
agglomerate
blast furnace
steam
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016186255A
Other languages
Japanese (ja)
Other versions
JP6680167B2 (en
Inventor
謙一 樋口
Kenichi Higuchi
謙一 樋口
洋之 佐藤
Hiroyuki Sato
洋之 佐藤
浩一 横山
Koichi Yokoyama
浩一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016186255A priority Critical patent/JP6680167B2/en
Publication of JP2018048390A publication Critical patent/JP2018048390A/en
Application granted granted Critical
Publication of JP6680167B2 publication Critical patent/JP6680167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a carbon-containing non-burned agglomerated ore for blast furnace capable of providing a carbon-containing non-burned agglomerated ore having stable quality simply at low cost by reducing variation of strength of an agglomerate in an upper layer part and a lower layer part of a mountain when mound agglomerate is primary cured.SOLUTION: There is provided a manufacturing method of a carbon-containing non-burned agglomerated ore for blast furnace including a process for mounting agglomerate which is molded after moisture adjusting a blending raw material containing a fine powdery iron-containing raw material, a fine powdery carbon material and a hydraulic binder in a treatment pit surrounded by a side wall, covering the same with a heat insulation sheet, injecting steam of prescribed amount from a floor surface of the treatment pit and primary curing the agglomerate while heating, heating of the agglomerate by injecting stream from the floor surface of the treatment pit is initiated during mounting a raw pellet by inputting and laminating the same from upper part of the treatment pit.SELECTED DRAWING: Figure 3

Description

この発明は、高炉用含炭非焼成塊成鉱の製造方法に係るものであり、配合原料を水分調整して成形した塊成物を処理ピット内に山積みし、処理ピットの床面から蒸気を噴射して加温しながら塊成物を一次養生して、高炉用の含炭非焼成塊成鉱を製造する方法に関する。   This invention relates to a method for producing a carbon-containing unfired agglomerate for blast furnaces. The agglomerate formed by adjusting the moisture content of the blended raw material is piled up in the treatment pit, and steam is generated from the floor surface of the treatment pit. The present invention relates to a method for producing a carbon-containing unfired agglomerated blast furnace for blast furnace by primary curing of the agglomerate while spraying and heating.

現在の製鉄プロセスにおける高炉用鉄原料は、平均粒度が約2〜3mmの粉状鉄鉱石を主要な鉄含有原料とし、これに石灰石や珪石等の副原料と、粉コークスや無煙炭等の炭材とを配合して、水分を調整しながら混合、造粒して擬似造粒子(1mm以上の核粒子の表面に0.5mm以下の微粉粒子が付着した造粒物)とし、その後、焼結機で焼結した焼結鉱が主流を占めている。   The iron raw materials for blast furnaces in the current iron making process are mainly iron-containing raw materials containing powdered iron ore with an average particle size of about 2 to 3 mm, and these are auxiliary materials such as limestone and silica and carbon materials such as powdered coke and anthracite. Are mixed and granulated while adjusting the moisture to make pseudo-granulated particles (granulated products with fine particles of 0.5 mm or less attached to the surface of core particles of 1 mm or more), and then with a sintering machine Sintered sinter dominates.

一方、製鉄プロセスにおいて多量に発生する焼結ダストや高炉ダスト等を集塵機で回収した含鉄集塵ダストをはじめ、スラッジ、スケール粉等の微粉のダスト(これらは一般に製鉄ダストと称する)や、ペレットフィード(ペレット用原料)等の微粉状鉄鉱石も塊成化することにより高炉用鉄原料として用いられる。これらは、粒径0.25mm以下の微粉粒子が全体の80%以上を占める微粉状鉄含有原料であるため、上記のような焼結鉱プロセスで造粒し、焼結する際に、造粒物が崩壊して原料充填層の通気性が悪化し、生産性が低下してしまう。   On the other hand, iron-containing dust collection dust collected from a large amount of sintered dust, blast furnace dust, etc. in the iron making process, fine dust such as sludge and scale powder (these are generally called iron making dust), pellet feed Fine iron ore such as (pellet raw material) is also agglomerated and used as a blast furnace iron raw material. Since these are finely divided iron-containing raw materials in which fine particles having a particle size of 0.25 mm or less occupy 80% or more of the whole, when granulating and sintering by the sintered ore process as described above, A thing collapse | crumbles, the air permeability of a raw material packed layer deteriorates, and productivity will fall.

そのため、このような微粉状原料を主要な鉄含有原料として焼成により塊成化する場合には、上記焼結鉱プロセスよりも高い混合・造粒機能が求められ、例えば、混合機を用いて鉄含有原料と副原料に水分を添加し混合した後、さらに、ドラムミキサーに比べて高い造粒能力を有するディスクペレタイザーなどの造粒機を用いて、粒径0.25mm以下の微粉粒子を主体とする球状のペレットを製造することが行なわれている。また、このようなペレットは、焼結プロセスにおける擬似造粒子に比べて密度が高い造粒物であるため、ペレットを焼成する場合には、燃焼ガスなどを熱源とする外部加熱型の焼成機が用いられることから、莫大な製造エネルギーや製造コストが掛かってしまう。   Therefore, in the case of agglomerating such a finely divided raw material as a main iron-containing raw material by firing, a higher mixing / granulating function is required than the above-mentioned sintered ore process. After adding and mixing water to the contained raw material and the auxiliary raw material, and using a granulator such as a disk pelletizer having a higher granulation ability than a drum mixer, mainly fine particles having a particle size of 0.25 mm or less are mainly used. It has been practiced to produce spherical pellets. Moreover, since such pellets are granulated products having a higher density than the pseudo-granulated particles in the sintering process, an external heating type firing machine using a combustion gas or the like as a heat source is used when firing the pellets. Since it is used, enormous manufacturing energy and manufacturing cost will be required.

一方、粒径0.25mm以下の微粉粒子が全体の80%以上を占める微粉状鉄含有原料は、セメント等の結合材(バインダー)と共に水を添加し、造粒してペレット等の塊成物に成形した後、養生して強度を高めて塊成鉱を得る非焼成型の塊成化プロセスを用いて、そのまま高炉用鉄原料として使用することが古くから行われている。   On the other hand, the fine powdered iron-containing raw material in which fine particles having a particle size of 0.25 mm or less occupy 80% or more of the whole is added with a binder (binder) such as cement, and granulated to agglomerate such as pellets. After being molded into a blast furnace, it has been used for a long time as an iron raw material for a blast furnace by using a non-calcined agglomeration process in which the strength is increased to obtain agglomerates.

このような非焼成型塊成化プロセスによれば、焼結鉱や焼成ペレットを得るような焼成型塊成化プロセスでは不可能である炭材の塊成鉱内への多量添加が可能となるため、近年、高炉操業時の還元材比の低減を目的とし、このプロセスを利用したカーボン内装非焼成塊成鉱の製造方法が検討されている。   According to such a non-fired type agglomeration process, it becomes possible to add a large amount of carbonaceous material into the agglomerated mineral, which is impossible in the fired type agglomeration process to obtain sintered ore and fired pellets. Therefore, in recent years, for the purpose of reducing the reducing material ratio during blast furnace operation, a method for producing a carbon-incorporated non-fired agglomerated mineral using this process has been studied.

例えば、鉄鉱石、又は、製鉄所で発生した多種の含鉄、含炭系集塵ダストからなる含酸化鉄原料に、鉄鉱石類の被還元酸素を還元して金属鉄とするために必要な理論炭素量の80〜120%のカーボン量(全原料中のC含有量:10〜15質量%程度)に相当するカーボン系炭材を配合し、早強ポルトランドセメントを加えて混錬、成型した後、7日間の養生により、常温での圧潰強度が7850kN/m(80kg/cm2に相当)以上のカーボン内装非焼成塊成鉱を製造する方法が提案されている(特許文献1参照)。 For example, the theory necessary to reduce iron oxide ore's reduced oxygen to metallic iron to iron ore or iron-containing raw materials containing various types of iron-containing and carbon-containing dust collected from steelworks. After blending carbon-based carbonaceous material corresponding to 80 to 120% of the carbon content (C content in all raw materials: about 10 to 15 mass%), kneading and molding by adding early strong Portland cement A method of producing a carbon-incorporated unfired agglomerated mineral with a crushing strength at room temperature of 7850 kN / m 2 (corresponding to 80 kg / cm 2 ) or more by curing for 7 days has been proposed (see Patent Document 1).

しかしながら、上記特許文献1のような含炭非焼成塊成鉱では、高炉用原料として要求される冷間圧潰強度85kg/cm以上を維持するために、全原料中の炭素含有割合(T.C)を15質量%(炭素当量で1.2に相当)未満に制限せざるを得なかった。そのため、含炭非焼成塊成鉱中の酸化鉄の直接還元は進んでも、含炭非焼成塊成鉱以外に高炉に装入される焼結鉱等の主要な高炉用鉄含有原料の還元を十分に促進することができない。 However, in the carbon-containing uncalcined agglomerated mineral as in Patent Document 1 above, in order to maintain the cold crushing strength of 85 kg / cm 2 or more required as a blast furnace raw material, the carbon content ratio (TC) in all raw materials Must be limited to less than 15% by mass (corresponding to 1.2 in terms of carbon equivalent). Therefore, although direct reduction of iron oxide in coal-containing unfired agglomerated minerals has progressed, reduction of major blast furnace iron-containing raw materials such as sintered ore charged into the blast furnace in addition to coal-containing unfired agglomerated ore is reduced. It cannot be promoted sufficiently.

そこで、含炭非焼成塊成鉱を得るにあたり、全原料の粒度を2mm以下として、全原料中の炭素含有割合(T.C)が15〜25質量%となるように微粉状炭材の配合割合を調整し、かつ、微粉状炭材のメジアン径を100〜150μmとする高炉用含炭非焼成塊成鉱の製造方法が提案されている(特許文献2参照)。この方法によって得られた含炭非焼成塊成鉱によれば、高炉で使用する際に、含炭非焼成塊成鉱だけではなく、焼結鉱等の他の鉄含有原料の被還元率を向上させることができ、高炉操業時の還元材比の低減が図られる。   Therefore, in obtaining the carbon-containing unfired agglomerated mineral, the particle size of all raw materials is set to 2 mm or less, and the blending ratio of the fine powdered carbon material is set so that the carbon content ratio (TC) in all the raw materials is 15 to 25 mass% A method for producing a blast furnace carbon-containing unfired agglomerated mineral that is adjusted and has a median diameter of pulverized carbonaceous material of 100 to 150 μm has been proposed (see Patent Document 2). According to the carbon-containing non-calcined agglomerated mineral obtained by this method, when used in a blast furnace, not only the carbon-containing non-calcined agglomerated mineral but also the reduction rate of other iron-containing raw materials such as sintered ore. It is possible to improve the ratio of reducing material during blast furnace operation.

ところが、含炭非焼成塊成鉱は、カーボンを含有しない非焼成塊成鉱に比べて成形直後の塊成物強度が低下し、また、カーボンは疎水性を有して、かつ多孔質であるため、塊成物の強度維持に必要となる添加水分量もカーボンを含有しない場合に比べて多くなってしまう。そのため、カーボン含有量の増加とともに、冷間圧潰強度を維持するための含炭非焼成塊成鉱中の水分含有量が高くなり、ペレット等に成形した後の養生(セメントの水和反応の促進及び乾燥)における強度発現までの時間が長くなってしまうという問題がある。   However, carbon-containing unfired agglomerated minerals have lower agglomerate strength immediately after molding than non-fired agglomerated minerals that do not contain carbon, and carbon is hydrophobic and porous. For this reason, the amount of added water necessary for maintaining the strength of the agglomerate also increases compared to the case where no carbon is contained. Therefore, as the carbon content increases, the moisture content in the carbon-containing unfired agglomerates to maintain cold crushing strength increases, and curing after forming into pellets (acceleration of cement hydration reaction) In addition, there is a problem that the time until the strength development in drying is prolonged.

このように、含炭非焼成塊成鉱は、冷間圧潰強度が比較的低く、また、必要な強度を発現するために比較的長い養生時間を要してしまう。これらの傾向は、特に、上記特許文献2のように炭素含有割合を高くするとより顕著になる。そこで、配合原料を成形した塊成物を養生する際に、蒸気を流して養生処理を促進させる方法が知られている(例えば特許文献3、4参照)。   Thus, the carbon-containing unfired agglomerated mineral has a relatively low cold crushing strength and requires a relatively long curing time in order to develop the necessary strength. These tendencies become particularly prominent when the carbon content is increased as in Patent Document 2 described above. Then, when curing the agglomerate which shape | molded the mixing | blending raw material, the method of flowing steam and promoting a curing process is known (for example, refer patent documents 3 and 4).

ところで、上記のような非焼成型塊成化プロセスでは、一般に、微粉状鉄含有原料、微粉状炭材、水硬性バインダー等の配合原料がそれぞれ所定の配合量となるようにホッパー等から切り出して、配合原料を粉砕し(或いは各原料を事前に粉砕して配合し)、混錬機を用いて水分量を調整しながら混錬し、例えば、造粒機で造粒して篩い分けを行い、ペレット(塊成物)を得る。   By the way, in the non-firing type agglomeration process as described above, generally, a raw material containing fine powdered iron, a fine powdered carbon material, a hydraulic binder or the like is cut out from a hopper or the like so as to have a predetermined blending amount. , Pulverize blended raw materials (or pulverize and blend each raw material in advance), knead while adjusting the amount of water using a kneader, for example, granulate with a granulator and sieve To obtain pellets (agglomerates).

そして、造粒して得られたペレットは、高炉用鉄原料としての強度となるように養生するが、その際、側壁で囲まれた処理ピットに山積みして一次養生する場合、処理ピットの上部を跨るように設置された架台の上を走行する給鉱台車にベルトコンベア等を接続させてペレットを供給し、給鉱台車から処理ピット内にペレットを落下させて投入しながら積み付けていく。例えば、26m×13m程度の面積を有する処理ピットに3〜5mほどの高さでペレットを山積みし、ブルーシート等のような保温シートで覆い、2日ほどの一次養生を行う。このとき、蒸気を流して養生する場合には、処理ピットの床面に蒸気噴出管を設けておき、ペレットを山積みして保温シートを掛けてから、処理ピットの下方から上方に向けて蒸気を吹き出し、山積みされたペレットの下層から上層にかけて(山の下層部から上層部にかけて)水と熱を付与していく。一次養生後は、処理済みのペレットを処理ピットから払い出し、原料ヤード(二次養生ヤード)に搬出して8〜12日程度大気中で放置して二次養生を行い、強度の発現した含炭非焼成塊成鉱が得られる。   And the pellets obtained by granulation are cured so as to be strong as iron raw materials for blast furnaces. At that time, when piled up in the processing pit surrounded by the side wall and primary curing, the upper part of the processing pit The pellets are supplied by connecting a belt conveyor or the like to a feed cart that runs on a pedestal installed so as to straddle the stack, and the pellets are dropped from the feed cart into the processing pit and loaded. For example, the pellets are piled up in a processing pit having an area of about 26 m × 13 m at a height of about 3 to 5 m, covered with a heat insulating sheet such as a blue sheet, and subjected to primary curing for about 2 days. At this time, when curing by flowing steam, a steam ejection pipe is provided on the floor surface of the processing pit, and after stacking pellets and applying a heat insulating sheet, steam is directed upward from below the processing pit. Water and heat are applied from the lower layer to the upper layer of the blown-up and piled pellets (from the lower layer part to the upper layer part of the mountain). After the primary curing, the treated pellets are discharged from the processing pits, taken out to the raw material yard (secondary curing yard), left in the atmosphere for about 8 to 12 days, and then subjected to secondary curing, and a carbon-containing carbon that has developed strength. An unfired agglomerated mineral is obtained.

ところが、ペレットのような塊成物を山積みして一次養生する場合、山の下層部と上層部とでは強度(冷間強度)にばらつきが生じてしまう。一次養生後の塊成物に強度のばらつきが存在すると、養生が不十分な塊成物は二次養生のための積み替え作業中に粉化してしまったり、二次養生後の含炭非焼成塊成鉱の歩留まりが低下してしまう。   However, when agglomerates such as pellets are piled up for primary curing, the strength (cold strength) varies between the lower layer and the upper layer of the mountain. If there is a variation in strength in the agglomerate after the primary curing, the agglomerate with insufficient curing will be pulverized during the transshipment work for the secondary curing, or the carbon-containing unburned lump after the secondary curing. The yield of the ore is reduced.

強度の低い塊成物が混在することについて、セメント等の水硬性バインダーの配合量を増やすと、得られた含炭非焼成塊成鉱を高炉で使用した場合にスラグの発生量が増大したり、高炉内での水硬性バインダーの脱水吸熱が顕在化し、還元材比の低減効果が損なわれるなどの悪影響が引き起こされる。また、ばらつきを抑えるために塊成物の山積み高さを低くすると、その分だけ広大な処理ピット面積が必要となる上に、作業効率の悪化を招いてしまう。   Regarding the presence of low-strength agglomerates, increasing the blending amount of hydraulic binders such as cement increases the amount of slag generated when the obtained carbon-containing unfired agglomerated ore is used in a blast furnace. The dehydration endotherm of the hydraulic binder in the blast furnace becomes obvious, and adverse effects such as the reduction effect of the reducing material ratio being impaired are caused. Further, if the pile height of the agglomerates is lowered in order to suppress variation, a correspondingly large processing pit area is required, and work efficiency is deteriorated.

そこで、このようなばらつきの問題に対して、例えば、塊成物を山積みした山の下層部ではバインダーの添加量を多くし、山の上層部では水硬性バインダーの添加量を少なくして、強度のばらつきを低減させる方法が提案されている(特許文献5参照)。また、山形の傾斜面に生ペレットを載置して養生することで、ばらつきを抑える方法も知られている(特許文献6参照)。しかしながら、前者の方法では、積み付けのタイミングに応じて塊成物の配合を調整しなければならず、また、後者の方法では、特殊な装置を構成する必要があると共に、塊成物の堆積層の厚さが山積みの場合に比べて小さくなるため生産性が低下してしまい、いずれの方法においても作業性やコストの面で検討の余地がある。   Therefore, for such a problem of variation, for example, the amount of binder added is increased in the lower layer portion of the pile where the agglomerates are piled up, and the amount of hydraulic binder added is decreased in the upper layer portion of the mountain. A method for reducing the variation has been proposed (see Patent Document 5). Moreover, the method of suppressing dispersion | variation is also known by mounting a raw pellet on a mountain-shaped inclined surface and curing (refer patent document 6). However, in the former method, the composition of the agglomerate must be adjusted according to the timing of loading, and in the latter method, it is necessary to configure a special apparatus and the agglomerate deposition. Since the thickness of the layer is smaller than in the case of stacking, the productivity is lowered, and there is room for examination in terms of workability and cost in either method.

特開2003−342646号公報JP 2003-342646 A 特開2008−95177号公報JP 2008-95177 A 特開2001−348624号公報JP 2001-348624 A 特開2009−161791号公報JP 2009-161791 A 特開平6−145824号公報JP-A-6-145824 特開2013−79433号公報JP 2013-79433 A

そこで、本発明者らは、上記のような非焼成型塊成化プロセスにおいて、山積みした塊成物を一次養生した場合の強度のばらつきに関して鋭意検討した結果、処理ピットの上方から塊成物を落下投入して積み付けながら山積みする途中で、蒸気噴出管から蒸気を噴射して塊成物の加温を開始することで、山の上層部と下層部とにおける塊成物の強度のばらつきを低減できるようになることを見出し、本発明を完成した。   Therefore, as a result of earnestly examining the variation in strength when the piled agglomerates are primarily cured in the non-fired agglomeration process as described above, the present inventors have found the agglomerates from above the processing pits. In the middle of stacking while dropping and stacking, by injecting steam from the steam jet pipe and starting the heating of the agglomerate, the dispersion of the strength of the agglomerate in the upper and lower parts of the mountain is reduced. The present invention has been completed by finding out that it is possible.

したがって、本発明の目的は、山積みした塊成物を一次養生したときの山の上層部と下層部とにおける塊成物の強度のばらつきを低減して、安定した品質の含炭非焼成塊成鉱を簡便に、かつ低コストで得ることができる高炉用含炭非焼成塊成鉱の製造方法を提供することにある。   Therefore, the object of the present invention is to reduce the variation in strength of the agglomerates between the upper layer and the lower layer of the pile when the piled agglomerates are primarily cured, and to provide a stable quality carbon-containing unfired agglomerated ore. Is to provide a method for producing a coal-containing non-fired agglomerated blast furnace ore that can be obtained simply and at low cost.

すなわち、本発明の要旨は次のとおりである。
(1)微粉状鉄含有原料、微粉状炭材、及び水硬性バインダーを含んだ配合原料を水分調整した後に成形した塊成物を、側壁で囲まれた処理ピット内に山積みし、保温シートで覆うと共に、処理ピットの床面から所定量の蒸気を噴射して加温しながら塊成物を一次養生する工程を含んだ高炉用含炭非焼成塊成鉱の製造方法であって、処理ピットの上方から塊成物を投入して積み付けながら山積みする途中で、処理ピットの床面から蒸気を噴射して塊成物の加温を開始することを特徴とする高炉用含炭非焼成塊成鉱の製造方法。
(2)処理ピット内に山積みする塊成物の山積み高さHに対して、塊成物の積み付け高さhが50〜70%(0.5H≦h≦0.7H)のタイミングで処理ピットの床面から蒸気を噴射して塊成物の加温を開始する(1)に記載の高炉用含炭非焼成塊成鉱の製造方法。
(3)処理ピット内に山積みする塊成物の山積み高さHが3〜5mである(1)又は(2)に記載の高炉用含炭非焼成塊成鉱の製造方法。
(4)前記配合原料中の炭素含有割合(T.C)が15〜25質量%である(1)〜(3)のいずれかに記載の高炉用含炭非焼成塊成鉱の製造方法。
(5)前記一次養生において蒸気を噴射して養生する時間が15〜30時間である(1)〜(4)のいずれかに記載の高炉用含炭非焼成塊成鉱の製造方法。
(6)前記一次養生における蒸気使用量が、塊成物1トンあたり13〜17トンである(1)〜(5)のいずれかに記載の高炉用含炭非焼成塊成鉱の製造方法。
That is, the gist of the present invention is as follows.
(1) The agglomerate formed after adjusting the water content of the compounded raw material containing finely divided iron-containing raw material, finely divided carbonaceous material, and hydraulic binder is piled up in a processing pit surrounded by side walls, A method for producing a coal-containing non-fired agglomerated blast furnace for a blast furnace, including a step of first curing the agglomerate while covering and heating a predetermined amount of steam from the floor of the treatment pit, The blast furnace carbon-containing non-fired ingot is characterized by injecting steam from the floor of the treatment pit and starting the heating of the agglomerate while the agglomerate is charged and stacked from above Method for producing ore.
(2) With respect to the pile height H of the agglomerate piled up in the processing pit, the stacking height h of the agglomerate is 50 to 70% (0.5H ≦ h ≦ 0.7H). The method for producing a carbon-containing non-fired agglomerated blast furnace for blast furnace according to (1), wherein heating of the agglomerate is started by injecting steam from the floor surface.
(3) The method for producing a carbon-containing non-fired agglomerated blast furnace for blast furnace according to (1) or (2), wherein the pile height H of the agglomerate piled in the treatment pit is 3 to 5 m.
(4) The method for producing a carbon-containing unfired agglomerated blast furnace for a blast furnace according to any one of (1) to (3), wherein a carbon content ratio (TC) in the blended raw material is 15 to 25% by mass.
(5) The method for producing a carbon-containing non-fired agglomerated blast furnace for blast furnace according to any one of (1) to (4), wherein the time for curing by jetting steam in the primary curing is 15 to 30 hours.
(6) The method for producing a carbon-containing non-fired agglomerated blast furnace for a blast furnace according to any one of (1) to (5), wherein the amount of steam used in the primary curing is 13 to 17 tons per ton of agglomerates.

本発明によれば、非焼成型塊成化プロセスにおいて山積みした塊成物を一次養生したときに、山の上層部と下層部とにおける塊成物の強度のばらつきを低減することができる。そのため、安定した品質の含炭非焼成塊成鉱を簡便に、かつ低コストで得ることができるようになる。   ADVANTAGE OF THE INVENTION According to this invention, when the agglomerate piled up in the non-baking type | mold agglomeration process is primary-cured, the dispersion | variation in the intensity | strength of the agglomerate in the upper layer part of a pile and a lower layer part can be reduced. Therefore, a stable quality carbon-containing non-fired agglomerated ore can be obtained easily and at low cost.

図1は、塊成物を一次養生する養生処理装置の一例を示す模式説明図である。FIG. 1 is a schematic explanatory view showing an example of a curing treatment apparatus that primarily cures agglomerates. 図2(a)は、含炭非焼成塊成鉱のカーボン(炭素)含有量と圧潰強度との関係を示すグラフであり、図2(b)は、養生前のペレット(塊成物)の強度維持に必要となる添加水分量とカーボン含有量との関係を示すグラフである。Fig.2 (a) is a graph which shows the relationship between carbon (carbon) content and crushing strength of a carbon-containing non-baking agglomerated ore, and FIG.2 (b) is the pellet (aggregate) before curing. It is a graph which shows the relationship between the additional water content required for intensity | strength maintenance, and carbon content. 図3は、下記製造実験Iの一次養生において、温度履歴及びペレットの強度を測定した山の個所を示す模式図である。FIG. 3 is a schematic diagram showing the location of a mountain where the temperature history and the strength of the pellets were measured in the primary curing of the following production experiment I. 図4は、下記製造実験Iの一次養生における温度履歴を示すグラフであり、(a)は養生条件1、(b)は養生条件2、(c)は養生条件3の場合を示す。FIG. 4 is a graph showing a temperature history in the primary curing of the following production experiment I, where (a) shows curing conditions 1, (b) shows curing conditions 2, and (c) shows curing conditions 3. FIG. 図5は、下記製造実験Iの一次養生の違いによる山の高さとペレット強度との関係を示すグラフであり、(a)は山の高さの各層におけるペレットの平均強度を示し、(b)は山の高さの各層におけるペレット中の低強度品の割合を示す。FIG. 5 is a graph showing the relationship between peak height and pellet strength due to the difference in primary curing of the following production experiment I, (a) shows the average strength of pellets in each layer of the height of the mountain, (b) Indicates the percentage of low-strength products in the pellets in each layer at the height of the mountain.

以下、本発明について詳しく説明する。
本発明における高炉用の含炭非焼成塊成鉱の製造方法では、微粉状鉄含有原料、微粉状炭材、及び水硬性バインダーを含んだ配合原料を水分調整した後に塊成物に成形した上で、側壁で囲まれた処理ピット内に山積みし、保温シートで覆うと共に、処理ピットの床面から所定量の蒸気を噴射して加温しながら塊成物を一次養生する際に、処理ピットの上方から塊成物を投入して積み付けながら山積みする途中で、処理ピットの床面から蒸気を噴射して塊成物の加温を開始するようにする。
The present invention will be described in detail below.
In the method for producing a carbon-containing unfired agglomerated ore for a blast furnace according to the present invention, after the moisture content of a blended raw material containing a finely divided iron-containing raw material, a finely powdered carbonaceous material, and a hydraulic binder is formed into an agglomerated material. In the processing pit, when piled up in the processing pit surrounded by the side wall and covered with a heat insulating sheet, the agglomerates are primarily cured while being heated by spraying a predetermined amount of steam from the floor surface of the processing pit. In the middle of stacking while agglomerates are loaded and stacked from above, steam is injected from the floor of the treatment pit to start heating the agglomerates.

一般に、非焼成型塊成化プロセスにおいて山積みした塊成物を一次養生する場合、水硬性バインダーの水和反応(発熱反応)により塊成物の温度は40〜60℃程度になる。このとき、山の下層部にあたる位置の塊成物は処理ピットの床面に熱が奪われるのに対し、山の上層部にあたる位置の塊成物はそれ自身の発熱と共に、下層部側からの伝熱により予熱されるため、下層部と上層部とでは塊成物に温度差が生じてしまう。これは、処理ピットの床面から蒸気を噴射して加温する場合でも同様であり、下層部側からの伝熱により上層部側は下層部に比べてより高温になることから、山の上層部と下層部とにおける塊成物の強度にばらつきが生じてしまうと考えられる。   In general, when agglomerates piled up in a non-baking type agglomeration process are primarily cured, the temperature of the agglomerates becomes about 40 to 60 ° C. due to the hydration reaction (exothermic reaction) of the hydraulic binder. At this time, the agglomerate at the position corresponding to the lower layer of the mountain loses heat to the floor surface of the processing pit, whereas the agglomerate at the position corresponding to the upper layer of the mountain has its own heat generation and is transmitted from the lower layer side. Since it is preheated by heat, a temperature difference occurs in the agglomerate between the lower layer portion and the upper layer portion. This is the same even when heating by injecting steam from the floor surface of the processing pit, and the upper layer side becomes higher than the lower layer part due to heat transfer from the lower layer part side, so the upper layer part of the mountain It is considered that the strength of the agglomerates in the lower layer part varies.

加えて、実際の製造では、処理ピット内への塊成物の積み付け開始から山積みが完了するまでに24時間程度の時間を要してしまう。これは、ヤードで保管されたスラグを重機でまとめて処理ピットに投入するスラグの蒸気エージングのような場合と異なり、高炉用の含炭非焼成塊成鉱の製造では、原料配合と成形により得られた塊成物を順次、処理ピットの上方から投入して積み付けを行うためである。そのため、山の下層部に位置する塊成物と上層部に位置する塊成物とでは必然的に養生時間に差が生じ、塊成物の強度にばらつきを生む原因になるとも考えられる。   In addition, in actual production, it takes about 24 hours from the start of stacking of the agglomerate into the processing pit to the completion of the stacking. This is different from the case of slag steam aging in which slag stored in the yard is collected into a processing pit by heavy machinery, and in the production of coal-free unfired agglomerated ore for blast furnaces, it is obtained by blending and molding raw materials. This is because the agglomerates thus formed are sequentially loaded from above the processing pits and stacked. For this reason, there is a difference in the curing time between the agglomerate located in the lower part of the mountain and the agglomerate located in the upper part, and it is considered that this may cause variations in the strength of the agglomerate.

一般に、含炭非焼成塊成鉱を得るにあたり、塊成物を処理ピットに山積みして一次養生する際には、微粉状鉄含有原料、微粉状炭材、水硬性バインダー等の配合原料を所定の配合量となるようにホッパーから切り出し、ボールミル等の粉砕機で粉砕して、レディゲミキサーやアイリッヒミキサー等の混錬機を用いて、水分量を調整しながら混錬する(水分含有量は9〜14質量%程度)。その後、例えば、パンペレタイザー等の造粒機で造粒し、更に、振動篩等で篩い分けして、造粒したペレット(塊成物として)を得る。このとき、配合原料を構成する各原料を粉砕した後、配合して配合原料としてもよい。また、水分調整して混錬した配合原料を造粒機による造粒して塊成物にするかわりに、例えば、圧縮成型機を用いてブリケットにしたり、押出し成型機により押出し成型するなどして塊成物を得るようにしてもよい。   In general, when obtaining a carbon-containing unfired agglomerate, when agglomerates are piled up in treatment pits for primary curing, blended raw materials such as pulverized iron-containing materials, pulverized carbon materials, hydraulic binders, etc. are specified. Cut out from the hopper so that the blended amount becomes, pulverized with a pulverizer such as a ball mill, and kneaded using a kneader such as a Redige mixer or Eirich mixer while adjusting the moisture content (moisture content) Is about 9 to 14% by mass). Then, for example, it is granulated with a granulator such as a pan pelletizer, and further sieved with a vibration sieve or the like to obtain granulated pellets (as agglomerates). At this time, after pulverizing each raw material which comprises a mixing | blending raw material, it is good also as a mixing | blending raw material. Also, instead of granulating the kneaded blended raw material with a granulator into an agglomerate, for example, briquetting with a compression molding machine or extrusion molding with an extrusion molding machine, etc. An agglomerate may be obtained.

そして、例えば、図1に示したようにして、側壁で囲まれた処理ピット1に得られた塊成物を山積みする。すなわち、この例では屋根のある建屋10内にコンクリート擁壁等からなる側壁2で三方が囲まれた処理ピット1が形成されており、この処理ピット1の上方を跨るように架台3が設置されている。また、架台3は側壁2の上端面に設けられたレールに沿って処理ピット1を横幅方向(x方向)に移動可能であると共に(この図1の例では架台3の一端が建屋10の壁に設けられたレール上を移動する)、架台3の上には給鉱台車(積付機)4が積載されて、この給鉱台車4が処理ピット1の奥行き方向(y方向)に移動することができる。また、給鉱台車4には、ベルトコンベア5が接続されて製造した塊成物が供給されるようになっており、架台3と給鉱台車4の移動により処理ピット1の上方から塊成物を投入して、処理ピット内に塊成物を積み付けて、山積みされた塊成物の山6が形成される。   Then, for example, as shown in FIG. 1, the agglomerates obtained in the processing pits 1 surrounded by the side walls are piled up. That is, in this example, a processing pit 1 is formed in a building 10 with a roof surrounded by three sides by a side wall 2 made of a concrete retaining wall or the like, and the mount 3 is installed so as to straddle the processing pit 1. ing. Further, the gantry 3 can move the processing pit 1 in the lateral width direction (x direction) along the rail provided on the upper end surface of the side wall 2 (in the example of FIG. 1, one end of the gantry 3 is the wall of the building 10). The mine cart (loader) 4 is loaded on the gantry 3, and the mine cart 4 moves in the depth direction (y direction) of the processing pit 1. be able to. In addition, the agglomerate produced by connecting the belt conveyor 5 is supplied to the feed cart 4, and the agglomerate is formed from above the processing pit 1 by the movement of the gantry 3 and the feed cart 4. The agglomerate piles 6 are formed by stacking the agglomerates in the processing pit.

ここで、従来の方法では、図1に示したような養生処理装置の処理ピット1内に塊成物を山積みした後には、建屋10の天井に設置されたホイスト式クレーン7を使って塊成物の山6をブルーシート等のような保温シート8で覆い、処理ピット1の床面に備え付けられた蒸気噴出管9から蒸気を噴射して、山積みされた塊成物の山6の下層部から上層部にかけて水と熱を付与し、水硬性バインダーの水和反応を促進させて塊成物の強度を発現させる(以下、「従来法」と言う)。これは、蒸気噴出管9から噴射される蒸気の無駄を無くすためであり、塊成物の山6を保温シート8で覆った上で、処理ピット1の床面の蒸気噴出管9から蒸気を噴射することで、蒸気からの熱と水分を極力逃がさずに、より効率的に塊成物の養生を進めるためと考えられてきた。   Here, in the conventional method, after the agglomerates are piled up in the treatment pit 1 of the curing treatment apparatus as shown in FIG. 1, the agglomeration is performed using the hoist type crane 7 installed on the ceiling of the building 10. The pile 6 is covered with a heat insulating sheet 8 such as a blue sheet, and steam is injected from a vapor jet pipe 9 provided on the floor surface of the treatment pit 1, so that the lower portion of the pile 6 of agglomerated piles Water and heat are applied from the top to the upper layer portion to promote the hydration reaction of the hydraulic binder to express the strength of the agglomerate (hereinafter referred to as “conventional method”). This is to eliminate the waste of steam injected from the steam jet pipe 9, and after covering the pile 6 of the agglomerate with the heat insulating sheet 8, steam is sent from the steam jet pipe 9 on the floor surface of the processing pit 1. It has been thought that by injecting the heat and moisture from the steam as much as possible, the curing of the agglomerates can be promoted more efficiently.

ところが、本発明者らが試行錯誤を重ねた結果、塊成物を山積みする途中で蒸気噴出管から蒸気の噴射を開始し、蒸気を噴射させながら残りの塊成物の積み付けを行い、山積みが完了して保温シートで覆うようにしたところ、驚くべきことには、従来法に比べて山の上層部と下層部とにおける塊成物の強度のばらつきが抑えられ、しかも、蒸気の使用量を従来法の場合と同じにしても(つまり、本発明の場合には、蒸気の噴射を開始してから残りの塊成物の積み付けを行っている間は保温シートで覆わずに、蒸気は積み付けた塊成物の間から放出される)、一次養生後に得られる塊成物の平均強度(一次養生した山の平均)が従来法の場合よりも高くなることが分かった。このような理由のひとつとして、山の下層部に位置する塊成物の強度が向上して、上層部との強度差が解消するためと考えられる。   However, as a result of repeated trial and error by the present inventors, steam injection was started from the steam discharge pipe in the middle of stacking the agglomerates, and the remaining agglomerates were stacked while injecting steam. When the process is completed and covered with a heat insulating sheet, surprisingly, the strength variation of the agglomerates in the upper and lower layers of the mountain is suppressed compared to the conventional method, and the amount of steam used is reduced. Even if it is the same as in the case of the conventional method (that is, in the case of the present invention, the steam is not covered with the heat insulating sheet while the remaining agglomerates are stacked after the start of the jet of steam. It was found that the average strength of the agglomerates obtained after the primary curing (average of the primary cured mountains) is higher than that of the conventional method. One reason for this is considered to be that the strength of the agglomerates located in the lower part of the mountain is improved and the difference in strength from the upper part is eliminated.

好ましくは、処理ピット内に山積みする塊成物の山の山積み高さHに対して、塊成物の積み付け高さhが50〜70%(0.5H≦h≦0.7H)のタイミングで処理ピットの床面に設置された蒸気噴出管等から蒸気を噴射して塊成物の加温を開始するのがよい。蒸気を噴射するタイミングがこの範囲外であると、一次養生後に得られる塊成物の平均強度(一次養生した山の平均)が従来法と同じか、それよりも下がってしまう場合があり、また、山の上層部と下層部とにおける塊成物の強度のばらつきを十分に抑えることができないこともある。   Preferably, the agglomerate stacking height h is 50 to 70% (0.5H ≦ h ≦ 0.7H) with respect to the pile height H of the agglomerate piled in the processing pit. It is preferable to start heating the agglomerates by injecting steam from a steam outlet pipe or the like installed on the floor of the pit. If the steam injection timing is outside this range, the average strength of the agglomerate obtained after primary curing (average of the primary cured mountain) may be the same as or lower than the conventional method. In some cases, variations in the strength of the agglomerates between the upper layer portion and the lower layer portion of the mountain cannot be sufficiently suppressed.

勿論、塊成物の積み付けと同時にするなど、より早いタイミングで処理ピットの床面からの蒸気の噴射を開始することで山の下層部に位置する塊成物の強度の向上を図ることもできるが、比較的に製造コストが掛かる蒸気を限りなく使用することは現実的ではなく、また、蒸気量が増え過ぎてしまうと凝集水分の影響で塊成物が膨潤して、むしろ塊成物の強度が低下してばらつきが大きくなってしまうおそれがある。そのため、本発明においては、従来法と同程度に所定量の蒸気を使用することを考慮して、上記のようなタイミングにすることがコストバランスの点で有利である。   Of course, it is also possible to improve the strength of the agglomerate located in the lower part of the mountain by starting the jet of steam from the floor surface of the processing pit at an earlier timing, such as simultaneously with the agglomerate loading. However, it is not practical to use steam that is relatively expensive to manufacture, and if the amount of steam increases too much, the agglomerate swells due to the influence of coagulated water, rather the agglomerate. There is a risk that the strength of the material decreases and the variation becomes large. Therefore, in the present invention, considering the use of a predetermined amount of steam as in the conventional method, it is advantageous in terms of cost balance to set the timing as described above.

ここで、図2(a)には、含炭非焼成塊成鉱を得るにあたっての蒸気養生の有効性が示されている。一般に、蒸気がないとカーボン(炭素)含有量の増加に伴い直線的に含炭非焼成塊成鉱の強度(圧潰強度)が低下する。これには2つの原因が考えられ、ひとつは、炭材が多孔質であるため、気孔内にセメント等の水硬性バインダーがトラップされて、結合に有効に働かなくなるためである。もうひとつは、炭材は疎水性を有し、かつ多孔質であるため、ペレットのような塊成物の強度維持に必要となる添加水分量が、炭材を含有しない場合に比べて多くなり、塊成物間の水分ばらつきに起因して成品(含炭非焼成塊成鉱)でのばらつきが助長されるためである。そこで、蒸気養生を実施すると、セメント水和反応が促進されるだけではなく、水分のばらつきが解消されて平均の成品強度が向上する。その効果はカーボン含有量の高い塊成物ほど顕著である。ただし、蒸気養生を行っても、炭材が多孔質なため、気孔内に水硬性バインダーがトラップされて、結合に有効に働かなく悪影響は解消されず、カーボン含有量には上限が存在する。カーボン含有量15〜25%であれば、蒸気養生の効果を最大限発揮して、高炉使用に耐えうる所定の強度を具備した塊成物の製造が可能である。なお、図2(b)は、ペレット(塊成物)の強度維持に必要となる添加水分量とカーボン含有量との関係を示すものである。   Here, FIG. 2 (a) shows the effectiveness of steam curing in obtaining a carbon-containing unfired agglomerated ore. In general, when there is no steam, the strength (crushing strength) of the carbon-containing non-fired agglomerate decreases linearly as the carbon (carbon) content increases. There are two possible causes for this. One is that the carbonaceous material is porous, and a hydraulic binder such as cement is trapped in the pores, so that it does not work effectively for bonding. The other is that the charcoal material is hydrophobic and porous, so the amount of water added to maintain the strength of the agglomerates such as pellets is higher than when no charcoal material is contained. This is because the variation in the product (carbon-containing unfired agglomerated mineral) is promoted due to the moisture variation between the agglomerates. Therefore, when steam curing is performed, not only the cement hydration reaction is promoted, but also the variation in moisture is eliminated and the average product strength is improved. The effect is more prominent for agglomerates with a higher carbon content. However, even if steam curing is performed, since the carbonaceous material is porous, the hydraulic binder is trapped in the pores, does not work effectively for bonding, and the adverse effect is not eliminated, and there is an upper limit on the carbon content. If the carbon content is 15 to 25%, it is possible to produce an agglomerate having a predetermined strength that can withstand the use of a blast furnace while maximizing the effect of steam curing. FIG. 2B shows the relationship between the amount of added water and the carbon content necessary for maintaining the strength of the pellet (agglomerated material).

なお、高炉用含炭非焼成塊成鉱に要求される強度としては、高炉までの搬送や装入時に崩壊しないことが求められ、その搬送や装入の方法によっても異なるが、概ね85kg/cm程度以上の強度が必要である。一般に、含炭非焼成塊成鉱の圧潰強度は、JIS M8718「鉄鉱石ペレット圧潰強度試験方法」に準じて、被測定試料1個に対して規定の加圧速度で圧縮荷重を掛けることにより、破壊させた時の荷重値を測定し、強度指数として、通常、単位断面積当たりの荷重値(kg/cm2)が用いられる。また、この強度指数に代えて、便宜的に被測定試料1個に対する荷重値そのもの(kg/Piece)を強度指数として表すこともある。ちなみに、焼成により製造されたペレットの冷間圧潰強度は一般に150kg/cm程度である。 The strength required for the blast furnace carbon-containing uncalcined agglomerated minerals is required not to collapse at the time of transportation and charging to the blast furnace, and varies depending on the method of transportation and charging, but is generally 85 kg / cm. A strength of about 2 or more is required. In general, the crushing strength of a carbon-containing unfired agglomerated ore according to JIS M8718 “Iron Ore Pellet Crushing Strength Test Method” is obtained by applying a compressive load to a measured sample at a specified pressure rate. The load value at the time of destruction is measured, and the load value per unit cross-sectional area (kg / cm 2 ) is usually used as the strength index. Further, instead of this strength index, the load value itself (kg / Piece) for one measured sample may be expressed as the strength index for convenience. Incidentally, the cold crushing strength of pellets produced by firing is generally about 150 kg / cm 2 .

本発明においては、蒸気を噴出するタイミングの他は特に制限されず、含炭非焼成塊成鉱を得るための公知の方法と同様にすることができる。
例えば、含炭非焼成塊成鉱の配合原料については、微粉状鉄含有原料、微粉状炭材、及び水硬性バインダーを含むものであれば特に制限はなく、公知のものを用いることができる。なかでも、特許文献2に記載されるように、全原料中の炭素含有割合(T.C)を15〜25質量%にした配合原料を用いれば、高炉操業時の還元材比の低減を図ることができる。このように炭素含有割合が高い配合原料の場合には、一般に強度が発現しにくいが、本発明の方法を用いることで、還元材比の低減を図ることができる含炭非焼成塊成鉱を品質のばらつきを抑えて安定的に供給することが可能になる。なお、配合原料から塊成物を得るための手段やその手順についても特に制限はなく、上述したような公知の方法を用いることができる。
In the present invention, there is no particular limitation other than the timing of jetting steam, and it can be the same as a known method for obtaining a carbon-containing unfired agglomerated ore.
For example, the blended raw material of the carbon-containing non-fired agglomerated mineral is not particularly limited as long as it contains a finely divided iron-containing raw material, a finely powdered carbonaceous material, and a hydraulic binder, and known materials can be used. Especially, as described in Patent Document 2, if a blended raw material having a carbon content ratio (TC) in the total raw material of 15 to 25% by mass is used, the reduction ratio of the reducing material during blast furnace operation can be reduced. it can. In the case of a blended raw material having a high carbon content as described above, it is generally difficult to develop strength, but by using the method of the present invention, a carbon-containing unfired agglomerated mineral that can reduce the reducing material ratio is obtained. It becomes possible to stably supply quality while suppressing variations in quality. In addition, there is no restriction | limiting in particular also about the means for obtaining an agglomerate from a mixing | blending raw material, and its procedure, A well-known method as mentioned above can be used.

ここで、微粉状鉄含有原料とは、粒径0.25mm以下の微粉粒子が全体の80%以上を占めるものであり、例えば、製鉄プロセスにおいて発生する焼結ダストや高炉ダスト等の含鉄ダストをはじめ、ペレットフィード(ペレット用原料)として用いられる微粉状鉄鉱石や、粉状鉄鉱石を破砕機で予め粉砕したものなどを挙げることができる。また、微粉状炭材としては、例えば、高炉一次灰、コークスダスト、粉コークス、石炭等を挙げることができ、なかでも質量基準のメジアン径(d50)が100〜150μmの微粉状炭材であるのがよい。更に、水硬性バインダーとしては、一般的に用いられる高炉水砕スラグを主成分とする微粉末とアルカリ刺激剤からなる時効性バインダーや、ポルトランドセメント、ベントナイト、生石灰等が挙げられる。   Here, the pulverized iron-containing raw material is one in which fine powder particles having a particle size of 0.25 mm or less occupy 80% or more of the whole. For example, iron-containing dust such as sintered dust and blast furnace dust generated in the iron making process is used. First, fine powdered iron ore used as pellet feed (raw material for pellets), or powdered iron ore previously pulverized with a crusher can be used. In addition, examples of the fine powdery carbon material include blast furnace primary ash, coke dust, powder coke, coal, and the like. Among them, a fine powdery carbon material having a mass-based median diameter (d50) of 100 to 150 μm. It is good. Furthermore, examples of the hydraulic binder include an aging binder composed of fine powder mainly composed of blast furnace granulated slag and an alkali stimulant, Portland cement, bentonite, quicklime, and the like.

また、一次養生に用いる処理ピットについては、製鋼スラグの蒸気養生に使用されているような従来のものをそのまま使用することができ、塊成物の積み付けについても従来法と同様にして行うことができる。このとき、処理ピット内に山積みする塊成物の山積み高さHは一般的に3〜5mであり、本発明においても同様である。これより高くなり過ぎると塊成物が荷重により崩壊してしまう場合があり、低くなり過ぎると作業効率を低下させてしまうおそれがある。   In addition, as for the treatment pit used for primary curing, conventional ones used for steam curing of steelmaking slag can be used as they are, and agglomeration is carried out in the same manner as the conventional method. Can do. At this time, the pile height H of the agglomerate piled in the processing pit is generally 3 to 5 m, and the same applies to the present invention. If it is too high, the agglomerate may collapse due to the load, and if it is too low, the work efficiency may be reduced.

本発明においては、処理ピット内に塊成物を積み付けてから山積みが完了するまでに処理ピットの床面からの蒸気の噴射を開始して、一定の時間で蒸気を噴射し、山積みが完了したところで保温シートを被せるようにする。ここで、蒸気を噴射する時間としては従来法と同様にすることができ、なかでも、全原料中の炭素含有割合(T.C)を15〜25質量%にした配合原料を用いる場合には、一般には15〜30時間であり、また、そのときの蒸気使用量は塊成物1トンあたり13〜17トンである。   In the present invention, the injection of steam from the floor surface of the processing pit is started after the agglomerate is stacked in the processing pit until the stacking is completed, and the stacking is completed by injecting steam in a certain time. Place a heat insulation sheet at the place. Here, the time for injecting the steam can be the same as in the conventional method, and in particular, when using a blended raw material having a carbon content ratio (TC) in the total raw material of 15 to 25% by mass, Is 15 to 30 hours, and the amount of steam used at that time is 13 to 17 tons per ton of agglomerates.

また、本発明においては、従来法と同様に、所定量の蒸気の噴射を終了した後にも保温シートを被せたまま一次養生を続けるようにする。詳しくは、山積みされた塊成物に保温シートを被せてから42〜50時間程度養生を続けるようにするのがよい。すなわち、塊成物の積み付けを開始してからの一次養生の時間は64〜74時間程度になる。そして、一次養生が終了した後は、塊成物を処理ピットから搬出し、必要に応じて振動篩等を用いて篩い分けした上で、原料ヤード(二次養生ヤード)に積み直して大気中で5〜8日程度の二次養生を行い、高炉用鉄原料として強度の発現した含炭非焼成塊成鉱を得ることができる。   Further, in the present invention, similarly to the conventional method, the primary curing is continued with the heat-insulating sheet covered even after the injection of the predetermined amount of steam is finished. Specifically, it is preferable to continue the curing for about 42 to 50 hours after covering the piled agglomerates with a heat insulating sheet. That is, the primary curing time after starting the agglomeration stacking is about 64 to 74 hours. After the primary curing is completed, the agglomerates are taken out from the processing pits and sieved using a vibrating sieve if necessary, and then loaded into the raw material yard (secondary curing yard) to the atmosphere. Then, secondary curing is carried out for about 5 to 8 days, and a carbon-containing non-fired agglomerated mineral that exhibits strength as an iron raw material for blast furnace can be obtained.

本発明について、実施例に基づいて具体的に説明する。なお、本発明はこれらの内容に制限されるものではない。   The present invention will be specifically described based on examples. The present invention is not limited to these contents.

(製造実験I)
焼結ダスト及び微粉状鉄鉱石からなる微粉状鉄含有原料に、全原料中の炭素含有量(T.C)が20質量%となるように配合割合を調整しながら、高炉1次バイ及びコークスダストからなる微粉状炭材を配合し、更に、水硬性バインダーとしてポルトランドセメントを添加して、これら配合原料の最大粒度が2mm以下になるようにボールミルで粉砕して、その後、水分量が12質量%となるように調整しながらパンペレタイザーを用いて造粒して、平均粒径14mmのペレットの製造を行った。なお、このときのペレットの製造能力はおよそ60t/時間である。
(Production Experiment I)
While adjusting the blending ratio so that the carbon content (TC) in the total raw material becomes 20% by mass to the fine iron-containing raw material consisting of sintered dust and fine iron ore, In addition, Portland cement is added as a hydraulic binder, pulverized with a ball mill so that the maximum particle size of these blended raw materials is 2 mm or less, and then the water content is 12% by mass. The pellets having an average particle diameter of 14 mm were produced by granulation using a pan pelletizer while adjusting the pressure to be. In addition, the manufacturing capacity of the pellet at this time is about 60 t / hour.

上記のようにしてペレットを製造しながら、図1に示した養生処理装置を用いて処理ピット1内にペレットの積み付けをして、以下のような養生条件1〜3により一次養生を行い、その後、二次養生する製造実験(比較例1〜2、本発明1)を行った。ここで、処理ピット1は、高さ4mのコンクリート擁壁からなる側壁2で三方を囲まれており、幅26m×奥行13mの面積を有している。そして、処理ピット1の上方に設置された架台3と給鉱台車(積付機)4を駆動させてペレットを投入して積み付けを行い、幅方向に26m、奥行き方向に13m、高さ(H)4mのペレットの山6を山積みした。このとき、山積みが完了するまでに24時間(積み付け開始から終了まで)を要した。   While producing pellets as described above, the pellets are stacked in the treatment pit 1 using the curing treatment device shown in FIG. 1, and the primary curing is performed according to the following curing conditions 1 to 3, Then, the manufacturing experiment (Comparative Examples 1-2, this invention 1) which carries out secondary curing was performed. Here, the processing pit 1 is surrounded on three sides by a side wall 2 made of a concrete retaining wall having a height of 4 m, and has an area of 26 m width × 13 m depth. Then, the pedestal 3 and the feed trolley (loading machine) 4 installed above the processing pit 1 are driven to throw in the pellets for loading, and the height (26 m in the width direction, 13 m in the depth direction, height ( H) A pile 6 of 4 m pellets was piled up. At this time, it took 24 hours (from the start to the end of the stacking) to complete the stacking.

先ず、比較例1に係る養生条件1として、ペレットの山積みが完了したところで、このペレットの山6を全て覆うようにして樹脂製のブルーシート(保温シート)8を被せ、水蒸気の噴射は一切行わずに、ブルーシートのシート掛けから48時間経過するまで養生した。
また、比較例2に係る養生条件2としては、養生条件1と同様にペレットの山積み完了後に樹脂製のブルーシート8を被せて、処理ピット1の床面に設置された蒸気噴出管9から水蒸気の噴射を開始し、水蒸気は噴射から24時間経過したところで止めて、ブルーシートのシート掛けから48時間経過するまで養生した。
一方、本発明1に係る養生条件3としては、山積みの途中でペレットの積み付け高さ(h)が2mになったところで(積み付け開始から12時間)、蒸気噴出管9から水蒸気の噴射を開始し、そのまま水蒸気を流し続けながら、ペレットの山積みが完了したところで(山の高さ4m)ブルーシート8を被せて、水蒸気は噴射から24時間経過したところで止めて、ブルーシートのシート掛けから48時間経過するまで養生した。
First, as curing condition 1 according to Comparative Example 1, when the stacking of pellets was completed, a resin-made blue sheet (heat insulating sheet) 8 was covered so as to cover all of the pellets 6 and spraying of water vapor was performed at all. Without curing, it was cured until 48 hours had passed since the sheeting of the blue sheet.
Further, as curing condition 2 according to Comparative Example 2, as in curing condition 1, after completion of the stacking of pellets, the resin blue sheet 8 is covered and steam is discharged from the steam ejection pipe 9 installed on the floor surface of the processing pit 1. The water vapor was stopped after 24 hours had elapsed from the injection, and was cured until 48 hours had passed since the blue sheet was hung.
On the other hand, as curing condition 3 according to the present invention 1, when the stacking height (h) of the pellets reaches 2 m during the stacking (12 hours from the start of the stacking), steam is injected from the steam discharge pipe 9. When the stacking of pellets was completed (the height of the peak was 4 m), the blue sheet 8 was put on when the stacking of the pellets was completed, and the steam was stopped when 24 hours had elapsed from the injection, Cured until time passed.

そして、これらの条件で一次養生を終えた各ペレットについて、それぞれショベルローダーで払い出し、ダンプにてヤードに運搬して、積み付け機を介して再度ヤードに積み付けて8日間の二次養生を行い、比較例1(養生条件1(一次養生)、二次養生)、比較例2(養生条件2(同)、二次養生)、本発明1(養生条件3(同)、二次養生)の各製造実験に係る含炭非焼成塊成鉱を得た。なお、養生条件2及び3で使用した水蒸気の量は、いずれもペレット1トンあたり15トン(水蒸気使用量15トン/トン成品)である。   Then, each pellet that has finished primary curing under these conditions is discharged with a shovel loader, transported to the yard with a dumper, loaded again into the yard via a stacker, and subjected to secondary curing for 8 days. Comparative Example 1 (curing condition 1 (primary curing), secondary curing), Comparative Example 2 (curing condition 2 (same), secondary curing), Invention 1 (curing condition 3 (same), secondary curing) The carbon-containing unfired agglomerated minerals according to each production experiment were obtained. The amount of water vapor used under curing conditions 2 and 3 is 15 tons per ton of pellets (water vapor consumption of 15 tons / ton product).

これら各製造実験における一次養生の際には、図3に示したように、山積みしたペレットの山の異なる高さの位置で温度測定を行った。測定では、ペレットの山6の幅方向、奥行き方向ともにほぼ中央の位置において、高さh=80cm(層高比h/H=0.2)、h=200cm(層高比h/H=0.5)、h=320cm(層高比h/H=0.8)の3箇所の温度履歴を計測した。結果を図4に示す。   During the primary curing in each of these production experiments, as shown in FIG. 3, temperature measurement was performed at different heights of the piles of the stacked pellets. In the measurement, the height h = 80 cm (layer height ratio h / H = 0.2), h = 200 cm (layer height ratio h / H = 0.5) at the substantially central position in both the width direction and the depth direction of the pellet peak 6. Three temperature histories at h = 320 cm (layer height ratio h / H = 0.8) were measured. The results are shown in FIG.

図4(a)に示した“水蒸気を使用しない養生条件1”については、層高比0.8の山の上層部では、積み付け開始(養生開始)から50時間ごろに温度が65℃を超え、その後はわずかに下降して、最終的には60℃程度になった。また、層高比0.5の山の中層部では、養生開始から36時間ごろに温度が60℃まで上昇し、その後は下降して、最終的には52℃程度となった。また、層高比0.2の山の下層部では、養生開始から24時間経過後頃に温度が55℃まで上昇したが、シート掛け後は下降しつづけ、最終的には45℃となった。
また、図4(b)に示した“山積み後に水蒸気を噴射する養生条件2”では、層高比0.8の山の上層部、層高比0.5の山の中層部ともに、水蒸気の噴射中に温度が上がり、山の上層部では最大85℃(養生開始42時間後)、山の中層部では最大72℃(同48時間後)に達した。一方、層高比0.2の山の下層部では、水蒸気の噴射中に温度は55℃ほどで維持されたが、その後は下降して最終的に50℃となり、養生終了時には、山の下層部と上層部との間に50〜75℃の大きな温度差が形成され、水蒸気を使用しない養生条件1の場合(45〜60℃)と比べて温度差が拡がった。
Regarding “curing condition 1 without using steam” shown in FIG. 4 (a), the temperature exceeds 65 ° C. around 50 hours from the start of stacking (start of curing) in the upper layer of the mountain with a layer height ratio of 0.8. After that, it descended slightly and finally reached about 60 ° C. In the middle part of the mountain with a layer height ratio of 0.5, the temperature rose to 60 ° C. around 36 hours from the start of curing, then dropped, and finally reached about 52 ° C. In addition, in the lower layer part of the mountain having a layer height ratio of 0.2, the temperature rose to 55 ° C. around 24 hours after the start of curing, but continued to fall after the sheet was hung, and finally reached 45 ° C. .
Further, in “curing condition 2 for injecting water vapor after stacking” shown in FIG. 4B, the water vapor is injected into both the upper layer of the mountain having a layer height ratio of 0.8 and the middle layer of the mountain having a layer height ratio of 0.5. The temperature rose in the upper part of the mountain, reaching a maximum of 85 ° C. (42 hours after the start of curing) and a maximum of 72 ° C. (after 48 hours). On the other hand, in the lower layer portion of the mountain having a layer height ratio of 0.2, the temperature was maintained at about 55 ° C. during the water vapor injection, but after that it descended to finally reach 50 ° C., and at the end of curing, the lower layer of the mountain A large temperature difference of 50 to 75 ° C. was formed between the upper part and the upper layer part, and the temperature difference widened as compared with the case of curing condition 1 (45 to 60 ° C.) without using water vapor.

それに対して、図4(c)に示した“山積み途中で水蒸気を噴射する養生条件3”では、山の中層部(最大72℃)と上層部(最大80℃)の温度上昇は先の“養生条件2”の場合に比べて低位であるものの、山の下層部の温度が55℃で維持される時間が延長されて、養生終了時には、山の下層部と上層部との間の温度差(50〜70℃)が“養生条件2”に比べて縮小された。
なお、これらいずれの養生条件においても外気温は20℃であった。また、ペレットの積み付け直後から温度が上昇するのは、セメントの水和反応(発熱反応)によるものである。
On the other hand, in “curing condition 3 for injecting water vapor in the middle of stacking” shown in FIG. 4C, the temperature rise in the middle layer (maximum 72 ° C.) and upper layer (maximum 80 ° C.) of the mountain Although the temperature is lower than in curing condition 2 ″, the time during which the temperature of the lower layer of the mountain is maintained at 55 ° C. is extended, and at the end of curing, the temperature difference between the lower and upper layers of the mountain (50 to 70 ° C.) was reduced compared to “curing condition 2”.
Note that the outside air temperature was 20 ° C. under any of these curing conditions. The temperature rise immediately after the pellets are stacked is due to cement hydration (exothermic reaction).

そこで、上記のような養生条件1〜3後に二次養生して得られた各製造実験のペレット(含炭非焼成塊成鉱)について、一次養生での山の高さの位置ごとに圧潰強度を測定した。ここで、一次養生の際に下層部(層高比h/H=0.2)、中層部(層高比h/H=0.5)、上層部(層高比h/H=0.8)に位置したペレットをそれぞれ無作為に100個選び出し、これら100個のサンプル(ペレット)について圧潰強度を測定して、養生条件ごとに平均値を求めた。その結果は図5(a)に示したとおりである。また、上記で山の高さの位置ごとに選び出したサンプル100個のうち、圧潰強度が50kg/cm以下となるサンプルの割合を求めた。その結果は図5(b)に示したとおりである。なお、圧潰強度の測定方法は、JIS M8718「鉄鉱石ペレット圧潰強度試験方法」に準じて、被測定サンプル1個に対して、規定の加圧速度で圧縮荷重を掛けることにより、破壊させたときの荷重値を測定し、単位断面積当たりの荷重値(kg/cm2)を圧潰強度とした。 Therefore, for the pellets of each production experiment obtained by secondary curing after curing conditions 1 to 3 as described above (carbon-containing unfired agglomerated ore), the crushing strength for each position of the mountain height in the primary curing Was measured. Here, pellets located in the lower layer (layer height ratio h / H = 0.2), middle layer (layer height ratio h / H = 0.5), and upper layer (layer height ratio h / H = 0.8) during primary curing 100 were selected at random, the crushing strength was measured for these 100 samples (pellets), and the average value was determined for each curing condition. The result is as shown in FIG. Moreover, the ratio of the sample from which crushing strength becomes 50 kg / cm < 2 > or less was calculated | required among 100 samples selected for every position of the height of a peak above. The result is as shown in FIG. The crushing strength is measured by applying a compressive load at a specified pressure rate to one sample to be measured according to JIS M8718 “Iron ore pellet crushing strength test method”. The load value per unit cross-sectional area (kg / cm 2 ) was taken as the crushing strength.

図5(a)に示されるように、水蒸気を使用しない養生条件1により一次養生した比較例1の場合に比べて、水蒸気を使用する養生条件2及び養生条件3で一次養生した比較例2及び本発明1の場合には、山の下層部、中層部、上層部にかけて、いずれもペレットの圧潰強度は高くなっていた。その際、養生条件1で一次養生した比較例1では、山の上層部に位置したペレットと下層部に位置したペレットとの強度差がおよそ75kg/cm(150-75=75kg/cm2)であり、同じく、養生条件2で一次養生した比較例2では100kg/cm(180-80=100kg/cm2)であるのに対して、養生条件3で一次養生した本発明1では、山の上層部に位置したペレットと下層部に位置したペレットとの強度差がおよそ60kg/cm(170-110=60kg/cm2)であり、比較例1及び2に比べて一次養生における山の品質差が緩和されていた。また、図5(b)によれば、特に山の下層部に位置したペレットが強度不足となる割合が著しく低減されており(比較例1では30%、比較例2では25%であるのに対して、本発明1では15%)、山全体として含炭非焼成塊成鉱としたときの均質化が図られることが分かった。なお、本発明1で最終的に得られたペレット(含炭非焼成塊成鉱)は、一次養生の際の山の下層部、中層部、及び上層部の各100個のサンプルを合計した全体で平均圧潰強度は130kg/cmであり、また、これら合計サンプルのうち圧潰強度が50kg/cm以下となるサンプルの割合は7.8%であった。 As shown in FIG. 5 (a), as compared with Comparative Example 1 that was primarily cured under curing condition 1 that does not use steam, Comparative Example 2 that was primarily cured under curing condition 2 and curing condition 3 that use steam. In the case of the present invention 1, the crushing strength of the pellets was high throughout the lower layer portion, middle layer portion, and upper layer portion of the mountain. At that time, in Comparative Example 1 where the primary curing was performed under the curing condition 1, the difference in strength between the pellet located in the upper layer part of the mountain and the pellet located in the lower layer part was approximately 75 kg / cm 2 (150-75 = 75 kg / cm 2 ). There is also 100 kg / cm 2 (180-80 = 100 kg / cm 2 ) in Comparative Example 2 where the primary curing was performed under the curing condition 2, whereas in the present invention 1 where the primary curing was performed under the curing condition 3, the upper layer of the mountain The difference in strength between the pellets located in the lower part and the pellets located in the lower part is approximately 60 kg / cm 2 (170-110 = 60 kg / cm 2 ), and the quality difference of the mountain in the primary curing compared to Comparative Examples 1 and 2 Was relaxed. Moreover, according to FIG.5 (b), especially the ratio which the pellet located in the lower layer part of a mountain | pipe has insufficient intensity | strength is reduced significantly (in Comparative Example 1, it is 30% and Comparative Example 2 is 25%) On the other hand, 15% in the present invention 1), it was found that homogenization was achieved when the entire mountain was made into a carbon-containing unfired agglomerated ore. In addition, the pellet finally obtained by this invention 1 (carbon-containing non-baking agglomerated ore) is the whole which totaled each 100 samples of the lower layer part of the mountain in the case of primary curing, an intermediate | middle layer part, and the upper layer part. The average crushing strength was 130 kg / cm 2 , and among these total samples, the proportion of samples with a crushing strength of 50 kg / cm 2 or less was 7.8%.

(製造実験II)
水蒸気の噴出を開始するタイミング(蒸気開始時積み付け層高比)、ペレット1トンあたりの水蒸気使用量(蒸気原単位)、水蒸気を噴出する時間(蒸気養生時間)、及びペレットの積み付け高さを表1に示したように変更して一次養生を行った以外は製造実験Iと同様にして、本発明2〜16に係る含炭非焼成塊成鉱を得た。そして、得られた各含炭非焼成塊成鉱について、全体での平均圧潰強度(平均成品圧潰強度)と、圧潰強度50g/cm以下の割合を製造実験Iと同様にして求めた。結果は表1に示したとおりであり、本発明1〜16は、いずれも比較例1や比較例2に比べて山全体での圧潰強度の均質化が図られていたが、一次養生の条件の最適化を図る意味から、以下のような考察ができる。
(Production Experiment II)
Timing of starting the injection of steam (stacking layer height ratio at the start of steam), amount of steam used per ton of pellets (steam intensity), time to spray steam (steam curing time), and stacking height of pellets Was changed as shown in Table 1, and the primary curing was performed, and the carbon-containing unfired agglomerated minerals according to the present invention 2 to 16 were obtained in the same manner as in Production Experiment I. And about each obtained carbon-containing unbaking agglomerated ore, the average crushing strength (average product crushing strength) and the ratio of crushing strength 50 g / cm < 2 > or less were calculated | required similarly to the manufacture experiment I. The results are as shown in Table 1, and the present inventions 1 to 16 were all intended to homogenize the crushing strength of the entire mountain compared to Comparative Example 1 and Comparative Example 2, but the conditions for primary curing The following considerations can be made from the viewpoint of optimizing the above.

先ず、蒸気を噴射するタイミングについては、本発明1〜5で比較検討することができ、ペレットの積み付け高さhがペレットの山積み高さHに対して0.6のタイミング(層高比0.6)で蒸気を噴射した場合(本発明3)、得られた含炭非焼成塊成鉱の平均圧潰強度が最も高く、圧潰強度50g/cm以下が占める割合が一番少なかった。すなわち、蒸気の噴出タイミングが早くなると山の中層部、上層部の強度発現が不足する可能性があり、また、蒸気の噴出タイミングが遅くなると山の下層部の強度発現が不足する可能性が考えられる。 First, the timing at which the steam is injected can be compared in the present inventions 1 to 5, and the pellet stacking height h is 0.6 relative to the pellet stacking height H (layer height ratio 0.6). ) (Invention 3), the obtained carbon-containing unfired agglomerated mineral had the highest average crushing strength, and the ratio of crushing strength of 50 g / cm 2 or less was the smallest. In other words, there is a possibility that the strength expression of the middle and upper layers of the mountain will be insufficient if the steam ejection timing is advanced, and that the strength expression of the lower layer of the mountain may be insufficient if the steam ejection timing is delayed. It is done.

また、水蒸気使用量については、本発明1、6〜9で比較検討することができ、本発明1の場合が最も効果的であり、蒸気の量が少ないと全体的に強度発現が不足する可能性があり、反対に蒸気の量が多くなり過ぎるとペレットの膨潤を招いてかえって強度が低下することが考えられる。
更に、蒸気養生時間については、本発明1、10〜13で比較検討することができ、本発明1の場合が最も効果的である。ここで、水蒸気の使用量自体はどれも同じであることから(15t/t成品)、蒸気養生時間が短くなると単位時間当たりの蒸気量が過剰となり、水分過多によりペレットの膨潤を招くことが考えられる。一方で、蒸気養生時間が長くなり過ぎると、単位時間当たりの蒸気量が少なくなり、本発明による効果の発現が限定的になってしまうことが考えられる。
更にまた、ペレットを山積みする際の積み付け高さについては、本発明1、14〜16で比較検討することができ、本発明1の場合が最も効果的である。積み付け高さが低くなり過ぎると、本発明の効果が限られてしまうこともある。なお、積み付け高さが高くなり過ぎる場合には、前述したように積み付け荷重によりペレットが崩壊してしまうことも考えられる。
Further, the amount of water vapor used can be compared and examined in the present inventions 1 and 6 to 9, and the case of the present invention 1 is the most effective. If the amount of steam is small, the overall strength expression may be insufficient. On the other hand, if the amount of steam is excessively large, the pellets may swell and the strength may decrease.
Further, the steam curing time can be compared in the present inventions 1 and 10 to 13, and the case of the present invention 1 is the most effective. Here, since the amount of water vapor used is the same (15t / t product), if the steam curing time is shortened, the amount of steam per unit time will be excessive, and excessive pellets may cause swelling of the pellets. It is done. On the other hand, if the steam curing time becomes too long, the amount of steam per unit time decreases, and it is considered that the effect of the present invention is limited.
Furthermore, the stacking height when stacking the pellets can be compared in the present inventions 1 and 14 to 16, and the present invention 1 is the most effective. If the stacking height is too low, the effect of the present invention may be limited. In addition, when the stacking height becomes too high, the pellet may collapse due to the stacking load as described above.

Figure 2018048390
Figure 2018048390

以上のように、本発明によれば、非焼成型塊成化プロセスにおいて山積みしたペレット等の塊成物を一次養生したときに、積み付け高さ方向における強度のばらつきが縮小され、平均強度が向上する。そのため、含炭非焼成塊成鉱を安定した品質で得ることができるようになる。また、本発明によれば、炭素含有割合の高い含炭非焼成塊成鉱を品質のばらつきを抑えて安定的に供給することも可能になることから、高炉使用時の還元材比の低減を図る上で有利である。更には、一次養生における塊成物の強度指標の管理が緩和されたり、セメント等の水硬性バインダーの使用量を削減することも可能になり、含炭非焼成塊成鉱を簡便に、かつ低コストで得ることができるようになる。   As described above, according to the present invention, when primary agglomerates such as pellets piled up in the non-fired agglomeration process are primarily cured, the variation in strength in the stacking height direction is reduced, and the average strength is reduced. improves. Therefore, it becomes possible to obtain a carbon-containing unfired agglomerated mineral with stable quality. In addition, according to the present invention, it becomes possible to stably supply a carbon-containing non-calcined agglomerated ore with a high carbon content ratio while suppressing variation in quality. It is advantageous in planning. Furthermore, it is possible to ease the management of the agglomerate strength index in the primary curing, and to reduce the amount of hydraulic binder used such as cement. You can get it at a cost.

1:処理ピット、2:側壁、3:架台、4:給鉱台車(積付機)、5:ベルトコンベア、6:塊成物の山、7:ホイスト式クレーン、8:保温シート、9:蒸気噴出管、10:建屋。
1: treatment pit, 2: side wall, 3: mount, 4: feed cart (loading machine), 5: belt conveyor, 6: pile of agglomerates, 7: hoist crane, 8: heat insulation sheet, 9: Steam ejection pipe, 10: building.

Claims (6)

微粉状鉄含有原料、微粉状炭材、及び水硬性バインダーを含んだ配合原料を水分調整した後に成形した塊成物を、側壁で囲まれた処理ピット内に山積みし、保温シートで覆うと共に、処理ピットの床面から所定量の蒸気を噴射して加温しながら塊成物を一次養生する工程を含んだ高炉用含炭非焼成塊成鉱の製造方法であって、処理ピットの上方から塊成物を投入して積み付けながら山積みする途中で、処理ピットの床面から蒸気を噴射して塊成物の加温を開始することを特徴とする高炉用含炭非焼成塊成鉱の製造方法。   The agglomerate formed after adjusting the moisture content of the finely divided iron-containing raw material, the finely powdered carbonaceous material, and the blended raw material containing the hydraulic binder is piled up in the processing pit surrounded by the side wall, and covered with a heat insulating sheet, A method for producing a coal-containing unfired agglomerated blast furnace for a blast furnace, which includes a step of primary curing of the agglomerate while injecting a predetermined amount of steam from the floor surface of the treatment pit and heating. The blast furnace carbon-containing uncalcined agglomerated ore is characterized by injecting steam from the floor of the processing pit and starting the agglomerate heating while the agglomerates are being loaded and stacked. Production method. 処理ピット内に山積みする塊成物の山積み高さHに対して、塊成物の積み付け高さhが50〜70%(0.5H≦h≦0.7H)のタイミングで処理ピットの床面から蒸気を噴射して塊成物の加温を開始する請求項1に記載の高炉用含炭非焼成塊成鉱の製造方法。   From the floor of the processing pit at a timing when the stacking height h of the agglomerate is 50 to 70% (0.5H ≦ h ≦ 0.7H) with respect to the pile height H of the agglomerate piled in the processing pit. The method for producing a carbon-containing unfired agglomerated blast furnace according to claim 1, wherein heating of the agglomerate is started by jetting steam. 処理ピット内に山積みする塊成物の山積み高さHが3〜5mである請求項1又は2に記載の高炉用含炭非焼成塊成鉱の製造方法。   The method for producing a carbon-containing non-fired agglomerated blast furnace for blast furnace according to claim 1 or 2, wherein a pile height H of the agglomerate piled in the treatment pit is 3 to 5 m. 前記配合原料中の炭素含有割合(T.C)が15〜25質量%である請求項1〜3のいずれかに記載の高炉用含炭非焼成塊成鉱の製造方法。   The carbon content rate (T.C) in the said compounding raw material is 15-25 mass%, The manufacturing method of the carbon-containing unbaking agglomerated mineral for blast furnaces in any one of Claims 1-3. 前記一次養生において蒸気を噴射して養生する時間が15〜30時間である請求項1〜4のいずれかに記載の高炉用含炭非焼成塊成鉱の製造方法。   The method for producing a coal-containing unfired agglomerated blast furnace for a blast furnace according to any one of claims 1 to 4, wherein a time for curing by jetting steam in the primary curing is 15 to 30 hours. 前記一次養生における蒸気使用量が、塊成物1トンあたり13〜17トンである請求項1〜5のいずれかに記載の高炉用含炭非焼成塊成鉱の製造方法。
The method for producing a carbon-containing unfired agglomerated blast furnace according to any one of claims 1 to 5, wherein the amount of steam used in the primary curing is 13 to 17 tons per ton of agglomerates.
JP2016186255A 2016-09-23 2016-09-23 Method for producing coal-free uncalcined agglomerated ore for blast furnace Active JP6680167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016186255A JP6680167B2 (en) 2016-09-23 2016-09-23 Method for producing coal-free uncalcined agglomerated ore for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016186255A JP6680167B2 (en) 2016-09-23 2016-09-23 Method for producing coal-free uncalcined agglomerated ore for blast furnace

Publications (2)

Publication Number Publication Date
JP2018048390A true JP2018048390A (en) 2018-03-29
JP6680167B2 JP6680167B2 (en) 2020-04-15

Family

ID=61767279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016186255A Active JP6680167B2 (en) 2016-09-23 2016-09-23 Method for producing coal-free uncalcined agglomerated ore for blast furnace

Country Status (1)

Country Link
JP (1) JP6680167B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113136487A (en) * 2021-04-07 2021-07-20 内蒙古金辉稀矿股份有限公司 Preparation process of bentonite additive based on pellet production
JP7188126B2 (en) 2019-01-24 2022-12-13 日本製鉄株式会社 Method for manufacturing carbon-containing non-fired pellets for blast furnace

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105432A (en) * 1980-01-28 1981-08-21 Sumitomo Metal Ind Ltd Method and apparatus for producing cold-briquetted ore
JPS58133335A (en) * 1982-02-02 1983-08-09 Nippon Kokan Kk <Nkk> Method and apparatus for preparing non-sintered finished briquette
JP2001348624A (en) * 2000-06-08 2001-12-18 Nippon Steel Corp Method for producing non-firing agglomerate
JP2009030116A (en) * 2007-07-27 2009-02-12 Jfe Steel Kk Method for producing ore raw material for blast furnace
JP2009161791A (en) * 2007-12-28 2009-07-23 Nippon Steel Corp Method for manufacturing carbon-containing non-fired pellet for blast furnace
JP2013079433A (en) * 2011-10-05 2013-05-02 Nippon Steel & Sumitomo Metal Corp Apparatus and method for aging nonfired agglomerate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105432A (en) * 1980-01-28 1981-08-21 Sumitomo Metal Ind Ltd Method and apparatus for producing cold-briquetted ore
JPS58133335A (en) * 1982-02-02 1983-08-09 Nippon Kokan Kk <Nkk> Method and apparatus for preparing non-sintered finished briquette
JP2001348624A (en) * 2000-06-08 2001-12-18 Nippon Steel Corp Method for producing non-firing agglomerate
JP2009030116A (en) * 2007-07-27 2009-02-12 Jfe Steel Kk Method for producing ore raw material for blast furnace
JP2009161791A (en) * 2007-12-28 2009-07-23 Nippon Steel Corp Method for manufacturing carbon-containing non-fired pellet for blast furnace
JP2013079433A (en) * 2011-10-05 2013-05-02 Nippon Steel & Sumitomo Metal Corp Apparatus and method for aging nonfired agglomerate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7188126B2 (en) 2019-01-24 2022-12-13 日本製鉄株式会社 Method for manufacturing carbon-containing non-fired pellets for blast furnace
CN113136487A (en) * 2021-04-07 2021-07-20 内蒙古金辉稀矿股份有限公司 Preparation process of bentonite additive based on pellet production

Also Published As

Publication number Publication date
JP6680167B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
JP5000402B2 (en) Method for producing carbon-containing unfired pellets for blast furnace
JP2008214715A (en) Method for manufacturing nonfired agglomerated ore for iron manufacture
JP6056492B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP5803540B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP4603628B2 (en) Blast furnace operation method using carbon-containing unfired pellets
JP6680167B2 (en) Method for producing coal-free uncalcined agglomerated ore for blast furnace
JP6228101B2 (en) Manufacturing method of carbon material interior ore
JP5114742B2 (en) Method for producing carbon-containing unfired pellets for blast furnace
CN113166844B (en) Iron ore powder agglomerate production method and agglomerated product
JP3863052B2 (en) Blast furnace raw material charging method
CA2719899C (en) Method of production of cement bonded agglomerated ore
JP5786668B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP2009030114A (en) Method for producing ore raw material for blast furnace
JP5454505B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP7252454B2 (en) Method for producing non-fired agglomerate ore for blast furnace
JP5729256B2 (en) Non-calcined hot metal dephosphorization method and hot metal dephosphorization method using non-fired hot metal dephosphorization material
JP5835144B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP2009030115A (en) Method for producing ore raw material for blast furnace
JP6992734B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
JP6885386B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
JP5447410B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP2020117771A (en) Method for producing carbon-containing non-fired pellet for blast furnace
JP5825180B2 (en) Method for producing unfired carbon-containing agglomerated ore for blast furnace using coal char
JP2011006722A (en) Method for producing sintered ore
KR101676227B1 (en) The method for preparing molten iron by recycling by-product emitted from coal-based iron making process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200302

R151 Written notification of patent or utility model registration

Ref document number: 6680167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151