JP2018047500A - Bi-BASED SOLDER ALLOY AND METHOD FOR PRODUCING THE SAME, AND ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT-MOUNTED SUBSTRATE COMPRISING THE SOLDER ALLOY - Google Patents

Bi-BASED SOLDER ALLOY AND METHOD FOR PRODUCING THE SAME, AND ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT-MOUNTED SUBSTRATE COMPRISING THE SOLDER ALLOY Download PDF

Info

Publication number
JP2018047500A
JP2018047500A JP2016186199A JP2016186199A JP2018047500A JP 2018047500 A JP2018047500 A JP 2018047500A JP 2016186199 A JP2016186199 A JP 2016186199A JP 2016186199 A JP2016186199 A JP 2016186199A JP 2018047500 A JP2018047500 A JP 2018047500A
Authority
JP
Japan
Prior art keywords
mass
content
less
solder alloy
based solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016186199A
Other languages
Japanese (ja)
Inventor
永田 浩章
Hiroaki Nagata
浩章 永田
雅人 高森
Masahito Takamori
雅人 高森
由隆 末繁
Yoshitaka Sueshige
由隆 末繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016186199A priority Critical patent/JP2018047500A/en
Publication of JP2018047500A publication Critical patent/JP2018047500A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Bi-based solder alloy that is substantially free of Pb, Zn, Al, Sb, has excellent wettability and joining reliability, and is also suitable for mounting a semiconductor element on a joining object member having one of Ni layer, Ni/Au layer, and Ni/Pd/Au layer on its surface.SOLUTION: A Bi-based solder alloy contains Ag, Sn and In, with the Bi content of 70 mass% or more. The Ag content is 0.6 mass% or more and 18 mass% or less, the Sn content is 0.1 mass% or more and 10 mass% or less, the In content is 0.1 mass% or more and 2 mass% or less, and the total content of Sn and In is 1/1 or less relative to the Ag content, and the Bi-based solder alloy contains a particle containing an intermetallic compound of Ag, Sn and In, with the balance being Bi, excluding inevitable elements in production.SELECTED DRAWING: None

Description

本発明は、Bi基はんだ合金及びその製造方法、並びに、そのはんだ合金を用いた電子部品及び電子部品実装基板に関し、さらに詳しくは、Pb、Zn、Al、Sbを実質的に含まず、機械加工性、機械的強度および接合信頼性に優れ、特に、表面にNi層、Ni/Au層、Ni/Pd/Au層のいずれかを有する接合対象部材への半導体素子の実装に適した、Bi基はんだ合金及びその製造方法、並びに、そのはんだ合金を用いた電子部品及び電子部品実装基板に関する。   The present invention relates to a Bi-based solder alloy, a manufacturing method thereof, an electronic component using the solder alloy, and an electronic component mounting substrate, and more particularly, substantially free of Pb, Zn, Al, and Sb, and machined. Bi base suitable for mounting of semiconductor elements on a member to be joined having a Ni layer, Ni / Au layer, or Ni / Pd / Au layer on the surface. The present invention relates to a solder alloy, a manufacturing method thereof, an electronic component using the solder alloy, and an electronic component mounting substrate.

電子部品実装基板を製造する際、まず、半導体チップなどの半導体素子をリードフレームなどの接合対象部材へ、第1のはんだ合金を介して接合(ダイボンディング)して電子部品を製造し、次に、プリント基板等の基板上に供給した、第1のはんだ合金とは別のはんだ合金であって第1のはんだ合金に比べて固相線温度が低い第2のはんだ合金を溶融(リフロー)して、電子部品をプリント基板等の基板へ実装することや、半導体素子を接合対象部材である基板へ、第1のはんだ合金を介して実装後、当該基板の他の部位に、第2のはんだ合金をリフローして、他の半導体素子や電子部品を実装することが一般に行われている。このように、電子部品実装基板を製造する際に使用するはんだは、その使用限界温度によって高温用(約260℃〜400℃)と中低温用(約140℃〜230℃)に大別される。   When manufacturing an electronic component mounting substrate, first, a semiconductor element such as a semiconductor chip is bonded (die bonding) to a member to be bonded such as a lead frame via a first solder alloy, and then an electronic component is manufactured. The second solder alloy supplied on a substrate such as a printed circuit board is different from the first solder alloy and has a solidus temperature lower than that of the first solder alloy, and is melted (reflowed). Then, after mounting the electronic component on a substrate such as a printed circuit board, or mounting the semiconductor element on the substrate that is a member to be bonded via the first solder alloy, the second solder is applied to other portions of the substrate. It is common practice to reflow the alloy and mount other semiconductor elements and electronic components. As described above, the solder used when manufacturing the electronic component mounting board is roughly classified into a high temperature (about 260 ° C. to 400 ° C.) and a medium / low temperature (about 140 ° C. to 230 ° C.) depending on the use limit temperature. .

従来、電子部品の基板への実装には、中低温用はんだ合金として、Sn−37質量%Pbの共晶はんだ合金(融点183℃)が広く用いられ、実装時、220〜230℃でリフローが行われていた。一方、電子部品内部におけるリードフレームなどの接合対象部材への半導体チップなどの半導体素子の実装には、電子部品の基板への実装時のリフロー温度(220〜230℃)で再溶融して接続不良が発生するのを防ぐため、電子部品の基板への実装時のリフロー温度に比べて高い温度の固相線温度を有する高温用はんだ合金として、Pb−5質量%Sn(固相線温度305℃)、Pb−3質量%Sn(固相線温度315℃)などが用いられてきた。   Conventionally, a Sn-37 mass% Pb eutectic solder alloy (melting point 183 ° C.) is widely used as a low-temperature solder alloy for mounting electronic components on a substrate, and reflow is performed at 220 to 230 ° C. during mounting. It was done. On the other hand, when mounting a semiconductor element such as a semiconductor chip on a member to be joined such as a lead frame inside an electronic component, it is melted again at the reflow temperature (220 to 230 ° C.) when mounting the electronic component on the substrate, resulting in poor connection. In order to prevent generation of Pb-5 mass% Sn (solidus temperature 305 ° C.) as a high temperature solder alloy having a solidus temperature higher than the reflow temperature when mounting electronic components on a substrate. ), Pb-3 mass% Sn (solidus temperature 315 ° C.) and the like have been used.

しかし、鉛(Pb)入りはんだ合金を用いた製品は、廃棄処分後、製品からPbが流出して土壌に浸透し、農作物等に蓄積して人間に健康被害を及ぼす危険性が指摘され、さらに、酸性雨による廃棄処分された製品からのPbの流出の加速が指摘されていることから、近年、Pbを含まない無鉛はんだ合金の開発が盛んに行われている。   However, products that use lead (Pb) -containing solder alloys have been pointed out that after disposal, Pb flows out of the product, penetrates into the soil, accumulates in crops, etc., and can cause health damage to humans. In recent years, lead-free solder alloys that do not contain Pb have been actively developed because it has been pointed out that the outflow of Pb from discarded products due to acid rain has been pointed out.

中低温用のPb入りはんだ合金の代替品としては、Sn−Ag−Cu等のPbを含まない無鉛はんだ合金が実用化されている。
しかしながら、Sn−Ag−Cu等の無鉛はんだ合金の融点は、従来のPb−Sn共晶はんだ合金より高く約220℃前後となるため、実装時のリフロー温度は250℃付近となる。このため、電子部品内部での接合に用いる無鉛はんだ合金には、リフロー温度250℃で10秒間保持するサイクルを5回程度繰り返した後でも、電子部品内部の接合信頼性等に問題が生じない高温用の無鉛はんだ合金が必要とされている。電子部品が小型化され、各種装置に用いられるようになり、特に長期接合信頼性に優れた無鉛はんだ合金の開発も求められている。
As an alternative to Pb-containing solder alloys for medium and low temperatures, lead-free solder alloys that do not contain Pb, such as Sn—Ag—Cu, have been put into practical use.
However, since the melting point of a lead-free solder alloy such as Sn—Ag—Cu is about 220 ° C. which is higher than that of a conventional Pb—Sn eutectic solder alloy, the reflow temperature during mounting is around 250 ° C. For this reason, the lead-free solder alloy used for joining inside the electronic component has a high temperature that does not cause a problem in the joining reliability and the like inside the electronic component even after the cycle of holding at a reflow temperature of 250 ° C. for 10 seconds is repeated about 5 times. There is a need for lead-free solder alloys. Electronic parts have been miniaturized and used in various devices, and in particular, development of lead-free solder alloys with excellent long-term bonding reliability is also required.

すなわち、電子部品内部での接合に用いる高温用の無鉛はんだ合金には、熱放散性、応力緩和性、耐熱疲労特性、電気伝導性等の特性以外に、電子部品の基板への実装時のリフロー温度(250℃)での再溶融による接続不良を防ぐため、接合後255℃以上の固相線温度を有することが必要である。   In other words, high-temperature lead-free solder alloys used for joining inside electronic components include reflow when mounting electronic components on a substrate, in addition to properties such as heat dissipation, stress relaxation, thermal fatigue resistance, and electrical conductivity. In order to prevent poor connection due to remelting at a temperature (250 ° C.), it is necessary to have a solidus temperature of 255 ° C. or higher after joining.

また、電子部品内部での接合に用いる高温用の無鉛はんだ合金の液相線温度が400℃以上の場合、ダイボンディング時の作業温度を400℃以上に上げる必要があるが、このような高温処理を行うと、半導体素子の特性が変化したり、接合対象部材の表面酸化が促進したりする等の悪影響が生じる場合がある。したがって、液相線温度は、400℃以下である必要があり、実際の生産工程を考慮すると、350℃以下であることが求められている。   In addition, when the liquidus temperature of a high-temperature lead-free solder alloy used for joining inside an electronic component is 400 ° C. or higher, it is necessary to increase the working temperature during die bonding to 400 ° C. or higher. In some cases, adverse effects such as changes in the characteristics of the semiconductor elements and acceleration of surface oxidation of the members to be joined may occur. Therefore, the liquidus temperature needs to be 400 ° C. or lower, and it is required to be 350 ° C. or lower in consideration of an actual production process.

255℃〜350℃の融点を持つ無鉛はんだ合金として、Au−Snはんだ合金や、Bi−Agはんだ合金等が提案されている。Au−Snはんだ合金は、Snを20質量%含有する組成で融点が280℃であり、実装時の再溶融の問題がなく実用化されているが、高価であるため、高付加価値品への適用に留まり、汎用品には用いられていないのが実情である。   As a lead-free solder alloy having a melting point of 255 ° C. to 350 ° C., an Au—Sn solder alloy, a Bi—Ag solder alloy, and the like have been proposed. The Au—Sn solder alloy has a composition containing 20% by mass of Sn and has a melting point of 280 ° C., and has been put to practical use without the problem of remelting at the time of mounting. The actual situation is that it is not applied to general-purpose products.

特許文献1には、BiにAlを0.03質量%以上0.70質量%以下含有し、Znを0.2質量%以上14.0質量%以下含有し、265℃以上の融点を有する、はんだ合金が提案されている。   Patent Document 1 contains Bi in an amount of 0.03 mass% to 0.70 mass%, Zn is contained in an amount of 0.2 mass% to 14.0 mass%, and has a melting point of 265 ° C. or higher. Solder alloys have been proposed.

また、特許文献2には、Biが90質量%以上、Snが1〜5質量%、Sbおよび/またはAgから選択された少なくとも1種の元素がそれぞれ0.5〜5質量%含有することにより、接合強度を高くした、はんだ合金が提案されている。   Patent Document 2 includes Bi of 90% by mass or more, Sn of 1 to 5% by mass, and at least one element selected from Sb and / or Ag each containing 0.5 to 5% by mass. A solder alloy having a high bonding strength has been proposed.

WO2011/158668号公報WO2011 / 158668 WO2012/002173号公報WO2012 / 002173 Publication

はんだ合金が塗布されるリードフレームなどの、半導体素子との接合対象部材のアイランド部は、従来、素材そのままであるベアCuであったり、予め表面にAgめっきが施されていたりする場合が多かったが、近年、材料が小型化し、かつ、車載関係などのデバイスで高耐食性が求められるようになり、Agめっきの代わりに耐食性に優れるNiめっきが施されることが多くなっている。Niは、基本的に、はんだ濡れ性に劣る場合が多いので、その表面に非常に薄いAuめっきやPdめっきを施す場合がある。
ところが、Niめっきが施された接合対象部材への半導体素子との接合用はんだ合金としてBi基はんだ合金を用いた場合、Niと主成分のBiとが反応し、接合界面に脆弱なBiNi合金層を形成する場合がある。このような脆弱なBiNi合金層が形成されると接合信頼性が悪化する場合があり、特に、接合対象部材の表面がNi層の場合、顕著に悪化する。特許文献1や特許文献2に記載のはんだ合金を用いた場合においても、接合面の状態により十分な接合信頼性を得られない場合が発生する。
Conventionally, the island part of a member to be joined to a semiconductor element such as a lead frame to which a solder alloy is applied has often been bare Cu, which is a raw material, or has been previously plated with Ag. However, in recent years, materials have become smaller and high corrosion resistance has been required for devices such as in-vehicle devices, and Ni plating having excellent corrosion resistance is often applied instead of Ag plating. Ni is basically inferior in solder wettability in many cases. Therefore, a very thin Au plating or Pd plating may be applied to the surface of Ni.
However, when a Bi-based solder alloy is used as a solder alloy for joining a semiconductor element to a member to be joined that has been subjected to Ni plating, Ni reacts with Bi as a main component, and Bi 3 Ni which is brittle at the joint interface An alloy layer may be formed. When such a fragile Bi 3 Ni alloy layer is formed, the bonding reliability may be deteriorated. In particular, when the surface of the member to be bonded is a Ni layer, the bonding reliability is significantly deteriorated. Even when the solder alloys described in Patent Document 1 and Patent Document 2 are used, there are cases where sufficient bonding reliability cannot be obtained due to the state of the bonding surface.

本発明の目的は、かかる従来技術の問題点に鑑み、Pb、Zn、Al、Sbを実質的に含まず、接合性が改善され接合信頼性に優れ、特に、表面にNi層、Ni/Au層、Ni/Pd/Au層のいずれかを有する接合対象部材に半導体素子を実装するのにも適した高温用Bi基はんだ合金及びその製造方法、並びに、そのはんだ合金を用いた電子部品及び電子部品実装基板を提供することにある。   In view of the problems of the prior art, the object of the present invention is substantially free of Pb, Zn, Al, and Sb, has improved bondability and excellent bonding reliability, and in particular, has a Ni layer, Ni / Au on the surface. Bi-base solder alloy suitable for mounting a semiconductor element on a member to be joined having any one of a layer and a Ni / Pd / Au layer, a manufacturing method thereof, and an electronic component and an electronic using the solder alloy It is to provide a component mounting board.

本発明者らは、上記課題を解決するため、鋭意研究を重ねた結果、従来のBi−Agはんだ合金において、さらに、所定量のSnとInを混合し合金化することにより、はんだ合金内に形成されるAgとSnとInとの金属間化合物を含む粒子がBiとNiの反応を抑制する効果があることを見出すとともに、AgとSnとInとの金属間化合物を含む粒子が分散することで、ボンディングの際、濡れ性が良く接合不良が発生せず、応力緩和性に優れ接合信頼性の高いBi基はんだ合金が得られることを見出し、はんだ合金が塗布されるリードフレームのアイランド部に、Niめっき、Ni/Auめっき、Ni/Pd/Auめっきのいずれかが施されている場合でも、Bi基はんだ合金の接合後の接合強度が低下することもなく接合信頼性に優れた電子部品を製造しうることを見出し、本発明を完成させるに至った。また、本発明者らは、上記Bi−Ag−Sn−Inはんだ合金に、さらに、GeやTeを所定量含有させることにより、AgとSnとの金属間化合物を含む粒子の粗大化を抑制する効果があることを見出し、はんだ合金が塗布されるリードフレームのアイランド部に、Niめっき、Ni/Auめっき、Ni/Pd/Auめっきのいずれかが施されている場合でも、より接合信頼性に優れた電子部品を製造しうることを見出し、本発明を完成させるに至った。また、本発明者らは、上記Bi−Ag−Sn−In系はんだ合金に、さらに、Cu、Ni、Pd、Auから選ばれる1種以上の金属を所定量含有させることにより、濡れ性をさらに改善させ、より接合信頼性に優れた電子部品を製造し得ることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors further mixed a predetermined amount of Sn and In in the conventional Bi-Ag solder alloy to form an alloy. It is found that the formed particles containing an intermetallic compound of Ag, Sn and In have an effect of suppressing the reaction of Bi and Ni, and the particles containing an intermetallic compound of Ag, Sn and In are dispersed. In bonding, it has been found that a Bi-based solder alloy having good wettability and no joint failure, excellent stress relaxation and high joint reliability can be obtained, and is applied to the island portion of the lead frame to which the solder alloy is applied. Even when any one of Ni plating, Ni / Au plating, and Ni / Pd / Au plating is applied, the bonding strength after the bonding of the Bi-based solder alloy is not lowered and the bonding reliability is improved. It found that can produce electronic components, thereby completing the present invention. In addition, the present inventors further suppress the coarsening of particles containing an intermetallic compound of Ag and Sn by adding a predetermined amount of Ge or Te to the Bi-Ag-Sn-In solder alloy. Even if the lead frame island where the solder alloy is applied is found to be effective, and even if any of Ni plating, Ni / Au plating, and Ni / Pd / Au plating is applied, the bonding reliability is further improved The inventors have found that an excellent electronic component can be manufactured, and have completed the present invention. In addition, the present inventors further improve wettability by adding a predetermined amount of one or more metals selected from Cu, Ni, Pd, and Au to the Bi-Ag-Sn-In solder alloy. It has been found that an electronic component having improved bonding reliability can be manufactured, and the present invention has been completed.

すなわち、本発明によるBi基はんだ合金は、AgとSnとInを含有し、実質的にPb、Zn、Al、Sbを含有せず、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、かつ、前記Bi基はんだ合金内にAgとSnとInとの金属間化合物を含む粒子を含有し、残部が製造上、不可避的に含まれる元素を除きBiからなることを特徴としている。   That is, the Bi-based solder alloy according to the present invention is a Bi-based solder alloy containing Ag, Sn, and In, substantially free of Pb, Zn, Al, and Sb and having a Bi content of 70% by mass or more. The Ag content is 0.6 mass% or more and 18 mass% or less, the Sn content is 0.1 mass% or more and 10 mass% or less, and the In content is 0.1 mass% or more and 2 mass% or less. In addition, the total content of Sn and In is 1/1 or less with respect to the Ag content, and the Bi-based solder alloy contains particles containing an intermetallic compound of Ag, Sn, and In However, the remainder is characterized by being made of Bi except for elements inevitably included in production.

また、本発明によるBi基はんだ合金は、AgとSnとInを含有し、さらに、Cu、Ni、Pd、Auの中から1種以上を含有し、実質的にPb、Zn、Al、Sbを含有せず、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、Inの含有量が0.1質量%以上2質量%以下、かつ、前記Bi基はんだ合金内にAgとSnとInとの金属間化合物を含む粒子を含有し、かつ、Cu、Ni、Pd、Auの中から1種以上を総量で0.001質量%以上3.0質量%以下の範囲で含有し、残部が製造上、不可避的に含まれる元素を除きBiからなることを特徴としている。   The Bi-based solder alloy according to the present invention contains Ag, Sn, and In, and further contains at least one of Cu, Ni, Pd, and Au, and substantially contains Pb, Zn, Al, and Sb. It is a Bi-based solder alloy with a Bi content of 70% by mass or more and an Ag content of 0.6% by mass to 18% by mass and a Sn content of 0.1% by mass to 10%. Mass% or less, the total content of Sn and In is 1/1 or less with respect to the Ag content, the In content is 0.1 mass% or more and 2 mass% or less, and the Bi group The solder alloy contains particles containing an intermetallic compound of Ag, Sn, and In, and one or more of Cu, Ni, Pd, and Au are added in a total amount of 0.001% by mass to 3.0% by mass. It is contained in the following range, and the balance is made of Bi except for elements inevitably included in production. It is characterized in.

また、本発明によるBi基はんだ合金は、AgとSnとInとGeを含有し、実質的にPb、Zn、Al、Sbを含有せず、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、Geの含有量が0.001質量%以上3.0質量%以下、かつ、前記Bi基はんだ合金内にAgとSnとInとの金属間化合物を含む粒子を含有し、残部が製造上、不可避的に含まれる元素を除きBiからなることを特徴としている。   In addition, the Bi-based solder alloy according to the present invention contains Ag, Sn, In, and Ge, does not substantially contain Pb, Zn, Al, and Sb, and has a Bi content of 70% by mass or more. An alloy having an Ag content of 0.6 mass% to 18 mass%, an Sn content of 0.1 mass% to 10 mass%, and an In content of 0.1 mass% to 2 mass% %, And the total content of Sn and In is 1/1 or less with respect to the Ag content, the Ge content is 0.001 mass% or more and 3.0 mass% or less, and the Bi The base solder alloy contains particles containing an intermetallic compound of Ag, Sn, and In, and the balance is made of Bi except for elements that are inevitably included in manufacturing.

また、本発明によるBi基はんだ合金は、AgとSnとInとGeを含有し、さらに、Cu、Ni、Pd、Auの中から1種以上を含有し、実質的にPb、Zn、Al、Sbを含有せず、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、Geの含有量が0.001質量%以上3.0質量%以下、かつ、前記Bi基はんだ合金内にAgとSnとInとの金属間化合物を含む粒子を含有し、かつ、Cu、Ni、Pd、Auの中から1種以上を総量で0.001質量%以上3.0質量%以下の範囲で含有し、残部が製造上、不可避的に含まれる元素を除きBiからなることを特徴としている。   The Bi-based solder alloy according to the present invention contains Ag, Sn, In, and Ge, and further contains at least one of Cu, Ni, Pd, and Au, and is substantially Pb, Zn, Al, Bi-based solder alloy containing no Sb and having a Bi content of 70% by mass or more, the Ag content being 0.6% by mass or more and 18% by mass or less, and the Sn content being 0.1% by mass 10 mass% or less, the In content is 0.1 mass% or more and 2 mass% or less, and the total content of Sn and In is 1/1 or less with respect to the Ag content, and the Ge content An amount of 0.001% by mass to 3.0% by mass, and the Bi-based solder alloy contains particles containing an intermetallic compound of Ag, Sn, and In, and Cu, Ni, Pd, Au 1 or more of the total amount in the range of 0.001% by mass to 3.0% by mass Balance production, it is characterized by comprising a Bi except element contained inevitably.

また、本発明によるBi基はんだ合金は、AgとSnとInとTeを含有し、実質的にPb、Zn、Al、Sbを含有せず、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%を上回り10質量%以下、Inの含有量が0.1質量%以上2質量%以下、Teの含有量が0.001質量%以上3.0質量%以下、かつ、前記Bi基はんだ合金内にAgとSnとInとの金属間化合物を含む粒子を含有し、残部が製造上、不可避的に含まれる元素を除きBiからなることを特徴としている。   The Bi-based solder alloy according to the present invention contains Ag, Sn, In, and Te, does not substantially contain Pb, Zn, Al, and Sb, and has a Bi content of 70% by mass or more. An alloy having an Ag content of 0.6% by mass to 18% by mass, an Sn content of more than 0.1% by mass, and an In content of 0.1% by mass to 2%. Less than mass%, Te content is 0.001 mass% or more and 3.0 mass% or less, and the Bi-based solder alloy contains particles containing an intermetallic compound of Ag, Sn, and In, and the balance is It is characterized by being made of Bi except for elements inevitably included in the production.

また、本発明によるBi基はんだ合金は、AgとSnとInとTeを含有し、さらに、Cu、Ni、Pd、Auの中から1種以上を含有し、実質的にPb、Zn、Al、Sbを含有せず、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、Teの含有量が0.001質量%以上3.0質量%以下、かつ、前記Bi基はんだ合金内にAgとSnとInとの金属間化合物を含む粒子を含有し、かつ、Cu、Ni、Pd、Auの中から1種以上を総量で0.001質量%以上3.0質量%以下の範囲で含有し、残部が製造上、不可避的に含まれる元素を除きBiからなることを特徴としている。   The Bi-based solder alloy according to the present invention contains Ag, Sn, In, and Te, and further contains at least one of Cu, Ni, Pd, and Au, and substantially contains Pb, Zn, Al, Bi-based solder alloy containing no Sb and having a Bi content of 70% by mass or more, the Ag content being 0.6% by mass or more and 18% by mass or less, and the Sn content being 0.1% by mass 10 mass% or less, the In content is 0.1 mass% or more and 2 mass% or less, and the total content of Sn and In is 1/1 or less with respect to the Ag content, and the Te content An amount of 0.001% by mass to 3.0% by mass, and the Bi-based solder alloy contains particles containing an intermetallic compound of Ag, Sn, and In, and Cu, Ni, Pd, Au 1 or more of the total amount in the range of 0.001% by mass to 3.0% by mass Balance production, it is characterized by comprising a Bi except element contained inevitably.

また、本発明のBi基はんだ合金においては、前記Bi基はんだ合金内に形成される前記AgとSnとInとの金属間化合物を含む粒子全体の総体積100体積%に対して、粒径80μm未満の粒子が97体積%以上存在することが好ましい。   Further, in the Bi-based solder alloy of the present invention, the particle size is 80 μm with respect to 100% by volume of the total volume of the particles including the intermetallic compound of Ag, Sn, and In formed in the Bi-based solder alloy. Preferably, less than 97% by volume of particles are present.

また、TeやGeを含有しより小型化する電子部品向け用として用いられる本発明のBi基はんだ合金においては、前記Bi基はんだ合金内に形成される前記AgとSnとInとの金属間化合物を含む粒子全体の総体積100体積%に対して、粒径50μm未満の粒子が97体積%以上存在することが好ましい。   Further, in the Bi-based solder alloy of the present invention used for electronic parts that contain Te and Ge and are further reduced in size, the intermetallic compound of Ag, Sn, and In formed in the Bi-based solder alloy It is preferable that 97% by volume or more of particles having a particle diameter of less than 50 μm are present with respect to 100% by volume of the total volume of the particles including.

また、本発明のBi基はんだ合金においては、表面にNi層、Ni/Au層、Ni/Pd/Au層のいずれかが形成された接合対象部材との接合に用いることが好ましい。   In addition, the Bi-based solder alloy of the present invention is preferably used for joining with a member to be joined having a Ni layer, a Ni / Au layer, or a Ni / Pd / Au layer formed on the surface.

また、本発明によるBi基はんだ合金の製造方法は、AgとSnとInを含有し、実質的にPb、Zn、Al、Sbを含有せず、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%を上回り10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下である、前記Bi基はんだ合金の溶湯を鋳型に流し込んだ後、255℃まで3℃/sec以上の冷却速度で冷却し固化させることで、AgとSnとInとの金属間化合物を含む粒径80μm未満の粒子を、前記Bi基はんだ合金内に形成させることを特徴としている。   Moreover, the manufacturing method of the Bi group solder alloy by this invention contains Ag, Sn, and In, does not contain Pb, Zn, Al, Sb substantially, Bi content rate is 70 mass% or more Bi group. Solder alloy, Ag content is 0.6 mass% or more and 18 mass% or less, Sn content is more than 0.1 mass% and 10 mass% or less, and In content is 0.1 mass% or more After pouring a molten metal of the Bi-based solder alloy having a content of 2% by mass or less and a total content of Sn and In being 1/1 or less with respect to the Ag content, By cooling and solidifying at a cooling rate of sec or more, particles having a particle size of less than 80 μm including an intermetallic compound of Ag, Sn, and In are formed in the Bi-based solder alloy.

また、本発明によるBi基はんだ合金の製造方法は、AgとSnとInを含有し、さらに、Cu、Ni、Pd、Auの中から1種以上を含有し、実質的にPb、Zn、Al、Sbを含有せず、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、かつ、Cu、Ni、Pd、Auの中から1種以上を総量で0.001質量%以上3.0質量%以下の範囲で含有し、残部が製造上、不可避的に含まれる元素を除きBiからなる、前記Bi基はんだ合金の溶湯を鋳型に流し込んだ後、255℃まで3℃/sec以上の冷却速度で冷却し固化させることで、AgとSnとInとの金属間化合物を含む粒径80μm未満の粒子を、該AgとSnとInとの金属間化合物を含む粒子全体の総体積100体積%に対して、97体積%以上前記Bi基はんだ合金内に形成させることを特徴としている。   In addition, the Bi-based solder alloy manufacturing method according to the present invention contains Ag, Sn, and In, and further contains at least one of Cu, Ni, Pd, and Au, and is substantially Pb, Zn, Al. , A Bi-based solder alloy that does not contain Sb and has a Bi content of 70% by mass or more, an Ag content of 0.6% by mass to 18% by mass, and a Sn content of 0.1% by mass % To 10% by mass, the In content is 0.1% to 2% by mass, and the total content of Sn and In is 1/1 or less with respect to the Ag content, and One or more of Cu, Ni, Pd, and Au are contained in a total amount in the range of 0.001% by mass to 3.0% by mass, and the balance is made of Bi except for elements that are inevitably included in production. After pouring the molten metal of the Bi-based solder alloy into the mold, the temperature is increased up to 255 ° C. at 3 ° C./sec. By cooling and solidifying at the above cooling rate, particles having a particle size of less than 80 μm containing an intermetallic compound of Ag, Sn, and In, the total volume of the whole particle containing the intermetallic compound of Ag, Sn, and In It is characterized by being formed in the Bi-based solder alloy by 97% by volume or more with respect to 100% by volume.

また、本発明によるBi基はんだ合金の製造方法は、AgとSnとInとGeを含有し、実質的にPb、Zn、Al、Sbを含有せず、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、Geの含有量が0.001質量%以上3.0質量%以下、残部が製造上、不可避的に含まれる元素を除きBiからなる、前記Bi基はんだ合金の溶湯を鋳型に流し込んだ後、255℃まで3℃/sec以上の冷却速度で冷却し固化させることで、AgとSnとInとの金属間化合物を含む粒径50μm未満の粒子を、該AgとSnとInとの金属間化合物を含む粒子全体の総体積100体積%に対して、97体積%以上前記Bi基はんだ合金内に形成させることを特徴としている。   Moreover, the manufacturing method of the Bi group solder alloy by this invention contains Ag, Sn, In, and Ge, does not contain Pb, Zn, Al, and Sb substantially, and the content rate of Bi is 70 mass% or more. Bi-based solder alloy, Ag content is 0.6 mass% or more and 18 mass% or less, Sn content is 0.1 mass% or more and 10 mass% or less, and In content is 0.1 mass% 2 mass% or less, and the total content of Sn and In is 1/1 or less with respect to the Ag content, and the Ge content is 0.001 mass% or more and 3.0 mass% or less, and the balance In the manufacturing process, the molten Bi-based solder alloy composed of Bi except for elements inevitably included is poured into a mold, and then cooled to 255 ° C. at a cooling rate of 3 ° C./sec or more to be solidified. Particles having a particle size of less than 50 μm containing an intermetallic compound of Sn and In The total volume of 100 vol% of the total particles comprising an intermetallic compound with said Ag and Sn and In, is characterized by the formation in 97% or more by volume the Bi based solder the alloy.

また、本発明によるBi基はんだ合金の製造方法は、AgとSnとInとGeを含有し、さらに、Cu、Ni、Pd、Auの中から1種以上を含有し、実質的にPb、Zn、Al、Sbを含有せず、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、Geの含有量が0.001質量%以上3.0質量%以下、かつ、Cu、Ni、Pd、Auの中から1種以上を総量で0.001質量%以上3.0質量%以下の範囲で含有し、残部が製造上、不可避的に含まれる元素を除きBiからなる、前記Bi基はんだ合金の溶湯を鋳型に流し込んだ後、255℃まで3℃/sec以上の冷却速度で冷却し固化させることで、AgとSnとInとの金属間化合物を含む粒径50μm未満の粒子を、該AgとSnとInとの金属間化合物を含む粒子全体の総体積100体積%に対して、97体積%以上前記Bi基はんだ合金内に形成させることを特徴としている。   The method for producing a Bi-based solder alloy according to the present invention contains Ag, Sn, In, and Ge, and further contains at least one of Cu, Ni, Pd, and Au, and is substantially Pb, Zn. A Bi-based solder alloy that does not contain Al, Sb, and has a Bi content of 70% by mass or more, an Ag content of 0.6% by mass or more and 18% by mass or less, and a Sn content of 0.8%. 1 mass% or more and 10 mass% or less, the In content is 0.1 mass% or more and 2 mass% or less, and the total content of Sn and In is 1/1 or less with respect to the Ag content, The Ge content is in the range of 0.001% to 3.0% by mass, and one or more of Cu, Ni, Pd, and Au in a total amount of 0.001% to 3.0% by mass. The Bi group solder is composed of Bi except for the elements that are inevitably contained in the production. After pouring the molten alloy into the mold, the alloy is cooled to a temperature of 255 ° C. at a cooling rate of 3 ° C./sec or more and solidified, whereby particles having a particle size of less than 50 μm containing an intermetallic compound of Ag, Sn, and In are obtained. It is characterized in that it is formed in the Bi-based solder alloy by 97% by volume or more with respect to the total volume of 100% by volume of the whole particles containing an intermetallic compound of Ag, Sn, and In.

また、本発明によるBi基はんだ合金の製造方法は、AgとSnとInとTeを含有し、実質的にPb、Zn、Al、Sbを含有せず、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、Teの含有量が0.001質量%以上3.0質量%以下、残部が製造上、不可避的に含まれる元素を除きBiからなる、前記Bi基はんだ合金の溶湯を鋳型に流し込んだ後、255℃まで3℃/sec以上の冷却速度で冷却し固化させることで、AgとSnとInとの金属間化合物を含む粒径50μm未満の粒子を、該AgとSnとInとの金属間化合物を含む粒子全体の総体積100体積%に対して、97体積%以上前記Bi基はんだ合金内に形成させることを特徴としている。   Moreover, the manufacturing method of the Bi group solder alloy by this invention contains Ag, Sn, In, and Te, does not contain Pb, Zn, Al, Sb substantially, and the content rate of Bi is 70 mass% or more. Bi-based solder alloy, Ag content is 0.6 mass% or more and 18 mass% or less, Sn content is 0.1 mass% or more and 10 mass% or less, and In content is 0.1 mass% 2 mass% or less, and the total content of Sn and In is 1/1 or less with respect to the content of Ag, and the Te content is 0.001 mass% or more and 3.0 mass% or less, and the balance In the manufacturing process, the molten Bi-based solder alloy composed of Bi except for elements inevitably included is poured into a mold, and then cooled to 255 ° C. at a cooling rate of 3 ° C./sec or more to be solidified. Particles having a particle size of less than 50 μm containing an intermetallic compound of Sn and In The total volume of 100 vol% of the total particles comprising an intermetallic compound with said Ag and Sn and In, is characterized by the formation in 97% or more by volume the Bi based solder the alloy.

また、本発明によるBi基はんだ合金の製造方法は、AgとSnとInとTeを含有し、さらに、Cu、Ni、Pd、Auの中から1種以上を含有し、実質的にPb、Zn、Al、Sbを含有せず、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、Teの含有量が0.001質量%以上3.0質量%以下、かつ、Cu、Ni、Pd、Auの中から1種以上を総量で0.001質量%以上3.0質量%以下の範囲で含有し、残部が製造上、不可避的に含まれる元素を除きBiからなる、前記Bi基はんだ合金の溶湯を鋳型に流し込んだ後、255℃まで3℃/sec以上の冷却速度で冷却し固化させることで、AgとSnとInとの金属間化合物を含む粒径50μm未満の粒子を、該AgとSnとInとの金属間化合物を含む粒子全体の総体積100体積%に対して、97体積%以上前記Bi基はんだ合金内に形成させることを特徴としている。   The method for producing a Bi-based solder alloy according to the present invention contains Ag, Sn, In, and Te, and further contains at least one of Cu, Ni, Pd, and Au, and is substantially Pb, Zn. A Bi-based solder alloy that does not contain Al, Sb, and has a Bi content of 70% by mass or more, an Ag content of 0.6% by mass or more and 18% by mass or less, and a Sn content of 0.8%. 1 mass% or more and 10 mass% or less, the In content is 0.1 mass% or more and 2 mass% or less, and the total content of Sn and In is 1/1 or less with respect to the Ag content, Te content is 0.001% to 3.0% by mass, and one or more of Cu, Ni, Pd and Au in a total amount of 0.001% to 3.0% by mass The Bi group solder is composed of Bi except for the elements that are inevitably contained in the production. After pouring the molten alloy into the mold, the alloy is cooled to a temperature of 255 ° C. at a cooling rate of 3 ° C./sec or more and solidified, whereby particles having a particle size of less than 50 μm containing an intermetallic compound of Ag, Sn, and In are obtained. It is characterized in that it is formed in the Bi-based solder alloy by 97% by volume or more with respect to the total volume of 100% by volume of the whole particles containing an intermetallic compound of Ag, Sn, and In.

また、本発明による電子部品は、接合対象部材と、上記本発明のいずれかのBi基はんだ合金と、前記Bi基はんだ合金を介して前記接合対象部材に実装された半導体素子を有してなることを特徴としている。   An electronic component according to the present invention includes a member to be bonded, a Bi-based solder alloy according to any one of the present invention, and a semiconductor element mounted on the member to be bonded via the Bi-based solder alloy. It is characterized by that.

また、本発明による電子部品実装基板は、上記本発明のいずれかのBi基はんだ合金を用いて製造されたことを特徴としている。   An electronic component mounting board according to the present invention is manufactured using any of the Bi-based solder alloys of the present invention.

本発明のBi基はんだ合金は、Pb、Zn、Al、Sbを実質的に含有せず、Bi基はんだ合金内にAgとSnとInとの金属間化合物を含む微細な粒子を含有するので、はんだ接合時の接合性が改善し接合不良の発生を抑えることができ、さらに、応力緩和性に優れ接合信頼性の高いBi基はんだ合金を得ることができ、電子部品内部での接合対象部材への半導体素子の実装のためのダイボンディング等に好適に用いることができる。特に、Bi基はんだ合金が塗布されるリードフレームのアイランド部に、Ni層、Ni/Au層、Ni/Pd/Au層のいずれかが形成されている場合においても、Bi基はんだ合金の接合後の接合強度が低下することもなく良好な接合性を有する電子部品を形成することができる。これは、上記AgとSnとInとの金属間化合物を含む微細な粒子が、Niの拡散を抑制し脆弱なBi−Ni合金を形成しにくくすることによると考えられる。また、添加元素として、上記Ag、Sn、Inのほか、さらに、GeやTe等の元素を含有させることにより、金属間化合物を含む粒子の粗大化を抑制でき、接合信頼性をより高くすることができる。また、さらに、Cu、Ni、Pd、Auのいずれか一種以上の元素を含有させることにより、Bi基はんだ合金の濡れ性を向上させることができる。
また、本発明のBi基はんだ合金の製造方法のように、Bi基はんだ合金の溶湯を鋳型に流し込んだ後、255℃まで3℃/sec以上の冷却速度で冷却し固化させれば、上記AgとSnとInとの金属間化合物を含む微細な粒子を、より容易に形成することができる。
さらに、本発明のBi基はんだ合金を用いた電子部品や電子部品実装基板により、半導体チップなどの半導体素子の特性の変化や部材酸化が発生せず、機械的強度が高い電子部品実装基板を提供することができる。
The Bi-based solder alloy of the present invention does not substantially contain Pb, Zn, Al, and Sb, and contains fine particles containing an intermetallic compound of Ag, Sn, and In in the Bi-based solder alloy. It is possible to improve the bondability at the time of soldering and suppress the occurrence of bonding failure. Furthermore, it is possible to obtain a Bi-based solder alloy having excellent stress relaxation properties and high bonding reliability. It can be suitably used for die bonding or the like for mounting the semiconductor element. In particular, even when any of the Ni layer, Ni / Au layer, and Ni / Pd / Au layer is formed on the island portion of the lead frame to which the Bi-based solder alloy is applied, after the Bi-based solder alloy is joined Thus, it is possible to form an electronic component having good bondability without reducing the bonding strength. This is considered to be because the fine particles containing the intermetallic compound of Ag, Sn, and In suppress the diffusion of Ni and make it difficult to form a fragile Bi—Ni alloy. In addition to the above Ag, Sn, and In as an additive element, the addition of elements such as Ge and Te can suppress the coarsening of particles including intermetallic compounds, and increase the bonding reliability. Can do. Furthermore, the wettability of the Bi-based solder alloy can be improved by containing at least one element of Cu, Ni, Pd, and Au.
Further, as in the method for producing a Bi-based solder alloy according to the present invention, the molten Ag of the Bi-based solder alloy is poured into a mold and then cooled to 255 ° C. at a cooling rate of 3 ° C./sec or more and solidified. Fine particles containing an intermetallic compound of Sn, Sn, and In can be more easily formed.
Furthermore, the electronic component mounting board using the Bi-based solder alloy of the present invention provides an electronic component mounting board with high mechanical strength without causing a change in characteristics or member oxidation of a semiconductor element such as a semiconductor chip. can do.

本発明のBi基はんだ合金を用いた半導体パッケージの一例を示す断面図である。It is sectional drawing which shows an example of the semiconductor package using the Bi group solder alloy of this invention.

以下、Biに所定量のAgとSnとInを含有させ、はんだ合金内にAgとSnとInとの金属間化合物を含む微細な粒子を形成させた、本発明のBi基はんだ合金に関する技術について説明する。
本発明のBi基はんだ合金は、AgとSnとInを含有し、実質的にPb、Zn、Al、Sbを含有せず、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%を上回り10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、Bi基はんだ合金内にAgとSnとInとの金属間化合物を含む粒子を形成し、残部が製造上、不可避的に含まれる元素を除きBiからなる。
また、本発明の他の実施形態のBi基はんだ合金は、AgとSnとInを含有し、さらに、Cu、Ni、Pd、Auの中から1種以上を含有し、実質的にPb、Zn、Al、Sbを含有せず、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、Inの含有量が0.1質量%以上2質量%以下、かつ、Bi基はんだ合金内にAgとSnとInとの金属間化合物を含む粒子を含有し、かつ、Cu、Ni、Pd、Auの中から1種以上を総量で0.001質量%以上3.0質量%以下の範囲で含有し、残部が製造上、不可避的に含まれる元素を除きBiからなる。
また、本発明のさらに他の実施形態のBi基はんだ合金は、AgとSnとInとGeを含有し、実質的にPb、Zn、Al、Sbを含有せず、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、Geの含有量が0.001質量%以上3.0質量%以下、かつ、Bi基はんだ合金内にAgとSnとInとの金属間化合物を含む粒子を含有し、残部が製造上、不可避的に含まれる元素を除きBiからなる。
また、本発明のさらに他の実施形態のBi基はんだ合金は、AgとSnとInとGeを含有し、さらに、Cu、Ni、Pd、Auの中から1種以上を含有し、実質的にPb、Zn、Al、Sbを含有せず、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、Geの含有量が0.001質量%以上3.0質量%以下、かつ、Bi基はんだ合金内にAgとSnとInとの金属間化合物を含む粒子を含有し、かつ、Cu、Ni、Pd、Auの中から1種以上を総量で0.001質量%以上3.0質量%以下の範囲で含有し、残部が製造上、不可避的に含まれる元素を除きBiからなる。
また、本発明のさらに他の実施形態のBi基はんだ合金は、AgとSnとInとTeを含有し、実質的にPb、Zn、Al、Sbを含有せず、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%を上回り10質量%以下、Inの含有量が0.1質量%以上2質量%以下、Teの含有量が0.001質量%以上3.0質量%以下、かつ、Bi基はんだ合金内にAgとSnとInとの金属間化合物を含む粒子を含有し、残部が製造上、不可避的に含まれる元素を除きBiからなる。
また、本発明のさらに他の実施形態のBi基はんだ合金は、AgとSnとInとTeを含有し、さらに、Cu、Ni、Pd、Auの中から1種以上を含有し、実質的にPb、Zn、Al、Sbを含有せず、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、Teの含有量が0.001質量%以上3.0質量%以下、かつ、Bi基はんだ合金内にAgとSnとInとの金属間化合物を含む粒子を含有し、かつ、Cu、Ni、Pd、Auの中から1種以上を総量で0.001質量%以上3.0質量%以下の範囲で含有し、残部が製造上、不可避的に含まれる元素を除きBiからなる。
上述のように本発明のBi基はんだ合金は、AgとSnとInとの金属間化合物を含む粒子とそれ以外のBiを主成分とするBi基はんだ合金の母相とから構成されることを特徴としている。
Hereinafter, the Bi-based solder alloy technology of the present invention in which Bi contains a predetermined amount of Ag, Sn, and In, and fine particles including an intermetallic compound of Ag, Sn, and In are formed in the solder alloy. explain.
The Bi-based solder alloy of the present invention is a Bi-based solder alloy containing Ag, Sn, and In, substantially free of Pb, Zn, Al, and Sb and having a Bi content of 70% by mass or more. , Ag content is 0.6 mass% or more and 18 mass% or less, Sn content is more than 0.1 mass%, 10 mass% or less, In content is 0.1 mass% or more and 2 mass% or less, And the particle | grains which contain the intermetallic compound of Ag, Sn, and In are formed in Bi group solder alloy, and the remainder consists of Bi except the element inevitably contained on manufacture.
Further, the Bi-based solder alloy according to another embodiment of the present invention contains Ag, Sn, and In, and further contains at least one of Cu, Ni, Pd, and Au, and is substantially Pb, Zn. A Bi-based solder alloy that does not contain Al, Sb, and has a Bi content of 70% by mass or more, an Ag content of 0.6% by mass or more and 18% by mass or less, and a Sn content of 0.8%. 1 mass% or more and 10 mass% or less, and the total content of Sn and In is 1/1 or less with respect to the content of Ag, and the content of In is 0.1 mass% or more and 2 mass% or less, In addition, the Bi-based solder alloy contains particles containing an intermetallic compound of Ag, Sn, and In, and one or more of Cu, Ni, Pd, and Au is added in a total amount of 0.001% by mass or more 3 From Bi except for elements that are contained in the range of 0.0 mass% or less and the remainder is inevitably included in the production. That.
Further, the Bi-based solder alloy according to still another embodiment of the present invention contains Ag, Sn, In, and Ge, substantially does not contain Pb, Zn, Al, and Sb, and has a Bi content of 70 mass. % Bi-based solder alloy, Ag content is 0.6 mass% or more and 18 mass% or less, Sn content is 0.1 mass% or more and 10 mass% or less, and In content is 0.00. 1 mass% or more and 2 mass% or less, and the total content of Sn and In is 1/1 or less with respect to the Ag content, and the Ge content is 0.001 mass% or more and 3.0 mass%. In the following, particles containing an intermetallic compound of Ag, Sn, and In are contained in a Bi-based solder alloy, and the balance is made of Bi except for elements that are inevitably included in production.
Further, the Bi-based solder alloy of still another embodiment of the present invention contains Ag, Sn, In, and Ge, and further contains one or more of Cu, Ni, Pd, and Au, It is a Bi-based solder alloy that does not contain Pb, Zn, Al, and Sb, and has a Bi content of 70% by mass or more, and the Ag content is 0.6% by mass or more and 18% by mass or less, and the Sn content 0.1 mass% or more and 10 mass% or less, In content is 0.1 mass% or more and 2 mass% or less, and the total content of Sn and In is 1/1 or less with respect to the Ag content The Ge content is 0.001% by mass to 3.0% by mass, and the Bi-based solder alloy contains particles containing an intermetallic compound of Ag, Sn, and In, and Cu, One or more of Ni, Pd, and Au in a total amount of 0.001% by mass to 3.0% by mass Contained in circumference, balance production, consisting of Bi except element contained inevitably.
Further, the Bi-based solder alloy of still another embodiment of the present invention contains Ag, Sn, In, and Te, substantially does not contain Pb, Zn, Al, and Sb, and the Bi content is 70 mass. % Bi-based solder alloy, Ag content is 0.6 mass% or more and 18 mass% or less, Sn content is more than 0.1 mass% and 10 mass% or less, and In content is 0%. Particles containing an intermetallic compound of Ag, Sn, and In in a Bi-based solder alloy with a Te content of 0.001 mass% to 3.0 mass%, and a Te content of 1 mass% to 2 mass% It is contained, and the balance is made of Bi except for elements which are inevitably included in production.
Further, the Bi-based solder alloy according to yet another embodiment of the present invention contains Ag, Sn, In, and Te, and further contains one or more of Cu, Ni, Pd, and Au, and substantially includes It is a Bi-based solder alloy that does not contain Pb, Zn, Al, and Sb, and has a Bi content of 70% by mass or more, and the Ag content is 0.6% by mass or more and 18% by mass or less, and the Sn content 0.1 mass% or more and 10 mass% or less, In content is 0.1 mass% or more and 2 mass% or less, and the total content of Sn and In is 1/1 or less with respect to the Ag content The Te content is 0.001% by mass to 3.0% by mass, and the Bi-based solder alloy contains particles containing an intermetallic compound of Ag, Sn, and In, and Cu, One or more of Ni, Pd, and Au in a total amount of 0.001% by mass to 3.0% by mass Contained in circumference, balance production, consisting of Bi except element contained inevitably.
As described above, the Bi-based solder alloy of the present invention is composed of particles containing an intermetallic compound of Ag, Sn, and In and a parent phase of a Bi-based solder alloy containing Bi as the main component. It is a feature.

本発明のBi基はんだ合金の母相は、高温はんだ合金として適度な融点を有している。このため、半導体素子を接合対象部材へ実装して電子部品を製造した以降の電子部品を基板に実装する際や、半導体素子を接合対象部材である基板へ実装後、当該基板の他の部位に、他の半導体素子や電子部品を実装する際などのリフローにおいて再溶融することなく、電子部品内部でのBi基はんだ接合部の状態を、初期接合時の状態のまま保つことができ、接合信頼性等に優れる。
以下、本発明のBi基はんだ合金に用いられる各元素、形成される金属間化合物、Bi基はんだ合金の製造方法、得られたBi基はんだ合金を用いた電子部品及び電子部品実装基板について詳細に説明する。
The parent phase of the Bi-based solder alloy of the present invention has an appropriate melting point as a high-temperature solder alloy. For this reason, when mounting an electronic component on a substrate after mounting a semiconductor element on a member to be bonded and manufacturing the electronic component, or after mounting the semiconductor element on a substrate that is a member to be bonded, Without remelting during reflow when mounting other semiconductor elements or electronic components, the Bi-based solder joint state inside the electronic component can be kept as it was at the initial bonding, and the bonding reliability Excellent in properties.
Hereinafter, each element used in the Bi-based solder alloy of the present invention, the intermetallic compound to be formed, the manufacturing method of the Bi-based solder alloy, the electronic component using the obtained Bi-based solder alloy, and the electronic component mounting substrate will be described in detail. explain.

1.Bi
本発明のBi基はんだ合金は、周期表のVa族元素に属し、結晶構造が対称性の低い三方晶(菱面体晶)で非常に脆弱な金属のBiを主成分とする。なお、ここでいう主成分とは、はんだ合金中に質量比で最も多く含まれている成分であることを意味する。
Biの融点は271℃であるため、Biを主成分とすることで、高温鉛フリーはんだ合金に要求される、200℃程度の温度で再溶融せず、350℃以下の温度で、はんだ付けが可能なはんだ合金とすることが比較的容易にできる。
1. Bi
The Bi-based solder alloy of the present invention is mainly composed of Bi, which belongs to the group Va element of the periodic table, and has a trigonal crystal (rhombohedral crystal) with very low crystal structure and is very fragile. In addition, the main component here means that it is a component that is contained most in the solder alloy by mass ratio.
Since the melting point of Bi is 271 ° C., the main component of Bi is that it does not remelt at a temperature of about 200 ° C., which is required for a high-temperature lead-free solder alloy, and can be soldered at a temperature of 350 ° C. or less. A possible solder alloy can be made relatively easily.

本発明のBi基はんだ合金においてBiの含有量は、Ag、Sn、Inなどの添加元素の含有量に応じて決まる値であるが、Bi基はんだ合金の全量に対して、70質量%以上でなければならない。Biの含有量が70質量%を下回ると、本発明のBi基はんだ合金母相の液相線の上昇が大きくなる場合があり、はんだ付け時に十分に溶融せず溶け残りを生じるなどして、ボンディング不良や接合信頼性へ悪影響を生じる場合があるので好ましくない。   In the Bi-based solder alloy of the present invention, the Bi content is a value determined according to the content of additive elements such as Ag, Sn, and In, but is 70% by mass or more with respect to the total amount of the Bi-based solder alloy. There must be. If the content of Bi is less than 70% by mass, the increase in the liquidus of the Bi-based solder alloy matrix of the present invention may increase, and it may not melt sufficiently during soldering, resulting in an undissolved residue, This is not preferable because it may adversely affect bonding failure and bonding reliability.

2.Ag
BiにAgを含有するはんだ合金は、鉛を含まず、電子部品の基板実装時のリフロー温度の上限250℃に比べて高い固相線温度を有する高温はんだ合金として従来から知られている。例えば、Bi−2.5質量%Agはんだ合金は、共晶型合金であり、固相線温度が262℃で、純Biの融点271℃に比べて約9℃低いが、250℃を上回っている。
2. Ag
A solder alloy containing Ag in Bi is conventionally known as a high-temperature solder alloy that does not contain lead and has a solidus temperature higher than the upper limit of 250 ° C. when the electronic component is mounted on a substrate. For example, Bi-2.5 mass% Ag solder alloy is a eutectic type alloy, the solidus temperature is 262 ° C., which is about 9 ° C. lower than the melting point 271 ° C. of pure Bi, but more than 250 ° C. Yes.

また、BiにAgを含有させることにより、Biの脆性を改善し、応力緩和性を向上させることができる。しかしながら、リードフレームなどの接合対象部材との濡れ性が十分であるとは言い難く、特に、接合対象部材がNi層を有する場合、接合対象部材への濡れ広がりが非常に悪かった。また、接合対象部材がNi層を有する場合、NiがBiと反応し、脆弱なBi−Ni合金を形成してしまう。このため、従来のBi−Agはんだでは、接合時の不良発生やその後の信頼性試験で不具合が発生しやすかった。   Moreover, by including Ag in Bi, the brittleness of Bi can be improved and the stress relaxation property can be improved. However, it is difficult to say that the wettability with a member to be joined such as a lead frame is sufficient. In particular, when the member to be joined has a Ni layer, wetting and spreading to the member to be joined was very bad. Moreover, when the member to be joined has a Ni layer, Ni reacts with Bi to form a fragile Bi—Ni alloy. For this reason, in the conventional Bi-Ag solder, it was easy to generate | occur | produce the malfunction at the time of joining generation | occurrence | production at the time of joining, and subsequent reliability test.

そこで、本発明者らは、Bi−Agはんだ合金の利点を損なうことなく、上述の問題点を改善させるため、更なる添加元素とその配合量を鋭意研究した。その結果、Agに対して所定の割合でSnとInを含有させると、Bi基はんだ合金母相の応力緩和性を向上させつつ、濡れ性を向上させ、接合性が良く接合不良が発生せず、接合信頼性を向上させることができることを見出した。   Therefore, the present inventors diligently studied further additive elements and their blending amounts in order to improve the above-mentioned problems without impairing the advantages of the Bi-Ag solder alloy. As a result, when Sn and In are contained at a predetermined ratio with respect to Ag, the stress relaxation property of the Bi-based solder alloy matrix is improved, the wettability is improved, the joining property is good, and the joining failure does not occur. The present inventors have found that the bonding reliability can be improved.

本発明のBi基はんだ合金は、AgとSnとInを所定量含有させることにより、Ag、SnやInがBiの脆弱性を改善させるほか、Ag−Sn−In金属間化合物を形成し、その粒子がBi基はんだ合金中に分散することで、Bi基はんだ合金を効果的に分散強化しBiの脆弱性をより効果的に改善すると共に、BiとNiの反応も阻害し、脆弱なBi−Ni合金の形成を抑制することができると考えられる。Ag−Sn−In金属間化合物については、後ほど詳細に説明する。
Agの含有量は、0.6質量%以上18質量%以下とする。Agの含有量が0.6質量%未満であると、Ag−Sn−In金属間化合物が十分に発生せず、Biの脆弱な機械的特性が支配的になり、応力緩和性に劣り接合信頼性が改善されない他、伸び率が不十分で機械加工性に劣り、装置による連続供給性を確保することが出来ず生産性に劣る場合がある。
また、Agの含有量が18質量%を上回ると、液相線が390℃以上となり、半導体チップなどの半導体素子を実装するための接合対象部材との接合時に、Bi基はんだ合金が十分溶解せず、溶け残りが発生するなどして接合不良が発生してしまうため好ましくない。本発明において、更に好ましいAgの含有量は、5.0質量%以上15質量%以下である。
The Bi-based solder alloy of the present invention contains Ag, Sn, and In to contain a predetermined amount, so that Ag, Sn, and In improve the brittleness of Bi, and forms an Ag-Sn-In intermetallic compound. By dispersing the particles in the Bi-based solder alloy, the Bi-based solder alloy is effectively dispersed and strengthened to improve the fragility of Bi more effectively, and the reaction between Bi and Ni is also inhibited. It is thought that formation of Ni alloy can be suppressed. The Ag—Sn—In intermetallic compound will be described in detail later.
The content of Ag is 0.6 mass% or more and 18 mass% or less. When the Ag content is less than 0.6% by mass, the Ag—Sn—In intermetallic compound is not sufficiently generated, and the brittle mechanical characteristics of Bi become dominant, resulting in poor stress relaxation and bonding reliability. In addition to the improvement in performance, the elongation rate is insufficient and the machinability is inferior, and the continuous supply by the apparatus cannot be ensured, resulting in inferior productivity.
Further, when the Ag content exceeds 18% by mass, the liquidus becomes 390 ° C. or higher, and the Bi-based solder alloy is sufficiently dissolved at the time of joining with a joining target member for mounting a semiconductor element such as a semiconductor chip. However, it is not preferable because unsuccessful melting occurs and bonding failure occurs. In the present invention, the more preferable Ag content is 5.0% by mass or more and 15% by mass or less.

3.Sn及びIn
本発明のBi基はんだ合金において、SnとInは、Agと組み合わせることでAg−Sn−In金属間化合物を形成する元素である。また、接合対象部材の金属と反応することにより接合対象部材との接合性を向上させる効果もある。
また、従来のBi−Agはんだ合金は、接合対象部材にNiが存在すると脆弱なBi−Ni合金であるBiNi合金を形成することにより、接合信頼性を大きく低下させていた。これに対し、本発明のBi基はんだ合金のように、Bi−Ag−Sn−In合金とすると、Bi−Ni合金の生成を抑えることができる。これは、本発明のBi基はんだ合金内に形成される、上述のAg−Sn−In金属間化合物が、Bi基はんだ合金内に微細に分散し、BiとNiの反応を阻害する他、SnとInがNiと反応して形成するNi−Sn−In層が、NiのBi基はんだ合金内への拡散を抑えることができるためと考えられる。さらに、AgとSnとInから形成される柔軟性に富む合金組成の粒子をBi基はんだ合金内に分散させることで、応力緩和性に優れ接合信頼性の高いBi基はんだ合金が得られる。また、接合界面との反応性が良いことにより、ボンディングの際、濡れ性が良く接合不良が発生しないため、本発明のBi基はんだ合金を用いた接合対象部材と半導体素子との接合体で構成される電子部品は、長期接続信頼性が大幅に向上し、従来使用されているPb−Snはんだと同等の信頼性を得ることができる。
SnとInの含有量は、接合対象部材と反応し濡れ性や接合性を向上させるために必要な量と、Ag−Sn−In金属間化合物を形成するために必要な量とするのが好ましい。SnやInを必要量以上に含有させると、余剰のSnやInがBiと反応して融点が100℃前後の合金を形成し、リフロー温度250度で他の電子部品を基板に実装する際に溶け出してしまう場合があるので好ましくない。そのため、余剰のSnやInを生じさせないように、SnとInの含有量については、Agの含有量との比率を適切に保つ必要がある。
基板との反応層とAg−Sn−Inからなる合金をバランスよく形成するためのSn及びInのAgに対する配合比は、AgとSn及びInの配合量を様々に異ならせて試験を行った結果、SnとInの含有量の総量を、Agの含有量に対して1/90以上1/1以下とする必要があることが分かった。Agの含有量に対するSnとInの含有量の総量をこの範囲内とすることで、余剰のSnやInがBiとの脆弱な合金を形成すること無く、基板との反応層も形成し、良好な接合状態を得ることができる。より好ましいSnとInの含有量の総量は、Ag含有量に対して17/60以上1/2以下である。
また、Snの含有量は、0.1質量以上10質量%以下、Inの含有量は、0.1質量%以上2質量%以下の範囲で、余剰なSnやInが発生することなく良好な接合状態となることが確認された。
3. Sn and In
In the Bi-based solder alloy of the present invention, Sn and In are elements that form an Ag—Sn—In intermetallic compound when combined with Ag. Moreover, there exists an effect which improves the bondability with a joining object member by reacting with the metal of a joining object member.
Further, the conventional Bi—Ag solder alloy has greatly reduced the bonding reliability by forming a Bi 3 Ni alloy which is a fragile Bi—Ni alloy when Ni is present in the members to be bonded. On the other hand, when the Bi—Ag—Sn—In alloy is used like the Bi-based solder alloy of the present invention, the formation of the Bi—Ni alloy can be suppressed. This is because the above-described Ag—Sn—In intermetallic compound formed in the Bi-based solder alloy of the present invention is finely dispersed in the Bi-based solder alloy and inhibits the reaction between Bi and Ni. It is considered that the Ni—Sn—In layer formed by reacting Ni with In and Ni can suppress the diffusion of Ni into the Bi-based solder alloy. Furthermore, by dispersing particles of an alloy composition rich in flexibility formed from Ag, Sn, and In in the Bi-based solder alloy, a Bi-based solder alloy having excellent stress relaxation and high joint reliability can be obtained. In addition, since the reactivity with the bonding interface is good, wettability is good and no bonding failure occurs at the time of bonding. Therefore, the bonding target member using the Bi-based solder alloy of the present invention and a semiconductor element are used. In the electronic component, the long-term connection reliability is greatly improved, and the same reliability as that of the conventionally used Pb—Sn solder can be obtained.
The contents of Sn and In are preferably set to an amount necessary for reacting with a member to be bonded and improving wettability and bondability, and an amount necessary for forming an Ag-Sn-In intermetallic compound. . When Sn or In is contained in an amount more than necessary, excess Sn or In reacts with Bi to form an alloy with a melting point of around 100 ° C., and when other electronic components are mounted on a substrate at a reflow temperature of 250 ° C. Since it may melt out, it is not preferable. Therefore, it is necessary to keep the ratio of the content of Sn and In appropriately to the content of Ag so as not to generate surplus Sn and In.
The compounding ratio of Sn and In to Ag for forming a reaction layer with the substrate and an alloy composed of Ag-Sn-In in a well-balanced manner is a result of tests conducted by varying the compounding amounts of Ag, Sn, and In. It was found that the total amount of Sn and In needs to be 1/90 or more and 1/1 or less with respect to the Ag content. By making the total amount of Sn and In with respect to the Ag content within this range, a reaction layer with the substrate is formed without excessive Sn and In forming a brittle alloy with Bi, and good Can be obtained. The total amount of Sn and In is more preferably 17/60 or more and 1/2 or less with respect to the Ag content.
Moreover, Sn content is 0.1 mass% or more and 10 mass% or less, and In content is 0.1 mass% or more and 2 mass% or less, and it is favorable, without generating excess Sn and In. It was confirmed that a joining state was achieved.

4.Ag−Sn−In金属間化合物
本発明の配合比でBi基はんだ合金を作製することにより、Bi基はんだ合金内に本発明に必須のAgとSnとInの金属間化合物を含む粒子を形成することができる。上記効果を効率的に発揮するためには、この金属間化合物を含む粒子を微細にするのが好ましい。また、本発明範囲内のAg−Sn−In金属間化合物の融点は高いことが確認されており、はんだ接合時においても、Ag−Sn−In金属間化合物を含む粒子が溶融しない場合もあると考えられるため、各種原料を溶解してはんだ母合金を作製する時に、微細な粒子にすることが好ましい。
また、電子部品の小型化に伴い、接合部の薄層化も求められている。このため、Ag−Sn−In金属間化合物を含む粒子は、粒径が80μm未満であることが好ましい。また、粒径80μm未満の粒子が、粒子総体積100体積%に対して、97体積%以上であることが好ましく、98体積%以上であることがより好ましく、99体積%以上であることが特に好ましい。粒径80μm以上の粒子が3体積%を上回ると、脆弱性が改善されず、接合信頼性不足や取扱い不良を生じる場合があるので好ましくない。これは、形成される粒子の粒径のバラツキが大きくなり、粒径の違いにより脆弱性改善度合いに差が生じてしまい、その数が増えることによりその挙動差による応力緩和を十分にすることができなくなり破壊を生じてしまい、結果的にBiの脆弱性が十分改善されない場合があるためと考えられる。
なお、本発明において、Ag−Sn−In金属間化合物を含む粒子の粒径は、各試片を200倍の光学顕微鏡で観察し、視野中の全金属間化合物を含む粒子の数を計数すると共に、各粒子の断面径を測定し、その測定値を1.12倍して求めている。そして、本発明では、このようにして算出した粒径をもとに、すべての金属間化合物粒子を真球とした場合の体積を計算し、すべての粒子中の粒径80μm未満の粒子の割合を体積%で算出している。本算出方法については、後ほど詳細に説明する。
4). Ag-Sn-In intermetallic compound By producing a Bi-based solder alloy with the compounding ratio of the present invention, particles containing Ag, Sn and In intermetallic compounds essential to the present invention are formed in the Bi-based solder alloy. be able to. In order to efficiently exhibit the above effect, it is preferable to make the particles containing the intermetallic compound fine. Further, it has been confirmed that the melting point of the Ag—Sn—In intermetallic compound within the scope of the present invention is high, and the particles containing the Ag—Sn—In intermetallic compound may not melt even at the time of soldering. For this reason, it is preferable to form fine particles when a raw material for the solder is produced by melting various raw materials.
In addition, as electronic components are miniaturized, it is also required to reduce the thickness of the joint. For this reason, it is preferable that the particle | grains containing an Ag-Sn-In intermetallic compound have a particle size of less than 80 micrometers. Further, the particles having a particle size of less than 80 μm are preferably 97% by volume or more, more preferably 98% by volume or more, and particularly preferably 99% by volume or more with respect to 100% by volume of the total particle volume. preferable. When the particle size is 80 μm or more exceeds 3% by volume, the brittleness is not improved, and bonding reliability may be insufficient or handling may be unfavorable. This is because the variation in the particle size of the formed particles becomes large, the difference in the degree of vulnerability improvement is caused by the difference in particle size, and the increase in the number can sufficiently relax the stress due to the difference in behavior. This is considered to be because it becomes impossible to cause destruction and, as a result, Bi's vulnerability may not be sufficiently improved.
In addition, in this invention, the particle size of the particle | grains containing an Ag-Sn-In intermetallic compound observes each specimen with a 200 times optical microscope, and counts the number of the particle | grains containing all the intermetallic compounds in a visual field. At the same time, the cross-sectional diameter of each particle is measured, and the measured value is multiplied by 1.12. In the present invention, based on the particle size calculated in this way, the volume when all intermetallic compound particles are assumed to be true spheres is calculated, and the proportion of particles having a particle size of less than 80 μm in all the particles. Is calculated by volume%. This calculation method will be described in detail later.

なお、本発明のBi基はんだ合金中に形成されるAg−Sn−In金属間化合物を含む粒子とは、AgとSnとInから形成される金属間化合物を主に指すが、本発明の他の態様のBi基はんだ合金においてGe、Teや、Cu、Ni、Pd、Auが混在した金属間化合物も包含するものとする。   In addition, although the particle | grains containing the Ag-Sn-In intermetallic compound formed in the Bi group solder alloy of this invention mainly point out the intermetallic compound formed from Ag, Sn, and In, other of this invention In the Bi-based solder alloy of the embodiment, an intermetallic compound in which Ge, Te, Cu, Ni, Pd, and Au are mixed is also included.

5.Ge、Te
Ag−Sn−In金属間化合物を含む粒子は、接合時に、はんだ厚みが30μm以上200μm以下であることが接続信頼性の上で望ましいことから、上述のように、粒径が80μm未満であることが好ましい。さらに、より小型で薄型化の電子部品の接合に用いる場合は、接続信頼性を向上させるために、Ag−Sn−In金属間化合物を含む粒子の粒径は、50μm未満であることがより好ましい。
しかし、Bi−Ag−Sn−In合金において、Ag−Sn−In金属間化合物を十分発生させBi基はんだ合金の強度改善効果を発揮させる場合、Ag−Sn−In金属間化合物の生成と共に粒子の成長も起きるため、粒径を50μm未満に制御することは困難である。
そこで、本発明者らは、鋭意研究を重ねた結果、Bi−Ag−Sn−In合金にGe又はTeを含有させると、GeやTeがAg−Sn−In金属間化合物を形成する際の生成核となることにより、Ag−Sn−In金属間化合物の粒子の成長よりも生成が優先され、粗大化が抑制されることを見出した。
これは、GeやTeがAg−Sn−In金属間化合物に比べて高融点であるため、溶融Bi−Ag−Sn−In合金が固化する際に最初に析出する初晶成分となり、後から析出するAg−Sn−In金属間化合物やマトリックスの結晶粒の生成起点となることで各結晶粒を微細に析出させ、全体として凝固組織の粗大化を抑制することができると考えられる。その結果、Bi基はんだ合金の組織は、GeとTeのいずれの元素も含有しない場合に比べて微細な凝固組織となって、クラックが発生しにくくなり、接続信頼性を向上させることができる。
Ge又はTeの含有量は、0.001質量%以上3.0質量%以下である。Ge又はTeの含有量が3.0質量%を上回ると、初晶成分が粗大化し結晶粒を微細にする効果に劣り、溶融時の濡れ性が低下することがある。また、Ge又はTeの含有量が0.001質量%を下回ると、凝固組織を微細化する効果が十分に得られないことがある。Ge又はTeの含有量は、0.03質量%以上0.8質量%以下であるのがより好ましい。
5. Ge, Te
Since the particles containing the Ag—Sn—In intermetallic compound have a solder thickness of 30 μm or more and 200 μm or less at the time of joining, it is desirable in terms of connection reliability, so that the particle size is less than 80 μm as described above. Is preferred. Furthermore, when used for joining smaller and thinner electronic components, in order to improve connection reliability, the particle size of the particles containing the Ag—Sn—In intermetallic compound is more preferably less than 50 μm. .
However, in the Bi-Ag-Sn-In alloy, when the Ag-Sn-In intermetallic compound is sufficiently generated and the effect of improving the strength of the Bi-based solder alloy is exhibited, the formation of the Ag-Sn-In intermetallic compound and Since growth also occurs, it is difficult to control the particle size to less than 50 μm.
Therefore, as a result of intensive studies, the present inventors have found that when Ge or Te is contained in a Bi—Ag—Sn—In alloy, Ge or Te forms an Ag—Sn—In intermetallic compound. It has been found that by being a nucleus, generation is prioritized over the growth of Ag—Sn—In intermetallic compound particles, and coarsening is suppressed.
This is because Ge and Te have a higher melting point than the Ag-Sn-In intermetallic compound, and thus become the primary crystal component that precipitates first when the molten Bi-Ag-Sn-In alloy solidifies, and precipitates later. It is considered that each crystal grain is finely precipitated by becoming the starting point of the Ag—Sn—In intermetallic compound or matrix crystal grains to be formed, and the coarsening of the solidified structure as a whole can be suppressed. As a result, the structure of the Bi-based solder alloy becomes a fine solidified structure as compared with the case where neither Ge nor Te is contained, and it is difficult for cracks to occur, and the connection reliability can be improved.
Content of Ge or Te is 0.001 mass% or more and 3.0 mass% or less. When the content of Ge or Te exceeds 3.0% by mass, the primary crystal component becomes coarse and the effect of making the crystal grains fine is inferior, and the wettability during melting may be reduced. Moreover, when content of Ge or Te is less than 0.001 mass%, the effect which refines | miniaturizes a solidification structure | tissue may not fully be acquired. The content of Ge or Te is more preferably 0.03% by mass or more and 0.8% by mass or less.

6.Cu、Ni、Pd、Au
本発明の他の態様のBi基はんだ合金は、添加元素として上記のほか、さらに、はんだ合金の濡れ性を改善し、接合後の接合強度を高めるために、Cu、Ni、Pd、Auのいずれか一種以上を含有する。Cu、Ni、Pd、Auは、Bi、Ag、Sn、Geに比べて優先的に接合界面に移動し、Niなどの接合界面の金属元素と初期反応層を形成することにより、はんだ合金の濡れ性を改善し、接合後の接合強度を高めることができるものと考えられる。
Cu、Ni、Pd、Auの含有量の総量は、0.001質量%以上3.0質量%以下である。Cu、Ni、Pd、Auの含有量の総量が3.0質量%を上回ると、接合界面に形成される金属間化合物が粗大な初晶として生成され、部分的に金属間化合物が形成されて成長することにより、接合界面の反応が不均一となり、溶融時の濡れ性が低下することがあるので好ましくない。また、Cu、Ni、Pd、Auのそれぞれの含有量の総量が0.001質量%を下回ると、接合界面で金属間化合物が十分に形成されず濡れ性の向上効果が得られない場合がある。本発明の他の態様のBi基はんだ合金におけるCu、Ni、Pd、Auの含有量の総量は、0.03質量%以上0.8質量%以下であるのがさらに好ましい。
6). Cu, Ni, Pd, Au
In addition to the above as an additive element, the Bi-based solder alloy according to another aspect of the present invention further includes any one of Cu, Ni, Pd, and Au in order to improve the wettability of the solder alloy and increase the bonding strength after bonding. Or one or more. Cu, Ni, Pd, and Au move preferentially to the bonding interface as compared to Bi, Ag, Sn, and Ge, and form an initial reaction layer with a metal element at the bonding interface such as Ni, thereby wetting the solder alloy. It is considered that the bonding strength after bonding can be improved.
The total content of Cu, Ni, Pd, and Au is 0.001 mass% or more and 3.0 mass% or less. When the total content of Cu, Ni, Pd, and Au exceeds 3.0% by mass, intermetallic compounds formed at the bonding interface are generated as coarse primary crystals, and intermetallic compounds are partially formed. By growing, the reaction at the bonding interface becomes non-uniform and the wettability at the time of melting may be lowered, which is not preferable. Further, if the total content of Cu, Ni, Pd, and Au is less than 0.001% by mass, an intermetallic compound may not be sufficiently formed at the bonding interface, and an improvement in wettability may not be obtained. . The total content of Cu, Ni, Pd, and Au in the Bi-based solder alloy according to another aspect of the present invention is more preferably 0.03% by mass or more and 0.8% by mass or less.

7.Bi基はんだ合金の製造
本発明のBi基はんだ合金の製造方法は、特に限定されず、上記した各成分を用いて、従来から用いられている公知の方法により製造することができる。
また、はんだ製品の形状は特に限定されず、ワイヤーや、リボン状、ボール状などの他、適切なロジン等を含むフラックスと混合させて、はんだペーストとして用いることもできる。
製造方法の一例を下記に示す。
原料としては、溶融後のBi基はんだ合金内の組成ばらつきを低減させるために、ショット形状または細かく加工されたもので、直径が5mm以下、より好ましくは3mm以下の微細な形状のものを用いることが好ましい。
7). Production of Bi-based solder alloy The production method of the Bi-based solder alloy of the present invention is not particularly limited, and can be produced by a known method that has been conventionally used, using each of the components described above.
The shape of the solder product is not particularly limited, and may be used as a solder paste by mixing with a flux containing an appropriate rosin or the like in addition to a wire, a ribbon shape, a ball shape, or the like.
An example of the manufacturing method is shown below.
The raw material should be shot or finely processed to reduce compositional variation in the Bi-based solder alloy after melting, and should have a fine shape with a diameter of 5 mm or less, more preferably 3 mm or less. Is preferred.

このような形状の原料を溶解炉に入れ、原料の酸化を抑制するために溶解エリアを窒素や不活性ガスの雰囲気とし、その後、500〜600℃、好ましくは500〜550℃で加熱溶融させる。金属が溶融しはじめたときに攪拌を開始し、局所的な組成のばらつきが起きないように十分に攪拌を続ける。攪拌時間は、装置や原料の量などによっても異なるが、1〜5分間とすることが好ましい。   In order to suppress the oxidation of the raw material, the raw material having such a shape is put in an atmosphere of nitrogen or an inert gas, and then heated and melted at 500 to 600 ° C., preferably 500 to 550 ° C. Stirring is started when the metal begins to melt, and stirring is continued sufficiently so that local variations in composition do not occur. The stirring time varies depending on the apparatus and the amount of raw materials, but is preferably 1 to 5 minutes.

その後、例えば、内径が30mm以下で肉厚が10mm程度の円筒状の黒鉛製鋳型に、500℃以上の温度で溶解した、Bi基はんだ合金の溶湯を流し込み鋳造する。鋳造する際、この鋳型の外側に熱伝導性の良い材料、例えば、Cuからなる冷やし金を密着させるか、望ましくは中空構造として冷却水を通水した冷やし金を密着させることにより、この鋳型に溶湯を流し込んだ後、255℃程度まで3℃/sec以上、より好ましくは20℃/sec以上の冷却速度で速やかに冷却し固化させる。このような方法により、ほとんどの析出粒子の粒径を80μm未満とする、Bi基はんだ合金の鋳塊を、安定して作製することができる。
また、連続鋳造法を用いて製造する場合には、連続鋳造してできる鋳塊の断面積を小さくすることで冷却効率を向上させることが好ましい。例えば、内径が30mm以下のダイスを用いることが好ましい。また、ダイスを水冷ジャケットで覆うことにより、50℃/sec以上の冷却速度で冷却することがさらに好ましい。
Thereafter, for example, a molten Bi-based solder alloy melted at a temperature of 500 ° C. or higher is cast into a cylindrical graphite mold having an inner diameter of 30 mm or less and a thickness of about 10 mm. When casting, a material having good heat conductivity, for example, a chill metal made of Cu, is adhered to the outside of the mold, or preferably a chill metal with cooling water flowing in a hollow structure is adhered to the mold. After pouring the molten metal, it is rapidly cooled and solidified at a cooling rate of 3 ° C./sec or higher, more preferably 20 ° C./sec or higher, to about 255 ° C. By such a method, it is possible to stably produce an ingot of a Bi-based solder alloy in which the particle size of most of the precipitated particles is less than 80 μm.
Moreover, when manufacturing using a continuous casting method, it is preferable to improve cooling efficiency by reducing the cross-sectional area of the ingot formed by continuous casting. For example, it is preferable to use a die having an inner diameter of 30 mm or less. Further, it is more preferable to cool the die at a cooling rate of 50 ° C./sec or more by covering the die with a water cooling jacket.

こうして得られる本発明のBi基はんだ合金を用いて、リードフレームなどの接合対象部材に半導体素子を実装して得られた電子部品を、別のはんだ合金を介して基板に実装する際や、本発明のBi基はんだ合金を用いて、半導体素子を接合対象部材である基板へ実装後、当該基板の他の部位に、他の半導体素子や電子部品を実装する際の、それぞれのリフロー温度で再溶融することがないため、はんだ接合部がはんだ接合した際の初期の接合状態から劣化することのない信頼性の高い電子部品を得ることができる。   Using the Bi-based solder alloy of the present invention thus obtained, when mounting an electronic component obtained by mounting a semiconductor element on a member to be joined such as a lead frame on a substrate via another solder alloy, Using the Bi-based solder alloy of the invention, after mounting a semiconductor element on a substrate that is a member to be joined, re-flow at each reflow temperature when mounting another semiconductor element or electronic component on another part of the substrate. Since it does not melt, it is possible to obtain a highly reliable electronic component that does not deteriorate from the initial joined state when the solder joint is soldered.

8.電子部品及び電子部品実装基板
図1に、本発明のBi基はんだ合金を用いた電子部品の一例である半導体パッケージの断面模式図を示す。このような半導体パッケージの場合、リードフレームのアイランド部4の中央部表面に本発明のBi基はんだ合金3を供給し、Bi基はんだ合金3を溶融させた後に、その上に半導体チップ1を載せ、その後、冷却し固化させることにより、はんだ付け(ダイボンディング)を行う。次に、半導体チップ1上の電極2とリードフレームのリード部5をボンディングワイヤ6で接続し、その後、リードフレームのリード部5の外部接続端子部を除き、それ以外の部分をモールド樹脂7で覆い半導体パッケージを得ることができる。
8). The electronic component and the electronic component mounting board Figure 1 shows a schematic cross section of a semiconductor package, which is an example of an electronic component using a Bi based solder alloy of the present invention. In the case of such a semiconductor package, the Bi-based solder alloy 3 of the present invention is supplied to the center surface of the island portion 4 of the lead frame, and the Bi-based solder alloy 3 is melted, and then the semiconductor chip 1 is mounted thereon. Then, by cooling and solidifying, soldering (die bonding) is performed. Next, the electrode 2 on the semiconductor chip 1 and the lead portion 5 of the lead frame are connected by the bonding wire 6, and then the other portions except for the external connection terminal portion of the lead portion 5 of the lead frame are molded resin 7. A covered semiconductor package can be obtained.

本発明のはんだ合金3が塗布されるリードフレームのアイランド部4には、ボンディングワイヤ6などで接合するリードフレームのリード部5の接合面とともにAgめっきが施されることがあるが、費用を低減させるために、リードフレームのアイランド部4のみAgめっき処理が施されない場合もある。その場合、リードフレームのアイランド部4は、リードフレームの素材であるCuのみで形成される。また、車載関連では、ボンディングワイヤ6などで接合するリードフレームのリード部5の接合面を保護し接合信頼性を向上させるため、Agめっきの代わりに、Ni層、Ni/Au層、またはNi/Pd/Au層を形成するためのめっき処理が施される場合があり、近年用いられている微細なリードフレームの場合は、作業性向上などの面から、リードフレームのアイランド部4にも同様のめっき処理が施される場合がある。   The island portion 4 of the lead frame to which the solder alloy 3 of the present invention is applied may be subjected to Ag plating together with the joint surface of the lead portion 5 of the lead frame to be joined by the bonding wire 6 or the like. Therefore, only the island part 4 of the lead frame may not be subjected to the Ag plating process. In that case, the island portion 4 of the lead frame is formed only of Cu which is a material of the lead frame. In addition, for in-vehicle use, in order to protect the joint surface of the lead portion 5 of the lead frame joined by the bonding wire 6 and improve the joining reliability, instead of Ag plating, a Ni layer, a Ni / Au layer, or Ni / A plating process for forming a Pd / Au layer may be performed. In the case of a fine lead frame used in recent years, the same is applied to the island portion 4 of the lead frame from the viewpoint of improving workability. A plating process may be performed.

ところで、CuやNiは、他の元素との反応速度が、Agと比べて遅いため、濡れ広がりが悪化する。Pb系はんだ合金は他元素との反応性が高いため、接合面がCuやNiである場合でも、一定量濡れ広がることにより接合が維持され、特にNiめっきを有する接合対象部材では、Ni層による防食効果によりPb系はんだ合金と接合対象部材との接合界面での反応層の成長が抑制され、長期信頼性を高くすることができた。しかし、Pbフリーのはんだ合金は、Pb系はんだ合金に比べて濡れ性が劣る場合が多く、接合面がCuやNiである場合、十分に濡れ広がることができず、十分な接合性が得られない場合が多かった。特にBi基はんだ合金の場合は、BiがNiと反応し、脆弱なBi−Ni合金を形成してしまう場合があるため、Ni層を有する接合対象部材との接合には用いることが困難であった。
しかるに、本発明のBi基はんだ合金のように、AgとSnとInを適切な配合比で含有させれば、Ag−Sn−In金属間化合物をBi基はんだ合金内に分散させ、NiとBiとの反応を阻害させ、かつ、Sn及びInの反応により濡れ性も向上させることができる。また、本発明の他の形態のBi基はんだ合金のように、Ge、Teのいずれかを所定量含有させれば、Ag−Sn−In金属間化合物を含む粒子の粗大化を抑制でき、接合信頼性をより高めることができる。また、本発明の他の実施形態のBi基はんだ合金は、Cu、Ni、Pd、Auを含有することにより、濡れ性をさらに向上させることができる。このため、本発明のBi基はんだ合金によれば、従来のBi基はんだ合金が十分な接合性を得ることのできなかった、Ni層、Ni/Au層、またはNi/Pd/Au層を有する接合対象部材に対しても、しっかり接合することができ、十分な接合信頼性を有することができる。
すなわち、本発明の電子部品の製造方法によれば、Bi基はんだ合金の濡れ性を改善させ、さらに従来困難であった、銅材表面にNi層、Ni/Au層、Ni/Pd/Au層のいずれかがめっき形成されているリードフレームなどの接合対象部材への半導体素子などの実装を、Bi基はんだ合金を用いても接合信頼性低下の問題を生じること無く行うことができる。
例えば、接合対象部材に半導体チップ等の半導体素子をはんだ付けした電子部品は、基板へ実装される際、250℃までのリフロー温度で再加熱されることが多いが、本発明のBi基はんだ合金の固相線温度は、255℃以上なので、電子部品内のはんだ接合部が再溶融することはない。また、融点を320℃以下とすることで初期接合温度を比較的低くすることができ、半導体チップ特性の変化や部材酸化が発生しないため、はんだ接合部を含む実装基板の特性を劣化させること無く、機械的強度を維持することができる。
By the way, Cu and Ni have a slower reaction rate with other elements than Ag, so that wetting spread deteriorates. Since the Pb-based solder alloy has high reactivity with other elements, even when the bonding surface is Cu or Ni, the bonding is maintained by spreading by a certain amount, especially in a member to be bonded having Ni plating, depending on the Ni layer. Due to the anticorrosion effect, the growth of the reaction layer at the bonding interface between the Pb-based solder alloy and the member to be bonded was suppressed, and long-term reliability could be increased. However, Pb-free solder alloys often have inferior wettability compared to Pb-based solder alloys, and when the joint surface is Cu or Ni, the wettability cannot be sufficiently spread and sufficient bondability is obtained. There were often no cases. In particular, in the case of a Bi-based solder alloy, Bi may react with Ni to form a fragile Bi—Ni alloy, so that it is difficult to use it for joining with a member to be joined having a Ni layer. It was.
However, as in the Bi-based solder alloy of the present invention, if Ag, Sn, and In are contained at an appropriate blending ratio, the Ag—Sn—In intermetallic compound is dispersed in the Bi-based solder alloy, and Ni and Bi. And the wettability can be improved by the reaction of Sn and In. Further, as in a Bi-based solder alloy according to another aspect of the present invention, if a predetermined amount of either Ge or Te is contained, the coarsening of particles containing an Ag—Sn—In intermetallic compound can be suppressed. Reliability can be further increased. Further, the Bi-based solder alloy according to another embodiment of the present invention can further improve wettability by containing Cu, Ni, Pd, and Au. Therefore, according to the Bi-based solder alloy of the present invention, the conventional Bi-based solder alloy has a Ni layer, a Ni / Au layer, or a Ni / Pd / Au layer, which has not been able to obtain sufficient jointability. It can join firmly also to a member to be joined, and can have sufficient joining reliability.
That is, according to the method for manufacturing an electronic component of the present invention, the wettability of a Bi-based solder alloy is improved, and a Ni layer, a Ni / Au layer, a Ni / Pd / Au layer on the surface of a copper material, which has been difficult in the past. Even if a Bi-based solder alloy is used, mounting of a semiconductor element or the like on a member to be bonded such as a lead frame on which any of the above is plated can be performed without causing a problem of deterioration in bonding reliability.
For example, an electronic component in which a semiconductor element such as a semiconductor chip is soldered to a member to be joined is often reheated at a reflow temperature up to 250 ° C. when mounted on a substrate. Since the solidus temperature is 255 ° C. or higher, the solder joint in the electronic component does not remelt. In addition, by setting the melting point to 320 ° C. or lower, the initial bonding temperature can be made relatively low and no change in semiconductor chip characteristics or member oxidation occurs, so that the characteristics of the mounting substrate including the solder joints are not deteriorated. , Mechanical strength can be maintained.

すなわち、本発明の電子部品実装基板は、上記本発明のBi基はんだ合金を用いて、リフロー作業ピーク温度を250℃として電子部品を実装したものである。なお、電子部品実装用の基板としては、従来公知の基板を用いることができ、セラミック基板が一般的であるが、樹脂製のプリント基板やSi基板を用いることもできる。   That is, the electronic component mounting board of the present invention is obtained by mounting an electronic component using the Bi-based solder alloy of the present invention at a reflow work peak temperature of 250 ° C. In addition, as a board | substrate for electronic component mounting, a conventionally well-known board | substrate can be used and although a ceramic substrate is common, a resin-made printed board and Si board | substrate can also be used.

本発明を実施例により、さらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

1.測定方法、評価方法
実施例と比較例のBi基はんだ合金に対しては、以下の測定方法、評価方法を用いた。
(1)Ag−Sn−In金属間化合物の観察方法と粒子径や体積比率の算出方法
0.75mmφのワイヤー状のBi基はんだ合金を樹脂に埋め込み、断面研磨を行う。Bi基はんだ合金の断面が露出した評価用試料を常温の硝酸水溶液(硝酸濃度20%)に5秒間浸漬してエッチングする。
エッチング後の評価用試料は、Bi基はんだ合金の母相は腐食して黒く見える一方、Ag−Sn−In金属間化合物を含む析出粒子は白く光って見えるため、光学顕微鏡観察によって析出粒子の大きさや分布状態を容易に判別することができる。そこで、各評価用試料を200倍の光学顕微鏡で観察し、視野中の析出粒子の断面径を測定する。断面径は、計測した粒子の最も長い径とそれに直交する径で最も短い径の平均値から求める。また、断面径は粒子の任意断面となり、実際の粒子の粒径に比べて小さく計測されるため、得られた測定値を1.12倍したものをその粒子の粒径とみなした。上記方法に従って、観察されたすべての粒子の粒径を算出し、その算出した粒径を用いて、各粒子が真球であると仮定した場合の体積をそれぞれ算出する。算出した各粒子の体積から、粒径が80μm未満の粒子の割合を体積%で算出する。なお、後述の本発明のGeとTeのいずれかの元素を含有する試料22〜73は粒子の微細化を目的とした試料であるため、粒径が50μm未満の粒子の割合を体積%で算出する。
1. Measurement method and evaluation method The following measurement methods and evaluation methods were used for the Bi-based solder alloys of the examples and comparative examples.
(1) Observation method of Ag—Sn—In intermetallic compound and calculation method of particle diameter and volume ratio Wire-shaped Bi-based solder alloy having a diameter of 0.75 mmφ is embedded in a resin, and cross-sectional polishing is performed. The evaluation sample with the exposed cross section of the Bi-based solder alloy is immersed in a nitric acid aqueous solution (nitric acid concentration 20%) for 5 seconds and etched.
In the sample for evaluation after etching, the matrix phase of the Bi-based solder alloy looks corroded and black, while the precipitated particles containing the Ag—Sn—In intermetallic compound appear white. The sheath distribution state can be easily determined. Therefore, each evaluation sample is observed with a 200 × optical microscope, and the cross-sectional diameter of the precipitated particles in the field of view is measured. The cross-sectional diameter is obtained from an average value of the longest diameter of the measured particles and the shortest diameter perpendicular to the longest diameter. Moreover, since the cross-sectional diameter is an arbitrary cross-section of the particle and is measured to be smaller than the actual particle size, a value obtained by multiplying the obtained measured value by 1.12 was regarded as the particle size of the particle. In accordance with the above method, the particle diameters of all the observed particles are calculated, and the volume when each particle is assumed to be a true sphere is calculated using the calculated particle diameter. From the calculated volume of each particle, the ratio of particles having a particle size of less than 80 μm is calculated in volume%. Since samples 22 to 73 containing any element of Ge and Te of the present invention described later are samples for the purpose of particle refinement, the ratio of particles having a particle size of less than 50 μm is calculated by volume%. To do.

(2)濡れ性の評価方法
ダイボンダーにNiめっき層を有するCu製リードフレームを供給し、処理エリアを窒素雰囲気で満たした後、370℃まで加熱し、その後上記(1)のAg−Sn−In金属間化合物の観察方法において断面観察したのと同じ0.75mmφのBi基はんだ合金をNiめっき層上にセットする。Bi基はんだ合金が十分に溶融した後、はんだ接合面にAuを蒸着させた1mm角のシリコンダミーチップを、Bi基はんだ合金上に載せ、Niめっき付きCu製リードフレームに接合させる。その後、窒素雰囲気中のまま熱のかからないエリアに試料を移して冷却し、評価用の試料を得る。なお、Bi基はんだ合金の供給量は、シリコンダミーチップ接合後の厚みが50μmになるように調整している。
はんだ濡れ性評価は、評価用試料を上部から観察し、シリコンダミーチップのいずれの辺からも、Bi基はんだ合金のはみ出しがないことが確認された場合を「不良」、はみ出しが確認された場合を「良」、シリコンダミーチップの各辺からほぼ均一にはみ出しが確認された場合を「優」と評価する。
(2) Method for evaluating wettability A Cu lead frame having a Ni plating layer is supplied to a die bonder, and the processing area is filled with a nitrogen atmosphere, then heated to 370 ° C., and then Ag-Sn-In of (1) above The same 0.75 mmφ Bi-based solder alloy as the cross-sectional observation in the intermetallic compound observation method is set on the Ni plating layer. After the Bi-base solder alloy is sufficiently melted, a 1 mm square silicon dummy chip having Au deposited on the solder joint surface is placed on the Bi-base solder alloy and joined to a Cu lead frame with Ni plating. Thereafter, the sample is transferred to an area that is not heated in a nitrogen atmosphere and cooled to obtain a sample for evaluation. The supply amount of the Bi-based solder alloy is adjusted so that the thickness after bonding the silicon dummy chip is 50 μm.
For solder wettability evaluation, the sample for evaluation is observed from the top, and it is confirmed that there is no protrusion of the Bi-based solder alloy from any side of the silicon dummy chip. Is evaluated as “excellent” when the protrusion is confirmed to be almost uniform from each side of the silicon dummy chip.

(3)接合信頼性の評価方法
上記(2)の濡れ性評価用試料の作製方法と同様に、シリコンダミーチップを、Niめっき付きCu製リードフレームに、Bi基はんだ合金を用いて接合させる。その後、エポキシ樹脂でモールドしたものを、接合信頼性評価用の試料として、それぞれ同条件で3個ずつ作製する。接合信頼性試験は、各試料を、まず250℃で10秒間保持するリフロー処理を行い、その後−50℃/150℃の温度サイクル試験を300サイクル、500サイクル、700サイクル実施する。その後、各試料を樹脂埋めした後、断面研磨をして、はんだ接合部の断面観察を行う。
接合信頼性評価は、Bi基はんだ合金や、はんだ接合部界面などに割れの発生が確認されなかった場合を「良」、接合不良や割れの発生が確認された場合を「不良」と評価する。
(3) Evaluation Method of Bonding Reliability Similar to the method for preparing the wettability evaluation sample in (2) above, a silicon dummy chip is bonded to a Cu lead frame with Ni plating using a Bi-based solder alloy. Thereafter, three molds made of epoxy resin are prepared under the same conditions as samples for evaluating the bonding reliability. In the bonding reliability test, each sample is first subjected to a reflow process of holding at 250 ° C. for 10 seconds, and then a temperature cycle test of −50 ° C./150° C. is performed for 300 cycles, 500 cycles, and 700 cycles. Then, after filling each sample with resin, cross-section polishing is performed, and cross-section observation of the solder joint is performed.
In the joint reliability evaluation, a case where cracks are not confirmed at the Bi-base solder alloy or the solder joint interface is evaluated as “good”, and a case where joint failure or cracks are confirmed as “bad”. .

(4)耐熱性の評価方法
上記実施例でモールドした試料の一部を基板に実装し、その際250℃、10秒間の熱処理を5回行う。その後、各試料を樹脂埋めした後、断面研磨をして、実装後のシリコンダミーチップおよび接合部を確認し、割れやボイドなどの欠陥の有無を確認する。目立ったボイドや欠陥が観察されず、再溶融の痕跡などがない場合を「良」、ボイドや欠陥などが観察された場合を「不良」と評価する。
(4) Evaluation method of heat resistance A part of the sample molded in the above embodiment is mounted on a substrate, and heat treatment at 250 ° C. for 10 seconds is performed five times. Then, after filling each sample with resin, cross-section polishing is performed to check the silicon dummy chip and the joint after mounting, and to check for defects such as cracks and voids. A case where no conspicuous voids or defects are observed and there is no trace of remelting is evaluated as “good”, and a case where voids or defects are observed is evaluated as “bad”.

2.Bi基はんだ合金の製造
まず、原料として、Bi、Ag、Sn、In、Ge、Te、Cu、Ni、Pd、Au(各元素の純度:99.99質量%以上)を準備した。原料は基本的に3mmφ以下のショット形状原料を用いたが、原料が大きな薄片やバルク状の場合は、切断や粉砕等を行い、3mm以下の大きさに細かくして、溶解時の偏析要因を極力減らし溶解後のはんだ合金内に組成ばらつきが生じず均一になるようにした。
次に、高周波溶解炉用グラファイト坩堝に、目的とするBi基はんだ合金の組成に対応する原料を所定量秤量して入れた。
次に、原料の入った坩堝を高周波溶解炉に入れ、酸化を抑制するために窒素を原料1kg当たり0.7L/分以上の流量で流し、高周波溶解エリアを窒素雰囲気とした。高周波溶解エリアが十分窒素雰囲気となった状態で、高周波溶解炉の内部を500℃まで5℃/secの昇温速度で加熱し、原料を加熱溶融させた。原料が溶融しはじめたときに、局所的な組成のばらつきが起きないように、攪拌棒を用いて3分間撹拌を行った。原料金属が十分溶融し、溶け残りがないことを確認した後、高周波電源を切り、速やかに坩堝を取り出し、坩堝内の溶湯を、はんだ母合金の鋳型に流し込んだ。
鋳型には、内径が30mmで肉厚が10mm程度の円筒状の黒鉛製鋳型を使用し、鋳型の外側には、冷却水を通水することのできる中空構造のCuからなる冷やし金を密着させる構造とした。この鋳型に溶湯を流し込んだ後、冷却水を通水した冷やし金を密着させ255℃程度まで5℃/secの冷却速度で速やかに冷却し固化させた。
得られたBi基はんだ母合金を押し出し加工にて直径0.75mmのワイヤー形状のBi基はんだ合金とした。
2. Production of Bi-based solder alloy First, Bi, Ag, Sn, In, Ge, Te, Cu, Ni, Pd, and Au (purity of each element: 99.99% by mass or more) were prepared as raw materials. The raw material was basically shot-shaped raw material of 3mmφ or less. However, if the raw material is large flakes or bulk, cut and pulverize it to make it smaller than 3mm, and cause segregation during melting. As much as possible, it was made uniform with no variation in composition in the solder alloy after melting.
Next, a predetermined amount of raw material corresponding to the composition of the target Bi-based solder alloy was weighed into a graphite crucible for a high-frequency melting furnace.
Next, the crucible containing the raw material was put into a high-frequency melting furnace, and nitrogen was flowed at a flow rate of 0.7 L / min or more per 1 kg of the raw material in order to suppress oxidation, so that the high-frequency melting area was a nitrogen atmosphere. With the high frequency melting area in a sufficiently nitrogen atmosphere, the inside of the high frequency melting furnace was heated to 500 ° C. at a rate of 5 ° C./sec to heat and melt the raw material. When the raw material started to melt, stirring was performed for 3 minutes using a stirring bar so that local variations in composition did not occur. After confirming that the raw metal was sufficiently melted and did not melt, the high frequency power supply was turned off, the crucible was quickly taken out, and the molten metal in the crucible was poured into the solder mother alloy mold.
As the mold, a cylindrical graphite mold having an inner diameter of 30 mm and a thickness of about 10 mm is used, and a cooling metal made of Cu having a hollow structure capable of passing cooling water is adhered to the outside of the mold. The structure. After pouring the molten metal into the mold, a chilled metal with cooling water was brought into close contact therewith, and rapidly cooled to about 255 ° C. at a cooling rate of 5 ° C./sec and solidified.
The obtained Bi-based solder mother alloy was extruded to form a wire-based Bi-based solder alloy having a diameter of 0.75 mm.

得られたワイヤー形状のBi基はんだ合金を用いて、各Bi基はんだ合金の組成確認、及び、上記Ag−Sn−In金属間化合物を含む粒子の割合測定や濡れ性評価、接合信頼性評価を行った。
これらの結果を、表1〜表3に示す。なお、接合信頼性評価結果は、「良」と判定されたサイクルのうち、最も多いサイクル数を表に示した。また、最も少ない300サイクルで「不良」と判定された試料の場合は「不良」と表記した。
Using the obtained wire-based Bi-based solder alloy, the composition confirmation of each Bi-based solder alloy, the ratio measurement of the particles containing the above Ag-Sn-In intermetallic compound, the wettability evaluation, the bonding reliability evaluation went.
These results are shown in Tables 1 to 3. The results of the joint reliability evaluation are shown in the table with the largest number of cycles among the cycles determined as “good”. In addition, in the case of a sample determined to be “defective” in the least 300 cycles, it was described as “defective”.

Figure 2018047500
Figure 2018047500

Figure 2018047500
Figure 2018047500

Figure 2018047500
Figure 2018047500

3.評価
試験1
本発明範囲内の試料1〜7は、表1に示したとおり断面観察により、Bi基はんだ合金中の添加物や金属間化合物化の粒子の98.3体積%以上が、粒径80μm未満になっていることが確認された。また濡れ性が「良」レベルまで改善し、接合信頼性試験において、300サイクルまでシリコンダミーチップおよび接合部に割れなどの欠陥が確認されず、接合性および脆弱性が改善されていることが確認できた。
さらに、試料8〜15では、濡れ広がりを良くするCu、Ni、Pd、Auを含有させているので、Cu、Ni、Pd、AuとNi面が界面反応し、濡れ広がりが更に向上し、濡れ性の評価結果は、「優」となった。また、濡れ性が向上し界面接合がより強固になったため、温度サイクル試験700サイクルまで、シリコンダミーチップおよび接合部に割れなどの欠陥が発生しなかった。ただし、これらの元素を含有させると、80μm未満の金属間化合物粒子の体積比率が、97.1〜98.2%と若干低めになることが確認された。これは、はんだ合金内に存在するCuなどの添加元素が、金属間化合物粒子生成の核となって成長を促進しまうことによると考えられる。
また、本発明範囲内の試料1〜15は、いずれの試料においても耐熱性試験が「良」であり、250℃でのリフロー温度では、本発明のBi基はんだ合金が溶け出すことなく、良好な接合状態を維持できることが確認でき、高温はんだ合金として適していることが確認された。
3. Evaluation
Test 1
Samples 1 to 7 within the scope of the present invention have a particle size of less than 80.mu.m, as a result of cross-sectional observation as shown in Table 1, with 98.3 vol% or more of additives and intermetallic compound particles in the Bi-based solder alloy. It was confirmed that In addition, the wettability has been improved to a “good” level, and in the bonding reliability test, defects such as cracks have not been confirmed in the silicon dummy chip and the bonding portion up to 300 cycles, and it has been confirmed that the bonding property and vulnerability are improved. did it.
Furthermore, since Samples 8 to 15 contain Cu, Ni, Pd, and Au that improve wetting and spreading, Cu, Ni, Pd, Au, and the Ni surface undergo an interfacial reaction to further improve wetting and spreading. The evaluation result of sex was “excellent”. Further, since the wettability was improved and the interfacial bonding became stronger, defects such as cracks did not occur in the silicon dummy chip and the joint until 700 cycles of the temperature cycle test. However, when these elements were contained, it was confirmed that the volume ratio of intermetallic compound particles of less than 80 μm was slightly lower, 97.1 to 98.2%. This is thought to be due to the fact that additive elements such as Cu present in the solder alloy serve as a nucleus for the formation of intermetallic compound particles and promote growth.
Samples 1 to 15 within the scope of the present invention have a good heat resistance test in any sample, and the reflow temperature at 250 ° C. is good without the Bi-based solder alloy of the present invention melting out. It was confirmed that it was possible to maintain a proper bonding state, and that it was suitable as a high-temperature solder alloy.

これに対して、本発明の範囲外である試料16〜21は、濡れ広がりNi面のリードフレームに対しては十分に濡れ広がらず、接合信頼性に劣ることが確認された。
試料16は、Agの含有量が少なすぎ、また、試料19は、SnとInの含有量が多すぎるため、いずれも、SnとInの含有量の総量がAgの含有量に対して1/1よりも大きくなっており、濡れ性は良好であるものの、余剰のSnやInが低融点相を形成してしまい、接合信頼性に劣ってしまったと考えられる。
試料17は、Agの含有量が多すぎるため、液相線が高くなりすぎてしまい、はんだ接合時に溶け残りが発生し、濡れ広がりが改善しなかったと考えられる。また、試料18は、SnとInの含有量が少なすぎるため、接合対象のNi面と十分反応することができず、濡れ広がりが改善しなかったと考えられる。また、試料20及び21は、CuやNiの含有量が多すぎるため、CuやNiが粗大な初晶成分として形成されてしまい、はんだ接合時の濡れ広がりを邪魔したと考えられる。このように、濡れ広がりが十分でない試料は接合時にボイドを巻き込んだり、周囲と異なる溶け残り部や粗大な初晶成分の界面でクラックを生じやすくなったりして接合信頼性が改善しなかったと考えられる。また、本発明の範囲外である試料16〜21は、いずれの試料においても耐熱性試験が「不良」であった。
On the other hand, it was confirmed that Samples 16 to 21, which are outside the scope of the present invention, were not sufficiently wetted and spread with respect to the lead frame with the wetted Ni surface, resulting in poor bonding reliability.
Sample 16 has too little content of Ag, and Sample 19 has too much content of Sn and In, so that the total content of Sn and In is 1 / of the Ag content. Although it is larger than 1 and the wettability is good, it is considered that excess Sn or In formed a low melting point phase, resulting in poor bonding reliability.
It is considered that the sample 17 had too much Ag content, so that the liquidus became too high, so that unmelted residue was generated at the time of solder joining, and wetting spread was not improved. Further, it is considered that the sample 18 was not able to sufficiently react with the Ni surface to be joined because the Sn and In contents were too small, and the wetting spread was not improved. Moreover, since the samples 20 and 21 have too much Cu and Ni content, Cu and Ni are formed as coarse primary crystal components, and it is considered that the wetting and spreading at the time of solder joining was hindered. In this way, it is considered that the sample with insufficient wetting spread did not improve the bonding reliability due to the inclusion of voids during bonding, cracking at the interface between the undissolved portion different from the surroundings and coarse primary crystal components, and so on. It is done. Moreover, the heat resistance test was "bad" in any sample 16-21 which is outside the scope of the present invention.

試験2
また、試料22〜47は、Teを含むことによりAg−Sn−In金属間化合物の粒子の粗大化を抑制した試料である。
本発明範囲内の試料22〜32は、表2に示したとおり断面観察により、Bi基はんだ合金中の添加物や金属間化合物化の粒子の97.6〜99.8体積%が、粒径50μm未満になっており、粗大化が抑制されていることが確認された。また濡れ性が「良」レベルまで改善し、接合信頼性試験において、500サイクルまでシリコンダミーチップおよび接合部に割れなどの欠陥が確認されず、接合性および脆弱性が改善されていることが確認できた。
さらに、試料33〜40では、濡れ広がりを良くするCu、Ni、Pd、Auを含有させているので、Cu、Ni、Pd、AuとNi面が界面反応し、濡れ広がりが更に向上し、濡れ性の評価結果は、「優」となった。また、濡れ性が向上し界面接合がより強固になったため、温度サイクル試験700サイクルまで、シリコンダミーチップおよび接合部に割れなどの欠陥が発生しなかった。ただし、これらの元素を含有させると、50μm未満の金属間化合物粒子の体積比率の上限が、98.9%と若干低めになることが確認された。これは、はんだ合金内に存在するCuなどの添加元素が、金属間化合物粒子生成の核となって成長を促進しまうことによるものと考えられる。
また、本発明範囲内の試料22〜40は、いずれの試料においても耐熱性試験が「良」であり、250℃でのリフロー温度では、本発明のBi基はんだ合金が溶け出すことなく、良好な接合状態を維持できることが確認でき、高温はんだ合金として適していることが確認された。
Test 2
Samples 22 to 47 are samples that suppress the coarsening of particles of the Ag—Sn—In intermetallic compound by containing Te.
Samples 22 to 32 within the scope of the present invention have a particle size of 97.6 to 99.8% by volume of the additive and intermetallic compound particles in the Bi-based solder alloy by cross-sectional observation as shown in Table 2. It became less than 50 micrometers, and it was confirmed that coarsening is suppressed. In addition, the wettability has been improved to a “good” level, and in the bonding reliability test, defects such as cracks have not been confirmed in the silicon dummy chip and the bonding portion up to 500 cycles, and it has been confirmed that the bonding property and the vulnerability are improved. did it.
Further, since Samples 33 to 40 contain Cu, Ni, Pd, and Au that improve wetting and spreading, Cu, Ni, Pd, Au, and the Ni surface undergo an interfacial reaction to further improve wetting and spreading. The evaluation result of sex was “excellent”. Further, since the wettability was improved and the interfacial bonding became stronger, defects such as cracks did not occur in the silicon dummy chip and the joint until 700 cycles of the temperature cycle test. However, when these elements were contained, it was confirmed that the upper limit of the volume ratio of intermetallic compound particles of less than 50 μm was slightly lowered to 98.9%. This is considered to be because an additive element such as Cu existing in the solder alloy serves as a nucleus for the formation of intermetallic compound particles and promotes growth.
In addition, the samples 22 to 40 within the scope of the present invention have a good heat resistance test in all samples, and the reflow temperature at 250 ° C. is good without melting the Bi-based solder alloy of the present invention. It was confirmed that it was possible to maintain a proper bonding state, and that it was suitable as a high-temperature solder alloy.

これに対して、本発明の範囲外である試料41〜47は、濡れ広がりNi面のリードフレームに対しては十分に濡れ広がらず、接合信頼性に劣ることが確認された。
試料41は、Agの含有量が少なすぎ、また、試料44は、SnとInの含有量が多すぎるため、いずれも、SnとInの含有量の総量がAgの含有量に対して1/1よりも大きくなっており、濡れ性は良好であるものの、余剰のSnやInが低融点相を形成してしまい、接合信頼性に劣ってしまったと考えられる。また、試料42は、Agの含有量が多すぎるため、液相線が高くなりすぎてしまい、はんだ接合時に溶け残りが発生し、濡れ広がりが改善しなかったと考えられる。また、試料43は、SnとInの含有量が少なすぎるため、接合対象のNi面と十分反応することができず、濡れ広がりが改善しなかったと考えられる。また、試料45は、Teの含有量が多すぎるため、Teが粗大な初晶成分として生成され、はんだ接合時の濡れ広がりを邪魔したと考えられる。また、試料46及び47は、CuやPdの含有量が多すぎるため、CuやPdが粗大な初晶成分として形成されてしまい、はんだ接合時の濡れ広がりを邪魔したと考えられる。このように、濡れ広がりが十分でない試料は接合時にボイドを巻き込んだり、周囲と異なる溶け残り部や粗大な初晶成分の界面でクラックを生じやすくなったりして接合信頼性が改善しなかったと考えられる。また、本発明の範囲外である試料41〜47は、いずれの試料においても耐熱性試験が「不良」であった。
On the other hand, it was confirmed that Samples 41 to 47, which are outside the scope of the present invention, were not sufficiently wetted and spread with respect to the lead frame with the wetted Ni surface, resulting in poor bonding reliability.
Sample 41 has too little content of Ag, and Sample 44 has too much content of Sn and In, so that the total content of Sn and In is 1 / of the Ag content. Although it is larger than 1 and the wettability is good, it is considered that excess Sn or In formed a low melting point phase, resulting in poor bonding reliability. Moreover, since the sample 42 has too much Ag content, a liquidus line became too high, the undissolved residue generate | occur | produced at the time of solder joining, and it is thought that wetting spread did not improve. Moreover, since the sample 43 has too little content of Sn and In, it is considered that the sample 43 could not sufficiently react with the Ni surface to be bonded, and the wetting spread was not improved. Moreover, since the sample 45 has too much content of Te, Te is produced | generated as a coarse primary-crystal component, and it is thought that the wetting spread at the time of solder joining was disturbed. Moreover, since the samples 46 and 47 have too much Cu and Pd content, Cu and Pd are formed as coarse primary crystal components, and it is considered that the wetting and spreading at the time of solder joining is hindered. In this way, it is considered that the sample with insufficient wetting spread did not improve the bonding reliability due to the inclusion of voids during bonding, cracking at the interface between the undissolved portion different from the surroundings and coarse primary crystal components, and so on. It is done. Further, the samples 41 to 47 which are outside the scope of the present invention were “bad” in the heat resistance test in any sample.

試験3
また、試料48〜73は、Geを含むことによりAg−Sn−In金属間化合物の粒子の粗大化を抑制した試料である。
本発明範囲内の試料48〜58は、表3に示したとおり断面観察により、Bi基はんだ合金中の添加物や金属間化合物化の粒子の97.9〜99.7体積%が、粒径50μm未満になっており、粗大化が抑制されていることが確認された。また濡れ性が「良」レベルまで改善し、接合信頼性試験において、500サイクルまでシリコンダミーチップおよび接合部に割れなどの欠陥が確認されず、接合性および脆弱性が改善されていることが確認できた。
さらに、試料59〜66では、濡れ広がりを良くするCu、Ni、Pd、Auを含有させているので、Cu、Ni、Pd、AuとNi面が界面反応し、濡れ広がりが更に向上し、濡れ性の評価結果は、「優」となった。また、濡れ性が向上し界面接合がより強固になったため、温度サイクル試験700サイクルまで、シリコンダミーチップおよび接合部に割れが発生しなかった。ただし、これらの元素を含有させると、50μm未満の金属間化合物粒子の体積比率の上限が、98.8%と若干低めになることが確認された。これは、はんだ合金内に存在するCuなどの添加元素が、金属間化合物粒子生成の核となって成長を促進しまうことによるものと考えられる。
また、本発明範囲内の試料48〜66は、いずれの試料においても耐熱性試験が「良」であり、250℃でのリフロー温度では、本発明のBi基はんだ合金が溶け出すことなく、良好な接合状態を維持できることが確認でき、高温はんだ合金として適していることが確認された。
Test 3
Samples 48 to 73 are samples in which coarsening of particles of the Ag—Sn—In intermetallic compound is suppressed by containing Ge.
Samples 48 to 58 within the scope of the present invention have a particle size of 97.9 to 99.7% by volume of the additive and intermetallic compound particles in the Bi-based solder alloy, as shown in Table 3. It became less than 50 micrometers, and it was confirmed that coarsening is suppressed. In addition, the wettability has been improved to a “good” level, and in the bonding reliability test, defects such as cracks have not been confirmed in the silicon dummy chip and the bonding portion up to 500 cycles, and it has been confirmed that the bonding property and the vulnerability are improved. did it.
Furthermore, since samples 59 to 66 contain Cu, Ni, Pd, and Au that improve wetting and spreading, Cu, Ni, Pd, Au, and the Ni surface undergo an interfacial reaction to further improve wetting and spreading. The evaluation result of sex was “excellent”. Moreover, since the wettability was improved and the interfacial bonding became stronger, no cracks occurred in the silicon dummy chip and the joint until 700 cycles of the temperature cycle test. However, when these elements were contained, it was confirmed that the upper limit of the volume ratio of intermetallic compound particles of less than 50 μm was slightly lowered to 98.8%. This is considered to be because an additive element such as Cu existing in the solder alloy serves as a nucleus for the formation of intermetallic compound particles and promotes growth.
In addition, the samples 48 to 66 within the scope of the present invention have a good heat resistance test in any sample, and the reflow temperature at 250 ° C. does not melt the Bi-based solder alloy of the present invention. It was confirmed that it was possible to maintain a proper bonding state, and that it was suitable as a high-temperature solder alloy.

これに対して、本発明の範囲外である試料67〜73は、濡れ広がりNi面のリードフレームに対しては十分に濡れ広がらず、接合信頼性に劣ることが確認された。
試料67は、Agの含有量が少なすぎ、また、試料70は、SnとInの含有量が多すぎるため、いずれも、SnとInの含有量の総量がAgの含有量に対して1/1よりも大きくなっており、濡れ性は良好であるものの、余剰のSnやInが低融点相を形成してしまい、接合信頼性に劣ってしまったと考えられる。また、試料68は、Agの含有量が多すぎるため、液相線が高くなりすぎてしまい、はんだ接合時に溶け残りが発生し、濡れ広がりが改善しなかったと考えられる。また、試料69は、SnとInの含有量が少なすぎるため、接合対象のNi面と十分反応することができず、濡れ広がりが改善しなかったと考えられる。また、試料71は、Geの含有量が多すぎるため、Geが粗大な初晶成分として生成され、はんだ接合時の濡れ広がりを邪魔したと考えられる。また、試料72及び73は、CuやAuの含有量が多すぎるため、CuやAuが粗大な初晶成分として形成されてしまい、はんだ接合時の濡れ広がりを邪魔したと考えられる。このように、濡れ広がりが十分でない試料は接合時にボイドを巻き込んだり、周囲と異なる溶け残り部や粗大な初晶成分の界面でクラックを生じやすくなったりして接合信頼性が改善しなかったと考えられる。また、本発明の範囲外である試料67〜73は、いずれの試料においても耐熱性試験が「不良」であった。
On the other hand, it was confirmed that the samples 67 to 73 which are outside the scope of the present invention were not sufficiently wetted and spread with respect to the lead frame with the wetted Ni surface, and the bonding reliability was inferior.
Sample 67 has too little Ag content, and sample 70 has too much Sn and In content, so the total content of Sn and In is 1 / of the Ag content. Although it is larger than 1 and the wettability is good, it is considered that excess Sn or In formed a low melting point phase, resulting in poor bonding reliability. Moreover, since the sample 68 has too much Ag content, a liquidus line became too high, the undissolved part generate | occur | produced at the time of solder joining, and it is thought that wetting spread was not improved. Further, it is considered that the sample 69 was not able to sufficiently react with the Ni surface to be joined because the Sn and In contents were too small, and the wetting spread was not improved. Moreover, since the sample 71 has too much Ge content, it is thought that Ge was produced | generated as a coarse primary-crystal component and disturbed the wetting spread at the time of solder joining. Moreover, since the samples 72 and 73 have too much Cu or Au content, Cu and Au are formed as coarse primary crystal components, and it is considered that wetting and spreading at the time of solder joining were hindered. In this way, it is considered that the sample with insufficient wetting spread did not improve the bonding reliability due to the inclusion of voids during bonding, cracking at the interface between the undissolved portion different from the surroundings and coarse primary crystal components, and so on. It is done. In addition, the samples 67 to 73 which are out of the scope of the present invention were “bad” in the heat resistance test in any sample.

なお、上記各試料における測定及び評価は、便宜上、Ni基はんだ合金と接合する接合対象部材であるCu製リードフレームとして、表面にNiめっき層のみを有するものを用いて行ったが、Niめっき層上に保護用の薄いAuめっき層やPd/Auめっき層を有するCu製リードフレームを用いた場合も、はんだ接合時にAuめっき層やPdめっき層をNiやBiが拡散して同様の結果を示すことが確認できた。また、Niめっきが無くCu表面が露出しているCu製リードフレームを用いた場合は、Niめっき面より良好な接合性を示すことが確認できた。   In addition, the measurement and evaluation in each of the above samples were performed using, as a matter of convenience, a Cu lead frame that is a bonding target member to be bonded to the Ni-based solder alloy, and having a Ni plating layer on the surface. Even when a Cu lead frame having a thin protective Au plating layer or Pd / Au plating layer on top is used, Ni or Bi diffuses in the Au plating layer or Pd plating layer at the time of soldering, and the same result is shown. I was able to confirm. In addition, it was confirmed that when a Cu lead frame having no Ni plating and having an exposed Cu surface was used, it showed better bondability than the Ni plated surface.

以上により、本発明に係るBi基はんだ合金で接合された、Bi基はんだ合金接合部には、半導体チップなどの半導体素子を接合対象部材に実装した電子部品を基板に実装するためのリフローの際や、半導体素子を接合対象部材である基板へ実装後、当該基板の他の部位に、他の半導体素子や電子部品を実装するためのリフローの際においても剥離及びボイド等は発生せず、特に、Ni層を有する濡れ性や接合信頼性の悪化する接合対象部材においても、Bi基はんだ合金接合部の特性に問題が生じないため、従来よりも信頼性の高い電子部品を供給することができるといえる。   As described above, the Bi-based solder alloy joint portion joined by the Bi-based solder alloy according to the present invention is subjected to reflow for mounting an electronic component in which a semiconductor element such as a semiconductor chip is mounted on a member to be joined to the substrate. In addition, after mounting a semiconductor element on a substrate that is a member to be joined, peeling and voids do not occur in other parts of the substrate even during reflow for mounting other semiconductor elements and electronic components. In addition, even in a member to be joined that has a Ni layer and deteriorates in wettability and joint reliability, there is no problem in the characteristics of the Bi-based solder alloy joint, so that it is possible to supply more reliable electronic components than in the past. It can be said.

本発明のBi基はんだ合金は、Pb−5質量%Sn等の高温はんだ合金の代替として、Ni層、Ni/Au層や、Ni/Pd/Au層などの、Niを含むめっきが接合対象部材の表面に施されたフレーム基板用のプリフォームはんだ合金や本発明のBi基はんだ合金を含むはんだペーストとして好適に用いることができ、パワーデバイスやパワーモジュール等の半導体パッケージの半導体チップの接合等に特に好適に用いることができる。   The Bi-based solder alloy of the present invention is a member to be joined by plating containing Ni, such as a Ni layer, a Ni / Au layer, or a Ni / Pd / Au layer, as an alternative to a high-temperature solder alloy such as Pb-5 mass% Sn. It can be suitably used as a solder paste containing a preform solder alloy for a frame substrate applied to the surface of the substrate or a Bi-based solder alloy of the present invention, and for joining semiconductor chips of semiconductor packages such as power devices and power modules. It can be particularly preferably used.

1 半導体チップ
2 電極
3 はんだ
4 リードフレームのアイランド部
5 リードフレームのリード部
6 ボンディングワイヤ
7 モールド樹脂
DESCRIPTION OF SYMBOLS 1 Semiconductor chip 2 Electrode 3 Solder 4 Island part of lead frame 5 Lead part of lead frame 6 Bonding wire 7 Mold resin

Claims (17)

AgとSnとInを含有し、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、かつ、前記Bi基はんだ合金内にAgとSnとInとの金属間化合物を含む粒子を含有し、残部が製造上、不可避的に含まれる元素を除きBiからなることを特徴とするBi基はんだ合金。   A Bi-based solder alloy containing Ag, Sn, and In and having a Bi content of 70% by mass or more, wherein the Ag content is 0.6% by mass or more and 18% by mass or less, and the Sn content is 0.00. 1 mass% or more and 10 mass% or less, the In content is 0.1 mass% or more and 2 mass% or less, and the total content of Sn and In is 1/1 or less with respect to the Ag content, A Bi-based solder comprising particles containing an intermetallic compound of Ag, Sn and In in the Bi-based solder alloy, the balance being made of Bi except for elements which are inevitably included in production. alloy. AgとSnとInを含有し、さらに、Cu、Ni、Pd、Auの中から1種以上を含有し、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、かつ、前記Bi基はんだ合金内にAgとSnとInとの金属間化合物を含む粒子を含有し、かつ、Cu、Ni、Pd、Auの中から1種以上を総量で0.001質量%以上3.0質量%以下の範囲で含有し、残部が製造上、不可避的に含まれる元素を除きBiからなることを特徴とするBi基はんだ合金。   A Bi-based solder alloy containing Ag, Sn, and In, further containing one or more of Cu, Ni, Pd, and Au, and having a Bi content of 70% by mass or more. 0.6 mass% or more and 18 mass% or less, Sn content is 0.1 mass% or more and 10 mass% or less, In content is 0.1 mass% or more and 2 mass% or less, and Sn and In The total content is 1/1 or less than the Ag content, and the Bi-based solder alloy contains particles containing an intermetallic compound of Ag, Sn, and In, and Cu, Ni One or more of Pd and Au are contained in a total amount in the range of 0.001% by mass to 3.0% by mass, and the balance is made of Bi except for elements that are inevitably included in the production. Bi-based solder alloy. AgとSnとInとGeを含有し、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、Geの含有量が0.001質量%以上3.0質量%以下、かつ、前記Bi基はんだ合金内にAgとSnとInとの金属間化合物を含む粒子を含有し、残部が製造上、不可避的に含まれる元素を除きBiからなることを特徴とするBi基はんだ合金。   A Bi-based solder alloy containing Ag, Sn, In, and Ge and having a Bi content of 70% by mass or more, wherein the Ag content is 0.6% by mass or more and 18% by mass or less, and the Sn content is 0.1 mass% or more and 10 mass% or less, the In content is 0.1 mass% or more and 2 mass% or less, and the total content of Sn and In is 1/1 or less with respect to the Ag content Yes, the Ge content is 0.001 mass% or more and 3.0 mass% or less, and the Bi-based solder alloy contains particles containing an intermetallic compound of Ag, Sn, and In, and the balance is in the manufacturing process. A Bi-based solder alloy comprising Bi except for elements inevitably contained. AgとSnとInとGeを含有し、さらに、Cu、Ni、Pd、Auの中から1種以上を含有し、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、Geの含有量が0.001質量%以上3.0質量%以下、かつ、前記Bi基はんだ合金内にAgとSnとInとの金属間化合物を含む粒子を含有し、かつ、Cu、Ni、Pd、Auの中から1種以上を総量で0.001質量%以上3.0質量%以下の範囲で含有し、残部が製造上、不可避的に含まれる元素を除きBiからなることを特徴とするBi基はんだ合金。   A Bi-based solder alloy containing Ag, Sn, In, and Ge, further containing at least one of Cu, Ni, Pd, and Au, and having a Bi content of 70% by mass or more. The content is 0.6 mass% or more and 18 mass% or less, the Sn content is 0.1 mass% or more and 10 mass% or less, the In content is 0.1 mass% or more and 2 mass% or less, and Sn The total content of In is 1/1 or less with respect to the content of Ag, the content of Ge is 0.001% by mass or more and 3.0% by mass or less, and Ag and Ag are contained in the Bi-based solder alloy. Contains particles containing an intermetallic compound of Sn and In, and contains at least one of Cu, Ni, Pd, and Au in a range of 0.001% by mass to 3.0% by mass in total. The Bi group is characterized in that the remainder consists of Bi except for elements inevitably included in production. I alloy. AgとSnとInとTeを含有し、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、Teの含有量が0.001質量%以上3.0質量%以下、かつ、前記Bi基はんだ合金内にAgとSnとInとの金属間化合物を含む粒子を含有し、残部が製造上、不可避的に含まれる元素を除きBiからなることを特徴とするBi基はんだ合金。   A Bi-based solder alloy containing Ag, Sn, In, and Te and having a Bi content of 70% by mass or more, wherein the Ag content is 0.6% by mass or more and 18% by mass or less, and the Sn content is 0.1 mass% or more and 10 mass% or less, the In content is 0.1 mass% or more and 2 mass% or less, and the total content of Sn and In is 1/1 or less with respect to the Ag content Yes, the Te content is 0.001 mass% or more and 3.0 mass% or less, and the Bi-based solder alloy contains particles containing an intermetallic compound of Ag, Sn, and In, and the balance is in the manufacturing process. A Bi-based solder alloy comprising Bi except for elements inevitably contained. AgとSnとInとTeを含有し、さらに、Cu、Ni、Pd、Auの中から1種以上を含有し、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、Teの含有量が0.001質量%以上3.0質量%以下、かつ、前記Bi基はんだ合金内にAgとSnとInとの金属間化合物を含む粒子を含有し、かつ、Cu、Ni、Pd、Auの中から1種以上を総量で0.001質量%以上3.0質量%以下の範囲で含有し、残部が製造上、不可避的に含まれる元素を除きBiからなることを特徴とするBi基はんだ合金。   A Bi-based solder alloy containing Ag, Sn, In, and Te, further containing one or more of Cu, Ni, Pd, and Au, and having a Bi content of 70% by mass or more. The content is 0.6 mass% or more and 18 mass% or less, the Sn content is 0.1 mass% or more and 10 mass% or less, the In content is 0.1 mass% or more and 2 mass% or less, and Sn The total content of In is 1/1 or less with respect to the content of Ag, the content of Te is 0.001% by mass or more and 3.0% by mass or less, and Ag is contained in the Bi-based solder alloy. Contains particles containing an intermetallic compound of Sn and In, and contains at least one of Cu, Ni, Pd, and Au in a range of 0.001% by mass to 3.0% by mass in total. The Bi group is characterized in that the remainder consists of Bi except for elements inevitably included in production. I alloy. 前記Bi基はんだ合金内に形成される前記AgとSnとInとの金属間化合物を含む粒子全体の総体積100体積%に対して、粒径80μm未満の粒子が97体積%以上存在することを特徴とする請求項1または2に記載のBi基はんだ合金。   The presence of 97% by volume or more of particles having a particle diameter of less than 80 μm with respect to 100% by volume of the total volume of particles including the intermetallic compound of Ag, Sn, and In formed in the Bi-based solder alloy. The Bi-based solder alloy according to claim 1 or 2, characterized in that: 前記Bi基はんだ合金内に形成される前記AgとSnとInとの金属間化合物を含む粒子全体の総体積100体積%に対して、粒径50μm未満の粒子が97体積%以上存在することを特徴とする請求項3〜6のいずれかに記載のBi基はんだ合金。   The presence of 97% by volume or more of particles having a particle size of less than 50 μm with respect to 100% by volume of the total volume of particles including the intermetallic compound of Ag, Sn, and In formed in the Bi-based solder alloy. The Bi-based solder alloy according to any one of claims 3 to 6, wherein 表面にNi層、Ni/Au層、Ni/Pd/Au層のいずれかが形成された接合対象部材との接合に用いることを特徴とする請求項1〜8のいずれかに記載のBi基はんだ合金。   The Bi-based solder according to any one of claims 1 to 8, wherein the Bi-based solder is used for joining to a member to be joined having a Ni layer, a Ni / Au layer, or a Ni / Pd / Au layer formed on a surface thereof. alloy. AgとSnとInを含有し、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下である、前記Bi基はんだ合金の溶湯を鋳型に流し込んだ後、255℃まで3℃/sec以上の冷却速度で冷却し固化させることで、AgとSnとInとの金属間化合物を含む粒径80μm未満の粒子を、該AgとSnとInとの金属間化合物を含む粒子全体の総体積100体積%に対して、97体積%以上前記Bi基はんだ合金内に形成させることを特徴とするBi基はんだ合金の製造方法。   A Bi-based solder alloy containing Ag, Sn, and In and having a Bi content of 70% by mass or more, wherein the Ag content is 0.6% by mass or more and 18% by mass or less, and the Sn content is 0.00. 1 mass% or more and 10 mass% or less, the In content is 0.1 mass% or more and 2 mass% or less, and the total content of Sn and In is 1/1 or less with respect to the Ag content, After flowing the molten metal of the Bi-based solder alloy into the mold, it is cooled to a temperature of 255 ° C. at a cooling rate of 3 ° C./sec or more and solidified, so that the particle size including an intermetallic compound of Ag, Sn, and In is less than 80 μm. A Bi-based solder alloy characterized in that particles are formed in the Bi-based solder alloy by 97% by volume or more with respect to a total volume of 100% by volume of the entire particle containing an intermetallic compound of Ag, Sn, and In. Manufacturing method. AgとSnとInを含有し、さらに、Cu、Ni、Pd、Auの中から1種以上を含有し、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、かつ、Cu、Ni、Pd、Auの中から1種以上を総量で0.001質量%以上3.0質量%以下の範囲で含有し、残部が製造上、不可避的に含まれる元素を除きBiからなる、前記Bi基はんだ合金の溶湯を鋳型に流し込んだ後、255℃まで3℃/sec以上の冷却速度で冷却し固化させることで、AgとSnとInとの金属間化合物を含む粒径80μm未満の粒子を、該AgとSnとInとの金属間化合物を含む粒子全体の総体積100体積%に対して、97体積%以上前記Bi基はんだ合金内に形成させることを特徴とするBi基はんだ合金の製造方法。   A Bi-based solder alloy containing Ag, Sn, and In, further containing one or more of Cu, Ni, Pd, and Au, and having a Bi content of 70% by mass or more. 0.6 mass% or more and 18 mass% or less, Sn content is 0.1 mass% or more and 10 mass% or less, In content is 0.1 mass% or more and 2 mass% or less, and Sn and In The total amount of the content is 1/1 or less with respect to the content of Ag, and one or more of Cu, Ni, Pd, and Au is 0.001% by mass to 3.0% by mass in total The Bi-based solder alloy molten metal containing Bi, excluding elements inevitably contained in the production, is poured into a mold, and then cooled to 255 ° C. at a cooling rate of 3 ° C./sec or more. By solidifying, a particle size of 80 μm containing an intermetallic compound of Ag, Sn, and In Bi-based solder characterized in that full particles are formed in the Bi-based solder alloy in an amount of 97% by volume or more based on 100% by volume of the total volume of the particles including the intermetallic compound of Ag, Sn and In. Solder alloy manufacturing method. AgとSnとInとGeを含有し、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、Geの含有量が0.001質量%以上3.0質量%以下、残部が製造上、不可避的に含まれる元素を除きBiからなる、前記Bi基はんだ合金の溶湯を鋳型に流し込んだ後、255℃まで3℃/sec以上の冷却速度で冷却し固化させることで、AgとSnとInとの金属間化合物を含む粒径50μm未満の粒子を、該AgとSnとInとの金属間化合物を含む粒子全体の総体積100体積%に対して、97体積%以上前記Bi基はんだ合金内に形成させることを特徴とするBi基はんだ合金の製造方法。   A Bi-based solder alloy containing Ag, Sn, In, and Ge and having a Bi content of 70% by mass or more, wherein the Ag content is 0.6% by mass or more and 18% by mass or less, and the Sn content is 0.1 mass% or more and 10 mass% or less, the In content is 0.1 mass% or more and 2 mass% or less, and the total content of Sn and In is 1/1 or less with respect to the Ag content Yes, after pouring the molten metal of the Bi-based solder alloy into the mold, the Ge content being 0.001 mass% or more and 3.0 mass% or less, and the balance is Bi except for elements inevitably contained in the production By cooling and solidifying to 255 ° C. at a cooling rate of 3 ° C./sec or more, particles having a particle size of less than 50 μm including an intermetallic compound of Ag, Sn, and In are obtained between the metal of Ag, Sn, and In. 97% by volume based on 100% by volume of the total volume of the particles including the compound Method for producing a Bi-based solder alloy, characterized in that to form on the Bi-based solder in alloys. AgとSnとInとGeを含有し、さらに、Cu、Ni、Pd、Auの中から1種以上を含有し、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、Geの含有量が0.001質量%以上3.0質量%以下、かつ、Cu、Ni、Pd、Auの中から1種以上を総量で0.001質量%以上3.0質量%以下の範囲で含有し、残部が製造上、不可避的に含まれる元素を除きBiからなる、前記Bi基はんだ合金の溶湯を鋳型に流し込んだ後、255℃まで3℃/sec以上の冷却速度で冷却し固化させることで、AgとSnとInとの金属間化合物を含む粒径50μm未満の粒子を、該AgとSnとInとの金属間化合物を含む粒子全体の総体積100体積%に対して、97体積%以上前記Bi基はんだ合金内に形成させることを特徴とするBi基はんだ合金の製造方法。   A Bi-based solder alloy containing Ag, Sn, In, and Ge, further containing at least one of Cu, Ni, Pd, and Au, and having a Bi content of 70% by mass or more. The content is 0.6 mass% or more and 18 mass% or less, the Sn content is 0.1 mass% or more and 10 mass% or less, the In content is 0.1 mass% or more and 2 mass% or less, and Sn The total content of In is 1/1 or less with respect to the content of Ag, the Ge content is 0.001% by mass to 3.0% by mass, and Cu, Ni, Pd, and Au 1 to at least 3.0% by mass in the total amount, and the balance is made of Bi except for elements inevitably included in production. After pouring into the mold, it is cooled to 255 ° C at a cooling rate of 3 ° C / sec or more and solidified. The particles having a particle size of less than 50 μm containing the intermetallic compound of Ag, Sn, and In are 97 volumes with respect to the total volume of 100 volume% of the entire particles containing the intermetallic compound of Ag, Sn, and In. % Or more of the Bi-based solder alloy is formed in the Bi-based solder alloy. AgとSnとInとTeを含有し、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、Teの含有量が0.001質量%以上3.0質量%以下、残部が製造上、不可避的に含まれる元素を除きBiからなる、前記Bi基はんだ合金の溶湯を鋳型に流し込んだ後、255℃まで3℃/sec以上の冷却速度で冷却し固化させることで、AgとSnとInとの金属間化合物を含む粒径50μm未満の粒子を、該AgとSnとInとの金属間化合物を含む粒子全体の総体積100体積%に対して、97体積%以上前記Bi基はんだ合金内に形成させることを特徴とするBi基はんだ合金の製造方法。   A Bi-based solder alloy containing Ag, Sn, In, and Te and having a Bi content of 70% by mass or more, wherein the Ag content is 0.6% by mass or more and 18% by mass or less, and the Sn content is 0.1 mass% or more and 10 mass% or less, the In content is 0.1 mass% or more and 2 mass% or less, and the total content of Sn and In is 1/1 or less with respect to the Ag content Yes, after pouring the molten metal of the Bi-based solder alloy into the mold, the content of Te being 0.001 mass% or more and 3.0 mass% or less, and the balance being made of Bi except for elements inevitably contained in production By cooling and solidifying to 255 ° C. at a cooling rate of 3 ° C./sec or more, particles having a particle size of less than 50 μm including an intermetallic compound of Ag, Sn, and In are obtained between the metal of Ag, Sn, and In. 97% by volume based on 100% by volume of the total volume of the particles including the compound Method for producing a Bi-based solder alloy, characterized in that to form on the Bi-based solder in alloys. AgとSnとInとTeを含有し、さらに、Cu、Ni、Pd、Auの中から1種以上を含有し、Biの含有率が70質量%以上のBi基はんだ合金であって、Agの含有量が0.6質量%以上18質量%以下、Snの含有量が0.1質量%以上10質量%以下、Inの含有量が0.1質量%以上2質量%以下、かつ、SnとInの含有量の総量がAgの含有量に対して1/1以下であり、Teの含有量が0.001質量%以上3.0質量%以下、かつ、Cu、Ni、Pd、Auの中から1種以上を総量で0.001質量%以上3.0質量%以下の範囲で含有し、残部が製造上、不可避的に含まれる元素を除きBiからなる、前記Bi基はんだ合金の溶湯を鋳型に流し込んだ後、255℃まで3℃/sec以上の冷却速度で冷却し固化させることで、AgとSnとInとの金属間化合物を含む粒径50μm未満の粒子を、該AgとSnとInとの金属間化合物を含む粒子全体の総体積100体積%に対して、97体積%以上前記Bi基はんだ合金内に形成させることを特徴とするBi基はんだ合金の製造方法。   A Bi-based solder alloy containing Ag, Sn, In, and Te, further containing one or more of Cu, Ni, Pd, and Au, and having a Bi content of 70% by mass or more. The content is 0.6 mass% or more and 18 mass% or less, the Sn content is 0.1 mass% or more and 10 mass% or less, the In content is 0.1 mass% or more and 2 mass% or less, and Sn The total content of In is 1/1 or less with respect to the content of Ag, the Te content is 0.001% by mass to 3.0% by mass, and Cu, Ni, Pd, and Au 1 to at least 3.0% by mass in the total amount, and the balance is made of Bi except for elements inevitably included in production. After pouring into the mold, it is cooled to 255 ° C at a cooling rate of 3 ° C / sec or more and solidified. The particles having a particle size of less than 50 μm containing the intermetallic compound of Ag, Sn, and In are 97 volumes with respect to the total volume of 100 volume% of the entire particles containing the intermetallic compound of Ag, Sn, and In. % Or more of the Bi-based solder alloy is formed in the Bi-based solder alloy. 接合対象部材と、請求項1〜9のいずれかに記載のBi基はんだ合金と、前記Bi基はんだ合金を介して前記接合対象部材に実装された半導体素子を有してなることを特徴とする電子部品。   A member to be joined, the Bi-based solder alloy according to any one of claims 1 to 9, and a semiconductor element mounted on the member to be joined via the Bi-based solder alloy. Electronic components. 請求項1〜9のいずれかに記載のBi基はんだ合金を用いて製造されたことを特徴とする電子部品実装基板。   10. An electronic component mounting board manufactured using the Bi-based solder alloy according to claim 1.
JP2016186199A 2016-09-23 2016-09-23 Bi-BASED SOLDER ALLOY AND METHOD FOR PRODUCING THE SAME, AND ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT-MOUNTED SUBSTRATE COMPRISING THE SOLDER ALLOY Pending JP2018047500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016186199A JP2018047500A (en) 2016-09-23 2016-09-23 Bi-BASED SOLDER ALLOY AND METHOD FOR PRODUCING THE SAME, AND ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT-MOUNTED SUBSTRATE COMPRISING THE SOLDER ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016186199A JP2018047500A (en) 2016-09-23 2016-09-23 Bi-BASED SOLDER ALLOY AND METHOD FOR PRODUCING THE SAME, AND ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT-MOUNTED SUBSTRATE COMPRISING THE SOLDER ALLOY

Publications (1)

Publication Number Publication Date
JP2018047500A true JP2018047500A (en) 2018-03-29

Family

ID=61765774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016186199A Pending JP2018047500A (en) 2016-09-23 2016-09-23 Bi-BASED SOLDER ALLOY AND METHOD FOR PRODUCING THE SAME, AND ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT-MOUNTED SUBSTRATE COMPRISING THE SOLDER ALLOY

Country Status (1)

Country Link
JP (1) JP2018047500A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020025961A (en) * 2018-08-09 2020-02-20 パナソニックIpマネジメント株式会社 Solder material, mounted substrate, and method for forming solder part
CN111283286A (en) * 2020-03-09 2020-06-16 成都川美新技术股份有限公司 Assembling method of two radio frequency connectors and electronic product
CN113725185A (en) * 2021-08-31 2021-11-30 江苏师范大学 Sn-based brazing filler metal capable of realizing vertical chip stacking and bonding method thereof
CN114807676A (en) * 2022-05-20 2022-07-29 赣州晨光稀土新材料有限公司 Sn-Bi alloy material and preparation method and application thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020025961A (en) * 2018-08-09 2020-02-20 パナソニックIpマネジメント株式会社 Solder material, mounted substrate, and method for forming solder part
JP7162240B2 (en) 2018-08-09 2022-10-28 パナソニックIpマネジメント株式会社 SOLDER MATERIAL, MOUNTING SUBSTRATE, AND METHOD OF FORMING SOLDER PORTION
CN111283286A (en) * 2020-03-09 2020-06-16 成都川美新技术股份有限公司 Assembling method of two radio frequency connectors and electronic product
CN113725185A (en) * 2021-08-31 2021-11-30 江苏师范大学 Sn-based brazing filler metal capable of realizing vertical chip stacking and bonding method thereof
CN113725185B (en) * 2021-08-31 2024-03-29 江苏师范大学 Sn-based solder capable of realizing vertical stacking of chips and bonding method thereof
CN114807676A (en) * 2022-05-20 2022-07-29 赣州晨光稀土新材料有限公司 Sn-Bi alloy material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
WO2019131718A1 (en) Solder alloy
JP6477965B1 (en) Solder alloy, solder paste, solder ball, flux cored solder and solder joint
JP4453612B2 (en) Lead-free solder alloy
JPWO2014024715A1 (en) High temperature lead-free solder alloy
JP6418349B1 (en) Solder alloy, solder paste, solder ball, flux cored solder and solder joint
KR20170005511A (en) HIGH-TEMPERATURE SOLDER JOINT COMPRISING Bi-Sn-BASED HIGH-TEMPERATURE SOLDER ALLOY
JP2018047500A (en) Bi-BASED SOLDER ALLOY AND METHOD FOR PRODUCING THE SAME, AND ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT-MOUNTED SUBSTRATE COMPRISING THE SOLDER ALLOY
WO2015041018A1 (en) Bi GROUP SOLDER ALLOY, METHOD FOR BONDING ELECTRONIC PART USING SAME, AND ELECTRONIC PART MOUNTING SUBSTRATE
JP2001284792A (en) Solder material and method for manufacturing semiconductor device using the same
JP2005503926A (en) Improved composition, method and device suitable for high temperature lead-free solders
JP6136878B2 (en) Bi-based solder alloy, method for manufacturing the same, electronic component bonding method using the same, and electronic component mounting board
JPWO2018168858A1 (en) Solder material
JP2018047499A (en) Bi-BASED SOLDER ALLOY AND METHOD FOR PRODUCING THE SAME, AND ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT-MOUNTED SUBSTRATE COMPRISING THE SOLDER ALLOY
JP2005052869A (en) Brazing material for high temperature soldering and semiconductor device using it
JP2011251332A (en) HIGH-TEMPERATURE Pb-FREE SOLDER PASTE USING Al POWDER
JP2011251329A (en) High-temperature lead-free solder paste
JP2018047497A (en) Bi-BASED SOLDER ALLOY AND METHOD FOR PRODUCING THE SAME, AND ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT-MOUNTED SUBSTRATE COMPRISING THE SOLDER ALLOY
JP2016093831A (en) Pb-FREE Mg-Cu-BASED SOLDER ALLOY
JP2017035708A (en) Sb-Cu SOLDER ALLOY CONTAINING NO Pb
JP2018047498A (en) Bi-BASED SOLDER ALLOY AND METHOD FOR PRODUCING THE SAME, AND ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT-MOUNTED SUBSTRATE COMPRISING THE SOLDER ALLOY
JP6136807B2 (en) Bi-based solder alloy, method for manufacturing the same, electronic component bonding method using the same, and electronic component mounting board
JP2017196647A (en) Au-Sn-Ag-α-TYPE SOLDER ALLOY, ITS SOLDER MATERIAL, AND MOUNTING SUBSTRATE BONDED OR SEALED BY USING SOLDER MATERIAL
JP6136853B2 (en) Bi-based solder alloy, method for manufacturing the same, electronic component bonding method using the same, and electronic component mounting board
JP2015139777A (en) Au-Sb TYPE SOLDER ALLOY
JP2014024109A (en) Bi-Sb-BASED Pb-FREE SOLDER ALLOY