JP2018046282A - Method for manufacturing electronic component module - Google Patents

Method for manufacturing electronic component module Download PDF

Info

Publication number
JP2018046282A
JP2018046282A JP2017196682A JP2017196682A JP2018046282A JP 2018046282 A JP2018046282 A JP 2018046282A JP 2017196682 A JP2017196682 A JP 2017196682A JP 2017196682 A JP2017196682 A JP 2017196682A JP 2018046282 A JP2018046282 A JP 2018046282A
Authority
JP
Japan
Prior art keywords
electronic component
component module
electromagnetic wave
substrate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017196682A
Other languages
Japanese (ja)
Inventor
努 早坂
Tsutomu Hayasaka
努 早坂
和規 松戸
Kazunori Matsudo
和規 松戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyochem Co Ltd
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Toyochem Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd, Toyochem Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2017196682A priority Critical patent/JP2018046282A/en
Publication of JP2018046282A publication Critical patent/JP2018046282A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an electronic component module by which an electromagnetic wave shield structure can be easily formed.SOLUTION: The method for manufacturing an electronic component module of the present invention includes: a step of mounting an electronic component 25 on a substrate 10 (11); a step of disposing a conductive sheet 51 having at least a heat radiation layer and a conductive adhesive layer comprising a conductive filler and a binder resin that is softened by heat, above the substrate where the electronic component 25 is mounted; and a step of forming an electromagnetic wave shield layer 50 by hot-pressing the conductive sheet 51 to follow the electronic component 25 and an exposed surface of the substrate 10 (11). The electromagnetic wave shield layer 50 is grounded by contacting a ground pattern 32 connected to the substrate 10 (11).SELECTED DRAWING: Figure 2

Description

本発明は、電磁波シールド層で被覆された電子部品モジュールの製造方法に関する。   The present invention relates to a method for manufacturing an electronic component module covered with an electromagnetic wave shielding layer.

ICチップ等を搭載した電子部品は、外部からの磁場や電波による誤動作を防止するために、通常、電磁波シールド構造が設けられている。例えば、ICなどの電子部品を実装したパッケージを、金属缶によりシールドする方法がある。また、電子部品を実装したパッケージを構成する封止体の表面に、めっき層を形成して接地した電子部品パッケージが提案されている(特許文献1)。   An electronic component equipped with an IC chip or the like is usually provided with an electromagnetic wave shielding structure in order to prevent malfunction caused by an external magnetic field or radio wave. For example, there is a method of shielding a package on which an electronic component such as an IC is mounted with a metal can. Further, an electronic component package in which a plating layer is formed on the surface of a sealing body constituting a package on which the electronic component is mounted and grounded has been proposed (Patent Document 1).

特許文献2においては、導電箔と導電性物質を充填する方法により電子部品モジュールを電磁波シールドする方法が開示されている。具体的には、配線基板上の電極と回路部品とを半田等で接続し、それらを絶縁樹脂で覆った後に、絶縁樹脂の天面に導電箔を形成し、絶縁樹脂の側面の溝に導電性物質を充填することにより、導電性物質を介して絶縁樹脂の天面に設けた導電箔と配線基板のグラウンドパターンとを電気的に接続させる方法が開示されている。   Patent Document 2 discloses a method of electromagnetic shielding an electronic component module by a method of filling a conductive foil and a conductive material. Specifically, the electrodes on the wiring board and circuit components are connected with solder or the like, and after covering them with an insulating resin, a conductive foil is formed on the top surface of the insulating resin, and the conductive resin is formed in the groove on the side surface of the insulating resin. A method of electrically connecting a conductive foil provided on the top surface of an insulating resin and a ground pattern of a wiring board via a conductive substance by filling with a conductive substance is disclosed.

特許文献3においては、電子部品の一部であるモールド樹脂を導電性ペーストで被覆して導電性シールド層を設ける構成が開示されている。より詳細には、モールド樹脂上に導電性ペーストを塗布する工程、及び導電性ペーストを加熱して硬化させる工程を含む導電性シールドを設ける方法が提案されている。   Patent Document 3 discloses a configuration in which a conductive resin layer is provided by coating a mold resin, which is a part of an electronic component, with a conductive paste. More specifically, a method of providing a conductive shield including a step of applying a conductive paste on a mold resin and a step of heating and curing the conductive paste has been proposed.

特開平11−163583号公報JP-A-11-163583 特開2005−159227号公報JP 2005-159227 A 特開2013−207213号公報JP 2013-207213 A

しかし、特許文献1の電子部品モジュールは、めっき層の形成に時間が掛かるため生産性の改善に限界あった。また、特許文献2の電子部品モジュールは、天面の導電箔形成および側面の導電性物質の形成を行う必要があり、電磁波シールド層の形成に少なくとも2ステップを要するため生産性の改善に限界があった。また、特許文献3の電子部品モジュールは、導電性ペーストを塗工して導電性シールド層を形成しているため、厚みにバラつきが生じやすく、生産性についても改善に限界があった。
また、昨今の電子モジュールの高性能化に伴い、発熱量が増加し熱が電子モジュール内に滞留することによって性能が低下する問題があった。
However, the electronic component module of Patent Document 1 has limited improvement in productivity because it takes time to form a plating layer. In addition, the electronic component module of Patent Document 2 requires the formation of the conductive foil on the top surface and the formation of the conductive material on the side surface, and the formation of the electromagnetic wave shielding layer requires at least two steps. there were. In addition, since the electronic component module of Patent Document 3 is formed by applying a conductive paste to form a conductive shield layer, the thickness is likely to vary, and the productivity is limited.
In addition, with the recent high performance of electronic modules, there has been a problem that the amount of heat generation increases and heat is retained in the electronic modules, resulting in a decrease in performance.

本発明は、上記背景に鑑みて成されたものであり、その目的とすることは、電磁波シールド構造および放熱構造を簡易に形成できる電子部品モジュールの製造方法を提供することである。   The present invention has been made in view of the above background, and an object of the present invention is to provide an electronic component module manufacturing method capable of easily forming an electromagnetic wave shielding structure and a heat dissipation structure.

本発明者らが鋭意検討を重ねたところ、以下の態様において、本発明の課題を解決し得ることを見出し、本発明を完成するに至った。
本発明に係る電子部品モジュールの製造方法は、基板上に電子部品を実装する工程と、前記電子部品を実装した前記基板上方に、熱により軟化するバインダー樹脂および導電性フィラーを含有する導電性接着層と、放熱層とを少なくとも有する導電性シートを配置する工程と、前記電子部品および露出する前記基板の表面に追随するように前記導電性シートを熱圧着して電磁波シールド層を形成する工程と、を具備し、前記電磁波シールド層を、前記基板に形成されたグラウンドパターンとアースコンタクトさせる。
As a result of extensive studies by the present inventors, it has been found that the problems of the present invention can be solved in the following modes, and the present invention has been completed.
An electronic component module manufacturing method according to the present invention includes a step of mounting an electronic component on a substrate, and a conductive adhesive containing a binder resin and a conductive filler that are softened by heat above the substrate on which the electronic component is mounted. A step of disposing a conductive sheet having at least a layer and a heat dissipation layer; and a step of forming an electromagnetic wave shielding layer by thermocompression bonding the conductive sheet so as to follow the surface of the electronic component and the exposed substrate. The electromagnetic wave shielding layer is grounded with a ground pattern formed on the substrate.

本発明によれば、めっき工程のような廃液処理の問題が生じず、導電性ペースト塗工のような塗工厚のバラつきが少なく、予め準備した導電性シートを電子部品等に対する熱圧着工程で電磁波シールド構造および放熱構造を形成できたことで、電磁波シールド構造および放熱構造を簡易に形成した電子部品モジュールを得ることができた。   According to the present invention, there is no problem of waste liquid treatment as in the plating process, there is little variation in the coating thickness as in the conductive paste coating, and the conductive sheet prepared in advance in the thermocompression bonding process to electronic components etc. Since the electromagnetic wave shielding structure and the heat dissipation structure could be formed, an electronic component module in which the electromagnetic wave shielding structure and the heat dissipation structure were easily formed could be obtained.

本発明により、電磁波シールド構造を簡易に形成できる電子部品モジュールの製造方法を提供できる。   According to the present invention, an electronic component module manufacturing method capable of easily forming an electromagnetic wave shielding structure can be provided.

第1実施形態に係る電子部品モジュールの模式的断面図。1 is a schematic cross-sectional view of an electronic component module according to a first embodiment. 第1実施形態に係る電子部品モジュールの製造工程断面図。Sectional drawing of the manufacturing process of the electronic component module which concerns on 1st Embodiment. 第1実施形態に係る電子部品モジュールの製造工程断面図。Sectional drawing of the manufacturing process of the electronic component module which concerns on 1st Embodiment. 第1実施形態に係る電子部品モジュールの製造工程断面図。Sectional drawing of the manufacturing process of the electronic component module which concerns on 1st Embodiment. 第2実施形態に係る電子部品モジュールの製造工程断面図。Sectional drawing of the manufacturing process of the electronic component module which concerns on 2nd Embodiment. 第3実施形態に係る電子部品モジュールの製造工程断面図。Manufacturing process sectional drawing of the electronic component module which concerns on 3rd Embodiment. 第4実施形態に係る電子部品モジュールの製造工程断面図。Manufacturing process sectional drawing of the electronic component module which concerns on 4th Embodiment. 第4実施形態に係る電子部品モジュールの製造工程断面図。Manufacturing process sectional drawing of the electronic component module which concerns on 4th Embodiment. 第4実施形態に係る電子部品モジュールの模式的断面図。Typical sectional drawing of the electronic component module which concerns on 4th Embodiment. 第5実施形態に係る電子部品モジュールの製造工程断面図。Manufacturing process sectional drawing of the electronic component module which concerns on 5th Embodiment. 第6実施形態に係る電子部品モジュールの模式的断面図。Typical sectional drawing of the electronic component module which concerns on 6th Embodiment. 第6実施形態に係る電子部品モジュールの製造工程断面図。Manufacturing process sectional drawing of the electronic component module which concerns on 6th Embodiment. 第7実施形態に係る電子部品モジュールの製造工程断面図。Manufacturing process sectional drawing of the electronic component module which concerns on 7th Embodiment. 放熱層を有する導電性シートの構成断面図。The structure sectional view of the conductive sheet which has a heat dissipation layer.

以下、本発明を適用した実施形態の一例について説明する。なお、以降の図における各部材のサイズや比率は、説明の便宜上のものであり、これに限定されるものではない。   Hereinafter, an example of an embodiment to which the present invention is applied will be described. In addition, the size and ratio of each member in the following drawings are for convenience of explanation, and are not limited to this.

[第1実施形態]
図1に、第1実施形態に係る製造方法により得られた電子部品モジュールの模式的断面図を示す。電子部品モジュール1は、図1に示すように、基板10、電子部品25、および電磁波シールド層50等を有する。電子部品25は、集積回路20が封止樹脂40によりモールド成形されている。なお、本発明の電子部品は、前記構成に限定されず、ベアチップ状態の半導体IC,或いはコンデンサ、インダクタ、サーミスタ、抵抗等が絶縁体により保護された電子部品全般に対して適用できる。以下、図2〜4の製造工程断面図を用いて第1実施形態に係る電子部品モジュール1の製造方法を説明する。
[First Embodiment]
FIG. 1 is a schematic cross-sectional view of an electronic component module obtained by the manufacturing method according to the first embodiment. As shown in FIG. 1, the electronic component module 1 includes a substrate 10, an electronic component 25, an electromagnetic wave shield layer 50, and the like. In the electronic component 25, the integrated circuit 20 is molded with a sealing resin 40. The electronic component of the present invention is not limited to the above-described configuration, and can be applied to a bare chip semiconductor IC, or an electronic component in which a capacitor, an inductor, a thermistor, a resistor, and the like are protected by an insulator. Hereinafter, the manufacturing method of the electronic component module 1 according to the first embodiment will be described using the manufacturing process sectional views of FIGS.

(工程1)
まず、図2に示すように、マザー基板11上に電子部品25を実装する。より具体的には、マザー基板11上に、集積回路20を実装し、次いで、集積回路20を封止樹脂40によりモールド成形する。或いは、集積回路を封止樹脂によりモールド成形した電子部品をマザー基板11上に実装してもよい。封止樹脂40の材料は特に限定されないが、熱硬化性樹脂が通常用いられる。封止樹脂40の形成方法は特に限定されず、印刷、ラミネート、トランスファー成形、コンプレッション、注型等が挙げられる。
(Process 1)
First, as shown in FIG. 2, the electronic component 25 is mounted on the mother board 11. More specifically, the integrated circuit 20 is mounted on the mother substrate 11, and then the integrated circuit 20 is molded with the sealing resin 40. Alternatively, an electronic component obtained by molding an integrated circuit with a sealing resin may be mounted on the mother substrate 11. The material of the sealing resin 40 is not particularly limited, but a thermosetting resin is usually used. The method for forming the sealing resin 40 is not particularly limited, and examples thereof include printing, laminating, transfer molding, compression, and casting.

マザー基板11は、電子部品25を実装する基板であり、銅箔等からなる導電パターンを片面又は両面に形成したワークボードである。最終的には、後述する切断工程を経て、個片化した基板10とする。マザー基板11は、電子部品25を実装可能であり、且つ後述する加熱圧着工程(工程3)に耐え得る基板であればよく、任意に選択できる。好適な例として、ガラスエポキシ基板、ガラスコンポジット基板、テフロン(登録商標)基板、セラミックス基板等が挙げられる。   The mother substrate 11 is a substrate on which the electronic component 25 is mounted, and is a work board on which a conductive pattern made of copper foil or the like is formed on one side or both sides. Ultimately, the substrate 10 is separated through a cutting process described later. The mother substrate 11 may be any substrate as long as it can mount the electronic component 25 and can withstand a thermocompression bonding step (step 3) described later. Suitable examples include a glass epoxy substrate, a glass composite substrate, a Teflon (registered trademark) substrate, a ceramic substrate, and the like.

マザー基板11の表面には、電極・配線パターンが形成された導電パターン30が形成されている。導電パターン30は、電子部品25と電気的に接続するための電極・配線パターン31、電磁波シールド層50とアースコンタクトするためのグラウンドパターン32等を有する。導電パターン30の材料は上記目的を達成できればよく、特に限定されないが、Cu、Al、Au,Ag,Ni,Pd,Sn,Cr,W,Fe,Ti,およびSUS材等の金属、ならびにその合金等導電材料が例示できる。マザー基板11の内部および裏面の構造は、用途に応じて任意に設計できる。例えば、マザー基板11の裏面に裏面電極(不図示)を形成し、内部に配線パターン(不図示)およびインナービア(不図示)を形成し、表面電極と裏面電極とを電気的に接続した多層配線基板が例示できる。   On the surface of the mother substrate 11, a conductive pattern 30 on which electrodes and wiring patterns are formed is formed. The conductive pattern 30 includes an electrode / wiring pattern 31 for electrical connection with the electronic component 25, a ground pattern 32 for ground contact with the electromagnetic wave shield layer 50, and the like. The material of the conductive pattern 30 is not particularly limited as long as the above-described object can be achieved. However, metals such as Cu, Al, Au, Ag, Ni, Pd, Sn, Cr, W, Fe, Ti, and SUS material, and alloys thereof An example is an isoconductive material. The structure of the inside and the back surface of the mother substrate 11 can be arbitrarily designed according to the application. For example, a back surface electrode (not shown) is formed on the back surface of the mother substrate 11, a wiring pattern (not shown) and an inner via (not shown) are formed inside, and a multilayer in which the front electrode and the back electrode are electrically connected. A wiring board can be exemplified.

電子部品25は、マザー基板11上のX方向およびY方向にアレイ状に複数(例えば、X方向に6、Y方向に50)形成されている。マザー基板11に形成された電極・配線パターン31と集積回路20とは、半田もしくは導電性接着剤等の導電体(不図示)を介して電気的に接続され、固設されている。   A plurality of electronic components 25 are formed in an array in the X direction and the Y direction on the mother substrate 11 (for example, 6 in the X direction and 50 in the Y direction). The electrode / wiring pattern 31 formed on the mother substrate 11 and the integrated circuit 20 are electrically connected and fixed via a conductor (not shown) such as solder or a conductive adhesive.

集積回路20は、図1のように1つの電子部品モジュール1に対して1つ実装しても、複数実装してもよい。また、図2のようにアレイ状に電子部品25を配置する態様に代えて、電子部品25を任意の位置に配置することもできる。また、マザー基板11から複数の電子部品モジュール1を製造する場合のみならず、プリント配線板等の基板10から一の電子部品モジュールを製造する場合にも、本製造方法を適用することができる。   One integrated circuit 20 or a plurality of integrated circuits 20 may be mounted on one electronic component module 1 as shown in FIG. Moreover, it replaces with the aspect which arrange | positions the electronic component 25 in an array form like FIG. 2, and the electronic component 25 can also be arrange | positioned in arbitrary positions. Moreover, this manufacturing method can be applied not only when manufacturing a plurality of electronic component modules 1 from the mother substrate 11 but also when manufacturing one electronic component module from the substrate 10 such as a printed wiring board.

(工程2)
図2に示すように電子部品25を実装した基板上方に、導電性接着層52と、放熱層53とを少なくとも有する導電性シート51を配置する。製造工程の簡略化の観点からは、マザー基板11上に実装された複数の電子部品25全体に1枚の導電性シート51を用いることが好ましいが、製造設備あるいはマザー基板のサイズ等に応じて、マザー基板11の領域毎に複数の導電性シート51を用いたり、電子部品25毎に導電性シート51を配設したりしてもよい。
(Process 2)
As shown in FIG. 2, a conductive sheet 51 having at least a conductive adhesive layer 52 and a heat dissipation layer 53 is disposed above the substrate on which the electronic component 25 is mounted. From the viewpoint of simplifying the manufacturing process, it is preferable to use one conductive sheet 51 for the entire plurality of electronic components 25 mounted on the mother substrate 11, but depending on the manufacturing equipment or the size of the mother substrate, etc. A plurality of conductive sheets 51 may be used for each area of the mother substrate 11, or the conductive sheets 51 may be provided for each electronic component 25.

導電性シート51は、前述した様に少なくとも導電性接着層52と、放熱層53とを有する。導電性接着層52は、熱により軟化するバインダー樹脂および導電性フィラーを少なくとも含有する組成物を用いて形成された層である。熱圧着時の取扱い容易性の観点から、導電性シート51は、図2に示すような導電性接着層52と、放熱層53との積層体が好ましい。導電性接着層52は、単層でも複数層でもよい。複数層で形成する場合には、最外層を流動性のより高い層で構成することが好ましい。   As described above, the conductive sheet 51 has at least the conductive adhesive layer 52 and the heat dissipation layer 53. The conductive adhesive layer 52 is a layer formed using a composition containing at least a binder resin softened by heat and a conductive filler. From the viewpoint of easy handling during thermocompression bonding, the conductive sheet 51 is preferably a laminate of a conductive adhesive layer 52 and a heat dissipation layer 53 as shown in FIG. The conductive adhesive layer 52 may be a single layer or a plurality of layers. In the case of forming with a plurality of layers, it is preferable that the outermost layer is composed of a layer having higher fluidity.

導電性接着層52は、150℃、圧力5kg/cmの条件で30分熱圧着した場合におけるフロー量が、0.05mm以上、2mm以下であることが好ましく、0.1mm以上、1mm以下がより好ましく、0.1mm以上、0.5mm以下がさらに好ましい。0.05mm以上、2mm以下の範囲とすることにより、電子部品25およびマザー基板11を被覆するために適度な流動性が得られる。なお、フロー量とは、導電性接着層52を上記条件で圧着した際、導電性接着層52の元のサイズに対して側面部からはみ出した長さをいう。なお、本製造工程の熱圧着工程の温度および圧力は、150℃、5kg/cmの条件で行う必要はなく、電子部品25の耐熱性、製造設備あるいはニーズに応じて、電磁波シールド層の被覆性が確保できる範囲においてそれぞれ独立に任意に設定できる。0.1mm以上、2mm以下のフロー量が得られる温度条件・圧力条件に設定することが好ましい。圧力範囲としては、前記フロー量が得られる圧力であることが好ましく限定されないが、1〜10kg/cm程度が好ましく、2〜8kg/cm程度がより好ましい。圧着時間は、前記フロー量が得られる時間であることが好ましく限定されないが、1分〜30分程度が好ましい。導電性シートは、前記フロー量が得られる厚さの導電性シートを使用すればよい。 The conductive adhesive layer 52 preferably has a flow amount of 0.05 mm or more and 2 mm or less, and 0.1 mm or more and 1 mm or less when thermocompression bonding is performed for 30 minutes at 150 ° C. and a pressure of 5 kg / cm 2. More preferably, it is 0.1 mm or more and 0.5 mm or less. By setting the thickness in the range of 0.05 mm or more and 2 mm or less, moderate fluidity can be obtained for covering the electronic component 25 and the mother substrate 11. The flow amount refers to a length that protrudes from the side surface with respect to the original size of the conductive adhesive layer 52 when the conductive adhesive layer 52 is pressure-bonded under the above conditions. The temperature and pressure in the thermocompression bonding process of this manufacturing process do not have to be performed under the conditions of 150 ° C. and 5 kg / cm 2 , and the electromagnetic shielding layer is coated according to the heat resistance of the electronic component 25, the manufacturing equipment, or needs. Each can be set independently and independently within a range in which the property can be secured. It is preferable to set the temperature and pressure conditions so that a flow amount of 0.1 mm or more and 2 mm or less is obtained. The pressure range, the flow amount but is not limited, it is preferably a pressure to be obtained, preferably about 1 to 10 kg / cm 2, about 2~8kg / cm 2 is more preferable. The crimping time is preferably not limited to a time for obtaining the flow amount, but is preferably about 1 to 30 minutes. What is necessary is just to use the electroconductive sheet of the thickness from which the said flow amount is obtained as an electroconductive sheet.

導電性接着層52の厚みは、後述する熱圧着工程(工程3)の際に溝61に導電性接着層52を充填せしめ、且つ電子部品25の天面にも被覆することが可能な厚みとする。用いるバインダー樹脂の流動性や、溝61のサイズにより変動し得るが、通常、10〜500μm程度が好ましく、20〜300μm程度がより好ましく、30〜100μm程度がさらに好ましい。これにより、封止樹脂40への被覆性を良好にしつつ、電磁波シールド性を効果的に発揮することができる。   The thickness of the conductive adhesive layer 52 is such that the groove 61 is filled with the conductive adhesive layer 52 in the thermocompression bonding step (step 3) to be described later and the top surface of the electronic component 25 can be covered. To do. Although it may vary depending on the fluidity of the binder resin used and the size of the groove 61, it is usually preferably about 10 to 500 μm, more preferably about 20 to 300 μm, and further preferably about 30 to 100 μm. Thereby, the electromagnetic wave shielding property can be effectively exhibited while improving the covering property to the sealing resin 40.

導電性接着層52を構成するバインダー樹脂のTgは、−20℃以上、100℃以下が好ましく、0℃以上、80℃以下がより好ましい。バインダー樹脂は、1種類を用いても複数種類を併用してもよい。複数種類を用いる場合は、混合前のTgが上記範囲に含まれているものを主成分とすることが好ましい。導電性接着層52の材料は、熱圧着時に軟化して電子部品25および露出するマザー基板11の表面に追随する流れ性があり、電磁波シールド性を発揮できる導電特性を有していればよく、特に限定されない。   The Tg of the binder resin constituting the conductive adhesive layer 52 is preferably −20 ° C. or higher and 100 ° C. or lower, and more preferably 0 ° C. or higher and 80 ° C. or lower. One type of binder resin may be used or a plurality of types may be used in combination. In the case of using a plurality of types, it is preferable that the main component is Tg before mixing included in the above range. The material of the conductive adhesive layer 52 only needs to have a flow property that softens during thermal compression and follows the surface of the electronic component 25 and the exposed mother substrate 11, and has a conductive property that can exhibit electromagnetic shielding properties. There is no particular limitation.

バインダー樹脂としては、本発明の趣旨を逸脱しない範囲で特に限定されないが、熱硬化性樹脂が好ましい。また、後工程においてリフロー工程等の加熱工程が無い用途においては、熱可塑性樹脂が好ましい。熱硬化性樹脂は、自己架橋性タイプおよび硬化剤反応タイプが使用できる。硬化剤反応タイプのバインダー樹脂としては、硬化剤と反応可能な反応性官能基が結合された熱硬化性樹脂が好適である。   Although it does not specifically limit as binder resin in the range which does not deviate from the meaning of this invention, A thermosetting resin is preferable. In applications where there is no heating step such as a reflow step in the subsequent step, a thermoplastic resin is preferred. As the thermosetting resin, a self-crosslinking type and a curing agent reaction type can be used. As the curing agent reaction type binder resin, a thermosetting resin to which a reactive functional group capable of reacting with the curing agent is bonded is preferable.

熱硬化性樹脂は、エポキシ、アクリル、ウレタン、ポリスチレン、ポリカーボネート、ポリアミド、ポリアミドイミド、ポリエステルアミド、ポリエーテルエステル、ウレタンウレア、およびポリイミド等が好ましい。前記熱硬化性樹脂は、通常、自己架橋可能な官能基、または硬化剤と反応可能な官能基を有している。これらの中でも電子部品モジュール1を搭載する電子機器を製造する時(例えば、リフロー時)における過酷な条件を考慮すると、熱硬化性樹脂は、エポキシ、エポキシエステル、ウレタン、ウレタンウレア、およびポリアミドのうちの少なくとも1つを含んでいることが好ましい。また、加熱工程に耐え得る範囲であれば、熱硬化性樹脂と熱可塑性樹脂を併用できる。   The thermosetting resin is preferably epoxy, acrylic, urethane, polystyrene, polycarbonate, polyamide, polyamideimide, polyesteramide, polyether ester, urethane urea, polyimide, or the like. The thermosetting resin usually has a functional group capable of self-crosslinking or a functional group capable of reacting with a curing agent. Among these, in consideration of harsh conditions when manufacturing an electronic device in which the electronic component module 1 is mounted (for example, at the time of reflow), the thermosetting resin is an epoxy, epoxy ester, urethane, urethane urea, or polyamide. It is preferable that at least one of these is included. Moreover, if it is the range which can endure a heating process, a thermosetting resin and a thermoplastic resin can be used together.

硬化剤は、前記硬化性官能基と反応可能な官能基を複数有している。硬化剤は、エポキシ化合物、酸無水物基含有化合物、イソシアネート化合物、アジリジン化合物、ジシアンジアミド、芳香族ジアミン等のアミン化合物、フェノールノボラック樹脂等のフェノール化合物等が好ましい。   The curing agent has a plurality of functional groups capable of reacting with the curable functional group. The curing agent is preferably an epoxy compound, an acid anhydride group-containing compound, an isocyanate compound, an aziridine compound, an amine compound such as dicyandiamide, an aromatic diamine, or a phenol compound such as a phenol novolac resin.

硬化剤は、熱硬化性樹脂100質量部に対して1〜100質量部含むことが好ましく、3〜70重量部がより好ましく、3〜50重量部がさらに好ましい。   It is preferable that 1-100 mass parts is contained with respect to 100 mass parts of thermosetting resins, as for a hardening | curing agent, 3-70 weight part is more preferable, and 3-50 weight part is further more preferable.

熱可塑性樹脂は、ポリエステル、アクリル、ポリエーテル、ウレタン、スチレンエラストマー、ポリカーボネート、ブタジエン、ポリアミド、エステルアミド、イソプレン、およびセルロース等が好ましい。   The thermoplastic resin is preferably polyester, acrylic, polyether, urethane, styrene elastomer, polycarbonate, butadiene, polyamide, ester amide, isoprene, cellulose or the like.

導電性フィラーは、導電特性を有し、電磁波シールド性を発揮できれば特に限定されないが、金、銀、銅等の金属およびその合金、または、導電性高分子が例示できる。導電性フィラーの形状は特に限定されず、例えば、球状、フレーク状、樹枝状等が挙げられる。導電性フィラーの含有量は、バインダー樹脂100質量部に対して、30〜1000質量部含むことが好ましく、40〜800質量部がより好ましい。この範囲とすることにより、電磁波シールド性とフロー性を両立し易くなるという効果が得られる。   The conductive filler is not particularly limited as long as it has conductive properties and can exhibit electromagnetic wave shielding properties, but examples thereof include metals such as gold, silver and copper, alloys thereof, and conductive polymers. The shape of the conductive filler is not particularly limited, and examples thereof include a spherical shape, a flake shape, and a dendritic shape. The content of the conductive filler is preferably 30 to 1000 parts by mass and more preferably 40 to 800 parts by mass with respect to 100 parts by mass of the binder resin. By setting it as this range, the effect that it becomes easy to make electromagnetic shielding property and flow property compatible is acquired.

導電性フィラーの平均粒子径は、1〜50μmが好ましい。なお平均粒子径は、走査型電子顕微鏡の拡大画像(例えば千倍〜一万倍)から約10〜20個程度を平均した数値である。また、導電性フィラーが長さ方向と横方向で長さが大きく異なる場合(アスペクトフ比が1.5以上の場合)は、長さ方向で平均粒子径を算出する。   The average particle diameter of the conductive filler is preferably 1 to 50 μm. In addition, an average particle diameter is a numerical value which averaged about 10-20 from the enlarged image (for example, 1000 times-10,000 times) of the scanning electron microscope. When the length of the conductive filler is greatly different between the length direction and the lateral direction (when the aspect ratio is 1.5 or more), the average particle diameter is calculated in the length direction.

さらに、導電性接着層を構成する組成物には、着色剤、難燃剤、無機添加剤、滑剤、ブロッキング防止剤等を含んでいてもよい。
着色剤としては、例えば、有機顔料、カーボンブラック、群青、弁柄、亜鉛華、酸化チタン、黒鉛等が挙げられる。
難燃剤としては、例えば、ハロゲン含有難燃剤、りん含有難燃剤、窒素含有難燃剤、無機難燃剤等が挙げられる。
無機添加剤としては、例えば、ガラス繊維、シリカ、タルク、セラミック等が挙げられる。
滑剤としては、例えば、脂肪酸エステル、炭化水素樹脂、パラフィン、高級脂肪酸、脂肪酸アミド、脂肪族アルコール、金属石鹸、変性シリコーン等が挙げられる。
ブロッキング防止剤としては、例えば、炭酸カルシウム、シリカ、ポリメチルシルセスキオサン、ケイ酸アルミニウム塩等が挙げられる。
Furthermore, the composition constituting the conductive adhesive layer may contain a colorant, a flame retardant, an inorganic additive, a lubricant, an antiblocking agent, and the like.
Examples of the colorant include organic pigments, carbon black, ultramarine blue, petals, zinc white, titanium oxide, and graphite.
Examples of the flame retardant include a halogen-containing flame retardant, a phosphorus-containing flame retardant, a nitrogen-containing flame retardant, and an inorganic flame retardant.
Examples of the inorganic additive include glass fiber, silica, talc, and ceramic.
Examples of the lubricant include fatty acid esters, hydrocarbon resins, paraffin, higher fatty acids, fatty acid amides, aliphatic alcohols, metal soaps, and modified silicones.
Examples of the anti-blocking agent include calcium carbonate, silica, polymethylsilsesquiosan, aluminum silicate salt and the like.

放熱層53は、蒸着膜、金属箔、金属メッシュ、金属性の不織布、熱伝導性フィラーを含有する樹脂塗膜、およびグラファイトシートから選択されたいずれかが、導電性接着剤層52にシート状に積層されている。
この放熱層53の選択は、要求される放熱性に応じて決めることができる。
The heat-dissipating layer 53 is selected from a vapor-deposited film, a metal foil, a metal mesh, a metallic nonwoven fabric, a resin coating containing a thermally conductive filler, and a graphite sheet. Are stacked.
The selection of the heat dissipation layer 53 can be determined according to the required heat dissipation.

熱伝導性フィラーを含有する樹脂塗膜とは、バインダー樹脂中に熱伝導性フィラーを混合分散した混合物をシート状に形成したものである。   The resin coating film containing a heat conductive filler is a sheet formed from a mixture in which a heat conductive filler is mixed and dispersed in a binder resin.

熱伝導性フィラーを含有する樹脂塗膜に用いるバインダー樹脂は、導電性シートで説明したバインダー樹脂と同様のものを使用することができる。熱電導性フィラーは熱伝導性を有するものであれば特に限定されず、例えば、酸化アルミニウム、酸化カルシウム、酸化マグネシウム等の金属酸化物、窒化アルミニウム、窒化ホウ素等の金属窒化物、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、炭酸カルシウム、炭酸マグネシウム等の炭酸金属塩、ケイ酸カルシウム等のケイ酸金属塩、水和金属化合物、結晶性シリカ、非結晶性シリカ、炭化ケイ素またはこれらの複合物等が挙げられる。この中でも、金属酸化物、金属窒化物が好適に用いられ、なかでも熱伝導率の観点から、酸化アルミニウム、窒化アルミニウム、窒化ホウ素がより好適に用いられる。
これらは、1種を単独で用いても良く、2種以上を併用することもできる。
The binder resin used for the resin coating film containing the thermally conductive filler can be the same as the binder resin described for the conductive sheet. The thermal conductive filler is not particularly limited as long as it has thermal conductivity. For example, metal oxides such as aluminum oxide, calcium oxide, and magnesium oxide, metal nitrides such as aluminum nitride and boron nitride, aluminum hydroxide, Metal hydroxides such as magnesium hydroxide, metal carbonates such as calcium carbonate and magnesium carbonate, metal silicates such as calcium silicate, hydrated metal compounds, crystalline silica, amorphous silica, silicon carbide or these A composite etc. are mentioned. Among these, metal oxides and metal nitrides are preferably used, and aluminum oxide, aluminum nitride, and boron nitride are more preferably used from the viewpoint of thermal conductivity.
These may be used alone or in combination of two or more.

(工程3)
電子部品25および露出するマザー基板11の表面に追随するように導電性シート51を熱圧着する。これにより、図3に示すように、電子部品25を被覆する電磁波シールド層50が形成される。熱圧着時の温度および圧力は、用いる導電性接着層52の特性により変動し得るが、加熱の温度は、封止樹脂40と電磁波シールド層50との充分な接合を確保する観点から、100℃以上であることが好ましく、より好ましくは110℃以上、更に好ましくは120℃以上である。また、上限値としては、電子部品25の耐熱性に依存するが、220℃以下であることが好ましく、200℃以下であることがより好ましく、180℃以下であることが更に好ましい。圧力の範囲は、平滑性・製造効率の観点から、1kg/cm以上であることが好ましく、3kg/cm以上であることがより好ましく、5kg/cm以上であることが更に好ましい。また、上限値としては、電子部品25およびマザー基板11の耐圧性の観点から、100kg/cm以下であることが好ましく、80kg/cm以下であることがより好ましく、50kg/cm以下であることが更に好ましい。
熱圧着時間は、電子部品の耐熱性、導電性シートに用いるバインダー樹脂、および生産工程等に応じて設定できる。バインダー樹脂として熱硬化性樹脂を用いる場合には、1分〜2時間程度の範囲が好適である。なお熱圧着時間は、1分〜1時間程度がより好ましい。この熱圧着により熱硬化性樹脂は、硬化する。ただし、熱硬化性樹脂は、流動が可能であれば熱圧着前に硬化してもよい。
(Process 3)
The conductive sheet 51 is thermocompression bonded so as to follow the electronic component 25 and the exposed surface of the mother substrate 11. Thereby, as shown in FIG. 3, the electromagnetic wave shielding layer 50 which covers the electronic component 25 is formed. The temperature and pressure at the time of thermocompression bonding may vary depending on the characteristics of the conductive adhesive layer 52 to be used, but the heating temperature is 100 ° C. from the viewpoint of ensuring sufficient bonding between the sealing resin 40 and the electromagnetic wave shielding layer 50. It is preferable that it is above, More preferably, it is 110 degreeC or more, More preferably, it is 120 degreeC or more. Moreover, although it depends on the heat resistance of the electronic component 25 as an upper limit, it is preferable that it is 220 degrees C or less, It is more preferable that it is 200 degrees C or less, It is still more preferable that it is 180 degrees C or less. From the viewpoint of smoothness and production efficiency, the pressure range is preferably 1 kg / cm 2 or more, more preferably 3 kg / cm 2 or more, and still more preferably 5 kg / cm 2 or more. Further, the upper limit value is preferably 100 kg / cm 2 or less, more preferably 80 kg / cm 2 or less, and 50 kg / cm 2 or less from the viewpoint of pressure resistance of the electronic component 25 and the mother substrate 11. More preferably it is.
The thermocompression bonding time can be set according to the heat resistance of the electronic component, the binder resin used for the conductive sheet, the production process, and the like. When a thermosetting resin is used as the binder resin, a range of about 1 minute to 2 hours is preferable. The thermocompression bonding time is more preferably about 1 minute to 1 hour. The thermosetting resin is cured by this thermocompression bonding. However, the thermosetting resin may be cured before thermocompression bonding as long as it can flow.

導電性シート51を上方側から熱圧着することにより、バインダー樹脂が軟化して溝61に導電性接着層52が流れ込み、溝61に充填され、封止樹脂40の天面および側面ならびにマザー基板の露出面に電磁波シールド層50が形成される。そして、電子部品25の側方に位置するマザー基板11上において、封止樹脂40から突出するように形成されたグラウンドパターン32が、電磁波シールド層50とアースコンタクトされて、電磁波シールド構造が形成される。   By thermally pressing the conductive sheet 51 from the upper side, the binder resin is softened and the conductive adhesive layer 52 flows into the groove 61 and fills the groove 61, and the top and side surfaces of the sealing resin 40 and the mother substrate. An electromagnetic wave shielding layer 50 is formed on the exposed surface. Then, on the mother substrate 11 located on the side of the electronic component 25, the ground pattern 32 formed so as to protrude from the sealing resin 40 is brought into ground contact with the electromagnetic wave shielding layer 50 to form an electromagnetic wave shielding structure. The

溝61の深さhおよび幅wは、導電性接着層52が熱圧着工程で充填できる範囲であればよく限定されないが、深さhは、例えば50〜1000μm程度であり、幅wは、例えば、100〜1000μm程度である。   The depth h and the width w of the groove 61 are not limited as long as the conductive adhesive layer 52 can be filled in the thermocompression bonding process, but the depth h is, for example, about 50 to 1000 μm, and the width w is, for example, , About 100 to 1000 μm.

電子部品25の天面上に形成される電磁波シールド層50の厚みは、用途により適宜設計し得る。薄型化が求められている用途の場合には、例えば1〜10μm程度が好ましく、1〜8μm程度がより好ましい。また、高周波ノイズを精度高くシールドする場合には、例えば、50〜1000μm等の厚膜とすることも可能であるが、通常、5〜200μm程度である。なお、電磁波シールド層は、等方導電性および異方導電性を適宜選択できる。   The thickness of the electromagnetic shielding layer 50 formed on the top surface of the electronic component 25 can be appropriately designed depending on the application. In the case of applications where thinning is required, for example, about 1 to 10 μm is preferable, and about 1 to 8 μm is more preferable. In addition, when shielding high-frequency noise with high accuracy, it is possible to use a thick film of, for example, 50 to 1000 μm, but it is usually about 5 to 200 μm. The electromagnetic wave shielding layer can be appropriately selected from isotropic conductivity and anisotropic conductivity.

また、電子部品25を封止する封止樹脂40の天面には、導電性接着層52に積層された放熱層53によって放熱構造が形成される。この放熱層53の材質、厚み等は要求される放熱性、製造時の加熱温度、加熱圧力等に基づいて決められる。   In addition, a heat dissipation structure is formed on the top surface of the sealing resin 40 that seals the electronic component 25 by the heat dissipation layer 53 laminated on the conductive adhesive layer 52. The material, thickness, and the like of the heat dissipation layer 53 are determined based on required heat dissipation, heating temperature at the time of manufacture, heating pressure, and the like.

(工程4)
工程3の後、図4に示すように、電磁波シールド層50およびマザー基板11を切削する。例えば、ダイシングブレード等を用いて、マザー基板11における電子部品モジュール1の個品の製品エリアに対応する位置でXY方向にダイシングする。これにより、電子部品25が電磁波シールド層50で被覆され、且つ基板10に形成されたグラウンドパターン32と電磁波シールド層50がアースコンタクトされた電子部品モジュール1が得られる。
(Process 4)
After step 3, as shown in FIG. 4, the electromagnetic wave shielding layer 50 and the mother substrate 11 are cut. For example, using a dicing blade or the like, dicing is performed in the XY directions at a position corresponding to the product area of the individual electronic component module 1 on the mother substrate 11. Thereby, the electronic component module 1 in which the electronic component 25 is covered with the electromagnetic wave shielding layer 50 and the ground pattern 32 formed on the substrate 10 and the electromagnetic wave shielding layer 50 are grounded is obtained.

従来、電磁波シールド層を形成する方法として、前述した様に金属缶を嵌合する方法、めっき処理する方法、導電性ペーストを塗布する方法等が提案されてきた。しかしながら、金属缶を嵌合する方法は、汎用性が高いとは言えなかった。また、めっき処理する方法や導電性ペーストを塗布する方法は、処理工程が煩雑であるという問題があった。また、めっき処理や導電性ペーストを行う方法においては、電磁波シールド層の天面の平滑性に課題があった。   Conventionally, as a method of forming an electromagnetic wave shielding layer, a method of fitting a metal can, a method of plating, a method of applying a conductive paste, and the like have been proposed. However, it cannot be said that the method of fitting a metal can has high versatility. In addition, the plating method and the method of applying a conductive paste have a problem that the processing steps are complicated. Moreover, in the method of performing a plating process and an electrically conductive paste, there existed a subject in the smoothness of the top | upper surface of an electromagnetic wave shield layer.

第1実施形態に係る電子部品モジュールの製造方法によれば、電子部品を覆う封止樹脂を電磁波シールド層により被覆しているので、高い電磁波シールド性を発揮できる。また、導電性接着層と、放熱層とを少なくとも有する導電性シートを用いて電磁波シールド層を形成しているので、電磁波シールド構造と放熱構造が形成された電子部品モジュールの製造工程の簡便化を図ることができる。また、アレイ状に配置された電子部品に対して一括して処理できるので、製造時間の短縮化を図ることができる。更に、導電性シートをマザー基板の面方向に押圧して圧着させているので、電子部品の天面の電磁波シールド層の平滑性に優れる。このため、製品名あるいはロット番号をインクジェット方式やレーザーマーキング方式で印字した際、文字の視認性が向上した高品質な電子部品モジュールを提供できる。
また、この製造方法により得られた電子部品モジュールには、放熱構造としての放熱層53が形成されているので、電子部品25の動作時に放出される熱が放熱層53から効率よく外部に放熱される。この結果、電子部品25の動作時に放出される熱が封止樹脂40内に滞留することにより生ずる電子部品の機能低下等の発生を有効に防止することができる。
According to the method for manufacturing the electronic component module according to the first embodiment, since the sealing resin that covers the electronic component is covered with the electromagnetic wave shielding layer, high electromagnetic wave shielding properties can be exhibited. Moreover, since the electromagnetic wave shielding layer is formed using the conductive sheet having at least the conductive adhesive layer and the heat radiation layer, the manufacturing process of the electronic component module having the electromagnetic wave shielding structure and the heat radiation structure can be simplified. Can be planned. Further, since electronic components arranged in an array can be processed in a lump, manufacturing time can be shortened. Furthermore, since the conductive sheet is pressed and pressed in the surface direction of the mother board, the electromagnetic wave shielding layer on the top surface of the electronic component is excellent in smoothness. For this reason, when a product name or lot number is printed by an inkjet method or a laser marking method, a high-quality electronic component module with improved character visibility can be provided.
Moreover, since the heat dissipation layer 53 as a heat dissipation structure is formed in the electronic component module obtained by this manufacturing method, the heat released during the operation of the electronic component 25 is efficiently dissipated from the heat dissipation layer 53 to the outside. The As a result, it is possible to effectively prevent the deterioration of the function of the electronic component caused by the heat released during the operation of the electronic component 25 staying in the sealing resin 40.

[第2実施形態]
次に、第1実施形態とは異なる製造方法の一例について説明する。第2実施形態に係る製造方法は、以下の点を除く基本的な構造および製造方法が上記第1実施形態と同様である。即ち、第2実施形態の導電性シートは、凹凸パターンが形成されている点において、導電性シートに凹凸パターンが形成されていない第1実施形態と相違する。なお、以降の図において、同一の要素部材には同一の符号を付し、適宜その説明を省略する。
[Second Embodiment]
Next, an example of a manufacturing method different from the first embodiment will be described. The manufacturing method according to the second embodiment has the same basic structure and manufacturing method as the first embodiment except for the following points. That is, the conductive sheet of the second embodiment is different from the first embodiment in which the concave and convex pattern is not formed on the conductive sheet in that the concave and convex pattern is formed. In the following drawings, the same element members are denoted by the same reference numerals, and the description thereof is omitted as appropriate.

図5に、第2実施形態に係る工程1の製造工程断面図を示す。導電性シート51aを構成する導電性接着層52aは、マザー基板11上に形成された電子部品25間である溝61に対応する位置に凸部62が形成され、上面視において電子部品25の天面に対応する位置に略同一形状の凹部63が形成されている。   In FIG. 5, the manufacturing process sectional drawing of the process 1 which concerns on 2nd Embodiment is shown. The conductive adhesive layer 52a constituting the conductive sheet 51a has convex portions 62 formed at positions corresponding to the grooves 61 between the electronic components 25 formed on the mother substrate 11, and the top of the electronic component 25 is viewed from above. A recess 63 having substantially the same shape is formed at a position corresponding to the surface.

凸部62の高さおよび幅は、電子部品25の深さh、幅wに嵌め込むように略同一のサイズとしてもよいし、小さいサイズとして、加熱時に充填させるようにしてもよい。導電性接着層52aの凸部は、印刷、フォトリソグラフィーまたはリフトオフ法等により形成することができる。   The height and width of the convex portion 62 may be substantially the same size so as to be fitted into the depth h and width w of the electronic component 25, or may be filled as a small size. The convex portion of the conductive adhesive layer 52a can be formed by printing, photolithography, a lift-off method, or the like.

第2実施形態によれば、導電性シートを用いて電磁波シールド層を形成しているので、製造工程の簡便化・短縮化を図ることができる。また、電磁波シールド層の天面の平滑性にも優れる。更に、導電性接着層52aのフロー量が小さい樹脂でも溝61に好適に充填できる。また、溝61が深い用途に特に好適である。   According to the second embodiment, since the electromagnetic wave shielding layer is formed using the conductive sheet, the manufacturing process can be simplified and shortened. Moreover, it is excellent in the smoothness of the top surface of the electromagnetic wave shielding layer. Furthermore, the groove 61 can be suitably filled with a resin having a small flow amount of the conductive adhesive layer 52a. Moreover, it is particularly suitable for applications where the groove 61 is deep.

なお、導電性シート51aに絶縁パターンを積層することも可能である。例えば、マザー基板11の表面において短絡することを避けるために、凸部62の所望の位置に絶縁パターンを形成したり、集積回路20を絶縁保護するために、凹部63の表面に更に絶縁層を積層したりすることも可能である。   It is also possible to stack an insulating pattern on the conductive sheet 51a. For example, in order to avoid a short circuit on the surface of the mother substrate 11, an insulating pattern is formed at a desired position of the convex portion 62, or an insulating layer is further provided on the surface of the concave portion 63 to insulate and protect the integrated circuit 20. It is also possible to laminate them.

[第3実施形態]
第3実施形態に係る製造方法および電子部品モジュールの構成は、封止樹脂の形状が異なる点を除き、第1実施形態と同様である。
[Third Embodiment]
The configuration of the manufacturing method and the electronic component module according to the third embodiment is the same as that of the first embodiment except that the shape of the sealing resin is different.

図6に、第3実施形態に係る工程2の製造工程断面図を示す。電子部品25bの封止樹脂40bは、電磁波シールド層50の被覆性を高めるために、電子部品25bの天面に向かうにつれて面積が減少するようなテーパー形状が設けられている。   FIG. 6 shows a cross-sectional view of the manufacturing process of the process 2 according to the third embodiment. The sealing resin 40b of the electronic component 25b is provided with a taper shape such that the area decreases toward the top surface of the electronic component 25b in order to improve the coverage of the electromagnetic wave shielding layer 50.

第3実施形態によれば、第1実施形態と同様の効果を得ることができる。また、テーパー形状を設けることにより、電磁波シールド層50の電子部品25bの側面に対する被覆性をより効果的に良好にすることができる。   According to the third embodiment, the same effect as that of the first embodiment can be obtained. Further, by providing the tapered shape, the coverage of the electromagnetic wave shielding layer 50 on the side surface of the electronic component 25b can be more effectively improved.

[第4実施形態]
第4実施形態製造方法および電子部品モジュールは、以下の点を除き、基本的な構造および製造方法が第1実施形態と同様である。即ち、電磁波シールド層が封止樹脂40のまわりのみならず基板10の側面にも設けられている点において第1実施形態と相違する。また、基板の切断工程のタイミング、封止樹脂の形成方法が、第1実施形態と相違する。
[Fourth Embodiment]
The basic structure and manufacturing method of the fourth embodiment manufacturing method and electronic component module are the same as those of the first embodiment except for the following points. That is, it differs from the first embodiment in that the electromagnetic wave shielding layer is provided not only around the sealing resin 40 but also on the side surface of the substrate 10. Further, the timing of the substrate cutting process and the method of forming the sealing resin are different from those of the first embodiment.

図7に、第4実施形態に係る工程1の製造工程断面図を示す。同図に示すように、マザー基板11上に集積回路20を実装し、マザー基板11の略全面に封止樹脂40cを形成する。そして、マザー基板11を載置台64に固定した後に、切削工程により製品エリアに対応する位置でダイシング等により封止樹脂40cおよびマザー基板11を切断する。これにより、図8に示すような個片化された基板10cと電子部品25cが得られる。この際、後述する加熱圧着工程(工程3)で導電性シートの導電性接着層が溝61に充分に充填されるように、幅wを決定する。   In FIG. 7, the manufacturing process sectional drawing of the process 1 which concerns on 4th Embodiment is shown. As shown in the figure, the integrated circuit 20 is mounted on the mother substrate 11, and a sealing resin 40 c is formed on substantially the entire surface of the mother substrate 11. And after fixing the mother board | substrate 11 to the mounting base 64, the sealing resin 40c and the mother board | substrate 11 are cut | disconnected by the dicing etc. in the position corresponding to a product area by a cutting process. Thereby, the board | substrate 10c and the electronic component 25c which were separated into pieces as shown in FIG. 8 are obtained. At this time, the width w is determined so that the groove 61 is sufficiently filled with the conductive adhesive layer of the conductive sheet in a thermocompression bonding step (step 3) described later.

次いで、第1実施形態と同様の方法にて、基板10cの側方および封止樹脂40cの側方および封止樹脂40cの天面を被覆する電磁波シールド層50cを得る。そして、切削工程により製品エリアに対応する位置で電磁波シールド層50cを切断することにより、図9に示すような電子部品モジュール2を得る。   Next, an electromagnetic wave shielding layer 50c that covers the side of the substrate 10c, the side of the sealing resin 40c, and the top surface of the sealing resin 40c is obtained by the same method as in the first embodiment. Then, the electromagnetic wave shielding layer 50c is cut at a position corresponding to the product area by the cutting process, thereby obtaining the electronic component module 2 as shown in FIG.

第4実施形態によれば、第1実施形態と同様の効果を得ることができる。加えて、基板10cの側方も電磁波シールド層50cを容易な製造工程により被覆できる。   According to the fourth embodiment, the same effect as in the first embodiment can be obtained. In addition, the side of the substrate 10c can be covered with the electromagnetic wave shielding layer 50c by an easy manufacturing process.

[第5実施形態]
第5実施形態に係る電子部品モジュールおよびその製造方法は、以下の点を除き、基本的な構造および製造方法が第4実施形態と同様である。即ち、封止樹脂の製造方法が第1実施形態と同様である点およびマザー基板の厚み方向上方のみに溝を形成する点において第4実施形態と相違する。
[Fifth Embodiment]
The electronic component module and the manufacturing method thereof according to the fifth embodiment have the same basic structure and manufacturing method as those of the fourth embodiment except for the following points. That is, the fourth embodiment is different from the fourth embodiment in that the manufacturing method of the sealing resin is the same as that of the first embodiment and that the groove is formed only in the thickness direction of the mother substrate.

図10に、第5実施形態に係る工程1の製造工程断面図を示す。同図に示すように、マザー基板上に集積回路20、封止樹脂40を形成し、その後に、マザー基板の厚み方向の上方部のみを切断する。溝65は、マザー基板を載置台64に固定した後に、切削工程により製品エリアに対応する位置でダイシング等により切断することにより得られる。これにより、封止樹脂40の間を形成する溝61と上面視において略同一形状の溝65が、マザー基板の厚み方向上方に設けられたマザー基板11dが得られる。なお、溝61と溝65の幅は、同一のものに限定されず、それぞれ独立に設計可能である。   FIG. 10 is a cross-sectional view of the manufacturing process of the process 1 according to the fifth embodiment. As shown in the figure, the integrated circuit 20 and the sealing resin 40 are formed on the mother substrate, and then only the upper portion in the thickness direction of the mother substrate is cut. The groove 65 is obtained by fixing the mother substrate to the mounting table 64 and then cutting the substrate by dicing or the like at a position corresponding to the product area by a cutting process. As a result, a mother substrate 11d is obtained in which grooves 65 having substantially the same shape as viewed from above are formed on the upper side in the thickness direction of the mother substrate. The widths of the groove 61 and the groove 65 are not limited to the same, and can be designed independently.

次いで、第1実施形態と同様の方法にて、マザー基板11の側方上方部および封止樹脂40の側方および天面を被覆する電磁波シールド層を得る。そして、切削工程により製品エリアに対応する位置で電磁波シールド層およびマザー基板11dを切断することにより、電子部品25および基板10の上方部側方に電磁波シールド層が形成された電子部品モジュールを得る。   Next, an electromagnetic wave shielding layer that covers the upper side portion of the mother substrate 11, the side portion of the sealing resin 40, and the top surface is obtained by the same method as in the first embodiment. Then, by cutting the electromagnetic wave shield layer and the mother substrate 11d at a position corresponding to the product area by a cutting process, an electronic component module in which the electromagnetic wave shield layer is formed on the electronic component 25 and the upper side of the substrate 10 is obtained.

第5実施形態によれば、第4実施形態と同様の効果を得ることができる。また、基板の側面の所望の位置まで電磁波シールド層が形成された電子部品モジュールを容易な製造工程により形成することができる。   According to the fifth embodiment, the same effect as that of the fourth embodiment can be obtained. Moreover, the electronic component module in which the electromagnetic wave shielding layer is formed to a desired position on the side surface of the substrate can be formed by an easy manufacturing process.

[第6実施形態]
第6実施形態の電子部品モジュールおよびその製造方法は、基板上に複数の集積回路が実装されている点、マザー基板を用いずに電子部品モジュールを構成する基板に電子部品を実装する点、封止樹脂の天面に凹凸形状が形成されている点を除き、第4実施形態と同様である
[Sixth Embodiment]
The electronic component module and the manufacturing method thereof according to the sixth embodiment are such that a plurality of integrated circuits are mounted on a substrate, the electronic component is mounted on a substrate constituting the electronic component module without using a mother substrate, The same as the fourth embodiment, except that an uneven shape is formed on the top surface of the stop resin.

図11に、第6実施形態に係る製造方法により得られた電子部品モジュール3の模式的断面図を示す。電子部品モジュール3は、封止樹脂40eの天面に複数の凹凸形状を有し、凹部66内には、電磁波シールド層50eが形成されている。   FIG. 11 is a schematic cross-sectional view of the electronic component module 3 obtained by the manufacturing method according to the sixth embodiment. The electronic component module 3 has a plurality of concave and convex shapes on the top surface of the sealing resin 40 e, and an electromagnetic wave shielding layer 50 e is formed in the concave portion 66.

電磁波シールド層50eの形成は、例えば、図12に示すように、加熱圧着時に、完成品と略同一形状の凹部形状の製造容器70内の所望の位置に実装済み基板10を固設し、上方から導電性シート51eを載置して熱圧着せしめる。その後、製造容器70から取り出すことにより、封止樹脂40eの天面および封止樹脂40eと基板10の側方に電磁波シールド層50eを形成した電子部品モジュールが得られる。   For example, as shown in FIG. 12, the electromagnetic wave shielding layer 50e is formed by fixing the mounted substrate 10 at a desired position in a manufacturing container 70 having a concave shape that is substantially the same shape as the finished product. Then, the conductive sheet 51e is placed and thermocompression bonded. Then, by taking out from the manufacturing container 70, the electronic component module which formed the electromagnetic shielding layer 50e in the top | upper surface of the sealing resin 40e and the side of the sealing resin 40e and the board | substrate 10 is obtained.

第6実施形態に係る製造方法によれば、第4実施形態と同様の効果を得ることができる。また、本発明の導電性シートを用いることにより、電子部品25eの天面に凹凸形状が設けられている場合にも、凹部内に容易に電磁波シールド層を簡易な製造工程により形成することができる。従って、電子部品の天面の設計自由度を高めることが可能となり、電子部品の絶縁構造部にも電磁波シールド層を容易に形成することができる。なお、凹部66のサイズや形成位置は任意に設計できる。また、凹部の断面形状は、任意に設計でき、例えば、矩形状、V字状、U字状等が例示できる。   According to the manufacturing method according to the sixth embodiment, the same effects as in the fourth embodiment can be obtained. Further, by using the conductive sheet of the present invention, even when the top surface of the electronic component 25e is provided with an uneven shape, the electromagnetic wave shielding layer can be easily formed in the recess by a simple manufacturing process. . Therefore, it becomes possible to increase the degree of freedom in designing the top surface of the electronic component, and an electromagnetic wave shielding layer can be easily formed on the insulating structure portion of the electronic component. In addition, the size and formation position of the recessed part 66 can be designed arbitrarily. Moreover, the cross-sectional shape of a recessed part can be designed arbitrarily, for example, rectangular shape, V shape, U shape etc. can be illustrated.

[第7実施形態]
第7実施形態の電子部品モジュールおよびその製造方法は、以下の点を除き、基本的な構造及び製造方法が第1実施形態と同様である。即ち、電磁波シールド層が、封止樹脂40に沿うように形成されている点において、第1実施形態と相違する。
[Seventh Embodiment]
The electronic component module and the manufacturing method thereof according to the seventh embodiment are the same as those in the first embodiment except for the following points. That is, the electromagnetic wave shielding layer is different from the first embodiment in that it is formed along the sealing resin 40.

図13に、第7実施形態に係る工程3の製造工程断面図を示す。同図に示すように、電磁波シールド層50fは、封止樹脂40fの天面および側面およびマザー基板11の露出面の形状に沿うように形成されている。   FIG. 13 shows a cross-sectional view of the manufacturing process of process 3 according to the seventh embodiment. As shown in the figure, the electromagnetic wave shielding layer 50f is formed so as to follow the shape of the top and side surfaces of the sealing resin 40f and the exposed surface of the mother substrate 11.

第7実施形態に係る方法によれば、第1実施形態と同様の効果を得ることができる。また、溝61を充填させずに露出面を被覆する方法を採用しているので、導電性接着層を効率的に用いることができる。特に、溝の幅が広い用途において好適である。   According to the method according to the seventh embodiment, the same effect as in the first embodiment can be obtained. Moreover, since the method of covering the exposed surface without filling the groove 61 is employed, the conductive adhesive layer can be used efficiently. It is particularly suitable for applications where the groove width is wide.

上記の各実施形態では、導電性シート51にシート状の放熱層53を積層したもので説明したが、図14は放熱層53の放熱効果を高めるために、放熱層53を図14(x1)に示す蛇腹状53x1、図14(x2)に示す枕木状53x2のような断面形状としたものである。   In each of the above embodiments, the sheet-like heat radiation layer 53 is laminated on the conductive sheet 51. However, FIG. 14 illustrates the heat radiation layer 53 in FIG. 14 (x1) in order to enhance the heat radiation effect of the heat radiation layer 53. A cross-sectional shape such as a bellows shape 53x1 shown in FIG. 5 and a sleeper shape 53x2 shown in FIG. 14 (x2).

放熱層53を上記のような断面形状に構成するには、金属箔を、切削またはエッチングによって凹凸を形成するもので、その列設された凸部は、導電性シート51の材質、放熱条件等に応じて、凸部相互の間隔w、凸部の高さh、凸部の厚さt等を決める。また、放熱層53の製造工程において該放熱層を挟持するように設けられた回転ローラの表面に凹凸が形成されておれば、放熱層53には製造過程で自動的に凹凸が形成される。   In order to configure the heat dissipation layer 53 in the cross-sectional shape as described above, the metal foil is formed with irregularities by cutting or etching, and the convex portions arranged in line are the material of the conductive sheet 51, the heat dissipation conditions, etc. The distance w between the convex portions, the height h of the convex portions, the thickness t of the convex portions, etc. are determined accordingly. Further, if unevenness is formed on the surface of the rotating roller provided so as to sandwich the heat dissipation layer in the manufacturing process of the heat dissipation layer 53, the unevenness is automatically formed in the heat dissipation layer 53 during the manufacturing process.

このように、表面が凹凸状の放熱層53を用いることで、シート状の放熱層53を用いた場合に比べて、空気との接触面積が増大する。その結果、電子部品25から放出された熱が効果的に外部に放熱され、封止樹脂40内に滞留する熱により、電子部品25が機能低下することをより有効に防止することができる。   As described above, the use of the heat dissipation layer 53 having an uneven surface increases the contact area with air as compared to the case where the sheet-shaped heat dissipation layer 53 is used. As a result, the heat released from the electronic component 25 is effectively radiated to the outside, and the electronic component 25 can be more effectively prevented from being degraded by the heat retained in the sealing resin 40.

なお、導電性シート51には、導電性接着層52に異物が付着するのを防止するため、必要に応じて導電性接着層52に保護フィルムを設けてもよい。この保護フィルムは、最終的には剥離するので、離型性の優れた材料が好ましい。また、電子部品モジュール1を電子機器に搭載するタイミングに保護フィルムを剥離することも可能である。好適な例としては、シリコーンまたはフッ素の離型層等を備えたポリエステルフィルム等が例示できる。保護フィルムの厚みは、例えば、5〜300μm程度であり、25〜200μm程度がより好ましい。   The conductive sheet 51 may be provided with a protective film on the conductive adhesive layer 52 as necessary in order to prevent foreign matter from adhering to the conductive adhesive layer 52. Since this protective film is finally peeled off, a material having excellent releasability is preferable. It is also possible to peel the protective film at the timing when the electronic component module 1 is mounted on the electronic device. As a suitable example, a polyester film provided with a silicone or fluorine release layer or the like can be exemplified. The thickness of the protective film is, for example, about 5 to 300 μm, and more preferably about 25 to 200 μm.

さらに導電性シート51の放熱層側にも保護フィルムを設けてもよい。保護フィルムを設けることで導電性シート51のハンドリング性が良好となる。   Further, a protective film may be provided on the heat radiation layer side of the conductive sheet 51. By providing the protective film, the handling property of the conductive sheet 51 is improved.

本発明の趣旨に合致する限り、他の実施形態も本発明の範疇に属し得ることは言うまでもない。また、上記実施形態は、互いに好適に組み合わせられる。   It goes without saying that other embodiments may belong to the category of the present invention as long as they match the gist of the present invention. Moreover, the said embodiment is mutually combined suitably.

1、2 電子部品モジュール
10 基板
11 マザー基板
20 集積回路
25 電子部品
30 導電パターン
31 電極・配線パターン
32 グラウンドパターン
40 封止樹脂
50 電磁波シールド層
51 導電性シート
52 導電性接着層
53 放熱層
53 (x1)蛇腹状放熱層
53 (x2)枕木状放熱層
61 溝
62 凸部
63 凹部
64 載置台
65 溝
66 凹部
DESCRIPTION OF SYMBOLS 1, 2 Electronic component module 10 Board | substrate 11 Mother board 20 Integrated circuit 25 Electronic component 30 Conductive pattern 31 Electrode / wiring pattern 32 Ground pattern 40 Sealing resin 50 Electromagnetic wave shield layer 51 Conductive sheet 52 Conductive adhesive layer 53 Heat radiation layer 53 ( x1) Bellows-like heat dissipation layer 53 (x2) Sleeper-like heat dissipation layer 61 Groove 62 Protrusion 63 Concavity 64 Mounting table 65 Groove 66 Concavity

Claims (9)

基板上に電子部品を実装する工程と、
前記電子部品を実装した前記基板上方に、熱により軟化するバインダー樹脂および導電性フィラーを含有する導電性接着層と、放熱層とを少なくとも有する導電性シートを配置する工程と、
前記電子部品および前記基板の表面に追随するように前記導電性シートを熱圧着して電磁波シールド層を形成する工程と、を具備し、
前記電磁波シールド層を、前記基板に形成されたグラウンドパターンにアースコンタクトさせる電子部品モジュールの製造方法。
Mounting electronic components on a substrate;
Disposing a conductive sheet having at least a binder resin and a conductive filler softened by heat on the substrate on which the electronic component is mounted, and a heat dissipation layer; and
Forming an electromagnetic wave shielding layer by thermocompression bonding the conductive sheet so as to follow the surface of the electronic component and the substrate,
A method for manufacturing an electronic component module, wherein the electromagnetic shielding layer is grounded to a ground pattern formed on the substrate.
前記基板上には、前記電子部品が複数形成され、複数の前記電子部品上および前記電子部品間に亘って電磁波シールド層を形成することを特徴とする請求項1に記載の電子部品モジュールの製造方法。   The electronic component module according to claim 1, wherein a plurality of the electronic components are formed on the substrate, and an electromagnetic wave shielding layer is formed on the plurality of electronic components and between the electronic components. Method. 前記導電性接着層は、温度150℃、圧力5kg/cmの条件で30分熱圧着した場合のフロー量が、0.05mm以上、2mm以下であることを特徴とする請求項1又は2に記載の電子部品モジュールの製造方法。 The flow rate when the conductive adhesive layer is thermocompression bonded for 30 minutes under conditions of a temperature of 150 ° C. and a pressure of 5 kg / cm 2 is 0.05 mm or more and 2 mm or less. The manufacturing method of the electronic component module of description. 前記放熱層が、蒸着膜、金属箔、金属メッシュ、金属性の不織布、熱伝導性フィラーを含有する樹脂塗膜、およびグラファイトシートから選択されたいずれかである、請求項1〜3いずれか1項記載の電子部品モジュールの製造方法。   The heat dissipation layer is any one selected from a vapor deposition film, a metal foil, a metal mesh, a metallic non-woven fabric, a resin coating containing a heat conductive filler, and a graphite sheet. The manufacturing method of the electronic component module of description. 前記電磁波シールド層は、更に前記基板の側方の少なくとも一部にも被覆されていることを特徴とする請求項1〜4いずれか1項記載の電子部品モジュールの製造方法。   5. The method of manufacturing an electronic component module according to claim 1, wherein the electromagnetic wave shielding layer is further coated on at least a part of a side of the substrate. 前記導電性接着層のバインダー樹脂は、自己架橋可能な熱硬化性樹脂、硬化剤と反応可能な官能基を有する熱硬化性樹脂、又は熱可塑性樹脂の少なくともいずれかであり、前記硬化剤と反応可能な官能基を有する前記熱硬化性樹脂を用いる場合には、前記導電性接着剤層中に前記硬化剤を含む請求項1〜5いずれか1項記載の電子部品モジュールの製造方法。   The binder resin of the conductive adhesive layer is at least one of a self-crosslinkable thermosetting resin, a thermosetting resin having a functional group capable of reacting with a curing agent, and a thermoplastic resin, and reacts with the curing agent. 6. The method of manufacturing an electronic component module according to claim 1, wherein, when the thermosetting resin having a functional group is used, the conductive adhesive layer includes the curing agent. 前記電磁波シールド層を形成する工程の後に、前記電磁波シールド層の切削工程を更に備えることを特徴とする請求項1〜6いずれか1項記載の電子部品モジュールの製造方法。   The method of manufacturing an electronic component module according to claim 1, further comprising a cutting step of the electromagnetic wave shielding layer after the step of forming the electromagnetic wave shielding layer. 前記電子部品の上面および側面は、封止樹脂により構成されており、
前記封止樹脂の天面は、凹凸形状を有し、当該凹凸形状の凹部に電磁波シールド層が形成されていることを特徴とする請求項1〜7いずれか1項記載の電子部品モジュールの製造方法。
The upper surface and the side surface of the electronic component are made of a sealing resin,
8. The electronic component module according to claim 1, wherein the top surface of the sealing resin has an uneven shape, and an electromagnetic wave shielding layer is formed in the uneven portion of the uneven shape. 9. Method.
前記導電性シートは、前記導電性接着層に放熱層と保護フィルムが積層されていることを特徴とする請求項1〜8いずれか1項記載の電子部品モジュールの製造方法。
The method for manufacturing an electronic component module according to claim 1, wherein the conductive sheet has a heat dissipation layer and a protective film laminated on the conductive adhesive layer.
JP2017196682A 2017-10-10 2017-10-10 Method for manufacturing electronic component module Pending JP2018046282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017196682A JP2018046282A (en) 2017-10-10 2017-10-10 Method for manufacturing electronic component module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017196682A JP2018046282A (en) 2017-10-10 2017-10-10 Method for manufacturing electronic component module

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015169052A Division JP6237732B2 (en) 2015-08-28 2015-08-28 Manufacturing method of electronic component module

Publications (1)

Publication Number Publication Date
JP2018046282A true JP2018046282A (en) 2018-03-22

Family

ID=61695199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017196682A Pending JP2018046282A (en) 2017-10-10 2017-10-10 Method for manufacturing electronic component module

Country Status (1)

Country Link
JP (1) JP2018046282A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972389A (en) * 2018-09-29 2020-04-07 鹏鼎控股(深圳)股份有限公司 Circuit board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972389A (en) * 2018-09-29 2020-04-07 鹏鼎控股(深圳)股份有限公司 Circuit board
CN110972389B (en) * 2018-09-29 2023-07-21 鹏鼎控股(深圳)股份有限公司 Circuit board

Similar Documents

Publication Publication Date Title
JP6237732B2 (en) Manufacturing method of electronic component module
JP6176578B2 (en) Manufacturing method of electronic component module
JP6303597B2 (en) Manufacturing method of electronic component module
KR100297915B1 (en) Semiconductor package and method for manufacturing the same
EP2633746B1 (en) Composite film for board level emi shielding
TWI732995B (en) Shielded printed wiring board and manufacturing method of shielded printed wiring board
CN103579128B (en) Chip package base plate, chip-packaging structure and preparation method thereof
EP2750490B1 (en) Component-mounting printed circuit board and manufacturing method for same
JP6187568B2 (en) Laminated body for electromagnetic wave shield, electromagnetic wave shield laminated body, electronic device and manufacturing method thereof
JP6372122B2 (en) Manufacturing method of electronic equipment
TW201251556A (en) Printed circuit board and method for manufacturing the same
JP6194939B2 (en) Laminated body for electromagnetic wave shield, electromagnetic wave shield laminated body, electronic device and manufacturing method thereof
JP2002033558A (en) Circuit board and its manufacturing method
JP6612723B2 (en) Board device
JP7232996B2 (en) Electronic component mounting board and electronic equipment
TWI802757B (en) Electromagnetic wave shield sheet and electronic component mounting board
CN102548191A (en) Circuit board and manufacturing method thereof
CN112466833A (en) Embedded element packaging structure and manufacturing method thereof
KR20180116349A (en) Method for manufacturing wiring board or wiring board material
JP2018046282A (en) Method for manufacturing electronic component module
JP6583455B2 (en) Manufacturing method of electronic component module
GB2555289A (en) Semiconductor device, and method for manufacturing same
JP2022040177A (en) Electronic component mounting substrate and electronic device
CN110769665B (en) Electromagnetic shielding film, circuit board and preparation method of electromagnetic shielding film
KR102026197B1 (en) Printed circuit board and display device having the same and method of manufacturing the same