JP2018041630A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2018041630A
JP2018041630A JP2016175069A JP2016175069A JP2018041630A JP 2018041630 A JP2018041630 A JP 2018041630A JP 2016175069 A JP2016175069 A JP 2016175069A JP 2016175069 A JP2016175069 A JP 2016175069A JP 2018041630 A JP2018041630 A JP 2018041630A
Authority
JP
Japan
Prior art keywords
fuel cell
compressor
cell system
valve
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016175069A
Other languages
English (en)
Inventor
良一 難波
Ryoichi Nanba
良一 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016175069A priority Critical patent/JP2018041630A/ja
Publication of JP2018041630A publication Critical patent/JP2018041630A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】コンプレッサの昇温の迅速化を図ることができる燃料電池システムの提供。【解決手段】供給路(30a)、又は排出路(30b)に設けられた圧力制御弁(34、36)と、燃料電池(10)を経ることなく供給路(30a)から排出路(30b)へ接続されるバイパス流路(30c)に、設けられたバイパス弁(35)とを備える燃料電池システム(100)である。常温環境下よりも温度が低い低温環境下において燃料電池システム(100)を起動したとき、圧力制御弁(34、36)は、圧力制御弁(34、36)の開度を調整することによって、供給路(30a)における燃料電池(10)からコンプレッサ(32)側までの圧力を上昇させる。バイパス弁(35)はバイパス弁(35)の開度が常温環境下において燃料電池システム(100)を起動したときのバイパス弁(35)の開度と比較して高くなるように開く。【選択図】図2

Description

本発明は燃料電池システムに関し、特に、コンプレッサを備える燃料電池システムである。
特許文献1に開示される燃料電池システムは、コンプレッサと、調圧バルブとを備え、これらは、空気等のガスを供給する流路、又は電気化学反応した後に生じた流体を排出する流路に設けられている。当該燃料電池システムでは、調圧バルブを閉塞してコンプレッサを駆動することによって、燃料電池を昇温させる。
特開2008−059922号公報
ところで、低温環境下においてコンプレッサを急速に昇温させることのできる燃料電池システムが要求されている。コンプレッサを急速に昇温させると、コンプレッサの消費電力の増大を抑制することができて好ましい。
本発明に係る燃料電池システムは、コンプレッサの昇温の迅速化を図ることができるものとする。
本発明に係る燃料電池システムは、
カソードガスを圧縮するコンプレッサと、
前記圧縮されたカソードガスを供給される燃料電池と、
前記圧縮されたカソードガスを前記コンプレッサから前記燃料電池へ導く供給路、又はカソードオフガスを前記燃料電池の外部へ排出する排出路に設けられた圧力制御弁(例えば、封止弁34、背圧弁36)と、
前記燃料電池を経ることなく前記供給路から前記排出路へ接続されるバイパス流路に、設けられたバイパス弁と、
を備える燃料電池システムであって、
常温環境下よりも温度が低い低温環境下において前記燃料電池システムを起動したとき、
前記圧力制御弁は、前記圧力制御弁の開度を調整することによって、前記供給路における前記燃料電池から前記コンプレッサ側までの圧力を上昇させ、
前記バイパス弁は、前記バイパス弁の開度が前記常温環境下において前記燃料電池システムを起動したときの前記バイパス弁の開度と比較して高くなるように、開く。
このような構成によれば、供給路における燃料電池からコンプレッサ側までの圧力が上昇し、コンプレッサの構成要素、例えば、軸受部にかかる荷重が増大する。この荷重増大により、軸受部に摩擦熱が発生し、コンプレッサを迅速に昇温することができる。
本発明に係る燃料電池システムは、コンプレッサの昇温の迅速化を図ることができる。
実施の形態1に係る燃料電池システムの一具体例の構成を示す概略図である。 実施の形態1に係る燃料電池システムの一具体例の要部の構成を示す概略図である。 実施の形態1に係る燃料電池システムの一具体例の要部の構成を示すブロック図である。 実施の形態1に係る燃料電池システムの制御方法の一具体例を示すフローチャートである。 実施の形態1に係る燃料電池システムの制御方法の一具体例を示すフローチャートである。
以下、本発明を適用した具体的な実施形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。
(実施の形態1)
以下、図1〜図3を参照して実施の形態1に係る燃料電池システムの一具体例の構成について説明する。図1は、実施の形態1に係る燃料電池システムの一具体例の構成を示す概略図である。図2は、実施の形態1に係る燃料電池システムの一具体例の要部の構成を示す概略図である。図3は、実施の形態1に係る燃料電池システムの一具体例の要部の構成を示すブロック図である。
図1に示すように、燃料電池システム100は、FC(燃料電池)スタック10と、アノードガス流路20と、カソードガス流路30と、冷却媒体流路40とを含む。燃料電池システム100は、水素漏れを検知するために、水素を検出する水素検出器51、52を備えるとよく、水素検出器51は、例えば、アノードガス流路20の近傍に配置され、水素検出器52は、例えば、冷却媒体流路40の近傍に配置される。
FCスタック10は、セルモニタ11と、アノード流路12と、カソード流路13と、冷却媒体流路14とを含む。FCスタック10の一具体例は、複数枚のセル(図示略)を積層した積層体(図示略)であり、当該セルの一枚は、アソード電極(図示略)と、カソード電極(図示略)と、これらアソード電極とカソード電極との間に挟み込まれた電解質膜(図示略)とを含む。電解質膜は、プロトンを伝導させる性質を有する。セルモニタ11は、各セル又は複数のセル群毎の電圧や温度など各種情報を得るための測定装置である。アノード流路12のアノード流路入口12aには、アノードガスとして、例えば、水素(H)ガスが供給され、アノード電極に到達して、水素イオンが発生する。発生した水素イオンが、電解質膜を透過し、カソード電極に到達する。一方、カソード流路13のカソード流路入口13aには、カソードガスとして、例えば、酸素、又は、大気などの酸素を含むガスが供給され、カソード電極に到達する。カソード電極に到達した水素イオン及び酸素が電気化学反応を起こし、水が発生しつつ発電する。冷却媒体流路14には、冷却媒体として、例えば、水が供給される。冷却媒体が冷却媒体流路14の冷却媒体流路入口14aからFCスタック10内側に流入し、FCスタック10内部から熱を奪った後に、冷却媒体流路出口14bからFCスタック10外側に流出する。冷却媒体は、FCスタック10を冷却する。但し、FCスタック10の起動時には、FCスタック10内部へ熱を与え、FCスタック10を加熱することになる。
アノードガス流路20は、アノードガス供給路20aと、アノードオフガス排出路20bとを備える。FCスタック10のアノード流路12のアノード流路入口12aには、アノードガス供給路20aが接続されている。アノード流路12のアノード流路出口12bには、アノードオフガス排出路20bが接続されている。
アノードガス供給路20aにおいて、その先端からアノード流路入口12a側の端まで、充填口21、ガスタンク22、メインバルブユニット23、レギュレータユニット24、及びインジェクタ25がこの順に設けられている。
アノードガス供給路20aの先端には、充填口21が設けられている。充填口21は、アノードガスとしての水素ガスを燃料電池システム100の外部からその内部に導き入れる。ガスタンク22は、充填口21が導き入れたアノードガスを通じて充填し、蓄積する。ガスタンク22には、溶栓弁22aと、ガスタンク22の内側の温度を計測する温度センサ22bと、ガスタンク22の内側の圧力を計測する圧力センサ22cとが設けられている。
メインバルブユニット23は、手動弁23aと、逆止弁23bと、手動弁23cと、逆止弁23dと、電磁弁23eと、手動弁23fとを含む。メインバルブユニット23は、手動弁23a等の各弁を閉塞したり、開放したりすることによって、アノードガスをガスタンク22へ蓄積させたり、アノードガスをガスタンク22からFCスタック10へ供給させたりすることができる。アノードガス供給路20aにおけるメインバルブユニット23の下流側に、アノードガス供給路20a内の圧力を計測する気圧センサ20cが設けられている。
レギュレータユニット24は、減圧弁24aと、中立リリーフ弁24bとを含み、各弁の開閉度合いを変化させることによって、アノードガス供給路20a内におけるアノードガスの圧力を変化させて、所望の圧力値にすることができる。これによって、レギュレータユニット24は、ガスタンク22からFCスタック10へ供給されるアノードガスの供給量を変化させる。
インジェクタ25は、アノードガスの圧力や流量が、FCスタック10へ流入するのに好適な大きさとなるように、アノードガスをFCスタック10へ噴射する。アノードガス供給路20aにおけるインジェクタ25の上流側に、アノードガス供給路20a内の圧力を計測する気圧センサ25aが設けられている。アノードガス供給路20aにおけるインジェクタ25の下流側に、リリーフ弁25bと、アノードガス供給路20a内の圧力を計測する気圧センサ25cとが設けられている。
アノードオフガス排出路20bは、アノード流路12のアノード流路出口12bから延びて、カソードガス流路30のカソードオフガス排出路30bに設けられた水素希釈器37に合流している。アノードオフガス排出路20bにおいて、排気排水弁26が設けられている。排気排水弁26は、閉塞することによりアノード流路出口12bから排出された水やガスを保持し、開放することによって水やガスを水素希釈器37に排出する。
図1及び図2に示すように、カソードガス流路30は、カソードガス供給路30aと、カソードオフガス排出路30bとを含む。FCスタック10のカソード流路13のカソード流路入口13aには、カソードガス供給路30aが接続されている。カソード流路13のカソード流路出口13bには、カソードオフガス排出路30bが接続されている。
カソードガス供給路30aの先端は、カソードガス、例えば、酸素を含むガス、大気等を取り込む。カソードガス供給路30aにおいて、その先端からカソード流路入口13a側の端まで、エアクリーナ31、コンプレッサ32、インタークーラ33、及び封止弁34が、この順に設けられている。
エアクリーナ31は、カソードガス供給路30aの先端から取り込まれたカソードガスを通過させ、カソードガス供給路30aの下流側のコンプレッサ32等へ流入することを必要としない、又は好ましくない不純物等を当該カソードガスから除去する。エアクリーナ31の上流側には、大気圧センサ31aが設けられている一方、この下流側には、エアーフローメータ31cが設けられている。また、エアクリーナ31には、温度センサ31bが設けられている。
図3に示すように、コンプレッサ(ACP:Air Compressor)32は、モータ32aと、圧縮系32bと、潤滑オイル供給系32eとを含む。モータ32aは、ステータ(図示略)と、このステータに対して回転可能に支持されるロータ(図示略)とを備える。圧縮系32bは、ハウジング(図示略)と、このハウジングの内側に配置されたインペラ32cとを含む。インペラ32cの本体は、軸受部32dを介して、回転可能に支持されている。軸受部32dは、潤滑オイル供給系32eから潤滑オイルを供給される。潤滑オイル供給系32eは、必要に応じて、潤滑オイルをコンプレッサ32の各構成要素、例えば、軸受部32dに供給し、各構成要素の間に生じる摩擦力を低減させる。潤滑オイル供給系32eの一具体例は、潤滑オイルを送り出すポンプ(図示略)と、潤滑オイルをポンプから軸受部32dへ導く流路(図示略)等から構成される系である。モータ32aがインペラ32cに駆動力を与えて、インペラ32cが回転する。すると、エアクリーナ31を通過したカソードガスが、インペラ32cの回転により、ハウジング内で圧縮する。また、コンプレッサ32は、必要に応じて、モータ温度測定部32f、潤滑オイル温度測定部32g、コンプレッサ消費電力測定部32h、及びコンプレッサハウジング温度測定部32iの少なくとも一つを備える。モータ温度測定部32fは、モータ32aの温度、具体的には、モータ32aのステータ(固定子)の温度Tmを測定するものであればよく、例えば、モータ32aのステータに設けられた温度センサである。潤滑オイル温度測定部32gは、潤滑オイルの温度Tを測定するものであればよく、例えば、潤滑オイル供給系32eの流路内に設けられる温度センサである。コンプレッサ消費電力測定部32hは、コンプレッサの消費電力Pを時々刻々と測定する。コンプレッサハウジング温度測定部32iは、コンプレッサ32のハウジングの温度を測定する。
図1及び図2に示すように、コンプレッサ32は、オイル流路60に接続されており、オイル流路60から冷却オイルを供給されている。オイル流路60は、FDC(昇圧コンバータ)62に接続されている。オイル流路60の中途には、ラジエータ61が設けられている。ラジエータ61は、オイル流路60を流れるオイルを冷却する。モータ32aは、冷却媒体流路40から冷却媒体分岐路40b、冷却媒体合流路40cを通じて、冷却媒体を供給されて、冷却される。
インタークーラ33は、コンプレッサ32によって圧縮されたカソードガスを冷却する。インタークーラ33の下流側には、カソードガスの温度を計測する温度センサ33aと、カソードガスの圧力を計測する圧力センサ33bとが設けられている。
封止弁34(第1の制御弁とも称する。)は、開放することによってカソードガスをカソード流路13へ流入させたり、閉塞することによってカソードガスのカソード流路13への流入を停止させたりする。封止弁34は、その開度を変化させることで、カソードガスのカソード流路13へ流入する量を変化させることができる。
カソードオフガス排出路30bは、カソード流路13のカソード流路出口13bから延びる。カソードオフガス排出路30bにおいてカソード流路出口13b側からその先端に向って、背圧弁36と、水素希釈器37と、マフラ38とがこの順に設けられている。
背圧弁36(第2の制御弁とも称する。)は、開放することにより、ガスをカソード流路13のカソード流路出口13bから排出された水等のカソードオフガスを、水素希釈器37へ流入させる。また、背圧弁36は、閉塞することにより、カソード流路出口13bから排出された水等のカソードオフガスを水素希釈器37へ流入させることを抑制させる、又は停止させる。背圧弁36は、その開度を変化させることで、カソードオフガスの水素希釈器37へ流入する量を変化させることができる。
カソードガス供給路30aにおける封止弁34の上流側と、カソードオフガス排出路30bにおける背圧弁36の下流側とを、バイパス流路30cが結ぶ。バイパス流路30cの中途には、バイパス弁35が設けられている。バイパス弁35は開くと、カソードガスの少なくとも一部が、カソード流路13を経由することなく、カソードガス供給路30aからカソードオフガス排出路30bへ流入することができる。
水素希釈器37は、アノードオフガスとカソードオフガスとを受けて、これらを混合することによって、希釈する。マフラ38は、水素希釈器37から希釈されたガスを受けて、消音させる。希釈されたガスは、マフラ38を通過した後で、燃料電池システム100の外部へ排出される。
冷却媒体流路40は、FCスタック10内の冷却媒体流路14の冷却媒体流路出口14bから延びて、冷却媒体流路入口14aに接続する。すなわち、冷却媒体流路40と冷却媒体流路14とが循環回路を形成する。冷却媒体は、冷却媒体流路40と冷却媒体流路14とを通じて、一定の方向に流れて、循環する。以下の説明では、便宜的に、冷却媒体流路40において、冷却媒体の流れの源、すなわち、流れが発生する側を上流側とし、冷却媒体が流れていく先を下流側とした。
冷却媒体流路40の中途には、メインラジエータ41が設けられている。冷却媒体流路40においてメインラジエータ41の上流側と下流側とを結ぶ冷却媒体流路40aがある。冷却媒体流路40aの中途には、サブラジエータ45が設けられている。メインラジエータ41とサブラジエータ45とは、いずれも通過する冷却媒体を冷却させる。
メインラジエータ41とサブラジエータ45との下流側から冷却媒体流路入口14aまでの間には、温度センサ41a、ウォーターポンプ42が、この順に設けられている。温度センサ41aは、冷却媒体の温度を計測する。ウォーターポンプ42は、モータ42aを備え、モータ42aによる駆動力を用いて、必要に応じて冷却媒体を下流側に送り出す。冷却媒体流路40におけるウォーターポンプ42の下流側において、冷却媒体分岐路40bが分岐している。冷却媒体分岐路40bはモータ32aに接続し、冷却媒体合流路40cがモータ32aから、冷却媒体流路40における温度センサ43(後述)の下流側に合流する。冷却媒体の少なくとも一部が、冷却媒体分岐路40bを通じてモータ32aを到達し、冷却した後で、冷却媒体合流路40cを通じて冷却媒体流路40に合流する。
冷却媒体流路40において、FCスタック10内の冷却媒体流路14の冷却媒体流路出口14bからメインラジエータ41までの間には、温度センサ43、切替弁44が、この順に設けられている。
温度センサ43は、冷却媒体流路出口14bから排出された冷却媒体の温度を計測する。冷却媒体流路40における、冷却媒体合流路40cと冷却媒体流路40との合流箇所40dの下流側において分岐して、空調ヒータ53に接続する冷却媒体分岐路40eが有る。空調ヒータ53から、冷却媒体分岐路40eの分岐点から下流側に接続する冷却媒体合流路40fが有る。冷却媒体の少なくとも一部が、冷却媒体分岐路40eを通じて空調ヒータ53を到達し、冷却した後で、冷却媒体合流路40fを通じて、冷却媒体流路40に合流する。
冷却媒体流路40における冷却媒体合流路40fの下流側に、切替弁44が設けられている。冷却媒体分岐路40gが、切替弁44から分岐し、冷却媒体流路40aにおける温度センサ41aとウォーターポンプ42との間に合流する。冷却媒体分岐路40gから分岐して合流する冷却媒体流路40hがある。切替弁44は、開閉することによって、冷却媒体流路40又は、冷却媒体分岐路40gに、冷却媒体の流入又はその停止、流入を調整することができる。冷却媒体流路40hの中途には、イオン交換器46が設けられている。イオン交換器46は、それ自体を通過する冷却媒体から、不純物を除去する。
ECU(Electronic Control Unit)70は、ハードウェア構成として、例えば、CPU(Central Processing Unit)を有する演算回路と、プログラムメモリやデータメモリその他のRAM(Random Access Memory)やROM(Read Only Memory)等を有する記憶装置等からなるマイクロコンピュータを主に備える。ECU70は、燃料電池システム100の各センサ、例えば、気圧センサ、エアーフローメータ、温度センサ、圧力センサ、温度測定部、消費電力測定部等が測定した測定結果を示す信号を受けて、この測定結果に基づいて、燃料電池システム100の各構成要素の動作の制御信号を生成する。また、ECU70は、必要に応じて、燃料電池システム100の各構成要素に制御信号を送り、各構成要素の動作を制御する。ECU70は、FC PCU(Fuel Cell Power Control Unit)71を含み、FC PCU71は、コンプレッサ32のモータ32aに制御信号を送り、モータ32aの回転数(ACP回転数R)を制御してもよい。具体的には、FC PCU71は、燃料電池システム100の各センサが測定した測定結果に基づいて、ACP回転数Rを制御することができる。
燃料電池システム100は、車両、ロボット等の移動体に搭載してもよいし、一定の場所に固定して利用してもよい。
(実施の形態1の制御方法)
次に、図1〜図3を参照しながら、燃料電池システム100の制御方法について説明する。
燃料電池システム100を低温環境下において起動させる。低温環境下は、燃料電池システム100の温度が常温よりも低い環境下であり、具体的には、氷点下となる状態である。なお、起動した時点では、封止弁34及び背圧弁36は開放しており、バイパス弁35は閉塞している。
コンプレッサ32を駆動させる(コンプレッサ駆動ステップST1)。圧縮したカソードガスをFCスタック10へ送り込む。続いて、封止弁34及び背圧弁36の少なくとも一方の開度を調整する(圧力制御弁調整ステップST2)。この調整によって、カソードガス供給路30aにおける、FCスタック10からコンプレッサ32側までの圧力を上昇させる。最後に、バイパス弁35の開度が、常温環境下において燃料電池システム100を起動したときのバイパス弁35の開度と比較して高くなるように、バイパス弁35を開放する(バイパス弁開放ステップST3)。
なお、上記したコンプレッサ駆動ステップST1、圧力制御弁調整ステップST2、及びバイパス弁開放ステップST3の順番は、入れ替えてもよい。したがって、封止弁34、バイパス弁35、及び背圧弁36の開度の制御方法と、コンプレッサ32のモータ32aの駆動開始の制御方法とのパターンとして、下記の表1及び表2に記載した12パターンが挙げられる。また、背圧弁36を利用する場合、すなわちパターン1〜6と、封止弁34を利用する場合、すなわちパターン7〜12とを、組み合わせてもよい。
Figure 2018041630
Figure 2018041630
パターン1〜12において、低温環境下、特に氷点下において燃料電池を起動する場合、カソードガスをFCスタック10に素早く多量に供給して、FCスタック10を低効率発電させることによって、FCスタック10が速やかに発熱することが好ましい。したがって、開始した時点で、封止弁34及び背圧弁36は開放しており、バイパス弁35は閉塞しているため、コンプレッサ32を先ず駆動させると、カソードガスとして酸素をFCスタック10に、素早く多量に供給することができる。このことから、パターン1〜12では、パターン4、6、10、12が好ましい。
さらに、パターン4、6、10、12のうち、背圧弁36の閉塞を利用するパターン、すなわちパターン4、6では、パターン4が好ましい。パターン4では、バイパス弁35を開いた後、背圧弁36を閉めるため、順番が逆となるパターン6と比較して、FCスタック10内のカソードガスの圧力が過大になりにくい。したがって、パターン4は、パターン6と比較して、FCスタック10の構成要素、例えば、電解質膜等が劣化するおそれが少ない。パターン4、6では、パターン4が好ましい。パターン4では、コンプレッサ駆動ステップST1、バイパス弁開放ステップST3、圧力制御弁調整ステップST2の各ステップに相当するステップを、この順に実施する。
また、パターン4、6、10、12のうち、封止弁34の閉塞を利用するパターン、すなわちパターン10、12では、パターン12が好ましい。パターン12では、コンプレッサ32の駆動を開始し、封止弁34を閉めた後、バイパス弁35を開くため、カソードガス供給路30aにおける、封止弁34からコンプレッサ32側までの圧力を高めることができる。パターン12では、封止弁34からコンプレッサ32側までのカソードガス供給路30aにおいて、例えば、氷塊が有る場合、圧力増大による圧縮熱によって、この氷塊を溶解させることができる。さらに、パターン12では、FCスタック10内のカソードガスの圧力が過大になりにくい。したがって、FCスタック10の構成要素、例えば、電解質膜等が劣化するおそれが少ない。したがって、パターン10、12では、パターン12が好ましい。パターン12では、コンプレッサ駆動ステップST1、圧力制御弁調整ステップST2、バイパス弁開放ステップST3の各ステップに相当するステップを、この順に実施する。
以上より、実施の形態1の制御方法によれば、カソードガス供給路30aにおける、FCスタック10からコンプレッサ32側までの圧力が上昇し、コンプレッサ32の構成要素、例えば、インペラ32cにかかる荷重が増大する。具体的には、カソードガス供給路30aにおける、FCスタック10からコンプレッサ32側までの圧力の大きさは、常温環境下において燃料電池システム100を起動したときの圧力の大きさよりも大きいとよい。スラスト方向の荷重がインペラ32cの背面にかかり、摩擦熱が軸受部32dに発生する。これにより、コンプレッサ32を迅速に昇温することができる。したがって、コンプレッサ32の消費電力の増大を抑制することができる。
また、本制御方法では、コンプレッサ32の内部が昇温するため、コンプレッサ32のハウジングよりも、ハウジング内側の構成要素が大きく熱膨張する。したがって、本制御方法は、コンプレッサ32を外部から熱を与える方法と比較して、軸受部32dにかかる荷重が高い傾向にある。
さらに、バイパス弁35の開度が高いので、カソードガスのFCスタック10への供給量が抑制されて、FCスタック10による発電効率が減じる。そのため、発電による発熱が増大し、FCスタック10を素早く昇温することができる。
なお、低温環境下において燃料電池システム100を起動した後で、環境を変更して、常温環境下において燃料電池システム100を起動したとき、バイパス弁35を元の開度になるまで閉める。
また、コンプレッサ32の構成要素の劣化を回避するため、上記したコンプレッサ32の構成要素にかかる荷重が徐々に変化するように、封止弁34、バイパス弁35及び背圧弁36の開度を徐々に変化するように調整するとよい。
(実施の形態1の制御方法の一具体例1)
次に、図4を参照して、燃料電池システムの制御方法の一具体例1について説明する。図4は、実施の形態1に係る燃料電池システムの制御方法の一具体例1を示すフローチャートである。燃料電池システムの制御方法の一具体例1では、パターン4(表1参照)である。
まず、通常状態における制御を開始する(通常制御ステップST21)。具体的には、潤滑オイルをコンプレッサ32へ供給しており、その供給量Lは、常温環境下においてコンプレッサ32の各構成要素を良好に動作させるのに必要な所定の供給量L0であればよい。
続いて、燃料電池システム100が氷点下において始動しているか否かを判断する(氷点下始動判断ステップST22)。燃料電池システム100が氷点下において始動していると判断した場合(YES:氷点下始動判断ステップST22)、コンプレッサ32のモータ32aの運転を開始し、所定のACP回転数αで運転させる(コンプレッサ駆動ステップST23)。具体的には、コンプレッサ32がカソードガスを圧縮し、この圧縮されたカソードガスがカソードガス供給路30aを通過し、FCスタック10のカソード流路13のカソード流路入口13aへ流入する。FCスタック10は、この送り込まれたカソードガスを受けて、速やかに発電して発熱する。
続いて、モータ32aのACP回転数がαに到達してから所定の時間T1[sec]が経過した後、バイパス弁35の開度がβ1になるように、バイパス弁35を開く(バイパス弁開度調整ステップST24)。コンプレッサ32により圧縮されたガスは、カソードガス供給路30aにおけるFCスタック10側と、バイパス流路30cとに分流する。そのため、FCスタック10内のカソードガスの圧力が抑制される。
続いて、所定の時間T2秒[sec]が経過した後、背圧弁36の開度がγ1になるように、背圧弁36を閉める(背圧弁開度調整ステップST25)。背圧弁36の開度γ1は、実質的に0(ゼロ)でもよい。FCスタック10内のカソードガスの圧力がバイパス弁開度調整ステップST24において抑制されているため、この背圧弁閉塞ステップST25において増加しても、過大になり難い。したがって、FCスタック10の構成要素、例えば、電解質膜等が劣化しにくい。
最後に、氷点下始動時における制御を終了するか否かを判断する(氷点下制御終了判断ステップST26)。氷点下始動時における制御を終了すると判断した場合(YES:氷点下制御終了判断ステップST26)、通常制御ステップに戻る(リターンステップST27)。
氷点下始動時における制御を終了するか否かを判断する方法として、様々な方法を採用することができる。例えば、コンプレッサ32のモータ32aの回転数が所定のACP回転数αになった時点から経過した時間が、予め決められた所定の時間Txを超えたとき、氷点下始動時における制御を終了すると判断してもよい。また、コンプレッサ32の消費電力Pが、予め決められた所定の消費電力Px以下であるとき、氷点下始動時における制御を終了すると判断してもよい。また、コンプレッサ32の潤滑オイルの温度T、モータ32aのステータの温度Tm、又はコンプレッサ32のハウジングの温度が、所定の温度以上であるとき、氷点下始動時における制御を終了すると判断してもよい。
以上、制御方法の具体例1によれば、制御方法と同様に、コンプレッサ32を迅速に昇温することができる。したがって、コンプレッサ32の消費電力の増大を抑制することができる。また、制御方法の具体例1は、コンプレッサ32を外部から熱を与える方法と比較して、軸受部32dにかかる荷重が高い傾向にある。また、発電による発熱が増大し、FCスタック10を素早く昇温することができる。
(実施の形態1の制御方法の一具体例2)
次に、図5を参照して、燃料電池システムの制御方法の一具体例について説明する。図5は、実施の形態1に係る燃料電池システムの制御方法の一具体例2を示すフローチャートである。燃料電池システムの制御方法の一具体例2では、パターン12(表2参照)である。
まず、通常状態における制御を開始する(通常制御ステップST31)。具体的には、潤滑オイルをコンプレッサ32へ供給しており、その供給量Lは、常温環境下においてコンプレッサ32の各構成要素を良好に動作させるのに必要な所定の供給量L0であればよい。
続いて、燃料電池システム100が氷点下において始動しているか否かを判断する(氷点下始動判断ステップST32)。燃料電池システム100が氷点下において始動していると判断した場合(YES:氷点下始動判断ステップST32)、コンプレッサ32のモータ32aの運転を開始し、所定のACP回転数αで運転させる(コンプレッサ駆動ステップST33)。具体的には、コンプレッサ32がカソードガスを圧縮し、この圧縮されたカソードガスがカソードガス供給路30aを通過し、FCスタック10のカソード流路13のカソード流路入口13aへ流入する。FCスタック10は、この送り込まれたカソードガスを受けて、速やかに発電して発熱する。
続いて、所定の時間T1秒[sec]が経過した後、封止弁34の開度がγ2になるように、封止弁34を閉める(封止弁開度調整ステップST34)。封止弁34の開度γ2は、実質的に0(ゼロ)でもよい。
カソードガス供給路30aにおけるコンプレッサ32(具体的には、ACP出口)側から封止弁34までを構成する配管の温度がTy以上であるとき、及び、カソードガス供給路30aにおけるコンプレッサ32側から封止弁34までの圧力がPy以上であるときの少なくとも一方が成り立つか否かを判断する(コンプレッサ封止弁間の温度上昇確認ステップST35)。
いずれか一方、又はいずれも両方が成り立つとき(YES:コンプレッサ封止弁間の温度上昇確認ステップS35)、所定の時間T2秒[sec]が経過した後、バイパス弁35の開度がβ2になるように、バイパス弁35を開く(バイパス弁開度調整ステップST36)。コンプレッサ32により圧縮されたガスは、カソードガス供給路30aにおけるFCスタック10側と、バイパス流路30cとに分流する。そのため、カソードガス供給路30aにおけるコンプレッサ32側から封止弁34までの圧力が抑制され、FCスタック10内のカソードガスの圧力が抑制され得る。
最後に、氷点下始動時における制御を終了するか否かを判断する(氷点下制御終了判断ステップST37)。氷点下始動時における制御を終了すると判断した場合(YES:氷点下制御終了判断ステップST37)、通常制御ステップに戻る(リターンステップST38)。
氷点下始動時における制御を終了するか否かを判断する方法として、様々な方法を採用することができる。例えば、コンプレッサ32のモータ32aの回転数が所定のACP回転数αになった時点から経過した時間が、予め決められた所定の時間Txを超えたとき、氷点下始動時における制御を終了すると判断してもよい。また、コンプレッサ32の消費電力Pが、予め決められた所定の消費電力Px以下であるとき、氷点下始動時における制御を終了すると判断してもよい。また、コンプレッサ32の潤滑オイルの温度T、モータ32aのステータの温度Tm、又はコンプレッサ32のハウジングの温度が、所定の温度以上であるとき、氷点下始動時における制御を終了すると判断してもよい。
以上、制御方法の具体例2によれば、上記した実施の形態1の制御方法と同様に、コンプレッサ32を迅速に昇温することができる。したがって、コンプレッサ32の消費電力の増大を抑制することができる。また、制御方法の具体例2は、コンプレッサ32を外部から熱を与える方法と比較して、軸受部32dにかかる荷重が高い傾向にある。また、発電による発熱が増大し、FCスタック10を素早く昇温することができる。
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
100 燃料電池システム
10 FC(燃料電池)スタック 30a カソードガス供給路
30b カソードオフガス排出路 30c バイパス流路
32 コンプレッサ 34 封止弁
35 バイパス弁 36 背圧弁

Claims (1)

  1. カソードガスを圧縮するコンプレッサと、
    前記圧縮されたカソードガスを供給される燃料電池と、
    前記圧縮されたカソードガスを前記コンプレッサから前記燃料電池へ導く供給路、又はカソードオフガスを前記燃料電池の外部へ排出する排出路に設けられた圧力制御弁と、
    前記燃料電池を経ることなく前記供給路から前記排出路へ接続されるバイパス流路に、設けられたバイパス弁と、
    を備える燃料電池システムであって、
    常温環境下よりも温度が低い低温環境下において前記燃料電池システムを起動したとき、
    前記圧力制御弁は、前記圧力制御弁の開度を調整することによって、前記供給路における前記燃料電池から前記コンプレッサ側までの圧力を上昇させ、
    前記バイパス弁は、前記バイパス弁の開度が前記常温環境下において前記燃料電池システムを起動したときの前記バイパス弁の開度と比較して高くなるように、開く、
    燃料電池システム。
JP2016175069A 2016-09-07 2016-09-07 燃料電池システム Pending JP2018041630A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016175069A JP2018041630A (ja) 2016-09-07 2016-09-07 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016175069A JP2018041630A (ja) 2016-09-07 2016-09-07 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2018041630A true JP2018041630A (ja) 2018-03-15

Family

ID=61624047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016175069A Pending JP2018041630A (ja) 2016-09-07 2016-09-07 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2018041630A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745578A (zh) * 2021-07-22 2021-12-03 东风汽车集团股份有限公司 一种燃料电池背压阀的破冰控制方法及系统
CN113937324A (zh) * 2021-08-30 2022-01-14 东风汽车集团股份有限公司 一种燃料电池车辆空气泄露诊断方法及装置
US11764377B2 (en) 2021-07-06 2023-09-19 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11764377B2 (en) 2021-07-06 2023-09-19 Toyota Jidosha Kabushiki Kaisha Fuel cell system
CN113745578A (zh) * 2021-07-22 2021-12-03 东风汽车集团股份有限公司 一种燃料电池背压阀的破冰控制方法及系统
CN113745578B (zh) * 2021-07-22 2023-12-19 东风汽车集团股份有限公司 一种燃料电池背压阀的破冰控制方法及系统
CN113937324A (zh) * 2021-08-30 2022-01-14 东风汽车集团股份有限公司 一种燃料电池车辆空气泄露诊断方法及装置
CN113937324B (zh) * 2021-08-30 2022-12-20 东风汽车集团股份有限公司 一种燃料电池车辆空气泄露诊断方法及装置

Similar Documents

Publication Publication Date Title
KR100584635B1 (ko) 연료전지 시스템 및 수소 저장방법
JP2009158379A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2019185985A (ja) 燃料電池システム
JP2011014429A (ja) 燃料電池システム
JP2018041630A (ja) 燃料電池システム
US20200274177A1 (en) Fuel cell system and hydrogen circulation pump
JP2006086117A (ja) 燃料電池システム
JP2005310653A (ja) 燃料電池システム
JP5024721B2 (ja) 燃料電池システム及びその循環比算出方法
JP5168814B2 (ja) 燃料電池システム、および燃料電池システムを搭載する車両
JP2009123594A (ja) 燃料電池評価試験装置
JP2011216446A (ja) 燃料電池システムの外気温推定方法
CN113097537A (zh) 燃料电池系统和燃料电池系统的控制方法
JP6693384B2 (ja) 燃料電池システム
JP2009129848A (ja) 燃料電池システム
JP2008041432A (ja) 燃料電池システムおよびこの制御方法
JP2009104955A (ja) 燃料電池システム及びその制御方法
JP2006278209A (ja) 燃料電池システム
JP5309558B2 (ja) 燃料電池システム
JP6071388B2 (ja) 燃料電池システムの冷却制御装置
JP7006158B2 (ja) 燃料電池システム
JP2010140678A (ja) 燃料電池の冷却システム
JP2018041658A (ja) 燃料電池システム
JP2010205654A (ja) 燃料電池システム
JP2015201406A (ja) 燃料電池システム