JP2018040899A - 静電荷像現像用トナー、静電荷像現像剤、現像剤カートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法 - Google Patents

静電荷像現像用トナー、静電荷像現像剤、現像剤カートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法 Download PDF

Info

Publication number
JP2018040899A
JP2018040899A JP2016173894A JP2016173894A JP2018040899A JP 2018040899 A JP2018040899 A JP 2018040899A JP 2016173894 A JP2016173894 A JP 2016173894A JP 2016173894 A JP2016173894 A JP 2016173894A JP 2018040899 A JP2018040899 A JP 2018040899A
Authority
JP
Japan
Prior art keywords
toner
image
electrostatic charge
developer
developing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016173894A
Other languages
English (en)
Inventor
章太郎 高橋
Shotaro Takahashi
章太郎 高橋
高橋 賢
Masaru Takahashi
賢 高橋
紗希子 平井
Sakiko Hirai
紗希子 平井
聡 上脇
Satoshi Kamiwaki
聡 上脇
太輔 冨田
Tasuke Tomita
太輔 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2016173894A priority Critical patent/JP2018040899A/ja
Publication of JP2018040899A publication Critical patent/JP2018040899A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

【課題】連続画像形成時における、形成する画像の光輝性ムラを抑制する静電荷像現像用トナーの提供。【解決手段】結着樹脂と、光輝性顔料と、を含むトナー粒子を含有し、X線光電子分光法により測定された、前記トナー粒子の表面に存在する周期律表第一族及び第二族に属する金属元素の合計含有量が、0.3atm%以上2.0atm%以下である静電荷像現像用トナーである。【選択図】なし

Description

本発明は、静電荷像現像用トナー、静電荷像現像剤、現像剤カートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法に関する。
金属光沢のごとき輝きを有する画像を形成する目的から、光輝性のトナーが用いられている。
ここで、シリカで被覆されたアルミニウム顔料と結着樹脂とを含むトナー粒子を含有し、X線光電子分光法(XPS)により測定された、前記トナー粒子のSi元素の含有率A(atom%)と前記トナー粒子のC元素の含有率B(atom%)との比(A/B)が、0.040以下である静電荷像現像用トナーが開示されている(例えば、特許文献1参照)。
特開2016−20968号公報
本発明の課題は、結着樹脂と、光輝性顔料と、を含むトナー粒子において、X線光電子分光法により測定された、前記トナー粒子の表面に存在する周期律表第一族及び第二族に属する金属元素の合計含有量が、0.3atm%未満であるか、2.0atm%を超える場合に比して、連続画像形成時における、形成する画像の光輝性ムラを抑制する静電荷像現像用トナーを提供することである。
上記課題は、以下の手段により解決される。
請求項1に係る発明は、
結着樹脂と、光輝性顔料と、を含むトナー粒子を含有し、
X線光電子分光法により測定された、前記トナー粒子の表面に存在する周期律表第一族及び第二族に属する金属元素の合計含有量が、0.3atm%以上2.0atm%以下である
静電荷像現像用トナー。
請求項2に係る発明は、
前記トナー粒子の全質量に対する前記光輝性顔料の含有量が、10質量%以上40質量%以下である、請求項1に記載の静電荷像現像用トナー。
請求項3に係る発明は、
前記光輝性顔料の体積平均粒径が、4.5μm以上10μm以下である、請求項1又は請求項2に記載の静電荷像現像用トナー。
請求項4に係る発明は、
蛍光X線分析により測定された、前記トナー粒子中の周期律表第一族及び第二族に属する金属元素の合計含有量が、0.04atm%以上0.11atm%以下である、請求項1〜請求項4のいずれか1項に記載の静電荷像現像用トナー。
請求項5に係る発明は、
請求項1〜請求項4のいずれか1項に記載の静電荷像現像用トナーと、静電荷像現像用キャリアと、を含む静電荷像現像剤。
請求項6に係る発明は、
請求項5に記載の静電荷像現像剤を収容し、画像形成装置に着脱される現像剤カートリッジ。
請求項7に係る発明は、
請求項5に記載の静電荷像現像剤を収容し、前記静電荷像現像剤により、像保持体の表面に形成された静電荷像をトナー画像として現像する現像手段を備え、
画像形成装置に着脱されるプロセスカートリッジ。
請求項8に係る発明は、
像保持体と、
前記像保持体の表面を帯電する帯電手段と、
帯電した前記像保持体の表面に静電荷像を形成する静電荷像形成手段と、
請求項5に記載の静電荷像現像剤を収容し、前記静電荷像現像剤により、前記像保持体の表面に形成された静電荷像をトナー画像として現像する現像手段と、
前記像保持体の表面に形成されたトナー画像を記録媒体の表面に転写する転写手段と、
前記記録媒体の表面に転写されたトナー画像を定着する定着手段と、
を備える画像形成装置。
請求項9に係る発明は、
像保持体の表面を帯電する帯電工程と、
帯電した前記像保持体の表面に静電荷像を形成する静電荷像形成工程と、
請求項5に記載の静電荷像現像剤により、前記像保持体の表面に形成された静電荷像をトナー画像として現像する現像工程と、
前記像保持体の表面に形成されたトナー画像を記録媒体の表面に転写する転写工程と、
前記記録媒体の表面に転写されたトナー画像を定着する定着工程と、
を有する画像形成方法。
請求項1に係る発明によれば、トナー粒子の表面に存在する周期律表第一族及び第二族に属する金属元素の合計含有量が、0.3atm%未満であるか、2.0atm%を超える場合に比して、連続画像形成時における、形成する画像の光輝性ムラ(画像上の位置による光輝性のばらつき)を抑制する静電荷像現像用トナーが提供される。
請求項2に係る発明によれば、前記トナー粒子の全質量に対する前記光輝性顔料の含有量が、40質量%を超える場合に比して、連続画像形成時における、形成する画像の光輝性ムラを抑制する静電荷像現像用トナーが提供される。
請求項3に係る発明によれば、前記光輝性顔料の体積平均粒径が、10μmを超える場合に比して、連続画像形成時における、形成する画像の光輝性ムラを抑制する静電荷像現像用トナーが提供される。
請求項4に係る発明によれば、蛍光X線分析により測定された、トナー粒子中の周期律表第一族及び第二族に属する金属元素の合計含有量が、0.04atm%未満であるか、0.11atm%を超える場合に比して、連続画像形成時における、形成する画像の光輝性ムラを抑制する静電荷像現像用トナーが提供される。
請求項5に係る発明によれば、トナー粒子の表面に存在する周期律表第一族及び第二族に属する金属元素の合計含有量が、0.3atm%未満であるか、2.0atm%を超える静電荷像現像用トナーを含む場合に比して、連続画像形成時における、形成する画像の光輝性ムラを抑制する静電荷像現像剤が提供される。
請求項6に係る発明によれば、トナー粒子の表面に存在する周期律表第一族及び第二族に属する金属元素の合計含有量が、0.3atm%未満であるか、2.0atm%を超える静電荷像現像用トナーを適用した場合に比して、連続画像形成時における、形成する画像の光輝性ムラを抑制する現像剤カートリッジが提供される。
請求項7に係る発明によれば、トナー粒子の表面に存在する周期律表第一族及び第二族に属する金属元素の合計含有量が、0.3atm%未満であるか、2.0atm%を超える静電荷像現像用トナーを適用した場合に比して、連続画像形成時における、形成する画像の光輝性ムラを抑制するプロセスカートリッジが提供される。
請求項8に係る発明によれば、トナー粒子の表面に存在する周期律表第一族及び第二族に属する金属元素の合計含有量が、0.3atm%未満であるか、2.0atm%を超える静電荷像現像用トナーを適用した現像剤を使用した場合に比して、連続画像形成時における、形成する画像の光輝性ムラを抑制する画像形成装置が提供される。
請求項9に係る発明によれば、トナー粒子の表面に存在する周期律表第一族及び第二族に属する金属元素の合計含有量が、0.3atm%未満であるか、2.0atm%を超える静電荷像現像用トナーを適用した現像剤を使用した場合に比して、連続画像形成時における、形成する画像の光輝性ムラを抑制する画像形成方法が提供される。
本実施形態に係るトナーを概略的に示す断面図である。 本実施形態に係る画像形成装置を示す概略構成図である。 本実施形態に係るプロセスカートリッジの一例を示す概略構成図である。
以下、本発明の一例である実施形態について説明する。
(静電荷像現像用トナー)
本実施形態に係る静電荷像現像用トナー(以下、単に「トナー」ともいう。)は、結着樹脂と、光輝性顔料と、を含むトナー粒子を含有し、X線光電子分光法により測定された、前記トナー粒子の表面に存在する周期律表第一族及び第二族に属する金属元素の合計含有量が、0.3atm%以上2.0atm%以下である。
光輝性顔料は、着色顔料と比して、粒径が大きく、比重が大きい。そのため、光輝性顔料を含有するトナー粒子は、光輝性顔料を含有しないトナー粒子に比して、粒径が大きく、比重が大きくなる。
このような、粒径が大きく、比重が大きいトナー粒子においては、運動エネルギーが大きくなるため、静電荷像現像用キャリア(以下、「キャリア」ともいう。)との接触により、トナー粒子の粉砕(機械的ストレスによるトナー粒子の割れや欠けに伴うトナー粒子破片の発生)が生じやすくなる。
ここで、トナー粒子が粉砕されることにより、トナー粒子に含まれていた結着樹脂がキャリアに付着してしまう付着物が生じる。キャリア組成として有しているキャリア表面が前記付着物によって一部、または全部を被覆されてしまうために、キャリア組成として有しているキャリア表面がトナーとの摩擦帯電を阻害されてしまいキャリアの摩擦帯電能が低下する。連続画像形成時(特に、1万枚の連続印刷等)においては、前記付着物によって通常のキャリアとは逆の極性に帯電したキャリアが画像に現像されてしまう場合がある。
このように、画像部にキャリアが移行した場合、定着時にキャリアと光輝性顔料が接触し、光輝性顔料に傷が生じて、得られる画像に光輝性ムラが発生する場合があった。
それに対して、本実施形態に係る静電荷像現像用トナーでは、X線光電子分光法により測定された、前記トナー粒子の表面に存在する周期律表第一族及び第二族に属する金属元素の合計含有量を、0.3atm%以上2.0atm%以下とする。これにより、連続画像形成時における、形成する画像の光輝性ムラが抑制される。その理由は、次のように推測される。
本実施形態に係る静電荷像現像用トナーでは、トナー粒子の表面において、結着樹脂と周期律表第一族及び第二族に属する金属元素のイオンとがアイオノマーを形成していると考えられる。
上記アイオノマーを形成した結着樹脂は、アイオノマーを形成していない結着樹脂と比して、弾性が高いと考えられる。このアイオノマーがトナー粒子の表面に存在することにより、静電荷像現像用トナーと静電荷像現像用キャリアとが接触した際に、衝撃を吸収すると考えられる。そのため、キャリアとの接触によるトナーの粉砕が抑制され、上述の画像部へのキャリアの移行が抑制された結果、連続画像形成時における、形成する画像の光輝性ムラが抑制されると考えられる。
本実施形態において、X線光電子分光法により測定された、前記トナー粒子の表面に存在する周期律表第一族及び第二族に属する金属元素の合計含有量が、0.3atm%以上であることにより、キャリアとの接触によるトナーの粉砕の抑制に優れ、形成する画像の光輝性ムラが抑制されると考えられる。
また、前記合計含有量が2.0atm%以下であることにより、特に高湿度条件下(例えば、32℃80%RH%)におけるトナー粒子の帯電特性の変化が抑制され、転写ムラが抑制されるため、形成する画像の光輝性ムラが抑制されると考えられる。
本実施形態に係るトナーおいて「光輝性」とは、光輝性トナーによって形成された画像を視認した際に金属光沢のごとき輝きを有することを表す。
具体的には、本実施形態に係るトナーは、ベタ画像を形成した場合に、該画像に対し変角光度計により入射角−45°の入射光を照射した際に測定される受光角+30°での反射率Xと受光角−30°での反射率Yとの比(X/Y)が2以上100以下であることが好ましい。
比(X/Y)が2以上であることは、入射光が入射する側(角度−側)への反射よりも入射する側とは反対側(角度+側)への反射が多いことを表し、即ち入射した光の乱反射が抑制されていることを表す。入射した光が様々な方向へ反射する乱反射が生じた場合、その反射光を目視にて確認すると色がくすんで見える。そのため、比(X/Y)が2未満である場合、その反射光を視認しても光沢が確認できず光輝性に劣る場合がある。
一方、比(X/Y)が100を超えると、反射光を視認し得る視野角が狭くなり過ぎ、正反射光成分が大きいために見る角度によって黒っぽく見えてしまう場合がある。
なお、上記比(X/Y)は、光輝性及びトナーの製造性の点から、4以上50以下であることがより好ましく、6以上20以下であることがさらに好ましく、8以上15以下であることが特に好ましい。
<変角光度計による比(X/Y)の測定>
ここで、まず入射角および受光角について説明する。本実施形態において変角光度計による測定の際には、入射角を−45°とするが、これは光沢度の広い範囲の画像に対して測定感度が高いためである。
また、受光角を−30°および+30°とするのは、光輝感のある画像と光輝感のない画像を評価するのに最も測定感度が高いためである。
次いで、比(X/Y)の測定方法について説明する。
測定対象となる画像(光輝性画像)に対して、変角光度計として日本電色工業社製の分光式変角色差計GC5000Lを用いて、画像への入射角−45°の入射光を入射し、受光角+30°における反射率Xと受光角−30°における反射率Yを測定する。尚、反射率Xおよび反射率Yは、400nmから700nmの範囲の波長の光について20nm間隔で測定を行い、各波長における反射率の平均値とした。これらの測定結果から比(X/Y)が算出される。
本実施形態に係るトナーは、前述の比(X/Y)を満たす観点から下記(1)乃至(2)の要件を満たすことが好ましい。
(1)トナー粒子の平均最大厚さCよりも平均円相当径Dが長い。
(2)トナー粒子の厚さ方向への断面を観察した場合に、トナー粒子の該断面における長軸方向と光輝性顔料の長軸方向との角度が−30°乃至+30°の範囲となる光輝性顔料の割合が、観察される全光輝性顔料のうち60%以上である。
トナー粒子が厚さよりも円相当径が長い扁平状であると(図1参照)、画像形成の定着工程において、定着する際の圧力によって、扁平状のトナー粒子はその扁平な面側が記録媒体表面と相対するよう並ぶと考えられる。なお、図1中、2はトナー粒子、4は光輝性顔料、Lはトナー粒子の厚さを示している。
そのため、このトナー粒子中に含有される扁平状(鱗片状)の光輝性顔料のうち上記(2)に示される「トナー粒子の該断面における長軸方向と光輝性顔料の長軸方向との角度が−30°乃至+30°の範囲にある」との要件を満たす光輝性顔料は、面積が最大となる面側が記録媒体表面と相対するよう並ぶと考えられる。こうして形成された画像に対し光を照射した場合には、入射光に対して乱反射する光輝性顔料の割合が抑制されるため、前述の比(X/Y)の範囲が達成されるものと考えられる。
以下、本実施形態に係るトナーの詳細について説明する。
本実施形態に係るトナーは、少なくとも結着樹脂と光輝性顔料とを含むトナー粒子を有する。本実施形態に係るトナー粒子は、必要に応じてその他の成分を含有してもよい。
本実施形態に係るトナーは、光輝性顔料と結着樹脂とを含むトナー粒子と、トナー粒子に外添される外添剤とを含有するものであってもよい。
<トナー粒子>
本実施形態用いられるトナー粒子は、X線光電子分光法により測定された、表面に存在する周期律表第一族及び第二族に属する金属元素の合計含有量が、0.3atm%以上2.0atm%以下である。
〔表面に存在する周期律表第一族及び第二族に属する金属元素の合計含有量〕
前記トナー粒子における、X線光電子分光法により測定された、表面に存在する周期律表第一族及び第二族に属する金属元素の合計含有量は、0.3atm%以上2.0atm%以下であることが好ましく、0.5atm%以上1.5atm%以下であることがより好ましい。
上記合計含有量が0.3atm%以上であれば、トナー粒子の粉砕が抑制され、連続画像形成時における、形成する画像の光輝性ムラが抑制される。
上記合計含有量が2.0atm%以下であれば、特に高湿度条件下におけるトナー粒子の帯電特性の変化が抑制され、転写ムラが抑制されるため、連続画像形成時における、形成する画像の光輝性ムラが抑制される。
−周期律表第一族及び第二族に属する金属元素−
本実施形態におけるトナー粒子の表面に存在する周期律表第一族及び第二族に属する金属元素としては、特に限定されないが、連続画像形成時における、形成する画像の光輝性ムラの抑制の観点から、リチウム、ナトリウム、カリウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、及び、バリウムが好ましく挙げられ、ナトリウム、カリウム、マグネシウム、及び、カルシウムがより好ましく挙げられ、ナトリウムが更に好ましく挙げられる。
−X線光電子分光法−
本実施形態におけるX線光電子分光法による測定により求められる周期律表第一族及び第二族に属する金属元素の合計含有量は、測定装置として日本電子社製、JPS−9000MXを使用し、X線源としてMgKα線を用い、加速電圧を10kV、エミッション電流を30mAに設定して得た値とする。
本実施形態においては、上記測定条件により測定された周期律表第一族及び第二族に属する金属元素の合計含有量を、表面に存在する周期律表第一族及び第二族に属する金属元素の合計含有量とする。なお、上記測定条件によれば、表面から5nmの領域までが測定されると考えられる。
トナー粒子の表面に外添剤が付着している場合、トナー粒子表面の周期律表第一族及び第二族に属する金属元素の合計含有量を求めるに際し、トナー粒子の表面に付着する外添剤を取り除くことが望ましい。具体的には、イオン交換水にコンタミノン(和光純薬工業製)等の界面活性剤を数滴加え、そこにトナーを加えて分散させ、その後超音波を1分以上5分以下照射することにより、トナー粒子の表面に付着する外添剤の除去を行う。本操作は外添剤を除去できるまで、超音波の強度を変更してもよく、また繰り返し操作することもできる。その後、トナーの分散液をろ紙に通し、リンス洗浄後、ろ紙上のトナー粒子を乾燥させ、XPS測定を行なう。
〔トナー粒子中の周期律表第一族及び第二族に属する金属元素の合計含有量〕
本実施形態に用いられるトナー粒子は、蛍光X線分析により測定された、トナー粒子中の周期律表第一族及び第二族に属する金属元素の合計含有量が、0.04atm%以上0.11atm%以下であることが好ましく、0.05atm%以上0.09atm%以下であることがより好ましく、0.06atm%以上0.08atm%以下であることが更に好ましい。
上記合計含有量が0.11atm%以下であれば、静電荷像現像用トナーの定着性に優れる。
また、上記合計含有量が0.04atm%以上であれば、連続画像形成時における、形成する画像の光輝性ムラが抑制される。
蛍光X線分析は、下記の方法により行われる。
蛍光X線解析装置(島津製作所社製、XRF−1500)を用いて、X線出力40V−70mA、測定面積10mmφ、測定時間15分の条件で、定性定量全元素分析法にて測定し、得られた全元素のKα強度及び周期律表第一族及び第二族に属する金属元素のKα強度(周期律表第一族及び第二族に属する金属に由来するピークの強度)からトナー粒子中の周期律表第一族及び第二族に属する金属元素の合計含有量を算出する。
トナー粒子の表面に外添剤が付着している場合、トナー粒子中の周期律表第一族及び第二族に属する金属元素の合計含有量を求めるに際し、トナー粒子の表面に付着する外添剤を取り除くことが望ましい。外添剤の除去方法としては、上述のX線光電子分光法における外添剤の除去方法と同様の方法を使用することが可能である。
〔トナー粒子の平均最大厚さCおよび平均円相当径D〕
トナー粒子は、扁平状であり、その平均最大厚さCよりも平均円相当径Dが長いことが好ましい。尚、平均最大厚さCと平均円相当径Dの比(C/D)が0.001以上0.700以下の範囲にあることがより好ましく、0.100以上0.600以下の範囲がさらに好ましく、0.300以上0.450以下の範囲が特に好ましい。
比(C/D)が0.001以上であることにより、トナーの強度が確保され、画像形成の際における応力による破断が抑制され、顔料が露出することによる帯電の低下、その結果発生するカブリが抑制される。一方0.700以下であることにより、優れた光輝性が得られる。
上記平均最大厚さCおよび平均円相当径Dは、以下の方法により測定される。
トナー粒子を平滑面にのせ、振動を掛けてムラのないように分散する。1000個のトナー粒子について、カラーレーザ顕微鏡「VK−9700」(キーエンス社製)により1000倍に拡大して光輝性トナー粒子における最大の厚さCと上から見た面の円相当径Dを測定し、それらの算術平均値を求めることにより算出する。
〔トナー粒子の断面における長軸方向と光輝性顔料の長軸方向との角度〕
トナー粒子の厚さ方向への断面を観察した場合に、トナー粒子の該断面における長軸方向と光輝性顔料の長軸方向との角度が−30°乃至+30°の範囲となる光輝性顔料の割合(個数基準)が、観察される全光輝性顔料のうち60%以上であることが好ましい。さらには、上記割合が70%以上95%以下であることがより好ましく、80%以上90%以下であることが特に好ましい。
上記の割合が60%以上であることにより優れた光輝性が得られる。
ここで、トナー粒子の断面の観察方法について説明する。
トナー粒子をビスフェノールA型液状エポキシ樹脂と硬化剤とを用いて包埋したのち、切削用サンプルを作製する。次にダイヤモンドナイフを用いた切削機、例えばウルトラミクロトーム装置(UltracutUCT、Leica社製)を用いて−100℃の下、切削サンプルを切削し、観察用サンプルを作製する。観察サンプルを、たとえば超高分解能電界放出形走査電子顕微鏡(S−4800、日立ハイテクノロジーズ社製)により1視野にトナー粒子が1から10個程度見える倍率で観察する。
具体的には、トナー粒子の断面(トナー粒子の厚み方向に沿った断面)を観察し、観察された100個のトナー粒子について、トナー粒子の断面における長軸方向と光輝性顔料の長軸方向との角度が−30°乃至+30°の範囲となる光輝性顔料の数を、たとえば三谷商事株式会社製の画像解析ソフト(Win ROOF)などの画像解析ソフトもしくは観察画像の出力サンプルと分度器を用いて数えその割合を計算する。
なお、「トナー粒子の断面における長軸方向」とは、前述の平均最大厚さCよりも平均円相当径Dが長いトナー粒子における厚さ方向と直交する方向を表し、また「光輝性顔料の長軸方向」とは、光輝性顔料における長さ方向を表す。
トナー粒子の体積平均粒径は3μm以上30μm以下であることが望ましく、より望ましくは5μm以上20μm以下である。
なお、トナー粒子の体積平均粒径D50vは、マルチサイザーII(コールター社製)等の測定器で測定される粒度分布を基にして分割された粒度範囲(チャンネル)に対して体積、数をそれぞれ小径側から累積分布を描いて求められる。累積16%となる粒径を体積D16v、数D16p、累積50%となる粒径を体積D50v、数D50p、累積84%となる粒径を体積D84v、数D84pと定義する。これらを用いて、体積粒度分布指標(GSDv)は(D84v/D16v)1/2として算出される。
トナー粒子の厚さ方向の平均長さを1としたときの長軸方向の平均長さの比率(アスペクト比)は、1.5以上15以下であることが好ましく、2以上10以下であることがより好ましく、3以上8以下であることがさらに好ましい。
トナー粒子の厚さ方向の平均長さ及び長軸方向の平均長さは、トナー粒子を平滑面にのせ、振動を掛けてムラのないように分散する。1,000個のトナー粒子について、カラーレーザ顕微鏡「VK−9700」(キーエンス社製)により1,000倍に拡大して光輝性トナー粒子における最大の厚さと上から見た面の長軸方向の長さを測定し、それらの算術平均値を求めることにより算出する。
〔トナー粒子の強度〕
本実施形態に用いられるトナー粒子は、微小圧縮試験における粒径に対する変位割合(%)の分布の中央値が13以上34以下であることが好ましい。
微小圧縮試験は、温度22℃、湿度55%RH環境下で、四方20μm×20μmの平圧子を装着した微小硬度計「超微小硬度計ENT1100((株)エリオニクス社製)」を使用して実施する。
具体的には、測定対象となるトナー粒子をセラミックセルに塗布及び分散し、このセルを微小硬度計に装着する。
次に、微小硬度計の測定画面から、トナー粒子一個を選択し、負荷速度0.098mN/secで荷重0.2mNをトナー粒子に負荷する。このときのトナー粒子の変位量を測定する。つまり、トナー粒子に対して0.098mN/secのスピードで重荷を掛けて、荷重が0.2mNに到達したときのトナー粒子の変位量を測定する。そして、変位量を測定したトナー粒子の粒径を測定し、トナー粒子の粒径に対する変位割合を「式:変位割合=変位量/トナー粒子の粒径×100」により求める。なお、トナー粒子の粒径は、超微小硬度計付帯のソフトを利用し、トナー粒子の長径と短径を測定し、「式;トナー粒子の粒径=(長径+短径)/2」により求める。
そして、この操作をトナー粒子500個について実施し、トナー粒子の粒径に対する変位割合(%)の分布を得て、その中央値を求める。なお、中央値は、変位割合(%)を0.1%ごとに区分し、上記500個の粒子を変位割合(%)が小さい順に並べ、250番目と251番目の粒子の変位割合(%)の算術平均で求められる。
また、本実施形態に用いられるトナー粒子は、結着樹脂と光輝性顔料とを含む。トナー粒子は、必要に応じて、離型剤等のその他添加剤を含んでもよい。
〔結着樹脂〕
結着樹脂としては、例えば、スチレン類(例えばスチレン、パラクロロスチレン、α−メチルスチレン等)、(メタ)アクリル酸エステル類(例えばアクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸n−ブチル、アクリル酸ラウリル、アクリル酸2−エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸ラウリル、メタクリル酸2−エチルヘキシル等)、エチレン性不飽和ニトリル類(例えばアクリロニトリル、メタクリロニトリル等)、ビニルエーテル類(例えばビニルメチルエーテル、ビニルイソブチルエーテル等)、ビニルケトン類(ビニルメチルケトン、ビニルエチルケトン、ビニルイソプロペニルケトン等)、オレフィン類(例えばエチレン、プロピレン、ブタジエン等)等の単量体の単独重合体、又はこれら単量体を2種以上組み合せた共重合体からなるビニル系樹脂が挙げられる。
結着樹脂としては、例えば、エポキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、セルロース樹脂、ポリエーテル樹脂、変性ロジン等の非ビニル系樹脂、これらと前記ビニル系樹脂との混合物、又は、これらの共存下でビニル系単量体を重合して得られるグラフト重合体等も挙げられる。
これらの結着樹脂は、1種類単独で用いてもよいし、2種以上を併用してもよい。
結着樹脂としては、ポリエステル樹脂が好適である。
ポリエステル樹脂としては、例えば、公知のポリエステル樹脂が挙げられる。
ポリエステル樹脂としては、例えば、多価カルボン酸と多価アルコールとの縮重合体が挙げられる。なお、ポリエステル樹脂としては、市販品を使用してもよいし、合成したものを使用してもよい。
多価カルボン酸としては、例えば、脂肪族ジカルボン酸(例えばシュウ酸、マロン酸、マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸、コハク酸、アルケニルコハク酸、アジピン酸、セバシン酸等)、脂環式ジカルボン酸(例えばシクロヘキサンジカルボン酸等)、芳香族ジカルボン酸(例えばテレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸等)、これらの無水物、又はこれらの低級(例えば炭素数1以上5以下)アルキルエステルが挙げられる。これらの中でも、多価カルボン酸としては、例えば、芳香族ジカルボン酸が好ましい。
多価カルボン酸は、ジカルボン酸と共に、架橋構造又は分岐構造をとる3価以上のカルボン酸を併用してもよい。3価以上のカルボン酸としては、例えば、トリメリット酸、ピロメリット酸、これらの無水物、又はこれらの低級(例えば炭素数1以上5以下)アルキルエステル等が挙げられる。
多価カルボン酸は、1種単独で使用してもよいし、2種以上を併用してもよい。
多価アルコールとしては、例えば、脂肪族ジオール(例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、ネオペンチルグリコール等)、脂環式ジオール(例えばシクロヘキサンジオール、シクロヘキサンジメタノール、水添ビスフェノールA等)、芳香族ジオール(例えばビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物等)が挙げられる。これらの中でも、多価アルコールとしては、例えば、芳香族ジオール、脂環式ジオールが好ましく、より好ましくは芳香族ジオールである。
多価アルコールとしては、ジオールと共に、架橋構造又は分岐構造をとる3価以上の多価アルコールを併用してもよい。3価以上の多価アルコールとしては、例えば、グリセリン、トリメチロールプロパン、ペンタエリスリトールが挙げられる。
多価アルコールは、1種単独で使用してもよいし、2種以上を併用してもよい。
ポリエステル樹脂のガラス転移温度(Tg)は、50℃以上80℃以下が好ましく、50℃以上65℃以下がより好ましい。
なお、ガラス転移温度は、示差走査熱量測定(DSC)により得られたDSC曲線より求め、より具体的にはJIS K 7121−1987「プラスチックの転移温度測定方法」のガラス転移温度の求め方に記載の「補外ガラス転移開始温度」により求められる。
ポリエステル樹脂の重量平均分子量(Mw)は、5000以上1000000以下が好ましく、7000以上500000以下より好ましい。
ポリエステル樹脂の数平均分子量(Mn)は、2000以上100000以下が好ましい。
ポリエステル樹脂の分子量分布Mw/Mnは、1.5以上100以下が好ましく、2以上60以下がより好ましい。
なお、重量平均分子量及び数平均分子量は、ゲルパーミュエーションクロマトグラフィ(GPC)により測定する。GPCによる分子量測定は、測定装置として東ソー製GPC・HLC−8120GPCを用い、東ソー製カラム・TSKgel SuperHM−M(15cm)を使用し、THF溶媒で行う。重量平均分子量及び数平均分子量は、この測定結果から単分散ポリスチレン標準試料により作成した分子量校正曲線を使用して算出する。
ポリエステル樹脂は、周知の製造方法により得られる。具体的には、例えば、重合温度を180℃以上230℃以下とし、必要に応じて反応系内を減圧にし、縮合の際に発生する水やアルコールを除去しながら反応させる方法により得られる。
なお、原料の単量体が、反応温度下で溶解又は相溶しない場合は、高沸点の溶剤を溶解補助剤として加え溶解させてもよい。この場合、重縮合反応は溶解補助剤を留去しながら行う。相溶性の悪い単量体が存在する場合は、あらかじめ相溶性の悪い単量体とその単量体と重縮合予定の酸又はアルコールとを縮合させておいてから主成分と共に重縮合させるとよい。
ここで、ポリエステル樹脂としては、上述した未変性ポリエステル樹脂以外に、変性ポリエステル樹脂も挙げられる。変性ポリエステル樹脂とは、エステル結合以外の結合基が存在するポリエステル樹脂、ポリエステル樹脂成分とは異なる樹脂成分が共有結合又はイオン結合等で結合されたポリエステル樹脂である。変性ポリエステルとしては、例えば、末端に酸基又は水酸基と反応するイソシアネート基等の官能基を導入したポリエステル樹脂と、活性水素化合物とを反応させて、末端を変性した樹脂が挙げられる。
変性ポリエステル樹脂としては、ウレア変性ポリエステル樹脂が特に好ましい。ウレア変性ポリエステル樹脂の含有量は、全結着樹脂に対して10質量%以上30質量%以下が好ましく、15質量%以上25質量%以下がより好ましい。
ウレア変性ポリエステル樹脂は、イソシアネート基を有するポリエステル樹脂(ポリエステルプレポリマー)とアミン化合物との反応(架橋反応及び伸長反応の少なくとも一方の反応)により得られるウレア変性ポリエステル樹脂がよい。なお、ウレア変性ポリエステル中には、ウレア結合と共にウレタン結合を含有していてもよい。
イソシアネート基を有するポリエステルプレポリマーとしては、多価カルボン酸と多価アルコールとの重縮合物であるポリエステルであって、活性水素を有するポリエステルに多価イソシアネート化合物を反応させたプレポリマー等が挙げられる。ポリエステルの有する活性水素を有する基としては、水酸基(アルコール性水酸基およびフェノール性水酸基)、アミノ基、カルボキシル基、メルカプト基等が挙げられ、アルコール性水酸基が好ましい。
イソシアネート基を有するポリエステルプレポリマーにおいて、多価カルボン酸及び多価アルコールは、ポリエステル樹脂で説明した多価カルボン酸及び多価アルコールと同様な化合物が挙げられる。
多価イソシアネート化合物としては、脂肪族ポリイソシアネート(テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,6−ジイソシアナトメチルカプロエートなど);脂環式ポリイソシアネート(イソホロンジイソシアネート、シクロヘキシルメタンジイソシアネートなど);芳香族ジイソシアネート(トリレンジイソシアネート、ジフェニルメタンジイソシアネートなど);芳香脂肪族ジイソシアネート(α,α,α’,α’−テトラメチルキシリレンジイソシアネートなど);イソシアヌレート類;前記ポリイソシアネートをフェノール誘導体、オキシム、カプロラクタム等のブロック化剤でブロックしたものが挙げられる。
多価イソシアネート化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
多価イソシアネート化合物の比率は、イソシアネート基[NCO]と、水酸基を有するポリエステルプレポリマーの水酸基[OH]の当量比[NCO]/[OH]として、好ましくは1/1以上5/1以下、より好ましくは1.2/1以上4/1以下、さらに好ましくは1.5/1以上2.5/1以下である。なお、[NCO]/[OH]を5以下にすると低温定着性の低下が抑制され易くなる。
イソシアネート基を有するポリエステルプレポリマーにおいて、多価イソシアネート化合物に由来する成分の含有量は、イソシアネート基を有するポリエステルプレポリマー全体に対して、好ましくは0.5質量%以上40質量%以下、より好ましくは1質量%以上30質量%以下、さらに好ましくは2質量%以上20質量%以下である。
イソシアネート基を有するポリエステルプレポリマーの1分子当たりに含有するイソシアネート基の数は、好ましくは平均1個以上、より好ましくは平均1.5個以上3個以下、さらに好ましくは平均1.8個以上2.5個以下である。
イソシアネート基を有するポリエステルプレポリマーと反応するアミン化合物としては、ジアミン、3価以上のポリアミン、アミノアルコール、アミノメルカプタン、アミノ酸、これらのアミノ基をブロックした化合物等が挙げられる。
ジアミンとしては、芳香族ジアミン(フェニレンジアミン、ジエチルトルエンジアミン、4,4’−ジアミノジフェニルメタンなど);脂環式ジアミン(4,4’−ジアミノ−3,3’−ジメチルジシクロヘキシルメタン、ジアミンシクロヘキサン、イソホロンジアミンなど);および脂肪族ジアミン(エチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミンなど)などが挙げられる。
3価以上のポリアミンとしては、ジエチレントリアミン、トリエチレンテトラミンなどが挙げられる。
アミノアルコールとしては、エタノールアミン、ヒドロキシエチルアニリンなどが挙げられる。
アミノメルカプタンとしては、アミノエチルメルカプタン、アミノプロピルメルカプタンなどが挙げられる。
アミノ酸としては、アミノプロピオン酸、アミノカプロン酸などが挙げられる。
これらのアミノ基をブロックしたものとしては、ジアミン、3価以上のポリアミン、アミノアルコール、アミノメルカプタン、アミノ酸などのアミン化合物とケトン化合物(アセトン、メチルエチルケトン、メチルイソブチルケトンなど)とから得られるケチミン化合物、オキサゾリン化合物などが挙げられる。
これらアミン化合物のうち、ケチミン化合物が好ましい。
アミン化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
なお、ウレア変性ポリエステル樹脂は、架橋反応及び伸長反応の少なくとも一方の反応を停止する停止剤(以下「架橋/伸長反応停止剤」とも称する)により、イソシアネート基を有するポリエステル樹脂(ポリエステルプレポリマー)とアミン化合物との反応(架橋反応及び伸長反応の少なくとも一方の反応)を調整して、反応後の分子量が調整された樹脂であってもよい。
架橋/伸長反応停止剤としては、モノアミン(ジエチルアミン、ジブチルアミン、ブチルアミン、ラウリルアミンなど)、およびそれらをブロックしたもの(ケチミン化合物)などが挙げられる。
アミン化合物の比率は、イソシアネート基を有するポリエステルプレポリマー中のイソシアネート基[NCO]と、アミン類中のアミノ基[NHx]の当量比[NCO]/[NHx]として、好ましくは1/2以上2/1以下、より好ましくは1/1.5以上1.5/1以下、さらに好ましくは1/1.2以上1.2/1以下である。
なお、ウレア変性ポリエステル樹脂のガラス転移温度は40℃以上65℃以下が好ましく、45℃以上60℃以下がさらに好ましい。数平均分子量は、2500以上50000以下であることが好ましく、2500以上30000以下がさらに好ましい。重量平均分子量は、1万以上50万以下であることが好ましく、3万以上10万以下がさらに好ましい。
また、本実施形態において用いられる結着樹脂は、連続画像形成時における、形成する画像の光輝性ムラを抑制する観点から、酸価が10.2mg/KOH以上であることが好ましく、12.1mg/KOH以上であることが好ましい。
酸価の上限は、特に制限はないが、合成適性上、15.5mg/KOH以下であることが好ましい。
結着樹脂の酸価が10.2mg/KOH以上であれば、アイオノマーの形成性に優れるため、連続画像形成時における、形成する画像の光輝性ムラが更に抑制されやすくなる。
結着樹脂の酸価は、JIS K0070−1992に従って、中和滴定法で測定する。
結着樹脂が有する酸性基としては、特に限定されず、公知の酸性基を有することができるが、カルボキシ基、スルホン酸基、又は、フェノール性水酸基が好ましく、カルボキシ基がより好ましい。
結着樹脂に酸性基を導入する方法としては、特に限定されないが、例えば、結着樹脂がビニル系樹脂である場合、アクリル酸やメタクリル酸等の不飽和カルボン酸を共重合体のモノマーとして使用することにより導入する方法が挙げられる。
結着樹脂がポリエステル樹脂である場合、例えば、樹脂の末端をカルボキシ基とすることにより導入する方法が挙げられる。
結着樹脂の含有量としては、例えば,トナー粒子全体に対して、40質量%以上95質量%以下が好ましく、50質量%以上90質量%以下がより好ましく、60質量%以上85質量%以下がさらに好ましい。
〔光輝性顔料〕
光輝性顔料としては、例えば、金属光沢のごとき光輝感を付与し得る顔料(光輝性顔料)が挙げられる。光輝性顔料として具体的には、例えば、アルミニウム(Al単体の金属)、黄銅、青銅、ニッケル、ステンレス、亜鉛等の金属粉末;酸化チタン、黄色酸化鉄等を被覆した雲母;硫酸バリウム、層状ケイ酸塩、層状アルミニウムのケイ酸塩等の被覆薄片状無機結晶基質;単結晶板状酸化チタン;塩基性炭酸塩;酸オキシ塩化ビスマス;天然グアニン;薄片状ガラス粉;金属蒸着された薄片状ガラス粉などが挙げられ、光輝性を有するものならば特に制限はない。
光輝性顔料の中でも、特に鏡面反射強度の観点で、金属粉末が好ましく、その中でもアルミニウムが最も好ましい。
本実施形態に係る光輝性顔料の形状については、特に限定するものではないが、定着画像において高い光輝性を有するという観点で、扁平状(鱗片状)が好ましい。
そこで、本実施形態では扁平状の光輝性顔料について記載する。
扁平状の光輝性顔料の長軸方向の平均長さは、1μm以上30μm以下であることが好ましく、3μm以上20μm以下がより好ましく、5μm以上15μm以下が更に好ましい。
光輝性顔料の厚さ方向の平均長さを1としたときの長軸方向の平均長さの比率(アスペクト比)は、5以上200以下であることが好ましく、10以上100以下がより好ましく、30以上70以下が更に好ましい。
光輝性顔料の各平均長さおよびアスペクト比は、以下の方法により測定される。走査電子顕微鏡(S−4800,(株)日立ハイテクノロジーズ製)を用い、測定し得る倍率(300から100,000倍)で顔料粒子の写真を撮影し、得られた顔料粒子の画像を二次元化した状態で、各粒子の長軸方向の長さ及び厚さ方向の長さを測定し、光輝性顔料長軸方向の平均長さ及びアスペクト比を算出する。
本実施形態に係る光輝性顔料の体積平均粒径は、4.5μm以上10μm以下であることが好ましく、5.0μm以上8μm以下であることがより好ましい。
光輝性顔料の体積平均粒径が4.5μm以上であれば、得られる画像の光輝性に優れる。
光輝性顔料の体積平均粒径が10μm以下であれば、電荷特性に優れ、連続画像形成時における、形成する画像の光輝性ムラが抑制されやすくなる。
光輝性顔料の体積平均粒径は、以下のようにして測定される。
マルチサイザーII(コールター社製)等の測定器で測定される粒度分布を基にして分割された粒度範囲(チャネル)に対して体積をそれぞれ小径側から累積分布を描いて、累積50%となる粒径を体積平均粒径とする。
製造後のトナー粒子中の光輝性顔料の体積平均粒径の測定方法としては、光輝性顔料は溶解せずに、トナー樹脂のみを溶解可能な溶媒とトナーを混合撹拌し、十分トナー樹脂が溶媒中に溶解した後に、光輝性顔料を固液分離して、上記同様の粒度分布測定装置にて体積平均粒径を測定する。
トナー粒子の全質量に対する光輝性顔料の含有量は、10質量%以上40質量%以下であることが好ましく、12質量%以上35質量%以下であることがより好ましく、15質量%以上30質量%以下であることが更に好ましい。
前記光輝性顔料の含有量が10質量%以上であれば、光輝性に優れた画像が得られる。
前記光輝性顔料の含有量が40質量%以上であれば、電荷特性に優れ、連続画像形成時における、形成する画像の光輝性ムラが抑制されやすくなる。
〔離型剤〕
離型剤としては、例えば、炭化水素系ワックス;カルナウバワックス、ライスワックス、キャンデリラワックス等の天然ワックス;モンタンワックス等の合成又は鉱物・石油系ワックス;脂肪酸エステル、モンタン酸エステル等のエステル系ワックス;などが挙げられる。離型剤は、これに限定されるものではない。
離型剤の融解温度は、50℃以上110℃以下が好ましく、60℃以上100℃以下がより好ましい。
なお、融解温度は、示差走査熱量測定(DSC)により得られたDSC曲線から、JIS K 7121−1987「プラスチックの転移温度測定方法」の融解温度の求め方に記載の「融解ピーク温度」により求める。
離型剤の含有量としては、例えば、トナー粒子全体に対して、1質量%以上20質量%以下が好ましく、5質量%以上15質量%以下がより好ましい。
〔その他の添加剤〕
その他の添加剤としては、例えば、磁性体、帯電制御剤、無機粒子、光輝性顔料以外のその他の着色剤等の周知の添加剤が挙げられる。これらの添加剤は、内添剤としてトナー粒子に含まれる。
帯電制御剤としては、例えば、4級アンモニウム塩化合物、ニグロシン系化合物、アルミニウム、鉄、クロムなどの錯体を含む染料、トリフェニルメタン系顔料などが挙げられる。
無機粒子としては、例えば、シリカ粒子、酸化チタン粒子、アルミナ粒子、酸化セリウム粒子、或いはこれらの表面を疎水化処理した物等、公知の無機粒子を単独又は2種以上を組み合わせて使用してもよい。これらの中でも、屈折率が結着樹脂よりも小さいシリカ粒子が好ましく用いられる。また、シリカ粒子は種々の表面処理を施されてもよく、例えばシラン系カップリング剤、チタン系カップリング剤、シリコーンオイル等で表面処理したものが好ましく用いられる。
光輝性顔料以外のその他の着色剤としては、公知の着色剤が挙げられ、目的の色味に応じて選択する。なお、その他の着色剤としては、必要に応じて表面処理された着色剤を用いてもよく、分散剤と併用してもよい。
その他の着色剤としては、例えば、カーボンブラック、クロムイエロー、ハンザイエロー、ベンジジンイエロー、スレンイエロー、キノリンイエロー、ピグメントイエロー、パーマネントオレンジGTR、ピラゾロンオレンジ、バルカンオレンジ、ウオッチヤングレッド、パーマネントレッド、ブリリアントカーミン3B、ブリリアントカーミン6B、デュポンオイルレッド、ピラゾロンレッド、リソールレッド、ローダミンBレーキ、レーキレッドC、ピグメントレッド、ローズベンガル、アニリンブルー、ウルトラマリンブルー、カルコオイルブルー、メチレンブルークロライド、フタロシアニンブルー、ピグメントブルー、フタロシアニングリーン、マラカイトグリーンオキサレートなどの種々の顔料、又は、アクリジン系、キサンテン系、アゾ系、ベンゾキノン系、アジン系、アントラキノン系、チオインジコ系、ジオキサジン系、チアジン系、アゾメチン系、インジコ系、フタロシアニン系、アニリンブラック系、ポリメチン系、トリフェニルメタン系、ジフェニルメタン系、チアゾール系などの各種染料等が挙げられる。
〔トナー粒子の特性等〕
トナー粒子は、単層構造のトナー粒子であってもよいし、芯部(コア粒子)と芯部を被覆する被覆層(シェル層)とで構成された所謂コア・シェル構造のトナー粒子であってもよい。
コア・シェル構造のトナー粒子は、例えば、光輝性顔料と結着樹脂と必要に応じて離型剤等のその他添加剤とを含む芯部と、結着樹脂を含む被覆層と、で構成されていることがよい。
トナー粒子がコア・シェル構造のトナー粒子である場合、例えば、シェル層が周期律表第一族及び第二族に属する金属元素を含有する化合物を含有することが好ましい。
シェル層が周期律表第一族及び第二族に属する金属元素を含有する化合物を含有することにより、本実施形態に係るトナーが得られる。
周期律表第一族に属する金属元素を含有する化合物としては、特に限定されないが、分子間結合の強さの観点から、周期律表第一族に属する周期番号が小さい金属元素の無機塩であることが好ましく、NaOH、NaCl、NaSO、NaCO、NaPO、NaHPO、KOH、KCl、KSO、KCO等が好ましく、NaClがより好ましい。
周期律表第二族に属する金属元素を含有する化合物としては、特に限定されないが、分子間結合の強さの観点から、周期律表第二族に属する周期番号が小さい金属元素の無機塩であることが好ましく、MgCl、MgSO、MgCO、Ca(OH)、CaCl、CaSO、CaCO等が好ましく、MgClがより好ましい。
<外添剤>
外添剤としては、例えば、無機粒子が挙げられる。該無機粒子として、SiO、TiO、Al、CuO、ZnO、SnO、CeO、Fe、MgO、BaO、CaO、KO、NaO、ZrO、CaO・SiO、KO・(TiO)n、Al・2SiO、CaCO、MgCO、BaSO、MgSO等が挙げられる。
外添剤としての無機粒子の表面は、疎水化処理が施されていることがよい。疎水化処理は、例えば疎水化処理剤に無機粒子を浸漬する等して行う。疎水化処理剤は特に制限されないが、例えば、シラン系カップリング剤、シリコーンオイル、チタネート系カップリング剤、アルミニウム系カップリング剤等が挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
疎水化処理剤の量としては、通常、例えば、無機粒子100質量部に対して、1質量部以上10質量部以下である。
外添剤としては、樹脂粒子(ポリスチレン、ポリメチルメタクリレート(PMMA)、メラミン樹脂等の樹脂粒子)、クリーニング活剤(例えば、ステアリン酸亜鉛に代表される高級脂肪酸の金属塩、フッ素系高分子量体の粒子)等も挙げられる。
外添剤の外添量としては、例えば、トナー粒子に対して、0.01質量%以上5質量%以下が好ましく、0.01質量%以上2.0質量%以下がより好ましい。
(トナーの製造方法)
次に、本実施形態に係るトナーの製造方法について説明する。
本実施形態に係るトナーは、光輝性顔料を含むトナー粒子を製造後、トナー粒子に対して、外添剤を外添することで得られる。
トナー粒子は、乾式製法(例えば、混練粉砕法等)、湿式製法(例えば、凝集合一法、懸濁重合法、溶解懸濁法等)のいずれにより製造してもよい。トナー粒子の製法は、これらの製法に特に制限はなく、周知の製法が採用される。
例えば、溶解懸濁法は、トナー粒子を構成する原料(樹脂粒子及び光輝性顔料等)を、結着樹脂が溶解可能な有機溶媒中に溶解又は分散させた液を、粒子分散剤を含有する水系溶媒に分散させた後、有機溶媒を除去することでトナー粒子を造粒して得る方法である。
また、凝集合一法は、トナー粒子を構成する原料(樹脂粒子及び光輝性顔料等)の凝集体を形成する凝集工程と、凝集体を融合させる融合工程とを経て、トナー粒子を得る方法である。
これらの中でも、結着樹脂としてウレア変性ポリエステル樹脂を含むトナー粒子は、次に示す溶解懸濁法により得ることがよい。なお、次に示す溶解懸濁法の説明では、離型剤を含むトナー粒子を得る方法について示すが、離型剤は必要に応じてトナー粒子に含むものである。また、結着樹脂として未変性ポリエステル樹脂とウレア変性ポリエステル樹脂を含むトナー粒子を得る方法について示すが、トナー粒子は結着樹脂としてウレア変性ポリエステル樹脂のみを含んでもよい。
[油相液調製工程]
未変性ポリエステル樹脂、イソシアネート基を有するポリエステルプレポリマー、アミン化合物、光輝性顔料、及び離型剤を含むトナー粒子材料を有機溶媒に溶解又は分散させた油相液を調製する(油相液調製工程)。この油相液調製工程では、トナー粒子材料を有機溶媒中に溶解又は分散させて、トナー材料の混合液を得る工程である。
油相液は、1)トナー材料を一括して有機溶媒に溶解又は分散して、調製する方法、2)予めトナー材料を混練した後、この混練物を有機溶媒に溶解又は分散して、調製する方法、3)未変性ポリエステル樹脂、イソシアネート基を有するポリエステルプレポリマー、アミン化合物を有機溶媒に溶解させた後、この有機溶媒に、光輝性顔料、及び離型剤を分散させて、調製する方法、4)光輝性顔料、及び離型剤を有機溶媒に分散させた後、この有機溶媒に、未変性ポリエステル樹脂、イソシアネート基を有するポリエステルプレポリマー、アミン化合物を溶解して、調製する方法、5)イソシアネート基を有するポリエステルプレポリマー及びアミン化合物以外のトナー粒子材料(未変性ポリエステル樹脂、光輝性顔料、及び離型剤)を有機溶媒に溶解又は分散させた後、この有機溶媒に、イソシアネート基を有するポリエステルプレポリマー及びアミン化合物を溶解して調製する方法、6)イソシアネート基を有するポリエステルプレポリマー又はアミン化合物以外のトナー粒子材料(未変性ポリエステル樹脂、光輝性顔料、及び離型剤)を有機溶媒に溶解又は分散させた後、この有機溶媒に、イソシアネート基を有するポリエステルプレポリマー又はアミン化合物を溶解して調製する方法等が挙げられる。なお、油相液の調製方法は、これらに限られるわけではない。
油相液の有機溶媒としては、酢酸メチル、酢酸エチル等のエステル系溶媒;メチルエチルケトン、メチルイソプロピルケトン等のケトン系溶媒;ヘキサン、シクロヘキサン等の脂肪族炭化水素系溶媒;ジクロロメタン、クロロホルム、トリクロロエチレン等のハロゲン化炭化水素系溶媒等が挙げられる。これらの有機溶媒は、結着樹脂を溶解するものであって、かつ、水に溶解する割合が0質量%以上30質量%以下程度のものであり、沸点が100℃以下であることが好ましい。これらの有機溶媒の中でも、酢酸エチルが好ましい。
[懸濁液調製工程]
次に、得られた油相液を水相液中に分散させて懸濁液を調製する(懸濁液調製工程)。
そして、懸濁液の調製と共に、イソシアネート基を有するポリエステルプレポリマーとアミン化合物との反応を行う。そして、この反応によりウレア変性ポリエステル樹脂を生成する。なお、この反応は、分子鎖の架橋反応及び伸長反応の少なくとも一方の反応が伴う。なお、このイソシアネート基を有するポリエステルプレポリマーとアミン化合物との反応は、後述する溶媒除去工程と共に行ってもよい。
ここで、反応条件は、ポリエステルプレポリマーの有するイソシアネート基構造とアミン化合物との反応性により選択される。一例として、反応時間は、10分以上40時間以下が好ましく、2時間以上24時間以下が好ましい。反応温度は、0℃以上150℃が好ましく、40℃以上98℃以下が好ましい。なお、ウレア変性ポリエステル樹脂の生成には、必要に応じて公知の触媒(ジブチルチンラウレート、ジオクチルチンラウレート等)を使用してもよい。つまり、油相液、又は懸濁液に、触媒を添加してもよい。
水相液は、樹脂粒子分散剤、無機粒子分散剤等の粒子分散剤を水系溶媒に分散させた水相液が挙げられる。また、水相液は、粒子分散剤を水系溶媒に分散させると共に、高分子分散剤を水系溶媒に溶解させた水相液も挙げられる。なお、水相液には、界面活性剤等の周知の添加剤を添加してもよい。
水系溶媒は、水(例えば、通常、イオン交換水、蒸留水、純水)が挙げられる。水系溶媒は、水と共に、アルコール(メタノール、イソプロピルアルコール、エチレングリコールなど)、ジメチルホルムアミド、テトラヒドロフラン、セルソルブ類(メチルセルソルブなど)、低級ケトン類(アセトン、メチルエチルケトンなど)などの有機溶媒を含む溶媒であってもよい。
有機粒子分散剤としては、親水性の有機粒子分散剤が挙げられる。有機粒子分散剤としては、ポリ(メタ)アクリル酸アルキルエステル樹脂(例えば、ポリメタクリル酸メチル)、ポリスチレン樹脂、ポリ(スチレン−アクリロニトリル)樹脂等の粒子が挙げられる。
無機粒子分散剤としては、親水性の無機粒子分散剤が挙げられる。無機粒子分散剤としては、具体的には、シリカ、アルミナ、チタニア、炭酸カルシウム、炭酸マグネシウム、リン酸三カルシウム、粘土、珪藻土、ベントナイト等の粒子が挙げられ、炭酸カルシウムの粒子が好ましい。無機粒子分散剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。
粒子分散剤は、その表面がカルボキシル基を有する重合体で表面処理されていてもよい。
上記カルボキシル基を有する重合体としては、α,β−モノエチレン性不飽和カルボン酸またはα,β−モノエチレン性不飽和カルボン酸のカルボキシル基がアルカリ金属、アルカリ土類金属、アンモニア、アミン等により中和された塩(アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アミン塩等)から選ばれる少なくとも1種と、α,β−モノエチレン性不飽和カルボン酸エステルとの共重合物が挙げられる。上記カルボキシル基を有する重合体としては、α,β−モノエチレン性不飽和カルボン酸とα,β−モノエチレン性不飽和カルボン酸エステルとの共重合物のカルボキシル基がアルカリ金属、アルカリ土類金属、アンモニア、アミン等により中和された塩(アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アミン塩等)も挙げられる。上記カルボキシル基を有する重合体は、1種を単独で用いてもよいし、2種以上を併用してもよい。
α,β−モノエチレン性不飽和カルボン酸の代表的なものとしては、α,β−不飽和モノカルボン酸(アクリル酸、メタクリル酸、クロトン酸等)、α,β−不飽和ジカルボン酸(マレイン酸、フマル酸、イタコン酸等)などが挙げられる。また、α,β−モノエチレン性不飽和カルボン酸エステルの代表的なものとしては、(メタ)アクリル酸のアルキルエステル類、アルコキシ基を有する(メタ)アクリレート、シクロヘキシル基を有する(メタ)アクリレート、ヒドロキシ基を有する(メタ)アクリレート、ポリアルキレングリコールモノ(メタ)アクリレート等が挙げられる。
高分子分散剤としては、親水性の高分子分散剤が挙げられる。高分子分散剤としては、具体的には、カルボキシル基を有し、かつ親油基(ヒドロキシプロポキシ基、メトキシ基等)を有さない高分子分散剤(例えば、カルボキシメチルセルロース、カルボキシエチルセルロース等の水溶性のセルロースエーテル)が挙げられる。
[溶媒除去工程]
次に、得られた懸濁液から有機溶媒を除去してトナー粒子分散液を得る(溶媒除去工程)。この溶媒除去工程では、懸濁液に分散した水相液の液滴中に含まれる有機溶媒を除去してトナー粒子を生成する工程である。懸濁液からの有機溶媒除去は、懸濁液調製工程の直後に行ってもよいが、懸濁液調製工程終了後、1分以上経過した後に行ってもよい。
溶媒除去工程では、得られた懸濁液を例えば0℃以上100℃以下の範囲に冷却または加熱することにより、懸濁液から有機溶媒を除去することがよい。
有機溶媒除去の具体的な方法には、次の方法が挙げられる。
(1)懸濁液に気流を吹き付けて、懸濁液面上の気相を強制的に更新する方法。この場合には、懸濁液中に気体を吹き込んでもよい。
(2)圧力を減圧する方法。この場合には、気体の充填により懸濁液面上の気相を強制的に更新してもよいし、さらに懸濁液中に気体を吹き込んでもよい。
以上の工程を経て、トナー粒子が得られる。
ここで、溶媒除去工程終了後は、トナー粒子分散液中に形成されたトナー粒子を、公知の洗浄工程、固液分離工程、乾燥工程を経て乾燥した状態のトナー粒子として得る。
洗浄工程は、帯電性の点から充分にイオン交換水による置換洗浄を施すことがよい。
また、固液分離工程は、特に制限はないが、生産性の点から吸引濾過、加圧濾過等を施すことがよい。また、乾燥工程も特に方法に制限はないが、生産性の点から凍結乾燥、気流乾燥、流動乾燥、振動型流動乾燥等を施すことがよい。
上記洗浄工程において、洗浄に使用される洗浄液に周期律表第一族及び第二族に属する金属元素を含有する化合物を添加してもよい。上記添加により、トナー粒子の表面に存在する周期律表第一族及び第二族に属する金属元素の合計含有量を調整する。
周期律表第一族に属する金属元素を含有する化合物としては、特に限定されないが、分子間結合の強さの観点の観点から、周期律表第一族に属する周期番号が小さい金属元素の無機塩であることが好ましく、NaOH、NaCl、NaSO、NaCO、NaPO、NaHPO、KOH、KCl、KSO、KCO等が好ましく、NaClがより好ましい。
周期律表第二族に属する金属元素を含有する化合物としては、特に限定されないが、分子間結合の強さの観点から、周期律表第二族に属する周期番号が小さい金属元素の無機塩であることが好ましく、MgCl、MgSO、MgCO、Ca(OH)、CaCl2、CaSO、CaCO等が好ましく、MgClがより好ましい。
そして、本実施形態に係るトナーは、例えば、得られた乾燥状態のトナー粒子に、外添剤を添加し、混合することにより製造される。
混合は、例えば、Vブレンダー、ヘンシェルミキサー、レーディゲミキサー等によって行うことがよい。
さらに、必要に応じて、振動篩分機、風力篩分機等を使ってトナーの粗大粒子を取り除いてもよい。
本実施形態においては、トナー粒子の形状やトナー粒子の粒子径を制御しやすく、コアシェル構造などトナー粒子構造の制御範囲も広い凝集合一法を用いてもよい。以下、凝集合一法によるトナー粒子の製造方法について詳しく説明する。
本実施形態に係る凝集合一法はトナー粒子を構成する原料を分散して樹脂粒子(乳化粒子)等を形成する分散工程と、該樹脂粒子の凝集体を形成する凝集工程と、凝集体を融合させる融合工程とを有する。
(分散工程)
樹脂粒子分散液の作製は一般的な重合法による樹脂粒子分散液作製、例えば乳化重合法や懸濁重合法、分散重合法などを用いる他にも、水系媒体と結着樹脂とを混合した溶液に、分散機により剪断力を与えることにより行ってもよい。その際、加熱して樹脂成分の粘性を下げて粒子を形成してもよい。また分散した樹脂粒子の安定化のため、分散剤を使用してもよい。さらに、樹脂が油性で水への溶解度の比較的低い溶剤に溶解するものであれば、該樹脂をそれらの溶剤に解かして水中に分散剤や高分子電解質と共に粒子分散し、その後加熱又は減圧して溶剤を蒸散することにより、樹脂粒子分散液が作製される。
水系媒体としては、例えば、蒸留水、イオン交換水等の水;アルコール類;などが挙げられるが、水であることが望ましい。
また、乳化工程に使用される分散剤としては、例えば、ポリビニルアルコール、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリアクリル酸ナトリウム、ポリメタクリル酸ナトリウム等の水溶性高分子;ドデシルベンゼンスルホン酸ナトリウム、オクタデシル硫酸ナトリウム、オレイン酸ナトリウム、ラウリル酸ナトリウム、ステアリン酸カリウム等のアニオン性界面活性剤、ラウリルアミンアセテート、ステアリルアミンアセテート、ラウリルトリメチルアンモニウムクロライド等のカチオン性界面活性剤、ラウリルジメチルアミンオキサイド等の両性イオン性界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルアミン等のノニオン性界面活性剤等の界面活性剤;リン酸三カルシウム、水酸化アルミニウム、硫酸カルシウム、炭酸カルシウム、炭酸バリウム等の無機塩;等が挙げられる。
前記乳化液の作製に用いる分散機としては、例えば、ホモジナイザー、ホモミキサー、加圧ニーダー、エクストルーダー、メディア分散機等が挙げられる。樹脂粒子の大きさとしては、その平均粒子径(体積平均粒子径)は1.0μm以下が望ましく、60nm以上300nm以下の範囲であることがより望ましく、さらに望ましくは150nm以上250nm以下の範囲である。60nm以上では、樹脂粒子が分散液中で不安定な粒子となりやすいため、該樹脂粒子の凝集が容易となる場合がある。また1.0μm以下であると、トナーの粒子径分布が狭くなる場合がある。
離型剤分散液の調製に際しては、離型剤を、水中にイオン性界面活性剤や高分子酸や高分子塩基などの高分子電解質と共に分散した後、離型剤の融解温度以上の温度に加熱すると共に、強いせん断力が付与されるホモジナイザーや圧力吐出型分散機を用いて分散処理する。このような処理を経ることにより、離型剤分散液が得られる。分散処理の際、ポリ塩化アルミニウム等の無機化合物を分散液に添加してもよい。望ましい無機化合物としては、例えば、ポリ塩化アルミニウム、硫酸アルミニウム、高塩基性ポリ塩化アルミニウム(BAC)、ポリ水酸化アルミニウム、塩化アルミニウム等が挙げられる。これらの中でも、ポリ塩化アルミニウム、硫酸アルミニウム等が望ましい。
分散処理により、体積平均粒子径が1μm以下の離型剤粒子を含む離型剤分散液が得られる。なお、より望ましい離型剤粒子の体積平均粒子径は、100nm以上500nm以下である。
体積平均粒子径が100nm以上では、使用される結着樹脂の特性にも影響されるが、一般的に離型剤成分がトナー中に取り込まれやすくなる。また、500nm以下の場合には、トナー中の離型剤の分散状態が良好となる。
光輝性顔料分散液の調製は、公知の分散方法が利用でき、例えば回転せん断型ホモジナイザーや、メディアを有するボールミル、サンドミル、ダイノミル、アルティマイザーなどの一般的な分散手段を採用することができ、なんら制限されるものではない。光輝性顔料は、水中にイオン性界面活性剤や高分子酸や高分子塩基などの高分子電解質と共に分散される。分散させた光輝性顔料の体積平均粒子径は20μm以下であればよいが、3μm以上16μm以下の範囲であれば、凝集性を損なうことなく且つトナー中の光輝性顔料の分散が良好で望ましい。
また、光輝性顔料と結着樹脂とを溶剤に分散、又は、溶解して混合し、転相乳化やせん断乳化により水中へ分散することにより、結着樹脂で被覆された光輝性顔料の分散液を調製してもよい。
(凝集工程)
凝集工程においては、樹脂粒子の分散液、光輝性顔料分散液、離型剤分散液等を混合して混合液とし、樹脂粒子のガラス転移温度以下の温度で加熱して凝集させ、凝集粒子を形成する。凝集粒子の形成は、攪拌下、混合液のpHを酸性にすることによってなされる場合が多い。前記撹拌条件により比(C/D)を好ましい範囲にすることが可能となる。より具体的には凝集粒子を形成する段階で撹拌を高速に、かつ加熱することによって比(C/D)を小さくすることができ、撹拌をより低速に、かつより低温で加熱することによって比(C/D)を大きくすることができる。なおpHとしては、2以上7以下の範囲が望ましく、この際、凝集剤を使用することも有効である。
また、凝集工程において、離型剤分散液は、樹脂粒子分散液等の各種分散液とともに一度に添加及び混合してもよいし、複数回に分割して添加してもよい。
凝集剤としては、前記分散剤に用いる界面活性剤と逆極性の界面活性剤、無機金属塩の他、2価以上の金属錯体が好適に用いられる。特に、金属錯体を用いた場合には界面活性剤の使用量を低減でき、帯電特性が向上するため特に望ましい。
前記無機金属塩としては、特に、アルミニウム塩およびその重合体が好適である。より狭い粒度分布を得るためには、無機金属塩の価数が1価より2価、2価より3価、3価より4価の方が、また、同じ価数であっても重合タイプの無機金属塩重合体の方が、より適している。
本実施形態においては、アルミニウムを含む4価の無機金属塩の重合体を用いることが、狭い粒度分布を得るためには望ましい。
また、前記凝集粒子が所望の粒子径になったところで樹脂粒子分散液を追添加することで(被覆工程)、コア凝集粒子の表面を樹脂で被覆した構成のトナーを作製してもよい。この場合、離型剤や光輝性顔料がトナー表面に露出しにくくなるため、帯電性や現像性の観点で望ましい構成である。追添加する場合、追添加前に凝集剤を添加したり、pH調整を行ってもよい。
(融合工程)
融合工程においては、前記凝集工程に準じた撹拌条件下で、凝集粒子の懸濁液のpHを3以上9以下の範囲に上昇させることにより凝集の進行を止め、前記樹脂のガラス転移温度以上の温度で加熱を行うことにより凝集粒子を融合させる。
凝集の進行を止める際に、懸濁液に周期律表第一族及び第二族に属する金属元素を含有する化合物を添加してもよい。上記添加により、トナー粒子の表面に存在する周期律表第一族及び第二族に属する金属元素の合計含有量を調整する。
周期律表第一族に属する金属元素を含有する化合物としては、特に限定されないが、分子間結合の強さの観点から、周期律表第一族に属する周期番号が小さい金属元素の無機塩であることが好ましく、NaOH、NaCl、NaSO、NaCO、NaPO、NaHPO、KOH、KCl、KSO、KCO等が好ましく、NaClがより好ましい。
周期律表第二族に属する金属元素を含有する化合物としては、特に限定されないが、分子間結合の強さの観点から、周期律表第二族に属する金属の無機塩であることが好ましく、MgCl、MgCO、Ca(OH)、CaCl2、CaSO、CaCO等が好ましく、MgClがより好ましい。
また、前記樹脂で被覆した場合には、該樹脂も融合しコア凝集粒子を被覆する。前記加熱の時間としては、融合がされる程度行えばよく、0.5時間以上10時間以下程度行えばよい。
融合後に冷却し、融合粒子を得る。また冷却の工程で、樹脂のガラス転移温度近傍(ガラス転移温度±10℃の範囲)で冷却速度を落とす、いわゆる徐冷をすることで結晶化を促進してもよい。
融合して得た融合粒子は、ろ過などの固液分離工程や、必要に応じて洗浄工程、乾燥工程を経てトナー粒子とされる。
上記洗浄工程において、洗浄に使用される洗浄液に周期律表第一族及び第二族に属する金属元素を含有する化合物を添加してもよい。上記添加により、トナー粒子の表面に存在する周期律表第一族及び第二族に属する金属元素の合計含有量を調整する。
周期律表第一族に属する金属元素を含有する化合物としては、特に限定されないが、分子間結合の強さの観点から、周期律表第一族に属する周期番号が小さい金属元素の無機塩であることが好ましく、NaOH、NaCl、NaSO、NaCO、NaPO、NaHPO、KOH、KCl、KSO、KCO等が好ましく、NaClがより好ましい。
周期律表第二族に属する金属元素を含有する化合物としては、特に限定されないが、分子間結合の強さの観点から、周期律表第二族に属する周期番号が小さい金属元素の無機塩であることが好ましく、MgCl、MgSO、MgCO、Ca(OH)、CaCl2、CaSO、CaCO等が好ましく、MgClがより好ましい。
得られたトナー粒子には、帯電調整、流動性付与、電荷交換性付与等を目的として、シリカ、チタニア、酸化アルミに代表される無機酸化物等が外添剤として添加付着される。望ましい外添方法や外添剤の添加量は上述のとおりである。
また、上述した無機酸化物等以外にも、帯電制御剤、有機粒体、滑剤、研磨剤などのその他の成分(粒子)を外添剤として添加させてもよい。
帯電制御剤としては、特に制限はないが、無色または淡色のものが望ましく使用される。例えば、4級アンモニウム塩化合物、ニグロシン系化合物、アルミニウム、クロムなどの錯体、トリフェニルメタン系顔料などが挙げられる。
有機粒体としては、例えば、ビニル系樹脂、ポリエステル樹脂、シリコーン樹脂等の通常トナー表面の外添剤として使用される粒子が挙げられる。なお、これらの無機粒体や有機粒体は、流動性助剤、クリーニング助剤等として使用される。
滑剤としては、例えば、エチレンビスステアリン酸アミド、オレイン酸アミド等の脂肪酸アミド、ステアリン酸亜鉛、ステアリン酸カルシウムなどの脂肪酸金属塩等が挙げられる。
研磨剤としては、例えば、前述のシリカ、アルミナ、酸化セリウムなどが挙げられる。
<静電荷像現像剤>
本実施形態に係る静電荷像現像剤は、本実施形態に係るトナーを少なくとも含むものである。
本実施形態に係る静電荷像現像剤は、本実施形態に係るトナーのみを含む一成分現像剤であってもよいし、当該トナーとキャリアとを混合した二成分現像剤であることが好ましい。
キャリアとしては、特に制限はなく、公知のキャリアが挙げられる。キャリアとしては、例えば、磁性粉からなる芯材の表面に樹脂を被覆した被覆キャリア;マトリックス樹脂中に磁性粉が分散して配合された磁性粉分散型キャリア;多孔質の磁性粉に樹脂を含浸させた樹脂含浸型キャリア;等が挙げられる。
磁性粉分散型キャリア及び樹脂含浸型キャリアは、当該キャリアの構成粒子を芯材とし、この表面に樹脂を被覆したキャリアであってもよい。
磁性粉としては、例えば、鉄、ニッケル、コバルト等の磁性金属;フェライト、マグネタイト等の磁性酸化物;などが挙げられる。
被覆用の樹脂、及びマトリックス樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリビニルアセテート、ポリビニルアルコール、ポリビニルブチラール、ポリ塩化ビニル、ポリビニルエーテル、ポリビニルケトン、塩化ビニル−酢酸ビニル共重合体、スチレン−アクリル酸共重合体、オルガノシロキサン結合を含んで構成されるストレートシリコーン樹脂又はその変性品、フッ素樹脂、ポリエステル、ポリカーボネート、フェノール樹脂、エポキシ樹脂等が挙げられる。被覆用の樹脂、及びマトリックス樹脂には、導電性粒子等の添加剤を含ませてもよい。
導電性粒子としては、金、銀、銅等の金属;カーボンブラック、酸化チタン、酸化亜鉛、酸化スズ、硫酸バリウム、ホウ酸アルミニウム、チタン酸カリウム等の粒子;などが挙げられる。
芯材の表面を樹脂で被覆するには、被覆用の樹脂、及び各種添加剤(必要に応じて使用する)を適当な溶媒に溶解した被覆層形成用溶液により被覆する方法等が挙げられる。溶媒としては、特に限定されるものではなく、使用する樹脂の種類や、塗布適性等を勘案して選択すればよい。具体的な樹脂被覆方法としては、芯材を被覆層形成用溶液中に浸漬する浸漬法;被覆層形成用溶液を芯材表面に噴霧するスプレー法;芯材を流動エアーにより浮遊させた状態で被覆層形成用溶液を噴霧する流動床法;ニーダーコーター中でキャリアの芯材と被覆層形成用溶液とを混合し、その後に溶媒を除去するニーダーコーター法;等が挙げられる。
二成分現像剤におけるトナーとキャリアとの混合比(質量比)は、トナー:キャリア=1:100乃至30:100が好ましく、3:100乃至20:100がより好ましい。
<画像形成装置/画像形成方法>
本実施形態に係る画像形成装置/画像形成方法について説明する。
本実施形態に係る画像形成装置は、像保持体と、像保持体の表面を帯電する帯電手段と、帯電した像保持体の表面に静電荷像を形成する静電荷像形成手段と、静電荷像現像剤を収容し、静電荷像現像剤により、像保持体の表面に形成された静電荷像をトナー画像として現像する現像手段と、像保持体の表面に形成されたトナー画像を記録媒体の表面に転写する転写手段と、記録媒体の表面に転写されたトナー画像を定着する定着手段と、を備える。
そして、静電荷像現像剤として、本実施形態に係る静電荷像現像剤が適用される。
本実施形態に係る画像形成装置では、像保持体の表面を帯電する帯電工程と、帯電した像保持体の表面に静電荷像を形成する静電荷像形成工程と、本実施形態に係る静電荷像現像剤により、像保持体の表面に形成された静電荷像をトナー画像として現像する現像工程と、像保持体の表面に形成されたトナー画像を記録媒体の表面に転写する転写工程と、記録媒体の表面に転写されたトナー画像を定着する定着工程と、を有する画像形成方法(本実施形態に係る画像形成方法)が実施される。
本実施形態に係る画像形成装置は、像保持体の表面に形成されたトナー画像を直接記録媒体に転写する直接転写方式の装置;像保持体の表面に形成されたトナー画像を中間転写体の表面に一次転写し、中間転写体の表面に転写されたトナー画像を記録媒体の表面に二次転写する中間転写方式の装置;トナー画像の転写後、帯電前の像保持体の表面をクリーニングするクリーニング手段を備えた装置;トナー画像の転写後、帯電前に像保持体の表面に除電光を照射して除電する除電手段を備える装置等の周知の画像形成装置が適用される。
中間転写方式の装置の場合、転写手段は、例えば、表面にトナー画像が転写される中間転写体と、像保持体の表面に形成されたトナー画像を中間転写体の表面に一次転写する一次転写手段と、中間転写体の表面に転写されたトナー画像を記録媒体の表面に二次転写する二次転写手段と、を有する構成が適用される。
なお、本実施形態に係る画像形成装置において、例えば、現像手段を含む部分が、画像形成装置に対して脱着されるカートリッジ構造(プロセスカートリッジ)であってもよい。プロセスカートリッジとしては、例えば、本実施形態に係る静電荷像現像剤を収容し、現像手段を備えるプロセスカートリッジが好適に用いられる。
以下、本実施形態に係る画像形成装置の一例を示すが、これに限定されるわけではない。なお、図に示す主要部を説明し、その他はその説明を省略する。
図2は、本実施形態に係る静電荷像現像剤が適用された現像装置を含む画像形成装置の実施の形態を示す概略構成図である。
同図において、本実施形態に係る画像形成装置は、定められた方向に回転する像保持体としての感光体ドラム20を有し、この感光体ドラム20の周囲には、感光体ドラム20を帯電する帯電装置21と、この感光体ドラム20上に静電荷像Zを形成する静電荷像形成装置としての例えば露光装置22と、感光体ドラム20上に形成された静電荷像Zを可視像化する現像装置30と、感光体ドラム20上で可視像化されたトナー画像を記録媒体である記録紙28に転写する転写装置24と、感光体ドラム20上の残留トナーを清掃するクリーニング装置25とを、順次配設したものである。
本実施形態において、現像装置30は、図2に示すように、トナー40を含む現像剤Gが収容される現像ハウジング31を有し、この現像ハウジング31には感光体ドラム20に対向して現像用開口32を開設すると共に、この現像用開口32に面してトナー保持体としての現像ロール(現像電極)33を配設し、この現像ロール33に定められた現像バイアスを印加することで、感光体ドラム20と現像ロール33とに挟まれる領域(現像領域)に現像電界を形成する。さらに、現像ハウジング31内には前記現像ロール33と対向して電荷注入部材としての電荷注入ロール(注入電極)34を設けたものである。特に、本実施形態では、電荷注入ロール34は現像ロール33にトナー40を供給するためのトナー供給ロールをも兼用したものになっている。
ここで、電荷注入ロール34の回転方向については選定して差し支えないが、トナーの供給性及び電荷注入特性を考慮すると、電荷注入ロール34としては、現像ロール33との対向部にて同方向で且つ周速差(例えば1.5倍以上)をもって回転し、電荷注入ロール34と現像ロール33とに挟まれる領域にトナー40を挟み、摺擦しながら電荷を注入する態様が好ましい。
次に、実施の形態に係る画像形成装置の作動について説明する。
作像プロセスが開始されると、先ず、感光体ドラム20表面が帯電装置21により帯電され、露光装置22が帯電された感光体ドラム20上に静電荷像Zを書き込み、現像装置30が前記静電荷像Zをトナー画像として可視像化する。しかる後、感光体ドラム20上のトナー画像は転写部位へと搬送され、転写装置24が記録媒体である記録紙28に感光体ドラム20上のトナー画像を静電的に転写する。尚、感光体ドラム20上の残留トナーはクリーニング装置25にて清掃される。この後、定着部材36A(定着ベルト、定着ロール等)と加圧部材36Bとを備える定着装置36によって記録紙28上のトナー画像が定着され、画像が得られる。
<プロセスカートリッジ/トナーカートリッジ>
本実施形態に係るプロセスカートリッジについて説明する。
本実施形態に係るプロセスカートリッジは、本実施形態に係る静電荷像現像剤を収容し、静電荷像現像剤により、像保持体の表面に形成された静電荷像をトナー画像として現像する現像手段を備え、画像形成装置に着脱されるプロセスカートリッジである。
なお、本実施形態に係るプロセスカートリッジは、上記構成に限られず、現像装置と、その他、必要に応じて、例えば、像保持体、帯電手段、静電荷像形成手段、及び転写手段等のその他手段から選択される少なくとも一つと、を備える構成であってもよい。
以下、本実施形態に係るプロセスカートリッジの一例を示すが、これに限定されるわけではない。なお、図に示す主要部を説明し、その他はその説明を省略する。
図3は、本実施形態に係るプロセスカートリッジを示す概略構成図である。
図3に示すプロセスカートリッジ200は、例えば、取り付けレール116及び露光のための開口部118が備えられた筐体117により、感光体107(像保持体の一例)と、感光体107の周囲に備えられた帯電ロール108(帯電手段の一例)、現像装置111(現像手段の一例)、及び感光体クリーニング装置113(クリーニング手段の一例)を一体的に組み合わせて保持して構成し、カートリッジ化されている。
なお、図3中、109は露光装置(静電荷像形成手段の一例)、112は転写装置(転写手段の一例)、115は定着装置(定着手段の一例)、300は記録紙(記録媒体の一例)を示している。
次に、本実施形態に係るトナーカートリッジについて説明する。
本実施形態に係るトナーカートリッジは、本実施形態に係るトナーを収容し、画像形成装置に着脱されるように構成されていてもよい。なお、本実施形態に係るトナーカートリッジには少なくともトナーが収容されればよく、画像形成装置の機構によっては、例えば現像剤が収めらた現像剤カートリッジであることが好ましい。
なお、図2に示す画像形成装置は、トナーカートリッジ(図示せず)の着脱が自在な構成を有する画像形成装置であり、現像装置30はトナーカートリッジと、図示しないトナー供給管で接続されている。また、トナーカートリッジ内に収納されているトナーが少なくなった場合には、このトナーカートリッジを交換してもよい。
以下、実施例および比較例を挙げ、本実施形態をより具体的に説明するが、本実施形態は以下の実施例に限定されるものではない。なお、特に断りのない限り、「部」および「%」は質量基準である。
(実施例1)
<結着樹脂の合成>
・ビスフェノールAエチレンオキサイド2モル付加物:216部
・エチレングリコール:38部
・テレフタル酸:200部
・テトラブトキシチタネート(触媒):0.037部
上記成分を加熱乾燥した二口フラスコに入れ、容器内に窒素ガスを導入して不活性雰囲気に保ち攪拌しながら昇温した後、160℃で7時間共縮重合反応させ、その後、10Torrまで徐々に減圧しながら220℃まで昇温し4時間保持した。一旦常圧に戻し、無水トリメリット酸9部を加え、再度10Torrまで徐々に減圧し220℃で1時間保持することにより結着樹脂を合成した。
<樹脂粒子分散液1の調製>
・結着樹脂:160部
・酢酸エチル:233部
・水酸化ナトリウム水溶液(0.3N):0.1部
上記成分を1000mlのセパラブルフラスコに入れ、70℃で加熱し、スリーワンモーター(新東科学(株)製)により攪拌して樹脂混合液を調製した。この樹脂混合液をさらに攪拌しながら、徐々にイオン交換水373部を加え、転相乳化させ、脱溶剤することにより樹脂粒子分散液1(固形分濃度:30%)を得た。
<樹脂粒子分散液2の調製>
・結着樹脂:160部
・酢酸エチル:233部
・水酸化ナトリウム水溶液(0.3N):0.1部
・塩化ナトリウム:1.8部
上記成分を1000mlのセパラブルフラスコに入れ、70℃で加熱し、スリーワンモーター(新東科学(株)製)により攪拌して樹脂混合液を調製した。この樹脂混合液をさらに攪拌しながら、徐々にイオン交換水373部を加え、転相乳化させ、脱溶剤することにより樹脂粒子分散液2(固形分濃度:30%)を得た。
<離型剤分散液の調製>
・パラフィンワックスHNP9(日本精蝋(株)製):500部
・アニオン性界面活性剤(第一工業製薬(株):ネオゲンRK):50部
・イオン交換水:1700部
以上を110℃に加熱して、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて分散した後、マントンゴーリン高圧ホモジナイザ(ゴ−リン社)で分散処理し、平均粒径が0.18μmである離型剤を分散させてなる離型剤分散液(離型剤濃度:31.1%)を調製した。
<光輝性顔料粒子分散液の調製>
・アルミニウム顔料(昭和アルミパウダー(株)製、2173EA):100部
・アニオン界面活性剤(第一工業製薬社製、ネオゲンR):1.5部
・イオン交換水:900部
扁平形状のアルミニウム顔料のペーストから溶剤を除去した後、以上を混合し、乳化分散機キャビトロン(太平洋機工(株)製、CR1010)を用いて1時間分散して、扁平形状の光輝性顔料粒子(アルミニウム顔料)を分散させてなる光輝性顔料粒子分散液(1)(固形分濃度:10%)を調製した。
<実施例1>
(光輝性トナーの作製)
・樹脂粒子分散液1:193部
・光輝性顔料粒子分散液:300部
・離型剤分散液:60部
・ノニオン性界面活性剤(IGEPAL CA897):1.50部
上記原料を2Lの円筒ステンレス容器に入れ、ホモジナイザー(IKA社製、ウルトラタラックスT50)により4000rpmでせん断力を加えながら10分間分散して混合した。次いで、凝集剤としてポリ塩化アルミニウムの10%硝酸水溶液2.00部を徐々に滴下して、ホモジナイザーの回転数を5000rpmにして15分間分散して混合し、原料分散液とした。
その後、2枚パドルの攪拌翼を用いた攪拌装置、および温度計を備えた重合釜に原料分散液を移し、攪拌回転数を810rpmにしてマントルヒーターにて加熱し始め、54℃にて凝集粒子の成長を促進させた。またこの際、0.3Nの硝酸や1Nの水酸化ナトリウム水溶液で原料分散液のpHを2.2以上3.5以下の範囲に制御した。上記pH範囲で2時間保持し、凝集粒子を形成した(コア粒子形成工程)。この際、マルチサイザーII(アパーチャー径:50μm、ベックマン−コールター社製)を用いて測定した凝集粒子の体積平均粒子径は9.5μmであった。
次に、樹脂粒子分散液1:25.5部を追添加し30分保持後樹脂粒子分散液2:160.5部を追添加し、前記凝集粒子の表面に結着樹脂の樹脂粒子を付着させた。
その後、56℃に昇温し、光学顕微鏡及びマルチサイザーIIで粒子の大きさ及び形態を確認しながら凝集粒子を整えた。その後、キレート剤4.25部(HIDS、日本触媒(株)製)を添加し、次いで、5%水酸化ナトリウム水溶液を用いてpHを7.8に調整し、15分間保持した。その後、凝集粒子を融合させるためにpHを8.0に上げた後、66.5℃まで昇温させた。光学顕微鏡で凝集粒子が融合したのを確認した後、66.5℃で保持したままpHを6.0まで下げ、1時間後に加熱を止め、1.0℃/分の降温速度で冷却した。その後20μmメッシュで篩分し、水洗を繰り返した後、真空乾燥機で乾燥してトナー粒子を得た。得られたトナー粒子の体積平均粒子径は12.2μmであった。
得られたトナー粒子100部に対して疎水性シリカ(日本アエロジル社製、RY50)を1.5部と疎水性酸化チタン(日本アエロジル社製、T805)を1.0部とを、サンプルミルを用いて10000rpmで30秒間混合した。その後、目開き45μmの振動篩いで篩分して実施例1のトナーを得た。この際、マルチサイザーII(アパーチャー径:50μm、ベックマン−コールター社製)を用いて測定した凝集粒子の体積平均粒子径は10.4μmであった。
<キャリアの作製>
・フェライト粒子(体積平均粒子径:35μm):100部
・トルエン:14部
・パーフルオロアクリレート共重合体(臨界表面張力:24dyn/cm):1.6部
・カーボンブラック(商品名:VXC-72、キャボット社製、体積抵抗率:100Ωcm以下):0.12部
・架橋メラミン樹脂粒子(平均粒子径:0.3μm、トルエン不溶):0.3部
まず、パーフルオロアクリレート共重合体に、カーボンブラックをトルエンに希釈して加えサンドミルで分散した。次いで、これにフェライト粒子以外の上記各成分を10分間スターラーで分散し、被覆層形成用溶液を調合した。次いでこの被覆層形成用溶液とフェライト粒子とを真空脱気型ニーダーに入れ、温度60℃において30分間攪拌した後、減圧してトルエンを留去して、樹脂被覆層を形成してキャリアを得た。
<現像剤の作製>
前記トナー:36部と前記キャリア:414部とを、2リットルのVブレンダーに入れ、20分間撹拌し、その後212μmで篩分して現像剤を作製した。
<トナーの特性>
得られたトナーについて、トナー粒子の表面に存在する周期律表第一族及び第二族に属する金属元素の種類(金属元素種)、トナー粒子の表面に存在する周期律表第一族及び第二族に属する金属元素の合計含有量(表面金属量)、トナー粒子の全質量に対する前記光輝性顔料の含有量(光輝性顔料量)、光輝性顔料の体積平均粒径(光輝性顔料サイズ)、及び、トナー粒子中の周期律表第一族及び第二族に属する金属元素の合計含有量(全体金属量)を、上述の方法により測定し、表1に記載した。
<評価>
(画像の形成)
富士ゼロックス社製、ApeosPort−II C4300改造機(イエローの現像機に現像剤が入っていれば、他の現像機に現像剤が入っていなくても作動するようにし、かつ現像後の感光体、定着前の用紙を任意に取り出せるようにしたもの)を用い、現像剤をイエローの現像機に入れ、25℃50%RHの環境で、富士ゼロックス社製C2紙を用いて、10cm×10cmのパッチを描き、10000枚の連続出力を行った。10000枚目の印刷物、及び、10000枚印刷後の現像剤を光輝性、常温常湿下の光輝性ムラ、角度による変化、及び、粒度分布の変化の評価に使用した。
また、出力時の環境を32℃80%RHの環境とした以外は、上記と同様にして印刷物を作成し、高温高湿下の光輝性ムラの評価に使用した。
(画像の光輝性)
得られた画像の光輝性について、目視にて評価を行った。評価は以下の基準で行った。得られた結果を表2に示す。
A:画像上の位置によって光輝性にムラは確認できない。
B:画像上の位置によって光輝性にややムラがある印象がある。
C:画像上の位置によって光輝性にムラがあるものの、実用的なレベルである。
D:画像上の位置によって光輝性にムラがあり、実用的ではないレベルである
(光輝性ムラ)
画像上の位置による光輝性の変化を測定し、光輝性ムラの指標とした。
画像上の25か所の固定点において、画像濃度計X−Rite(X−Rite社製)によりL値を測定した。上記L値の最大値と最小値の差を求め、下記評価基準に従って評価を行った。25か所の固定点は、10cm×10cmのパッチを2cm×2cmの大きさに25等分した際の25か所とした。
A:L値の最大値と最小値の差が0.2以下であり、
B:L値の最大値と最小値の差が0.3以下であり、0.2を超える
C:L値の最大値と最小値の差が0.5以下であり、0.3を超える
D:L値の最大値と最小値の差が0.5を超える
常温常湿下の光輝性ムラと、高温高湿下の光輝性ムラを別々に評価し、評価結果を表2に記載した。
(角度による変化)
光輝性顔料に傷が発生した場合、得られる画像に光輝性ムラが発生するのみではなく、画像を見る角度により光輝性が変化してしまう(角度による変化)場合がある。
そこで、得られた画像を用い、画像を見る角度による光輝性の変化を、下記評価方法及び評価基準に従って評価した。
画像上の25か所の固定点それぞれにおいて、画像濃度計X−Rite(X−Rite社製)によりL値を測定した。測定は0°と90°の方向から実施し、0°と90°の方向から測定したLの差異(ΔL)の最大値を求め、下記評価基準に従って評価を行った。
A:ΔLの最大値が0.2以下
B:ΔLの最大値が0.4以下であり、0.2を超える
C:ΔLの最大値が0.6以下であり、0.4を超える
D:ΔLの最大値が0.6を超える
(粒度分布の変化)
トナーがキャリアとの衝突等により粉砕された場合、トナーの粒度分布が変化することが考えられる。
従って、10000枚印刷後の現像剤について、トナーの粒度分布を測定し、下記評価基準により評価した。
A:体積平均粒径が10.3μm以上、10.6μm未満
B:体積平均粒径が10.2μm以上、10.3未満
C:体積平均粒径が10.1μm以上、10.2未満
D:体積平均粒径が10.1未満
(実施例2)
実施例1に記載のトナーの製造方法において、樹脂粒子分散液2における塩化ナトリウムの含有量を0.58部に変更した以外は実施例1と同様にしてトナー及び現像剤を製造した。
得られたトナー及び現像剤を用いて実施例1と同様に特性の測定及び評価を行った。結果を表1及び表2に示す。
(実施例3)
実施例1に記載のトナーの製造方法において、樹脂粒子分散液2における塩化ナトリウムの含有量を3.56部に変更した以外は実施例1と同様にしてトナー及び現像剤を製造した。
得られたトナー及び現像剤を用いて実施例1と同様に特性の測定及び評価を行った。結果を表1及び表2に示す。
(実施例4)
実施例1に記載のトナーの製造方法において、光輝性トナーの製造における光輝性顔料粒子分散液の添加量を600部に変更した以外は実施例1と同様にしてトナー及び現像剤を製造した。
得られたトナー及び現像剤を用いて実施例1と同様に特性の測定及び評価を行った。結果を表1及び表2に示す。
(実施例5)
実施例1に記載のトナーの製造方法において、光輝性トナーの製造における光輝性顔料粒子分散液の添加量を675部に変更した以外は実施例1と同様にしてトナー及び現像剤を製造した。
得られたトナー及び現像剤を用いて実施例1と同様に特性の測定及び評価を行った。結果を表1及び表2に示す。
(実施例6)
実施例1に記載のトナーの製造方法において、光輝性トナーの製造における光輝性顔料粒子分散液の添加量を150部に変更した以外は実施例1と同様にしてトナー及び現像剤を製造した。
得られたトナー及び現像剤を用いて実施例1と同様に特性の測定及び評価を行った。結果を表1及び表2に示す。
(実施例7)
実施例1に記載のトナーの製造方法において、光輝性トナーの製造における光輝性顔料粒子分散液の添加量を120部に変更した以外は実施例1と同様にしてトナー及び現像剤を製造した。
得られたトナー及び現像剤を用いて実施例1と同様に特性の測定及び評価を行った。結果を表1及び表2に示す。
(実施例8)
実施例1に記載のトナーの製造方法において、光輝性顔料粒子分散液における光輝性顔料を含めた原料に加えるホモジナイザー処理の時間を9分間に変更した以外は実施例1と同様にしてトナー及び現像剤を製造した。
得られたトナー及び現像剤を用いて実施例1と同様に特性の測定及び評価を行った。結果を表1及び表2に示す。
(実施例9)
実施例1に記載のトナーの製造方法において、光輝性顔料粒子分散液における光輝性顔料を含めた原料に加えるホモジナイザー処理の時間を3分間に変更した以外は実施例1と同様にしてトナー及び現像剤を製造した。
得られたトナー及び現像剤を用いて実施例1と同様に特性の測定及び評価を行った。結果を表1及び表2に示す。
(実施例10)
実施例1に記載のトナーの製造方法において、光輝性顔料粒子分散液における光輝性顔料を含めた原料に加えるホモジナイザー処理の時間を20分間、せん断力を5000rpmに変更した以外は実施例1と同様にしてトナー及び現像剤を製造した。
得られたトナー及び現像剤を用いて実施例1と同様に特性の測定及び評価を行った。結果を表1及び表2に示す。
(実施例11)
実施例1に記載のトナーの製造方法において、光輝性顔料粒子分散液における光輝性顔料を含めた原料に加えるホモジナイザー処理の時間を30分間、せん断力を6000rpmに変更した以外は実施例1と同様にしてトナー及び現像剤を製造した。
得られたトナー及び現像剤を用いて実施例1と同様に特性の測定及び評価を行った。結果を表1及び表2に示す。
(実施例12)
実施例1に記載のトナーの製造方法において、樹脂粒子分散液1に塩化ナトリウムを0.8部添加した以外は実施例1と同様にしてトナー及び現像剤を製造した。
得られたトナー及び現像剤を用いて実施例1と同様に特性の測定及び評価を行った。結果を表1及び表2に示す。
(実施例13)
実施例1に記載のトナーの製造方法において、樹脂粒子分散液1に塩化ナトリウムを0.12部添加した以外は実施例1と同様にしてトナー及び現像剤を製造した。
得られたトナー及び現像剤を用いて実施例1と同様に特性の測定及び評価を行った。結果を表1及び表2に示す。
(実施例14)
実施例1に記載のトナーの製造方法において、制御する原料分散液のpHを2.0以上3.0に変更した以外は実施例1と同様にしてトナー及び現像剤を製造した。
得られたトナー及び現像剤を用いて実施例1と同様に特性の測定及び評価を行った。結果を表1及び表2に示す。
(実施例15)
実施例1に記載のトナーの製造方法において、制御する原料分散液のpHを1.9以上2.0に変更した以外は実施例1と同様にしてトナー及び現像剤を製造した。
得られたトナー及び現像剤を用いて実施例1と同様に特性の測定及び評価を行った。結果を表1及び表2に示す。
(実施例16)
実施例1に記載のトナーの製造方法において、樹脂粒子分散液2における塩化ナトリウムを塩化カリウムに変更した以外は実施例1と同様にしてトナー及び現像剤を製造した。
得られたトナー及び現像剤を用いて実施例1と同様に特性の測定及び評価を行った。結果を表1及び表2に示す。
(実施例17)
実施例1に記載のトナーの製造方法において、樹脂粒子分散液2における塩化ナトリウムを塩化カルシウムに変更した以外は実施例1と同様にしてトナー及び現像剤を製造した。
得られたトナー及び現像剤を用いて実施例1と同様に特性の測定及び評価を行った。結果を表1及び表2に示す。
(実施例18)
実施例1に記載のトナーの製造方法において、樹脂粒子分散液2における塩化ナトリウムを塩化マグネシウムに変更した以外は実施例1と同様にしてトナー及び現像剤を製造した。
得られたトナー及び現像剤を用いて実施例1と同様に特性の測定及び評価を行った。結果を表1及び表2に示す。
(実施例19)
実施例1に記載のトナーの製造方法において、樹脂粒子分散液2に塩化ナトリウムを添加せず、5%水酸化ナトリウム水溶液を用いてpHを7.8に調整し、15分間保持する工程をpH8.3に変更した以外は実施例1と同様にしてトナー及び現像剤を製造した。
得られたトナー及び現像剤を用いて実施例1と同様に特性の測定及び評価を行った。結果を表1及び表2に示す。
(実施例20)
実施例1に記載のトナーの製造方法において、樹脂粒子分散液2に塩化ナトリウムを添加せず、520μmメッシュで篩分し、水洗を繰り返す工程を5%水酸化ナトリウム水溶液により行うよう変更した以外は実施例1と同様にしてトナー及び現像剤を製造した。
得られたトナー及び現像剤を用いて実施例1と同様に特性の測定及び評価を行った。結果を表1及び表2に示す。
(実施例21)
(未変性ポリエステル樹脂(1)の作製)
・テレフタル酸:1243部
・ビスフェノールA エチレンオキサイド付加物:1830部
・ビスフェノールA プロピレンオキサイド付加物:840部
上記成分を180℃で加熱混合した後、ジブチル錫オキサイド3部を加え、220℃で加熱しながら水を留去し、未変性ポリエステル樹脂を得た。得られた未変性ポリエステル樹脂のガラス転移温度Tgは60℃、酸価は3mgKOH/g、水酸基価は1mgKOH/gであった。
(ポリエステルプレポリマー(1)の作製)
・テレフタル酸:1243部
・ビスフェノールA エチレンオキサイド付加物:1830部
・ビスフェノールA プロピレンオキサイド付加物:840部
上記成分を180℃で加熱混合した後、ジブチル錫オキサイド3部を加え、220℃で加熱しながら水を留去し、ポリエステルを得た。得られたポリエステル350部、トリレンジイソシアネート50部、酢酸エチル450部を容器に入れ、この混合物を130℃で3時間加熱して、イソシアネート基を有するポリエステルプレポリマー(1)(以下「イソシアネート変性ポリエステルプレポリマー(1)」)を得た。
(ケチミン化合物(1)の作製)
容器にメチルエチルケトン50部とヘキサメチレンジアミン150部を入れ、60℃で撹拌してケチミン化合物(1)を得た。
(光輝性顔料分散液(1)の作製)
・アルミニウム顔料(扁平状の光輝性顔料、昭和アルミパウダー(株)製、2173EA):100部
・酢酸エチル:500部
上記成分を混合し、混合物を濾過して酢酸エチル500部と更に混合する操作を5回繰り返した後、乳化分散機キャビトロン(太平洋機工(株)製、CR1010)を用いて1時間ほど分散して、光輝性顔料(アルミニウム顔料)が分散した光輝性顔料分散液(1)(固形分濃度:10%)を得た。
(離型剤分散液(1)の作製)
・パラフィンワックス(融解温度89℃):30部
・酢酸エチル:270部
上記成分を10℃に冷却した状態で、マイクロビーズ型分散機(DCPミル)により湿式粉砕し、離型剤分散液(1)を得た。
(油相液(1)の作製)
・未変性ポリエステル樹脂(1):136部
・光輝性顔料分散液(1):500部
・酢酸エチル:56部
上記成分を撹拌混合後、得られた混合物に離型剤分散液(1)75部を加え、撹拌して、油相液(1)を得た。
(スチレンアクリル樹脂粒子分散液(1)の作製)
・スチレン:370部
・n−ブチルアクリレート:30部
・アクリル酸:4部
・ドデカンチオール:24部
・四臭化炭素:4部
上記成分を混合し、溶解した混合物を、非イオン性界面活性剤(三洋化成工業(株)製:ノニポール400)6部及びアニオン性界面活性剤(第一工業製薬(株)製:ネオゲンSC)10部をイオン交換水560部に溶解した水溶液に、フラスコ中で乳化した後、10分間混合しながら、これに過硫酸アンモニウム4部をイオン交換水50部に溶解した水溶液を投入し、窒素置換を行った後、前記フラスコ内を撹拌しながら内容物が70℃になるまでオイルバスで加熱し、5時間そのまま乳化重合を継続した。こうして、平均粒子径が180nm、重量平均分子量(Mw)が15,500である樹脂粒子を分散させてなるスチレンアクリル樹脂粒子分散液(1)(樹脂粒子濃度:40%)を得た。なお、スチレンアクリル樹脂粒子のガラス転移温度は59℃であった。
(水相液(1)の作製)
・スチレンアクリル樹脂粒子分散液(1):60部
・セロゲンBS−H(第一工業製薬(株))の2%水溶液:200部
・イオン交換水:200部
上記成分を撹拌混合し、水相液(1)を得た。
−トナー粒子(1)の作製−
・油相液(1):300部
・イソシアネート変性ポリエステルプレポリマー(1):25部
・ケチミン化合物(1):0.5部
上記成分を容器に入れ、ホモジナイザー(ウルトラタラックス:IKA社製)により2分間撹拌して油相液(1P)を得た後、容器に水相液(1)1000部を加え、ホモジナイザーで20分間撹拌した。次に、室温(25℃)、常圧(1気圧)で48時間、プロペラ型撹拌機でこの混合液を撹拌し、イソシアネート変性ポリエステルプレポリマー(1)とケチミン化合物(1)とを反応させ、ウレア変性ポリエステル樹脂を生成すると共に、有機溶媒を除去し、粒状物を形成した。次に、粒状物を水洗、乾燥及び分級して、トナー粒子(1)を得た。トナー粒子の体積平均粒径は12.0μm、アスペクト比は6.0であった。
−光輝性トナー(1)の作製−
トナー粒子(1):100部と、疎水性シリカ(日本アエロジル社製、RY50) :1.5部と、疎水性酸化チタン(日本アエロジル社製、T805) :1.0部と、をサンプルミルにより10000rpmで30秒間混合した。その後、目開き45μmの振動篩いで篩分して光輝性トナー(1)を得た。
以下、実施例1と同様にトナー及び現像剤を製造した。
得られたトナー及び現像剤を用いて実施例1と同様に特性の測定及び評価を行った。結果を表1及び表2に示す。
(実施例22)
線状ポリエステル樹脂(テレフタル酸/ビスフェノールA エチレンオキサイド付加物/シクロヘキサンジメタノールから得られた線状ポリエステル、Tg(ガラス転移温度):62℃、Mn(数平均分子量):4,000、Mw(重量平均分子量):35,000、酸価:12、水酸価:25) 100質量部、光輝性顔料(昭和アルミニウムパウダー(株)製 2173EA) 15質量部の混合物をエクストルーダーで混練し、表面粉砕方式の粉砕機で粉砕した後、風力式分級機で細粒、粗粒を分級し、トナー粒子を得た。得られたトナー粒子を5%水酸化ナトリウム溶液を用いて洗浄した。
(比較例1)
実施例1に記載のトナーの製造方法において、樹脂粒子分散液2における塩化ナトリウムの含有量を0.51部に変更した以外は実施例1と同様にしてトナー及び現像剤を製造した。
得られたトナー及び現像剤を用いて実施例1と同様に特性の測定及び評価を行った。結果を表1及び表2に示す。
(比較例2)
実施例1に記載のトナーの製造方法において、樹脂粒子分散液2における塩化ナトリウムの含有量を3.85部に変更した以外は実施例1と同様にしてトナー及び現像剤を製造した。
得られたトナー及び現像剤を用いて実施例1と同様に特性の測定及び評価を行った。結果を表1及び表2に示す。
以下、実施例1と同様にトナー及び現像剤を製造した。
得られたトナー及び現像剤を用いて実施例1と同様に特性の測定及び評価を行った。結果を表1及び表2に示す。
実施例、比較例より以下のことが明らかである。本実施例のトナーは光輝性、光輝性
ムラ、角度による変化、及び、粒度分布に優れている。これに対し、X線光電子分光法により測定された、前記トナー粒子の表面に存在する周期律表第一族及び第二族に属する金属元素の合計含有量が、0.3atm%未満であるか、2.0atm%を超えるトナーは、光輝性、光輝性ムラ、角度による変化、及び、粒度分布のいずれもが低下する。
トナー粒子の全質量に対する前記光輝性顔料の含有量が、10質量%以上40質量%以下であるトナーは、光輝性、光輝性ムラ、角度による変化、及び、粒度分布のいずれもが特に優れている。
光輝性顔料の体積平均粒径が、4.5μm以上10μm以下であるトナーは、光輝性、光輝性ムラ、角度による変化、及び、粒度分布のいずれもが特に優れている。
蛍光X線分析により測定された、トナー粒子中の周期律表第一族及び第二族に属する金属元素の合計含有量が、0.04atm%以上0.11atm%以下であるトナーは、光輝性、光輝性ムラ、角度による変化、及び、粒度分布のいずれもが特に優れている。
2 トナー
4 光輝性顔料
20 感光体ドラム
21 帯電装置
22 露光装置
24 転写装置
25 クリーニング装置
28、300 記録紙(記録媒体の一例)
30 現像装置
31 現像ハウジング
32 現像用開口
33 現像ロール
34 電荷注入ロール
36 定着装置
40 トナー
107 感光体(像保持体の一例)
108 帯電ロール(帯電手段の一例)
109 露光装置(静電荷像形成手段の一例)
111 現像装置(現像手段の一例)
112 転写装置(転写手段の一例)
113 感光体クリーニング装置(クリーニング手段の一例)
115 定着装置(定着手段の一例)
116 取り付けレール
117 筐体
118 露光のための開口部
200 プロセスカートリッジ

Claims (9)

  1. 結着樹脂と、光輝性顔料と、を含むトナー粒子を含有し、
    X線光電子分光法により測定された、前記トナー粒子の表面に存在する周期律表第一族及び第二族に属する金属元素の合計含有量が、0.3atm%以上2.0atm%以下である
    静電荷像現像用トナー。
  2. 前記トナー粒子の全質量に対する前記光輝性顔料の含有量が、10質量%以上40質量%以下である、請求項1に記載の静電荷像現像用トナー。
  3. 前記光輝性顔料の体積平均粒径が、4.5μm以上10μm以下である、請求項1又は請求項2に記載の静電荷像現像用トナー。
  4. 蛍光X線分析により測定された、前記トナー粒子中の周期律表第一族及び第二族に属する金属元素の合計含有量が、0.04atm%以上0.11atm%以下である、請求項1〜請求項3のいずれか1項に記載の静電荷像現像用トナー。
  5. 請求項1〜請求項4のいずれか1項に記載の静電荷像現像用トナーと、静電荷像現像用キャリアと、を含む静電荷像現像剤。
  6. 請求項5に記載の静電荷像現像剤を収容し、画像形成装置に着脱される現像剤カートリッジ。
  7. 請求項5に記載の静電荷像現像剤を収容し、前記静電荷像現像剤により、像保持体の表面に形成された静電荷像をトナー画像として現像する現像手段を備え、
    画像形成装置に着脱されるプロセスカートリッジ。
  8. 像保持体と、
    前記像保持体の表面を帯電する帯電手段と、
    帯電した前記像保持体の表面に静電荷像を形成する静電荷像形成手段と、
    請求項5に記載の静電荷像現像剤を収容し、前記静電荷像現像剤により、前記像保持体の表面に形成された静電荷像をトナー画像として現像する現像手段と、
    前記像保持体の表面に形成されたトナー画像を記録媒体の表面に転写する転写手段と、
    前記記録媒体の表面に転写されたトナー画像を定着する定着手段と、
    を備える画像形成装置。
  9. 像保持体の表面を帯電する帯電工程と、
    帯電した前記像保持体の表面に静電荷像を形成する静電荷像形成工程と、
    請求項5に記載の静電荷像現像剤により、前記像保持体の表面に形成された静電荷像をトナー画像として現像する現像工程と、
    前記像保持体の表面に形成されたトナー画像を記録媒体の表面に転写する転写工程と、
    前記記録媒体の表面に転写されたトナー画像を定着する定着工程と、
    を有する画像形成方法。
JP2016173894A 2016-09-06 2016-09-06 静電荷像現像用トナー、静電荷像現像剤、現像剤カートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法 Pending JP2018040899A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016173894A JP2018040899A (ja) 2016-09-06 2016-09-06 静電荷像現像用トナー、静電荷像現像剤、現像剤カートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016173894A JP2018040899A (ja) 2016-09-06 2016-09-06 静電荷像現像用トナー、静電荷像現像剤、現像剤カートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法

Publications (1)

Publication Number Publication Date
JP2018040899A true JP2018040899A (ja) 2018-03-15

Family

ID=61625736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016173894A Pending JP2018040899A (ja) 2016-09-06 2016-09-06 静電荷像現像用トナー、静電荷像現像剤、現像剤カートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法

Country Status (1)

Country Link
JP (1) JP2018040899A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022143571A (ja) * 2021-03-17 2022-10-03 株式会社豊田中央研究所 シート状粒子複合体及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022143571A (ja) * 2021-03-17 2022-10-03 株式会社豊田中央研究所 シート状粒子複合体及びその製造方法
JP7310844B2 (ja) 2021-03-17 2023-07-19 株式会社豊田中央研究所 シート状粒子複合体及びその製造方法

Similar Documents

Publication Publication Date Title
JP5365648B2 (ja) トナー、現像剤、トナーカートリッジ、プロセスカートリッジおよび画像形成装置
JP6872113B2 (ja) トナーセット、現像剤セット、トナーカートリッジセット、画像形成装置及び画像形成方法
JP6728778B2 (ja) 光輝性トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び画像形成方法
US8722290B2 (en) Toner, developer, toner cartridge, and image forming apparatus
JP6679865B2 (ja) 光輝性トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び画像形成方法
JP6759870B2 (ja) 静電荷像現像用トナー、静電荷像現像剤、現像剤カートリッジ、トナーカートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法
JP6672893B2 (ja) 光輝性トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び画像形成方法
JP5617427B2 (ja) トナー、現像剤、トナーカートリッジ、プロセスカートリッジおよび画像形成装置
JP6911366B2 (ja) 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び画像形成方法
JP2015079156A (ja) 光輝性トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び、画像形成方法
JP6825277B2 (ja) トナーセット、静電荷像現像剤セット、トナーカートリッジセット、プロセスカートリッジ、画像形成装置、及び、画像形成方法
JP6733212B2 (ja) 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び画像形成方法
JP6746889B2 (ja) 光輝性トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び画像形成方法
JP6825276B2 (ja) トナーセット、静電荷像現像剤セット、トナーカートリッジセット、プロセスカートリッジ、画像形成装置、及び、画像形成方法
JP6319248B2 (ja) 光輝性トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び画像形成方法
JP6167959B2 (ja) 光輝性トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び画像形成方法
JP2017062408A (ja) 光輝性トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び画像形成方法
JP2017062410A (ja) 光輝性トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び画像形成方法
JP7004054B2 (ja) 白色トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法
US11829103B2 (en) Electrostatic image developing toner, electrostatic image developer, and toner cartridge
JP2018040899A (ja) 静電荷像現像用トナー、静電荷像現像剤、現像剤カートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法
JP2018054739A (ja) 静電荷像現像剤、現像剤カートリッジ、プロセスカートリッジ、画像形成装置、及び画像形成方法
JP6776744B2 (ja) 静電荷像現像用トナー、静電荷像現像剤、現像剤カートリッジ、トナーカートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法
JP6610125B2 (ja) 光輝性トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び画像形成方法
JP2015052690A (ja) 光輝性トナー、静電荷像現像剤、現像剤カートリッジ、プロセスカートリッジ、画像形成装置、及び、画像形成方法