JP2018040401A - Slide bearing - Google Patents

Slide bearing Download PDF

Info

Publication number
JP2018040401A
JP2018040401A JP2016173632A JP2016173632A JP2018040401A JP 2018040401 A JP2018040401 A JP 2018040401A JP 2016173632 A JP2016173632 A JP 2016173632A JP 2016173632 A JP2016173632 A JP 2016173632A JP 2018040401 A JP2018040401 A JP 2018040401A
Authority
JP
Japan
Prior art keywords
bearing
oil
green compact
shaft member
dynamic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016173632A
Other languages
Japanese (ja)
Other versions
JP6999259B2 (en
Inventor
隆生 新井
Takao Arai
隆生 新井
冬木 伊藤
Fuyuki Ito
冬木 伊藤
哲弥 栗村
Tetsuya Kurimura
栗村  哲弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2016173632A priority Critical patent/JP6999259B2/en
Priority to US16/330,432 priority patent/US11428266B2/en
Priority to CN201780051542.3A priority patent/CN109642611B/en
Priority to PCT/JP2017/031782 priority patent/WO2018047765A1/en
Publication of JP2018040401A publication Critical patent/JP2018040401A/en
Application granted granted Critical
Publication of JP6999259B2 publication Critical patent/JP6999259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To suppress pressure leakage from a bearing surface to enhance a load capacity, without increase costs, and prevent oil film shortage at a slide part between the bearing surface and an opposite member (shaft) to prevent seizure.SOLUTION: A slide bearing (bearing sleeve 8) has bearing surfaces A, B comprising a green compact where particles 11 are coupled to each other by an oxide film 12 formed on surfaces of the particles 11 of metal powder, and sliding with an opposite member to be supported (shaft member 2) through a lubrication film. On the bearing surfaces A, B, provided are many opening parts 13a where communication with an internal pore 13b is cut off by the oxide film 12.SELECTED DRAWING: Figure 5

Description

本発明は、支持すべき相手材と潤滑膜を介して摺動するすべり軸受に関する。   The present invention relates to a sliding bearing that slides with a counterpart material to be supported and a lubricating film.

HDD用のスピンドルモータや、レーザビームプリンタ用のポリゴンスキャナモータ、冷却ファン用のファンモータなどの小型モータの回転支持軸受には、すべり軸受の一種である焼結含油軸受が使用されることがある。焼結含油軸受は、内部気孔に油(又はグリース。以下同様。)が含浸されており、この油が軸受面から滲み出すことで、軸受面と軸との摺動部に油を供給して潤滑性を高めることができる。   Sintered oil-impregnated bearings, which are a kind of sliding bearings, are sometimes used for rotation support bearings of small motors such as HDD spindle motors, polygon scanner motors for laser beam printers, and fan motors for cooling fans. . Sintered oil-impregnated bearings have internal pores impregnated with oil (or grease; the same shall apply hereinafter), and this oil oozes out from the bearing surface to supply oil to the sliding part between the bearing surface and the shaft. Lubricity can be improved.

しかし、軸受隙間の油膜の圧力が高まると、油の一部が焼結含油軸受の軸受面の開口部から内部気孔を介して外部へ抜けてしまうため、油膜の圧力が低下して負荷容量が低下してしまう。このような軸受面の開口部からの圧力抜けを抑制するために、例えば下記の特許文献1には、軸受面に金型(例えばマンドレル)を摺動させることで軸受面の開口部を封孔する技術が示されている。   However, when the pressure of the oil film in the bearing gap increases, a part of the oil escapes from the bearing surface opening of the sintered oil-impregnated bearing to the outside through the internal pores. It will decline. In order to suppress such pressure loss from the opening of the bearing surface, for example, in Patent Document 1 below, the opening of the bearing surface is sealed by sliding a mold (for example, a mandrel) on the bearing surface. Technology to do is shown.

特許第3377681号公報Japanese Patent No. 3377681

しかし、上記のように金型を摺動させて軸受面を封孔すると、軸受面に傷がつきやすく、品質が低下するおそれがある。また、軸受面を封孔するための工程および金型が増えるため、コストアップとなる。   However, if the bearing surface is sealed by sliding the mold as described above, the bearing surface is likely to be damaged and the quality may be deteriorated. Further, the number of processes and molds for sealing the bearing surface increase, resulting in an increase in cost.

上記のほかにも、軸受面の開口部からの圧力抜けを抑制する手段として、例えば、圧粉体の成形圧力を高めて密度を上げることにより内部気孔の体積を減らしたり、溶融樹脂や溶融金属を浸み込ませて内部気孔を埋めたりする方法がある。しかし、圧粉体の成形圧力を高めることによる密度向上は、プレス機の能力、金型の強度、生産性などの面で限界がある。また、溶融樹脂や溶融金属による封孔は、軸受面の精度を維持することが困難である上、多大な工数がかかってコストアップを招く。   In addition to the above, as means for suppressing pressure loss from the opening of the bearing surface, for example, the volume of the internal pores can be reduced by increasing the molding pressure of the green compact to increase the density, or molten resin or molten metal There is a method to fill the internal pores by soaking. However, the improvement in density by increasing the compacting pressure of the green compact is limited in terms of press capacity, mold strength, and productivity. Further, sealing with molten resin or molten metal makes it difficult to maintain the accuracy of the bearing surface, and requires a great number of man-hours and increases costs.

また、軸受面の開口部を完全に封孔したり、溶製鋼などの気孔を有さない材料ですべり軸受を形成したりして軸受面を平滑にすれば、油膜圧力の低下は防止できる。しかし、この場合、内部気孔からの油の供給が無くなるため、軸受面と軸との摺動部の油が枯渇しやすくなり、軸受面と軸との接触による焼き付きが生じるおそれがある。   Further, if the bearing surface is smoothed by completely sealing the opening of the bearing surface or forming a sliding bearing with a material having no pores such as molten steel, the oil film pressure can be prevented from decreasing. However, in this case, oil is not supplied from the internal pores, so that the oil in the sliding portion between the bearing surface and the shaft is easily depleted, and there is a possibility that seizure occurs due to contact between the bearing surface and the shaft.

そこで、本発明は、コストアップを招くことなく、軸受面からの圧力抜けを抑制して負荷容量を高めると共に、軸受面と相手材(軸)との摺動部における潤滑膜切れを防止して焼き付きを防止することを目的とする。   Therefore, the present invention increases the load capacity by suppressing pressure loss from the bearing surface without increasing the cost, and prevents the lubricating film from being cut off at the sliding portion between the bearing surface and the counterpart material (shaft). The purpose is to prevent seizure.

前記課題を解決するために、本発明は、金属粉末の粒子の表面に形成された酸化物被膜により前記粒子同士が結合された圧粉体からなり、支持すべき相手材と潤滑膜を介して摺動する軸受面を有するすべり軸受において、前記軸受面に、前記酸化物被膜により内部気孔との連通が遮断された多数の開口部を有することを特徴とする。   In order to solve the above-mentioned problems, the present invention comprises a green compact in which the particles are bonded together by an oxide film formed on the surface of the metal powder particles, and the support material to be supported and the lubricating film interposed therebetween. A sliding bearing having a sliding bearing surface is characterized in that the bearing surface has a large number of openings that are blocked from communicating with internal pores by the oxide coating.

本発明のすべり軸受は、一般的な焼結軸受のように圧粉体を高温(例えば850℃)で焼結するのではなく、圧粉体に比較的低温(例えば500℃)での加熱処理を施すことにより、圧粉体を構成する金属粉末の粒子の表面に酸化物被膜を生成させ、この酸化物被膜により粒子同士を結合したものである。この場合、酸化物被膜により圧粉体の内部気孔の少なくとも一部が埋められることで、圧粉体の表面から内部に油が抜けにくくなるため、別途の封孔処理を行わなくても、軸受面からの圧力抜けを抑制して負荷容量を高めることができる。   The slide bearing of the present invention does not sinter the green compact at a high temperature (for example, 850 ° C.) like a general sintered bearing, but heat-treats the green compact at a relatively low temperature (for example, 500 ° C.). In this way, an oxide film is formed on the surface of the metal powder particles constituting the green compact, and the particles are bonded together by this oxide film. In this case, since at least a part of the internal pores of the green compact is filled with the oxide coating, it becomes difficult for oil to escape from the surface of the green compact. The pressure capacity from the surface can be suppressed and the load capacity can be increased.

また、上記の酸化物被膜により、圧粉体の表面の開口部が完全に封孔されて軸受面が平滑となるわけではなく、圧粉体の表面には、酸化物被膜により内部気孔との連通が遮断された多数の開口部が残っている。この開口部は、油を保持する油溜まりとして機能し、開口部に保持された油が、軸受面と相手材との摺動部に供給されることで、摺動部における油膜切れを防止できる。尚、「内部気孔」とは、圧粉体の表面に露出していない粒子あるいはその表面に形成された酸化物被膜で形成された気孔を意味する。   Also, the oxide coating does not completely seal the opening of the green compact surface and the bearing surface is not smooth. A large number of openings that are blocked from communication remain. This opening functions as an oil reservoir that holds oil, and the oil held in the opening is supplied to the sliding portion between the bearing surface and the counterpart material, thereby preventing the oil film from being cut off at the sliding portion. . The “internal pores” mean pores formed by particles that are not exposed on the surface of the green compact or an oxide film formed on the surface.

上記のすべり軸受は、含油率を4vol%以下、軸受面の表面開口率を40%以上とすることが好ましい。尚、表面開口率とは、上記のような内部気孔と連通していない開口部だけでなく、内部気孔と連通した開口部を含む、軸受面におけるすべての開口部の面積率である。   The sliding bearing preferably has an oil content of 4 vol% or less and a surface opening ratio of the bearing surface of 40% or more. The surface opening ratio is an area ratio of all openings on the bearing surface including not only the opening not communicating with the internal pore as described above but also the opening communicating with the internal pore.

また、上記のすべり軸受は、通油度が0.01g/10min以下とすることが好ましい。尚、通油度は、すべり軸受の表面(例えば内周面)に油を接触させ、この油に所定圧力(ここでは0.4MPa)を負荷した状態で10分間保持したときに、すべり軸受の反対側の表面(例えば外周面)の開口部から滲み出した油の総重量を測定することにより求められる。   The sliding bearing preferably has an oil permeability of 0.01 g / 10 min or less. The oil permeability is determined by contacting the oil with the surface of the slide bearing (for example, the inner peripheral surface) and holding the oil under a predetermined pressure (0.4 MPa in this case) for 10 minutes. It is obtained by measuring the total weight of oil that has oozed from the opening on the opposite surface (for example, the outer peripheral surface).

前記軸受面は、例えば、動圧溝等を有さない平滑な円筒面とすることができる。このすべり軸受は、動圧溝が形成された軸部材の外周面と対向させて流体動圧軸受を構成したり、軸部材の円筒面状外周面と対向させて真円軸受を構成したりすることができる。   The bearing surface can be, for example, a smooth cylindrical surface that does not have a dynamic pressure groove or the like. The slide bearing is configured to be a fluid dynamic pressure bearing by facing the outer peripheral surface of the shaft member in which the dynamic pressure groove is formed, or to be a circular bearing by facing the cylindrical outer peripheral surface of the shaft member. be able to.

また、前記軸受面に、動圧溝を型成形してもよい。このすべり軸受は、例えば、軸部材の平滑な外周面あるいは端面と対向させて流体動圧軸受を構成することができる。   A dynamic pressure groove may be formed on the bearing surface. For example, the sliding bearing can be configured to face a smooth outer peripheral surface or end surface of the shaft member to constitute a fluid dynamic pressure bearing.

上記のすべり軸受は、例えば流体動圧軸受装置に組み込むことができる。具体的には、上記のすべり軸受と、前記すべり軸受の内周に挿入された前記相手材としての軸部材とを備え、前記すべり軸受の軸受面と前記軸部材の外周面との間のラジアル軸受隙間における潤滑膜の圧力で前記軸部材を相対回転自在に非接触支持する流体動圧軸受装置を得ることができる。   The above-mentioned plain bearing can be incorporated into a fluid dynamic bearing device, for example. Specifically, it comprises the above-mentioned slide bearing and a shaft member as the mating member inserted in the inner periphery of the slide bearing, and a radial between the bearing surface of the slide bearing and the outer peripheral surface of the shaft member It is possible to obtain a fluid dynamic bearing device that supports the shaft member in a non-contact manner so as to be relatively rotatable with the pressure of the lubricating film in the bearing gap.

以上のように、本発明では、すべり軸受(圧粉体)の内部気孔の少なくとも一部を酸化物被膜で埋めることで、軸受面からの圧力抜けを抑制して負荷容量を高めることができる。また、すべり軸受の軸受面に、油溜まりとなる多数の開口部が設けられることで、相手材との摺動部における油膜切れを防止して焼き付きを防止することができる。   As described above, in the present invention, by filling at least part of the internal pores of the sliding bearing (green compact) with the oxide film, it is possible to suppress the pressure loss from the bearing surface and increase the load capacity. In addition, since a large number of openings serving as oil reservoirs are provided on the bearing surface of the slide bearing, it is possible to prevent the oil film from being cut off at the sliding portion with the counterpart material and to prevent seizure.

スピンドルモータの断面図である。It is sectional drawing of a spindle motor. 流体動圧軸受装置の断面図である。It is sectional drawing of a fluid dynamic pressure bearing apparatus. 本発明の一実施形態に係るすべり軸受(軸受スリーブ)の断面図である。It is sectional drawing of the slide bearing (bearing sleeve) which concerns on one Embodiment of this invention. 上記すべり軸受の下面図である。It is a bottom view of the slide bearing. 上記すべり軸受の軸受面付近における断面図である。It is sectional drawing in the bearing surface vicinity of the said slide bearing. 上記すべり軸受の軸受面の写真である。It is a photograph of the bearing surface of the slide bearing. 圧粉工程を行うフォーミング金型の断面図である(成形前)。It is sectional drawing of the forming metal mold | die which performs a compacting process (before shaping | molding). 圧粉工程を行うフォーミング金型の断面図である(成形完了時)。It is sectional drawing of the forming metal mold | die which performs a compacting process (at the time of shaping | molding completion). 圧粉工程を行うフォーミング金型の断面図である(離型時)。It is sectional drawing of the forming metal mold | die which performs a compacting process (at the time of mold release). 左図は加熱処理前の圧粉体の断面組織図、中央図は脱脂後の圧粉体の断面組織図、右図は酸化処理後の圧粉体の断面組織図である。The left figure is a cross-sectional structure diagram of the green compact before heat treatment, the center figure is a cross-sectional structure diagram of the green compact after degreasing, and the right figure is a cross-sectional structure diagram of the green compact after the oxidation treatment. 圧粉体の真密度比と含油率との関係を表すグラフである。It is a graph showing the relationship between the true density ratio of a green compact, and oil content. 実施例に係るすべり軸受を有するモータの回転速度および油膜形成率を表すグラフである。It is a graph showing the rotational speed and oil film formation rate of the motor which has the slide bearing which concerns on an Example. 比較例に係るすべり軸受を有するモータの回転速度および油膜形成率を表すグラフである。It is a graph showing the rotational speed and oil film formation rate of a motor which has a slide bearing concerning a comparative example.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示すスピンドルモータは、HDD等のディスク駆動装置に用いられるものであり、軸部材2を回転自在に非接触支持する流体動圧軸受装置1と、軸部材2に装着されたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5とを備えている。ステータコイル4はケーシング6に取付けられ、ロータマグネット5はディスクハブ3に取付けられる。流体動圧軸受装置1のハウジング7は、ケーシング6の内周に装着される。ディスクハブ3には、磁気ディスク等のディスクDが所定枚数保持される。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、それによって、ディスクハブ3および軸部材2が一体となって回転する。   The spindle motor shown in FIG. 1 is used in a disk drive device such as an HDD, and includes a fluid dynamic bearing device 1 that rotatably supports a shaft member 2 in a non-contact manner, and a disk hub 3 mounted on the shaft member 2. And, for example, a stator coil 4 and a rotor magnet 5 that are opposed to each other via a gap in the radial direction. The stator coil 4 is attached to the casing 6, and the rotor magnet 5 is attached to the disk hub 3. The housing 7 of the fluid dynamic bearing device 1 is mounted on the inner periphery of the casing 6. The disk hub 3 holds a predetermined number of disks D such as magnetic disks. When the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force between the stator coil 4 and the rotor magnet 5, whereby the disk hub 3 and the shaft member 2 are rotated together.

図2に示すように、流体動圧軸受装置1は、本発明の一実施形態に係るすべり軸受としての軸受スリーブ8と、軸受スリーブ8で支持される相手材としての軸部材2と、軸受スリーブ8を内周に保持するハウジング7と、ハウジング7の軸方向一端の開口部に設けられたシール部9と、ハウジング7の軸方向他端を閉塞するスラストブッシュ10とを有する。図示例では、ハウジング7とシール部9が一部品で構成されている。尚、以下の説明では、便宜上、軸方向でハウジング7の閉塞側を下側、ハウジング7の開口側を上側と言うが、これは流体動圧軸受装置1の使用態様を限定する趣旨ではない。   As shown in FIG. 2, the fluid dynamic bearing device 1 includes a bearing sleeve 8 as a slide bearing according to an embodiment of the present invention, a shaft member 2 as a counterpart material supported by the bearing sleeve 8, and a bearing sleeve. The housing 7 holds the inner periphery 8, the seal portion 9 is provided at the opening at one axial end of the housing 7, and the thrust bush 10 closes the other axial end of the housing 7. In the example of illustration, the housing 7 and the seal part 9 are comprised by one component. In the following description, for the sake of convenience, the closed side of the housing 7 is referred to as the lower side and the open side of the housing 7 is referred to as the upper side in the axial direction, but this is not intended to limit the usage mode of the fluid dynamic bearing device 1.

軸部材2は、軸部2aと、軸部2aの下端に設けられたフランジ部2bとを備える。軸部材2は、例えば金属で形成され、本実施形態では、軸部2aおよびフランジ部2bを含む軸部材2全体がステンレス鋼で一体に形成される。   The shaft member 2 includes a shaft portion 2a and a flange portion 2b provided at the lower end of the shaft portion 2a. The shaft member 2 is formed of, for example, metal, and in this embodiment, the entire shaft member 2 including the shaft portion 2a and the flange portion 2b is integrally formed of stainless steel.

ハウジング7は、樹脂あるいは金属で円筒状に形成される。ハウジング7の内周面7aには、軸受スリーブ8の外周面8dが、接着や圧入等の適宜の手段で固定される。   The housing 7 is formed in a cylindrical shape with resin or metal. The outer peripheral surface 8d of the bearing sleeve 8 is fixed to the inner peripheral surface 7a of the housing 7 by an appropriate means such as adhesion or press fitting.

軸受スリーブ8は円筒状をなし、内周面8aに、軸部材2の外周面2a1と対向するラジアル軸受面が設けられる。図示例では、軸受スリーブ8の内周面8aの軸方向に離隔した2箇所にラジアル軸受面Aが形成される。各ラジアル軸受面Aには動圧溝が形成され、本実施形態では、図3に示すように、各ラジアル軸受面Aにへリングボーン形状に配列された動圧溝G1,G2が設けられる。図中クロスハッチングで示す領域は、内径側に盛り上がった丘部を示している(図4においても同様)。   The bearing sleeve 8 has a cylindrical shape, and a radial bearing surface facing the outer peripheral surface 2a1 of the shaft member 2 is provided on the inner peripheral surface 8a. In the illustrated example, radial bearing surfaces A are formed at two locations spaced in the axial direction of the inner peripheral surface 8 a of the bearing sleeve 8. In each radial bearing surface A, dynamic pressure grooves are formed, and in this embodiment, as shown in FIG. 3, dynamic pressure grooves G1, G2 arranged in a herringbone shape are provided in each radial bearing surface A. A region indicated by cross-hatching in the figure indicates a hill raised on the inner diameter side (the same applies to FIG. 4).

上側の動圧溝G1は軸方向で非対称な形状を成し、下側の動圧溝G2は軸方向で対称な形状を成している。軸方向非対称形状の上側の動圧溝G1により、ラジアル軸受隙間の油が軸方向に押し込まれ、ハウジング7の内部で油が強制的に循環される。ラジアル軸受面Aの軸方向間領域には、動圧溝G1、G2の溝底面と連続した円筒面が設けられる。尚、上下の動圧溝G1,G2の双方を軸方向対称形状としてもよい。また、上下の動圧溝G1,G2を軸方向で連続させたり、上下の動圧溝G1,G2の一方あるいは双方を省略したりしてもよい。また、ラジアル軸受面に、スパイラル形状の動圧溝や軸方向に延びる動圧溝を形成してもよい。また、軸受スリーブ8の内周面8a(ラジアル軸受面A)を円筒面として、軸部材2の外周面2a1に動圧溝を形成してもよい。   The upper dynamic pressure groove G1 has an asymmetric shape in the axial direction, and the lower dynamic pressure groove G2 has a symmetrical shape in the axial direction. The oil in the radial bearing gap is pushed in the axial direction by the upper dynamic pressure groove G <b> 1 having the axially asymmetric shape, and the oil is forcibly circulated inside the housing 7. In a region between the axial directions of the radial bearing surface A, a cylindrical surface that is continuous with the bottom surfaces of the dynamic pressure grooves G1 and G2 is provided. Note that both the upper and lower dynamic pressure grooves G1, G2 may have an axially symmetrical shape. The upper and lower dynamic pressure grooves G1 and G2 may be continuous in the axial direction, or one or both of the upper and lower dynamic pressure grooves G1 and G2 may be omitted. Further, a spiral dynamic pressure groove or a dynamic pressure groove extending in the axial direction may be formed on the radial bearing surface. Further, the inner circumferential surface 8a (radial bearing surface A) of the bearing sleeve 8 may be a cylindrical surface, and a dynamic pressure groove may be formed on the outer circumferential surface 2a1 of the shaft member 2.

軸受スリーブ8の下側端面8bには、軸部材2のフランジ部2bの上側端面2b1と対向するスラスト軸受面Bが設けられる。スラスト軸受面Bには、図4に示すようなポンプインタイプのスパイラル形状の動圧溝G3が形成される。尚、動圧溝の形状として、ヘリングボーン形状や放射溝形状等を採用しても良い。また、軸受スリーブ8の下側端面8b(スラスト軸受面B)を平坦面として、軸部材2のフランジ部2bの上側端面2b1に動圧溝を形成してもよい。   A thrust bearing surface B facing the upper end surface 2b1 of the flange portion 2b of the shaft member 2 is provided on the lower end surface 8b of the bearing sleeve 8. On the thrust bearing surface B, a pump-in type spiral-shaped dynamic pressure groove G3 as shown in FIG. 4 is formed. In addition, as a shape of the dynamic pressure groove, a herringbone shape, a radiation groove shape, or the like may be adopted. Further, a dynamic pressure groove may be formed on the upper end surface 2b1 of the flange portion 2b of the shaft member 2 with the lower end surface 8b (thrust bearing surface B) of the bearing sleeve 8 as a flat surface.

軸受スリーブ8の上側端面8cには、図3に示すように、環状溝8c1と、環状溝8c1の内径側に設けられた複数の半径方向溝8c2とが形成される。軸受スリーブ8の外周面8dには、複数の軸方向溝8d1が円周方向等間隔に設けられる。これらの軸方向溝8d1、環状溝8c1、及び半径方向溝8c2等を介して、軸部材2のフランジ部2bの外径側の空間がシール空間Sと連通することで、この空間における負圧の発生が防止される。尚、特に必要が無ければ、環状溝8c1および半径方向溝8c2を省略して、軸受スリーブ8の上側端面8cを平坦面としてもよい。   As shown in FIG. 3, an annular groove 8c1 and a plurality of radial grooves 8c2 provided on the inner diameter side of the annular groove 8c1 are formed on the upper end surface 8c of the bearing sleeve 8. A plurality of axial grooves 8d1 are provided on the outer peripheral surface 8d of the bearing sleeve 8 at equal intervals in the circumferential direction. The space on the outer diameter side of the flange portion 2b of the shaft member 2 communicates with the seal space S through the axial groove 8d1, the annular groove 8c1, the radial groove 8c2, and the like. Occurrence is prevented. If not particularly necessary, the annular groove 8c1 and the radial groove 8c2 may be omitted, and the upper end surface 8c of the bearing sleeve 8 may be a flat surface.

軸受スリーブ8は、金属粉末の圧粉体の内部気孔に油を含浸させた多孔質含油軸受である。軸受スリーブ8の表面は、動圧溝G1、G2、G3の溝底面や、丘部の頂面および側面を含め、全域が型成形された面となっている。軸受スリーブ8にはサイジングが施されておらず、軸受スリーブ8の表面に摺動痕は形成されていない。   The bearing sleeve 8 is a porous oil-impregnated bearing in which oil is impregnated in the internal pores of a metal powder compact. The entire surface of the bearing sleeve 8, including the groove bottom surfaces of the dynamic pressure grooves G1, G2, and G3 and the top and side surfaces of the hills, is a molded surface. The bearing sleeve 8 is not sized, and no sliding mark is formed on the surface of the bearing sleeve 8.

軸受スリーブ8は、例えば単一の金属を95wt%以上含む圧粉体からなる。本実施形態では、軸受スリーブ8が、図5に示すように、鉄粒子11と、鉄粒子11の表面に形成された酸化物被膜12とからなる圧粉体で構成される。鉄粒子11は、酸化物被膜12により互いに結合されている。詳しくは、各鉄粒子11の表面に形成された酸化物被膜12が、鉄粒子11間に行き渡ってネットワークを形成することにより、軸受スリーブ8の強度が確保されている。   The bearing sleeve 8 is made of a green compact containing, for example, 95 wt% or more of a single metal. In the present embodiment, as shown in FIG. 5, the bearing sleeve 8 is composed of a green compact composed of iron particles 11 and an oxide coating 12 formed on the surface of the iron particles 11. The iron particles 11 are bonded to each other by an oxide coating 12. Specifically, the oxide coating 12 formed on the surface of each iron particle 11 spreads between the iron particles 11 to form a network, thereby ensuring the strength of the bearing sleeve 8.

軸受スリーブ8は、酸化物被膜12により鉄粒子11間の隙間(内部気孔)の少なくとも一部が埋められることで、気孔率、特に、表面に連通する気孔率(開放気孔率)が減じられている。これにより、軸受スリーブ8の含油率が例えば4vol%以下、好ましくは2vol%以下とされる。また、軸受スリーブ8の通油度は、例えば0.01g/10min以下とされる。   In the bearing sleeve 8, at least a part of the gap (internal pore) between the iron particles 11 is filled with the oxide coating 12, so that the porosity, particularly the porosity communicating with the surface (open porosity) is reduced. Yes. As a result, the oil content of the bearing sleeve 8 is, for example, 4 vol% or less, preferably 2 vol% or less. Further, the oil permeability of the bearing sleeve 8 is set to 0.01 g / 10 min or less, for example.

軸受スリーブ8の表面は、酸化物被膜12により完全に封孔されて平滑になっているわけではなく、軸受スリーブ8の表面、特にラジアル軸受面Aおよびスラスト軸受面Bには、多数の開口部13a(微小凹部)が形成される。この多数の開口部13aは、内部気孔13b(軸受スリーブ8の表面に露出していない鉄粒子11あるいはその表面に形成された酸化物被膜12で形成された気孔13b)との連通が酸化物被膜12により遮断されている。すなわち、酸化物被膜12を形成する前は、内部気孔13bと開口部13aとは連通しているが、酸化物被膜12によりこれらが分断されることで、何れかの表面(例えば内周面8a)のみに開口した開口部13aが形成される。開口部13aの内部側は、酸化物被膜12で閉塞されている。この多数の開口部13aが、油を保持する油溜まりとして機能する。尚、軸受スリーブ8の各軸受面A、Bには、内部気孔13bと連通した開口部13cも設けられる。このような開口部13cの少なくとも一部が、軸受スリーブ8の他の表面(例えば外周面8d)と連通している。   The surface of the bearing sleeve 8 is not completely sealed and smoothed by the oxide coating 12, and the surface of the bearing sleeve 8, particularly the radial bearing surface A and the thrust bearing surface B, has a large number of openings. 13a (a minute recess) is formed. The many openings 13a communicate with the internal pores 13b (the pores 13b formed by the iron particles 11 not exposed on the surface of the bearing sleeve 8 or the oxide coating 12 formed on the surface thereof). 12 is blocked. That is, before the oxide film 12 is formed, the internal pores 13b and the opening 13a are communicated with each other. However, when the oxide film 12 is divided, any surface (for example, the inner peripheral surface 8a) is formed. ) Is formed in the opening 13a only. The inner side of the opening 13 a is closed with the oxide film 12. The numerous openings 13a function as an oil reservoir that holds oil. Each bearing surface A, B of the bearing sleeve 8 is also provided with an opening 13c communicating with the internal pore 13b. At least a part of the opening 13c is in communication with the other surface (for example, the outer peripheral surface 8d) of the bearing sleeve 8.

軸受スリーブ8のラジアル軸受面Aおよびスラスト軸受面Bにおける表面開口率は、それぞれ40%以上とされる。軸受面A、Bの表面開口率は、軸受面A、Bの撮影画像を解析することで測定される。図6は、軸受スリーブ8の内周面8a(ラジアル軸受面A)の拡大写真であり、黒色で示されている領域が開口部13aあるいは13cである。この画像において黒色領域(開口部13a、13c)の割合を算出することで、表面開口率が求められる。尚、図6に示されている直線は、動圧溝と丘部との境界である。   The surface opening ratios of the bearing sleeve 8 on the radial bearing surface A and the thrust bearing surface B are each 40% or more. The surface aperture ratios of the bearing surfaces A and B are measured by analyzing captured images of the bearing surfaces A and B. FIG. 6 is an enlarged photograph of the inner peripheral surface 8a (radial bearing surface A) of the bearing sleeve 8, and the region shown in black is the opening 13a or 13c. By calculating the ratio of black areas (openings 13a and 13c) in this image, the surface aperture ratio is obtained. In addition, the straight line shown by FIG. 6 is a boundary of a dynamic pressure groove and a hill part.

シール部9は、ハウジング7の上端から内径側に突出している。本実施形態では、シール部9がハウジング7と一体に形成される。シール部9の内周面9aは、下方に向けて漸次縮径したテーパ状を成す。シール部9の内周面9aと軸部2aの外周面2a1との間には、下方に向けて半径方向幅を徐々に狭めた楔状のシール空間Sが形成される(図2参照)。この他、シール部9の内周面を円筒面とする一方で、軸部2aの外周面に上方に向けて漸次縮径するテーパ面を設け、これらの間に楔状のシール空間Sを形成してもよい。   The seal portion 9 protrudes from the upper end of the housing 7 toward the inner diameter side. In the present embodiment, the seal portion 9 is formed integrally with the housing 7. The inner peripheral surface 9a of the seal portion 9 has a tapered shape that is gradually reduced in diameter toward the lower side. Between the inner peripheral surface 9a of the seal portion 9 and the outer peripheral surface 2a1 of the shaft portion 2a, a wedge-shaped seal space S is formed in which the radial width is gradually narrowed downward (see FIG. 2). In addition, while the inner peripheral surface of the seal portion 9 is a cylindrical surface, a tapered surface that gradually decreases in diameter upward is provided on the outer peripheral surface of the shaft portion 2a, and a wedge-shaped seal space S is formed therebetween. May be.

スラストブッシュ10は、例えば、金属材料(黄銅等)や樹脂材料で形成され、ハウジング7の内周面7aの下端部に、圧入、接着等の適宜の手段で固定される。スラストブッシュ10の端面10aにはスラスト軸受面Cが形成される。このスラスト軸受面Cには、例えばポンプインタイプのスパイラル形状の動圧溝が形成される(図示省略)。尚、動圧溝の形状として、ヘリングボーン形状や放射溝形状等を採用しても良い。また、スラストブッシュ10の端面10a(スラスト軸受面C)を平坦面として、軸部材2のフランジ部2bの下側端面2b2に動圧溝を形成してもよい。   The thrust bush 10 is made of, for example, a metal material (brass or the like) or a resin material, and is fixed to the lower end portion of the inner peripheral surface 7a of the housing 7 by an appropriate means such as press fitting or adhesion. A thrust bearing surface C is formed on the end surface 10 a of the thrust bush 10. On this thrust bearing surface C, for example, a pump-in type spiral dynamic pressure groove is formed (not shown). In addition, as a shape of the dynamic pressure groove, a herringbone shape, a radiation groove shape, or the like may be adopted. Alternatively, the end surface 10a (thrust bearing surface C) of the thrust bush 10 may be a flat surface, and a dynamic pressure groove may be formed on the lower end surface 2b2 of the flange portion 2b of the shaft member 2.

上記の構成の流体動圧軸受装置1の内部に、油(又はグリース)が注入される。本実施形態では、ハウジング7の内周の空間が、軸受スリーブ8の内部気孔を含めて油で満たされ、シール空間S内に油面が形成される。   Oil (or grease) is injected into the fluid dynamic bearing device 1 having the above configuration. In the present embodiment, the inner circumferential space of the housing 7 is filled with oil including the internal pores of the bearing sleeve 8, and an oil surface is formed in the seal space S.

軸部材2が回転すると、軸受スリーブ8およびスラストブッシュ10に設けられた軸受面と軸部材2とが、油膜を介して摺動する。詳しくは、軸受スリーブ8の内周面8aのラジアル軸受面Aと軸部2aの外周面2a1との間にラジアル軸受隙間が形成され、ラジアル軸受面Aに設けられた動圧溝G1,G2によりラジアル軸受隙間の油膜の圧力が高められることで、軸部材2をラジアル方向に非接触支持する第1ラジアル軸受部R1及び第2ラジアル軸受部R2が構成される。これと同時に、軸受スリーブ8の下側端面8b(スラスト軸受面B)とフランジ部2bの上側端面2b1との間、及び、スラストブッシュ10の端面10a(スラスト軸受面C)とフランジ部2bの下側端面2b2との間にそれぞれスラスト軸受隙間が形成され、各スラスト軸受面B、Cに設けられた動圧溝により各スラスト軸受隙間の油膜の圧力が高められることで、軸部材2を両スラスト方向に非接触支持する第1スラスト軸受部T1及び第2スラスト軸受部T2が構成される。   When the shaft member 2 rotates, the bearing surfaces provided on the bearing sleeve 8 and the thrust bush 10 and the shaft member 2 slide through the oil film. Specifically, a radial bearing gap is formed between the radial bearing surface A of the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a, and the dynamic pressure grooves G1 and G2 provided on the radial bearing surface A are used. By increasing the pressure of the oil film in the radial bearing gap, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner in the radial direction are configured. At the same time, between the lower end surface 8b (thrust bearing surface B) of the bearing sleeve 8 and the upper end surface 2b1 of the flange portion 2b, and below the end surface 10a (thrust bearing surface C) of the thrust bush 10 and the flange portion 2b. Thrust bearing gaps are formed between the side end faces 2b2 and the pressure of the oil film in the thrust bearing gaps is increased by the dynamic pressure grooves provided on the thrust bearing faces B and C. A first thrust bearing portion T1 and a second thrust bearing portion T2 that are supported in a non-contact manner in the direction are configured.

このとき、軸受スリーブ8の内部気孔の少なくとも一部が酸化物被膜12で埋められ、軸受スリーブ8の含油率が4vol%以下となっていることにより、軸受隙間の油膜の圧力が高められたときでも、軸受スリーブ8の表面(特にラジアル軸受面Aおよびスラスト軸受面B)から内部への油の浸入が抑えられる。これにより、軸受隙間の油膜の圧力低下が抑えられるため、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2の負荷容量を高めることができる。   At this time, when the internal pores of the bearing sleeve 8 are filled with the oxide film 12 and the oil content of the bearing sleeve 8 is 4 vol% or less, the pressure of the oil film in the bearing gap is increased. However, the intrusion of oil from the surface of the bearing sleeve 8 (particularly the radial bearing surface A and the thrust bearing surface B) can be suppressed. Thereby, since the pressure drop of the oil film of a bearing gap is suppressed, the load capacity of radial bearing part R1, R2 and thrust bearing part T1, T2 can be raised.

また、軸受スリーブ8の軸受面A、Bには、多数の開口部13aが設けられている(図5参照)。この開口部13aは、酸化物被膜12により内部気孔13bとの連通が遮断された微小凹部であり、油を保持する油溜まりとなる。軸部材2の回転時には、開口部13aに保持された油が軸受隙間に供給されることで、軸受隙間における油膜切れを防止して、軸受スリーブ8と軸部材2との接触による焼き付きを防止することができる。   The bearing surfaces A and B of the bearing sleeve 8 are provided with a large number of openings 13a (see FIG. 5). The opening 13a is a minute recess in which communication with the internal pore 13b is blocked by the oxide film 12, and serves as an oil reservoir for holding oil. When the shaft member 2 rotates, the oil retained in the opening 13a is supplied to the bearing gap, thereby preventing the oil film from being cut in the bearing gap and preventing seizure due to contact between the bearing sleeve 8 and the shaft member 2. be able to.

ここで、上記のすべり軸受(軸受スリーブ8)の製造方法を説明する。軸受スリーブ8は、圧粉工程、脱脂工程、酸化工程、含油工程を経て製造される。以下、各工程を詳しく説明する。   Here, a manufacturing method of the above-described sliding bearing (bearing sleeve 8) will be described. The bearing sleeve 8 is manufactured through a dusting process, a degreasing process, an oxidation process, and an oil impregnation process. Hereinafter, each process will be described in detail.

(1)圧粉工程
圧粉工程は、原料粉末を金型に供給し、圧縮成形することで、円筒状の圧粉体を得る工程である。圧粉工程の手法は特に問わず、一軸加圧成形の他、多軸CNCプレスによる成形などが適用可能である。
(1) Compacting step The compacting step is a step of obtaining a cylindrical compact by supplying raw material powder to a mold and compression molding. The method of the compacting process is not particularly limited, and other than uniaxial pressure molding, molding by a multi-axis CNC press can be applied.

原料粉末は、鉄粉や銅粉等の金属粉末を主に含む。鉄粉は、製法を問わず使用可能であり、例えば、アトマイズ粉や還元粉を使用できる。銅粉も、製法を問わず使用可能であり、例えば電解粉、アトマイズ粉、還元粉を使用できる。この他、主成分が鉄または銅である合金粉(例えば、予合金化したプレアロイ粉、部分的に拡散合金化させた部分拡散合金粉)を使用することも可能である。また、高強度化や潤滑性向上などのため、Sn、Znなどの低融点金属粉末、黒鉛やカーボンブラックなどの炭素系粉末を原料粉末に添加してもよい。   The raw material powder mainly contains metal powder such as iron powder and copper powder. Iron powder can be used regardless of the production method, and for example, atomized powder or reduced powder can be used. Copper powder can also be used regardless of a manufacturing method, for example, electrolytic powder, atomized powder, and reduced powder can be used. In addition, it is also possible to use an alloy powder whose main component is iron or copper (for example, prealloyed pre-alloy powder, partially diffusion alloyed partial diffusion alloy powder). In order to increase strength and improve lubricity, low melting point metal powders such as Sn and Zn, and carbon-based powders such as graphite and carbon black may be added to the raw material powder.

ただし、原料粉末に含まれる金属粉末は、単一種の金属粉末を95wt%以上含むことが好ましく、単一の金属粉末のみからなることがより好ましい。金属の種類が異なると、粒子の表面に形成される酸化物被膜の厚さや基材との密着性などが異なるため、寸法精度や軸受特性が満足できないおそれがあるからである。尚、寸法精度や軸受特性が満たされるのであれば、複数種の金属粉末を混合してもよい。   However, the metal powder contained in the raw material powder preferably contains 95 wt% or more of a single kind of metal powder, and more preferably consists of only a single metal powder. This is because, if the metal type is different, the thickness of the oxide film formed on the surface of the particle, the adhesion to the base material, and the like are different, so that dimensional accuracy and bearing characteristics may not be satisfied. In addition, as long as dimensional accuracy and bearing characteristics are satisfied, a plurality of types of metal powders may be mixed.

原料粉末に、後の圧粉工程における原料粉末と金型との潤滑、あるいは原料粉末同士の潤滑を担保するべく、成形用潤滑剤を添加してもよい。成形用潤滑剤としては、金属セッケンやアミドワックスなどが使用できる。成形用潤滑剤は、粉末として原料粉末に混合する他、上記に挙げた成形用潤滑剤を溶剤に分散させた溶液を、金属粉末に噴霧又は浸漬させ、溶剤成分を揮発・除去することで、成形用潤滑剤を金属粉末の表面に被覆させてもよい。   A molding lubricant may be added to the raw material powder in order to ensure lubrication between the raw material powder and the mold in the subsequent compacting step, or between the raw material powders. As the molding lubricant, metal soap or amide wax can be used. The molding lubricant is mixed with the raw material powder as a powder, and a solution in which the above-mentioned molding lubricant is dispersed in a solvent is sprayed or immersed in a metal powder to volatilize and remove the solvent component. A molding lubricant may be coated on the surface of the metal powder.

本実施形態では、原料粉末が、純鉄粉(還元鉄粉)および成形用潤滑剤のみからなる。成形用潤滑剤は、純鉄粉に対して0.1〜1wt%、好ましくは0.3〜0.6wt%含まれる。   In the present embodiment, the raw material powder consists only of pure iron powder (reduced iron powder) and a molding lubricant. The molding lubricant is contained in an amount of 0.1 to 1 wt%, preferably 0.3 to 0.6 wt%, based on pure iron powder.

圧粉工程は、図7に示すフォーミング金型を用いて行われる。フォーミング金型は、ダイ21、コアロッド22、上パンチ23および下パンチ24を備える。コアロッド22の外周面には、動圧溝G1、G2に対応した形状の成形型22a、22bが設けられる。下パンチ24の上面には、動圧溝G3に対応した形状の成形型24aが設けられる。この他、図示は省略するが、ダイ21の内周面には、軸方向溝8d1に対応した形状の成形型が設けられ、上パンチ23の下面には、環状溝8c1および半径方向溝8c2に対応した形状の成形型が設けられる。   The compacting process is performed using a forming mold shown in FIG. The forming mold includes a die 21, a core rod 22, an upper punch 23 and a lower punch 24. On the outer peripheral surface of the core rod 22, molding dies 22a and 22b having shapes corresponding to the dynamic pressure grooves G1 and G2 are provided. On the upper surface of the lower punch 24, a molding die 24a having a shape corresponding to the dynamic pressure groove G3 is provided. In addition, although illustration is omitted, a molding die having a shape corresponding to the axial groove 8d1 is provided on the inner peripheral surface of the die 21, and an annular groove 8c1 and a radial groove 8c2 are formed on the lower surface of the upper punch 23. A mold having a corresponding shape is provided.

まず、図7に示すように、ダイ21、コアロッド22、および下パンチ24で区画されたキャビティに、原料粉末Mを充填する。次に、図8に示すように、上パンチ23を降下させて原料粉末Mを圧縮し、圧粉体8’を成形する。これと同時に、コアロッド22の成形型22a、22bにより、圧粉体8’の内周面に動圧溝G1、G2が成形されると共に、下パンチ24の成形型24aにより、圧粉体8’の下側端面に動圧溝G3が成形される。   First, as shown in FIG. 7, a raw material powder M is filled into a cavity defined by a die 21, a core rod 22, and a lower punch 24. Next, as shown in FIG. 8, the upper punch 23 is lowered to compress the raw material powder M to form a green compact 8 '. At the same time, the dynamic pressure grooves G1 and G2 are formed on the inner peripheral surface of the green compact 8 ′ by the molds 22a and 22b of the core rod 22, and the green compact 8 ′ by the mold 24a of the lower punch 24. A dynamic pressure groove G3 is formed on the lower end surface of the lower surface.

その後、図9に示すように、圧粉体8’をダイ21の内周から排出することにより、圧粉体8’に加わっていた内径向きの力が解放され、圧粉体8’にスプリングバックが生じる。これにより、圧粉体8’の内周面が拡径し、圧粉体8’がコアロッド22の成形型22a、22bから離型される。   Thereafter, as shown in FIG. 9, the green compact 8 'is discharged from the inner periphery of the die 21, so that the force directed to the inner diameter applied to the green compact 8' is released, and the green compact 8 'is spring-loaded. Back occurs. As a result, the inner peripheral surface of the green compact 8 ′ increases in diameter, and the green compact 8 ′ is released from the molds 22 a and 22 b of the core rod 22.

通常、焼結部品においては密度が高い方が強度は向上する。しかし、本実施形態のように、圧粉体に酸化処理を施すことで高強度化を図る場合は、圧粉密度が高すぎると、圧粉体内部まで空気等の酸化性ガスが侵入できず、酸化物被膜の形成が圧粉体のごく表層に限られるため、強度は向上するものの好ましくない。この点に鑑み、圧粉密度は、7.2g/cm以下(真密度比91%以下)、好ましくは7.0g/cm以下(真密度比89%以下)とするのがよい。 Usually, in a sintered part, the higher the density, the higher the strength. However, as in this embodiment, in the case of increasing the strength by subjecting the green compact to oxidation treatment, if the density of the green compact is too high, an oxidizing gas such as air cannot penetrate into the green compact. Since the formation of the oxide film is limited to the very surface layer of the green compact, although the strength is improved, it is not preferable. In view of this point, the green density is 7.2 g / cm 3 or less (true density ratio 91% or less), preferably 7.0 g / cm 3 or less (true density ratio 89% or less).

一方、圧粉密度が低すぎると、取扱い時に欠けや割れが発生してしまう(ラトラ値が大きい)、粒子間距離が長過ぎて酸化物被膜が粒子間にわたって形成されない、といった懸念がある。この点に鑑み、圧粉密度は、5.8g/cm3以上(真密度比74%以上)、好ましくは6.0g/cm3以上(真密度比76%以上)とするのがよい。特に、酸化物被膜により内部気孔を埋めて圧粉体の含油率を4vol%以下とするためには、圧粉密度を6.3g/cm3以上(真密度比80%以上)、好ましくは6.7g/cm3以上(真密度比85%以上)とするのがよい。尚、圧粉密度の測定は、寸法測定法による。また、圧粉体の密度は、後の脱脂工程および酸化工程を経てもほとんど変わらないため、上記の圧粉密度の好ましい範囲は、軸受スリーブ8の密度の好ましい範囲となる。 On the other hand, if the powder density is too low, chipping or cracking may occur during handling (the rattra value is large), and there is a concern that the interparticle distance is too long to form an oxide film between the particles. In view of this point, the green density should be 5.8 g / cm 3 or more (true density ratio 74% or more), preferably 6.0 g / cm 3 or more (true density ratio 76% or more). In particular, in order to fill the internal pores with an oxide film and reduce the oil content of the green compact to 4 vol% or less, the green density is 6.3 g / cm 3 or more (true density ratio is 80% or more), preferably 6 0.7 g / cm 3 or more (true density ratio 85% or more). In addition, the measurement of a compacting density is based on the dimension measuring method. Further, since the density of the green compact hardly changes even after the subsequent degreasing process and oxidation process, the preferable range of the green compact density is a preferable range of the density of the bearing sleeve 8.

(2)脱脂工程
脱脂工程は、圧粉体を加熱して、圧粉体に含まれる成形用潤滑剤を除去(脱ろう)する工程である。脱脂工程は、成形用潤滑剤の分解温度より高く、後述の酸化工程よりも低い温度で行われ、例えば300〜400℃で60〜120分間加熱される。脱脂前の圧粉体8’は、図10の左図に示すように、鉄粒子11の間の隙間に成形用潤滑剤14が配されているが、脱脂工程を施すことにより、図10の中央図に示すように、成形用潤滑剤14が消失し、鉄粒子11のみからなる圧粉体8’が得られる。
(2) Degreasing process The degreasing process is a process in which the green compact is heated to remove (dewax) the molding lubricant contained in the green compact. The degreasing step is performed at a temperature higher than the decomposition temperature of the molding lubricant and lower than the below-described oxidation step, and is heated, for example, at 300 to 400 ° C. for 60 to 120 minutes. As shown in the left diagram of FIG. 10, the green compact 8 ′ before degreasing is provided with a molding lubricant 14 in the gaps between the iron particles 11, but by performing a degreasing step, FIG. As shown in the center view, the molding lubricant 14 disappears, and a green compact 8 ′ composed only of iron particles 11 is obtained.

従来の焼結軸受の製造工程では、焼結工程において圧粉体が高温で保持されるため、圧粉体に含まれる潤滑剤成分は分解し、焼結後の製品中には含まれない。しかし、本発明を適用した場合、圧粉体の密度や酸化処理温度、保持時間によっては潤滑剤成分が残存し得る。そのため、酸化処理に先立ち、あらかじめ潤滑剤成分を分解・除去するための脱脂工程を設け、脱脂工程後に連続して同じ雰囲気で酸化処理をする、といった手法を取ることが望ましい。ただし、脱脂工程を設けずに、成形用潤滑剤を含有したまま酸化処理をしても、高強度化が図れることは確認済みである。また、脱脂工程を、別途の加熱装置を用いて、酸化工程とは異なる雰囲気(例えば、不活性ガスや還元性ガス、真空中など)で実施してもよい。   In a conventional sintered bearing manufacturing process, since the green compact is held at a high temperature in the sintering process, the lubricant component contained in the green compact is decomposed and is not included in the sintered product. However, when the present invention is applied, the lubricant component may remain depending on the density of the green compact, the oxidation treatment temperature, and the holding time. Therefore, it is desirable to take a technique in which a degreasing process for decomposing and removing the lubricant component is provided in advance prior to the oxidation process, and the oxidation process is continuously performed in the same atmosphere after the degreasing process. However, it has been confirmed that high strength can be achieved even if an oxidation treatment is carried out while containing a molding lubricant without providing a degreasing step. In addition, the degreasing step may be performed in an atmosphere (for example, an inert gas, a reducing gas, or in a vacuum) different from the oxidation step using a separate heating device.

(3)酸化工程
酸化工程では、圧粉体を酸化性雰囲気中で加熱する。これにより、図10の右図に示すように金属粉末(鉄粉)の各粒子11の表面に酸化物被膜12を生成させ、この酸化物被膜12を介して粒子11同士を結合することで、圧粉体8’の強度が高められる。具体的には、酸化工程により、金属粉末の各粒子の表面に生成される酸化物被膜が、鉄粒子11間に行き渡ってネットワークを形成することで、従来のような高温での焼結による結合力を代替し、圧粉体8’が高強度化される。また、本実施形態では、主成分となる鉄粉の全粒子が酸化物被膜を介して接合されているわけではなく、一部の粒子同士が酸化物被膜を介することなく直接接触して融着している。
(3) Oxidation step In the oxidation step, the green compact is heated in an oxidizing atmosphere. Thereby, as shown to the right figure of FIG. 10, the oxide film 12 is produced | generated on the surface of each particle | grains 11 of a metal powder (iron powder), and particle | grains 11 are couple | bonded through this oxide film 12, The strength of the green compact 8 ′ is increased. Specifically, the oxide film formed on the surface of each particle of the metal powder by the oxidation process spreads between the iron particles 11 to form a network, thereby bonding by sintering at a high temperature as in the past. Instead of the force, the green compact 8 'is strengthened. Further, in this embodiment, not all particles of iron powder as a main component are bonded via an oxide film, but some particles are directly in contact with each other without an oxide film and fused. doing.

酸化物被膜12の生成により、圧粉体8’の内部気孔の少なくとも一部が埋められる。このとき、圧粉体8’の表面の開口部の少なくとも一部が、酸化物被膜12により内部気孔13bとの連通が遮断される。これにより、圧粉体8’の表面に、内部側が酸化物被膜12で閉塞された多数の開口部13aが形成される(図5参照)。   Generation of the oxide film 12 fills at least a part of the internal pores of the green compact 8 ′. At this time, at least a part of the opening on the surface of the green compact 8 ′ is blocked from communicating with the internal pores 13 b by the oxide coating 12. As a result, a large number of openings 13a whose inner side is closed with the oxide film 12 are formed on the surface of the green compact 8 '(see FIG. 5).

上記の酸化処理の処理条件(加熱温度、加熱時間、加熱雰囲気)は、圧粉体8’に、動圧軸受として要求される強度が付与され、且つ、酸化物被膜12により、圧粉体8’の含油率が4vol%以下、表面開口率が40%以上となるように設定される。具体的に、本実施形態の酸化工程における加熱温度は、400℃以上、好ましくは450℃以上に設定される。また、加熱温度が高すぎると、圧粉体の寸法変化が大きくなるため、加熱温度は600℃以下、好ましくは550℃以下に設定される。加熱時間は、5分〜2時間の範囲で、適宜設定され、例えば10〜20分とされる。酸化工程を経た圧粉体は、すべり軸受に必要とされる強度、具体的には圧環強さ120MPa以上、好ましくは150MPa以上を有する。   The processing conditions (heating temperature, heating time, heating atmosphere) of the above-described oxidation treatment are such that the strength required for a dynamic pressure bearing is imparted to the green compact 8 ′, and the green compact 8 is formed by the oxide coating 12. The oil content of 'is set to 4 vol% or less and the surface opening ratio is 40% or more. Specifically, the heating temperature in the oxidation step of the present embodiment is set to 400 ° C. or higher, preferably 450 ° C. or higher. Further, if the heating temperature is too high, the dimensional change of the green compact becomes large, so the heating temperature is set to 600 ° C. or lower, preferably 550 ° C. or lower. The heating time is appropriately set in the range of 5 minutes to 2 hours, for example, 10 to 20 minutes. The green compact that has undergone the oxidation step has a strength required for the slide bearing, specifically, a crushing strength of 120 MPa or more, and preferably 150 MPa or more.

加熱雰囲気は、積極的な酸化を促すために酸化性雰囲気とされる。ただし、水蒸気雰囲気は、酸化物被膜の生成速度が速すぎるため、水蒸気雰囲気よりも酸化物被膜の生成速度が遅い酸化性雰囲気とすることが好ましい。具体的には、空気又は酸素、あるいはこれらに窒素やアルゴンなどの不活性ガスを混合した酸化性ガスの何れかの雰囲気中で加熱することが好ましい。これらの酸化性ガス、特に空気雰囲気で酸化処理を行うことで、圧粉体の表面に形成される酸化物被膜が抑えられるため、圧粉体の表面粗さの低下を抑えることができる。また、すべり軸受として使用に耐える強度(例えば圧環強さ120MPa以上)を得るためには、加熱雰囲気中の酸素分率を2vol%以上とすることが好ましい。   The heating atmosphere is an oxidizing atmosphere in order to promote positive oxidation. However, since the generation rate of the oxide film is too high in the water vapor atmosphere, it is preferable to use an oxidizing atmosphere in which the generation rate of the oxide film is lower than that of the water vapor atmosphere. Specifically, it is preferable to heat in an atmosphere of air or oxygen, or an oxidizing gas in which an inert gas such as nitrogen or argon is mixed. By performing oxidation treatment in these oxidizing gases, particularly in an air atmosphere, the oxide film formed on the surface of the green compact can be suppressed, so that a reduction in the surface roughness of the green compact can be suppressed. Further, in order to obtain a strength that can be used as a slide bearing (for example, a crushing strength of 120 MPa or more), the oxygen fraction in the heating atmosphere is preferably 2 vol% or more.

鉄粉の表面に形成される鉄酸化物被膜は、Fe、Fe、FeOのうちの2種類以上の混相である。これらの酸化物被膜の比率は、材料および処理条件によって異なる。 The iron oxide film formed on the surface of the iron powder is a mixed phase of two or more of Fe 3 O 4 , Fe 2 O 3 , and FeO. The ratio of these oxide coatings varies depending on the material and processing conditions.

上記の酸化工程による高強度化は、従来の一般的な焼結部材で使用される、鉄又は銅あるいはこれらの双方を種々の割合で混合した材質(鉄系、銅系、鉄−銅系、又は銅−鉄系)の圧粉体に適用できる。ただし、金属粉末が単一種類(例えば鉄粉)のみからなる方が、酸化物被膜の厚さや粒子との密着性を均一にすることができるため、好ましい。   Strengthening by the oxidation process described above is a material (iron-based, copper-based, iron-copper-based, iron, copper, or a mixture of both of them in various proportions used in conventional general sintered members. Alternatively, it can be applied to a green compact of copper-iron. However, it is preferable that the metal powder consists of only a single type (for example, iron powder) because the thickness of the oxide film and the adhesion with the particles can be made uniform.

上記の酸化工程は、従来の高温での焼結工程と比べて処理温度が低いため、処理前後の圧粉体の寸法変化が小さい。このため、圧粉体の寸法精度、特に動圧溝の寸法精度(溝深さ等)の低下が抑えられ、サイジングを施すことなく、要求される精度を満たすことができる。このようにサイジング工程を省略することで、軸受の製造工程が短縮され、コストが低減できると共に、軸受及びフォーミング金型の設計が容易になる。   Since the oxidation process described above has a lower processing temperature than the conventional sintering process at a high temperature, the dimensional change of the green compact before and after the process is small. For this reason, a decrease in the dimensional accuracy of the green compact, particularly the dimensional accuracy (groove depth, etc.) of the dynamic pressure groove can be suppressed, and the required accuracy can be satisfied without sizing. By omitting the sizing process in this manner, the manufacturing process of the bearing can be shortened, the cost can be reduced, and the design of the bearing and the forming mold can be facilitated.

上記の酸化工程は、圧粉体の形状や寸法によらず適用可能である。また、酸化工程を施した圧粉体の表面は酸化物被膜で覆われるため、防錆効果が高く、場合によっては防錆処理が不要となる。また、酸化工程の処理温度が比較的低いため、この処理温度を超える温度で変性、分解するような添加剤(例えば摺動性や潤滑性を有する材料)を添加して、製品の高機能化を図ることも可能である。   The above oxidation step can be applied regardless of the shape and size of the green compact. Moreover, since the surface of the green compact which performed the oxidation process is covered with an oxide film, a rust prevention effect is high and a rust prevention process is unnecessary depending on the case. In addition, since the processing temperature of the oxidation process is relatively low, an additive that denatures and decomposes at a temperature exceeding this processing temperature (for example, a material having slidability and lubricity) is added to enhance the functionality of the product. It is also possible to plan.

(4)含油工程
含油工程は、酸化処理を施した圧粉体の内部気孔に潤滑油を含浸させる工程である。具体的には、減圧環境下で圧粉体を油中に浸漬した後、大気圧に戻すことにより、圧粉体の表面の開口部から内部気孔に油が入り込む。以上により、本実施形態に係る軸受スリーブ8が完成する。尚、含油工程を省略し、内部に油が含浸されていない圧粉体を軸受スリーブ8としてもよい。この場合、ドライ状態の軸受スリーブ8を用いて流体動圧軸受装置1を組み立てた後、流体動圧軸受装置1の内部空間に油を真空含浸等により充填する際に、軸受スリーブ8の内部気孔に油が含浸される。
(4) Oil impregnation step The oil impregnation step is a step in which lubricating oil is impregnated into the internal pores of the green compact subjected to oxidation treatment. Specifically, after the green compact is immersed in oil under a reduced pressure environment, the pressure is returned to atmospheric pressure, so that the oil enters the internal pores from the opening on the surface of the green compact. Thus, the bearing sleeve 8 according to this embodiment is completed. Note that the oil impregnation step may be omitted, and a green compact that is not impregnated with oil may be used as the bearing sleeve 8. In this case, after the fluid dynamic pressure bearing device 1 is assembled using the bearing sleeve 8 in the dry state, the internal pores of the bearing sleeve 8 are filled when oil is filled into the internal space of the fluid dynamic pressure bearing device 1 by vacuum impregnation or the like. Is impregnated with oil.

本発明の実施形態は上記に限られない。例えば、上記の実施形態では、軸受スリーブ8に、ラジアル軸受面およびスラスト軸受面の双方を設けた場合を示したが、これに限らず、ラジアル軸受面あるいはスラスト軸受面の何れか一方のみを有するすべり軸受に本発明を適用してもよい。例えば、上記のスラストブッシュ10として、本発明に係るすべり軸受を適用してもよい。   The embodiment of the present invention is not limited to the above. For example, in the above embodiment, the bearing sleeve 8 is provided with both the radial bearing surface and the thrust bearing surface. However, the present invention is not limited to this, and only one of the radial bearing surface or the thrust bearing surface is provided. The present invention may be applied to a slide bearing. For example, a sliding bearing according to the present invention may be applied as the thrust bush 10 described above.

また、上記の実施形態では、軸受スリーブ8に動圧溝が形成された場合を示したが、これに限られない。例えば、軸受スリーブ8の内周面8aおよび軸部材2の外周面2a1の双方を円筒面として、真円軸受を構成してもよい。この場合、軸部材2の振れ回りにより、軸受スリーブ8と軸部材2との間の軸受隙間の油膜に動圧が生じ、この動圧により軸を浮上支持する流体動圧軸受が構成される。このような流体動圧軸受は、比較的高速で回転する軸を支持する場合に適用されるが、これに限らず、比較的低速で回転する相手材や、揺動あるいは直動する相手材を潤滑膜を介して摺動支持する軸受として、本発明のすべり軸受を適用することもできる。   Further, in the above embodiment, the case where the dynamic pressure groove is formed in the bearing sleeve 8 is shown, but the present invention is not limited to this. For example, a perfect circle bearing may be configured with both the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft member 2 as cylindrical surfaces. In this case, a dynamic pressure is generated in the oil film in the bearing gap between the bearing sleeve 8 and the shaft member 2 due to the swing of the shaft member 2, and a fluid dynamic pressure bearing that supports the shaft in a floating manner is configured by this dynamic pressure. Such a fluid dynamic pressure bearing is applied when supporting a shaft that rotates at a relatively high speed, but is not limited to this, and a counterpart material that rotates at a relatively low speed or a counterpart material that swings or linearly moves. The slide bearing of the present invention can also be applied as a bearing that is slidably supported via a lubricating film.

また、上記の実施形態では、ハウジング7およびシール部9を一部品で構成し、スラストブッシュ10を別体に形成しているが、これに限らず、例えば、ハウジング7およびスラストブッシュ10を一部品で構成し、シール部9を別体としてもよい。あるいは、ハウジング7、シール部9、およびスラストブッシュ10を別体としてもよい。   In the above-described embodiment, the housing 7 and the seal portion 9 are configured as a single component, and the thrust bush 10 is formed as a separate component. However, the present invention is not limited thereto. For example, the housing 7 and the thrust bush 10 are configured as a single component. The seal portion 9 may be a separate body. Alternatively, the housing 7, the seal portion 9, and the thrust bush 10 may be separated.

また、上記の実施形態では、油面が一箇所のみ(シール空間S内)に形成されるフルフィル構造の流体動圧軸受装置を示したが、油面が複数箇所に形成されるパーシャルフィル構造の流体動圧軸受装置に、本発明に係るすべり軸受を組み込んでもよい。   In the above embodiment, the fluid dynamic pressure bearing device having a full-fill structure in which the oil surface is formed only at one place (in the seal space S) is shown. The slide bearing according to the present invention may be incorporated in the fluid dynamic bearing device.

また、上記の実施形態では、すべり軸受(軸受スリーブ8)が固定され、相手材(軸部材2)が回転する場合を示したが、これとは逆に、相手材を固定し、すべり軸受を回転させてもよい。また、本発明に係るすべり軸受は、HDD等のディスク駆動装置用のスピンドルモータのみならず、冷却ファン用のファンモータやレーザビームプリンタ用のポリゴンスキャナモータなどに組み込んで使用することもできる。   In the above embodiment, the case where the sliding bearing (bearing sleeve 8) is fixed and the mating member (shaft member 2) rotates is shown. On the contrary, the mating member is fixed and the sliding bearing is fixed. It may be rotated. The slide bearing according to the present invention can be used by being incorporated not only in a spindle motor for a disk drive device such as an HDD but also in a fan motor for a cooling fan or a polygon scanner motor for a laser beam printer.

本発明の効果を確認するために、以下の試験を行った。   In order to confirm the effect of the present invention, the following tests were conducted.

(1)含油率と真密度比との関係
密度の異なる複数の圧粉体に脱脂・酸化処理を施して、複数種の円筒状試験片を作成した後、各試験片の含油率を測定した。試験片(酸化処理後の圧粉体)は、上記の実施形態のすべり軸受(軸受スリーブ8)と同様の構成を有し、鉄粒子およびその表面に形成された酸化物被膜からなる。含油率の測定は、JIS Z 2501:2000による。
(1) Relationship between oil content and true density ratio After degreasing and oxidizing a plurality of green compacts with different densities to create multiple types of cylindrical test pieces, the oil content of each test piece was measured. . The test piece (green compact after the oxidation treatment) has the same configuration as the sliding bearing (bearing sleeve 8) of the above embodiment, and is composed of iron particles and an oxide film formed on the surface thereof. The oil content is measured according to JIS Z 2501: 2000.

図11に、各試験片の含油率の測定結果を示す。この図によると、真密度比が80%程度でも、含油率は、一般的な焼結含油軸受の含油率の下限値である10vol%に対して半分以下(例えば4vol%以下)である。また、真密度比が85%以上の場合、含油率はほぼ0vol%(2vol%以下)となる。以上より、圧粉体に脱脂・酸化処理を施すことで、含油率が十分に抑えられることが明らかになった。   In FIG. 11, the measurement result of the oil content of each test piece is shown. According to this figure, even if the true density ratio is about 80%, the oil content is less than half (for example, 4 vol% or less) with respect to 10 vol% which is the lower limit value of the oil content of a general sintered oil-impregnated bearing. Further, when the true density ratio is 85% or more, the oil content is almost 0 vol% (2 vol% or less). From the above, it has been clarified that the oil content can be sufficiently suppressed by degreasing and oxidizing the green compact.

(2)油膜形成率
鉄粉および成形用潤滑剤からなる圧粉体に、脱脂処理および酸化処理を施して、実施例に係るすべり軸受を作製した。実施例のすべり軸受は、上記の実施形態の軸受スリーブ8(図3及び図4参照)と同様の構成を有し、圧環強さが150MPa以上、含油率が4vol%以下、軸受面の表面開口率が40%以上である。一方、従来の銅鉄系の焼結金属からなるすべり軸受を比較例とした。比較例のすべり軸受は、上記の実施形態の軸受スリーブ8と同様の形状であるが、製法が実施例と異なる。具体的には、動圧溝を有さない円筒状の圧粉体を成形した後、これを焼結して焼結体を得、この焼結体にサイジングを施すことで動圧溝を成形し、さらにその後、焼結体の内周面に回転サイジングによる封孔処理を行った。
(2) Oil film formation rate The green compact made of iron powder and molding lubricant was subjected to degreasing and oxidation treatments to produce a slide bearing according to the example. The plain bearing of the example has the same configuration as the bearing sleeve 8 (see FIGS. 3 and 4) of the above embodiment, the crushing strength is 150 MPa or more, the oil content is 4 vol% or less, the surface opening of the bearing surface The rate is 40% or more. On the other hand, a conventional plain bearing made of sintered copper-based metal was used as a comparative example. The plain bearing of the comparative example has the same shape as the bearing sleeve 8 of the above embodiment, but the manufacturing method is different from the examples. Specifically, after forming a cylindrical green compact without a dynamic pressure groove, this is sintered to obtain a sintered body, and the dynamic pressure groove is formed by sizing the sintered body. Thereafter, the inner peripheral surface of the sintered body was subjected to sealing treatment by rotational sizing.

実施例、比較例のすべり軸受をそれぞれモータに組み込み、各モータを回転させながら、軸とすべり軸受との間の通電量を測定することにより、油膜形成率を測定した。具体的には、常温(25℃)環境で、モータを2000r/minで回転させながら、軸を鉛直方向に正立させて保持する状態と、軸を鉛直方向と水平方向との間で揺動させる状態とを、2秒ごとに交互に繰り返し、このときの油膜形成率を測定した。   The oil bearing formation rate was measured by incorporating the slide bearings of Examples and Comparative Examples into motors and measuring the energization amount between the shaft and the slide bearing while rotating each motor. Specifically, in a normal temperature (25 ° C.) environment, while rotating the motor at 2000 r / min, the shaft is held upright in the vertical direction, and the shaft is swung between the vertical direction and the horizontal direction. This state was repeated alternately every 2 seconds, and the oil film formation rate at this time was measured.

図13に示すように、比較例のすべり軸受を使用したモータでは、揺動時に油膜形成率が低下しており、軸とすべり軸受とが接触していることが分かる。これに対し、図12に示すように、実施例のすべり軸受を使用したモータでは、正立時および揺動時の何れにおいても、油膜形成率が常に100%であった。従って、実施例のすべり軸受を用いることで、負荷容量が向上し、軸とすべり軸受との接触を防止できることが確認された。   As shown in FIG. 13, in the motor using the slide bearing of the comparative example, it can be seen that the oil film formation rate is lowered when swinging, and the shaft and the slide bearing are in contact with each other. On the other hand, as shown in FIG. 12, in the motor using the slide bearing of the example, the oil film formation rate was always 100% both in the upright state and in the swinging state. Therefore, it was confirmed that by using the slide bearing of the example, the load capacity is improved and the contact between the shaft and the slide bearing can be prevented.

1 流体動圧軸受装置
2 軸部材
8 軸受スリーブ(すべり軸受)
8’ 圧粉体
11 鉄粒子
12 酸化物被膜
13a 開口部
13b 内部気孔
14 成形用潤滑剤
A ラジアル軸受面
B、C スラスト軸受面
G1、G2 (ラジアル)動圧溝
G3 (スラスト)動圧溝
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S シール空間
DESCRIPTION OF SYMBOLS 1 Fluid dynamic pressure bearing apparatus 2 Shaft member 8 Bearing sleeve (slide bearing)
8 'Compact 11 Iron particle 12 Oxide coating 13a Opening 13b Internal pore 14 Molding lubricant A Radial bearing surface B, C Thrust bearing surface G1, G2 (Radial) dynamic pressure groove G3 (Thrust) dynamic pressure groove R1 , R2 Radial bearing part T1, T2 Thrust bearing part S Seal space

Claims (7)

金属粉末の粒子の表面に形成された酸化物被膜により前記粒子同士が結合された圧粉体からなり、支持すべき相手材と潤滑膜を介して摺動する軸受面を有するすべり軸受において、
前記軸受面に、前記酸化物被膜により内部気孔との連通が遮断された多数の開口部を有するすべり軸受。
In a slide bearing having a bearing surface that slides through a lubricating film and a counterpart material to be supported, which consists of a green compact in which the particles are bonded together by an oxide film formed on the surface of the metal powder particles,
A slide bearing having a large number of openings on the bearing surface, the communication with internal pores being blocked by the oxide coating.
含油率が4vol%以下であり、
前記軸受面の表面開口率が40%以上である請求項1に記載のすべり軸受。
Oil content is 4 vol% or less,
The plain bearing according to claim 1, wherein a surface opening ratio of the bearing surface is 40% or more.
通油度が0.01g/10min以下である請求項1又は2に記載のすべり軸受。   The sliding bearing according to claim 1 or 2, wherein the oil permeability is 0.01 g / 10 min or less. 前記軸受面が平滑な円筒面である請求項1〜3の何れか1項に記載のすべり軸受。   The plain bearing according to any one of claims 1 to 3, wherein the bearing surface is a smooth cylindrical surface. 前記軸受面に動圧溝が型成形された請求項1〜3の何れか1項に記載のすべり軸受。   The sliding bearing according to any one of claims 1 to 3, wherein a dynamic pressure groove is molded on the bearing surface. 請求項1〜5の何れか1項に記載のすべり軸受と、前記すべり軸受の内周に挿入された前記相手材としての軸部材とを備え、前記すべり軸受の軸受面と前記軸部材の外周面との間のラジアル軸受隙間における潤滑膜の圧力で前記軸部材を相対回転自在に非接触支持する流体動圧軸受装置。   A slide bearing according to any one of claims 1 to 5, and a shaft member as the mating member inserted in an inner periphery of the slide bearing, and a bearing surface of the slide bearing and an outer periphery of the shaft member A fluid dynamic pressure bearing device that supports the shaft member in a non-contact manner so as to be relatively rotatable with a pressure of a lubricating film in a radial bearing gap with a surface. 請求項6に記載の流体動圧軸受装置と、前記すべり軸受および前記軸部材のうち、回転側に設けられたロータマグネットと、前記すべり軸受および前記軸部材のうち、固定側に設けられたステータコイルとを備えたモータ。
The fluid dynamic pressure bearing device according to claim 6, a rotor magnet provided on a rotating side among the sliding bearing and the shaft member, and a stator provided on a fixed side among the sliding bearing and the shaft member. A motor with a coil.
JP2016173632A 2016-09-06 2016-09-06 Plain bearing Active JP6999259B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016173632A JP6999259B2 (en) 2016-09-06 2016-09-06 Plain bearing
US16/330,432 US11428266B2 (en) 2016-09-06 2017-09-04 Slide bearing
CN201780051542.3A CN109642611B (en) 2016-09-06 2017-09-04 Sliding bearing
PCT/JP2017/031782 WO2018047765A1 (en) 2016-09-06 2017-09-04 Slide bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016173632A JP6999259B2 (en) 2016-09-06 2016-09-06 Plain bearing

Publications (2)

Publication Number Publication Date
JP2018040401A true JP2018040401A (en) 2018-03-15
JP6999259B2 JP6999259B2 (en) 2022-01-18

Family

ID=61625696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016173632A Active JP6999259B2 (en) 2016-09-06 2016-09-06 Plain bearing

Country Status (1)

Country Link
JP (1) JP6999259B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039775A1 (en) * 2018-08-24 2020-02-27 日本電産コパル電子株式会社 Dynamic pressure air bearing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4892208A (en) * 1972-03-09 1973-11-30
JPS5763602A (en) * 1980-07-25 1982-04-17 Ariajiyu Furitsute Sa Iron-base sintered member and manufacture
JP2009074572A (en) * 2007-09-19 2009-04-09 Panasonic Corp Fluid bearing device and information recording regeneration processing apparatus equipped with the same
WO2015012055A1 (en) * 2013-07-22 2015-01-29 Ntn株式会社 Sintered bearing and process for producing same
WO2016084546A1 (en) * 2014-11-28 2016-06-02 Ntn株式会社 Dynamic pressure bearing and method for manufacturing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5763602B2 (en) 2012-09-28 2015-08-12 株式会社コナミデジタルエンタテインメント GAME DEVICE AND PROGRAM

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4892208A (en) * 1972-03-09 1973-11-30
JPS5763602A (en) * 1980-07-25 1982-04-17 Ariajiyu Furitsute Sa Iron-base sintered member and manufacture
JP2009074572A (en) * 2007-09-19 2009-04-09 Panasonic Corp Fluid bearing device and information recording regeneration processing apparatus equipped with the same
WO2015012055A1 (en) * 2013-07-22 2015-01-29 Ntn株式会社 Sintered bearing and process for producing same
WO2016084546A1 (en) * 2014-11-28 2016-06-02 Ntn株式会社 Dynamic pressure bearing and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039775A1 (en) * 2018-08-24 2020-02-27 日本電産コパル電子株式会社 Dynamic pressure air bearing

Also Published As

Publication number Publication date
JP6999259B2 (en) 2022-01-18

Similar Documents

Publication Publication Date Title
JP5384014B2 (en) Sintered bearing
CN107110209B (en) Hydrodynamic bearing and its manufacturing method
WO2013141205A1 (en) Sintered metal bearing
JP6199106B2 (en) Sintered bearing, method for manufacturing the same, and fluid dynamic bearing device provided with the sintered bearing
WO2017145648A1 (en) Oil-impregnated sintered bearing and method for manufacturing same
JP6961332B2 (en) Dynamic pressure bearings and their manufacturing methods
JP6999259B2 (en) Plain bearing
JP6461483B2 (en) Sintered bearing, fluid dynamic pressure bearing device including the same, and method for manufacturing sintered bearing
WO2018047765A1 (en) Slide bearing
US20180056394A1 (en) Machine component and production method therefor
EP2333366A1 (en) Sintered bearing and process for producing same
JP6836364B2 (en) Sintered bearings and their manufacturing methods
JP6890405B2 (en) Dynamic pressure bearings and their manufacturing methods
JP7076266B2 (en) Manufacturing method of sintered oil-impregnated bearing
JP2018096420A (en) Fluid dynamic pressure bearing device, oil-containing porous bearing used in the same, and manufacturing method thereof
CN109890539B (en) Sintered bearing and method for manufacturing same
WO2024048202A1 (en) Sintered oil-impregnated bearing
WO2016148137A1 (en) Machine component and production method therefor
WO2018186221A1 (en) Porous dynamic pressure bearing, fluid dynamic pressure bearing device, and motor
JP2010091002A (en) Sintered bearing and manufacturing method therefor
JP6836366B2 (en) Sintered bearings and their manufacturing methods
JP2018179018A (en) Porous dynamic pressure bearing
JP2019157918A (en) Sintered metal-made dynamic pressure bearing
JP2010091001A (en) Sintered bearing and manufacturing method therefor
JP2010060099A (en) Slide bearing and manufacturing method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210301

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210301

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210308

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210310

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210326

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210330

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210618

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210802

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211110

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211209

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211222

R150 Certificate of patent or registration of utility model

Ref document number: 6999259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150