JP2018031235A - Connection structure for steel girder bridge and connection method for existing steel girder bridge - Google Patents

Connection structure for steel girder bridge and connection method for existing steel girder bridge Download PDF

Info

Publication number
JP2018031235A
JP2018031235A JP2016165817A JP2016165817A JP2018031235A JP 2018031235 A JP2018031235 A JP 2018031235A JP 2016165817 A JP2016165817 A JP 2016165817A JP 2016165817 A JP2016165817 A JP 2016165817A JP 2018031235 A JP2018031235 A JP 2018031235A
Authority
JP
Japan
Prior art keywords
steel
girder
bridge
bridge axis
steel main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016165817A
Other languages
Japanese (ja)
Inventor
克明 甲元
Katsuaki Komoto
克明 甲元
良則 堀岡
Yoshinori Horioka
良則 堀岡
治 諸▲角▼
Osamu Morozumi
治 諸▲角▼
健太 正木
Kenta Masaki
健太 正木
直宏 光川
Naohiro Mitsukawa
直宏 光川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cti Eng Co Ltd
Hanshin Expressway R&d Co Ltd
Hanshin Expressway Co Ltd
CTI Engineering Co Ltd
Original Assignee
Cti Eng Co Ltd
Hanshin Expressway R&d Co Ltd
Hanshin Expressway Co Ltd
CTI Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cti Eng Co Ltd, Hanshin Expressway R&d Co Ltd, Hanshin Expressway Co Ltd, CTI Engineering Co Ltd filed Critical Cti Eng Co Ltd
Priority to JP2016165817A priority Critical patent/JP2018031235A/en
Publication of JP2018031235A publication Critical patent/JP2018031235A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a connection structure capable of making jointless an upper structure of a steel girder bridge comprising various main girder structures, and a connection method for an existing steel girder bridge.SOLUTION: As a connection structure for a steel girder bridge 1 in which multiple upper structures 2 and 3 comprising steel main girders 10 which are disposed at predetermined intervals in a bridge axis right-angle direction W, in a bridge axis direction L and steel cross-girders 20 disposed in the vicinity of ends of the steel main girders 10 in the bridge axis right-angle direction W, are disposed in the bridge axis direction L, in opposite portions of the upper structures 2 and 3 being adjacent in the bridge axis direction L, connection part concrete 31 provided between the steel cross-girders 20 and PC steel bars 32 connecting the steel cross-girders 20 with each other are provided. The PC steel bar 32 is disposed in an upper part of the steel main girder 10, and the connection part concrete 31 is provided at a position higher than a lower flange 11b of the steel main girder 10 by a predetermined height.SELECTED DRAWING: Figure 1

Description

この発明は、橋軸直角方向に所定間隔を隔てて配置された橋軸方向の鋼製主桁を備えた上部構造物を前記橋軸方向に複数配置した鋼桁橋梁において、上部構造物をジョイントレス化する連結構造及び既設鋼桁橋梁における連結工法に関する。   The present invention relates to a steel girder bridge in which a plurality of superstructures having steel main girders in the bridge axis direction arranged at predetermined intervals in the direction perpendicular to the bridge axis are arranged in the bridge axis direction. The present invention relates to a connection structure to be made less and a connection method for existing steel girder bridges.

従来より、前記橋軸直角方向に所定間隔を隔てて配置された前記橋軸方向の鋼製主桁を備えた上部構造物を前記橋軸方向に複数配置した鋼桁橋梁において、前記橋軸方向に隣接する上部構造物の鋼製主桁の端部同士には、これまで特許文献1に示すような伸縮装置(ジョイント)が設けられていたが、走行性を改善するとともに、ジョイントに起因する振動や騒音の改善のため、特許文献2に示すように、前記橋軸方向に隣接する上部構造物の鋼製主桁におけるウェブ材同士を連結する主桁連結工法がジョイントレス化工法(ノージョイント化工法)として提案されている。   Conventionally, in a steel girder bridge in which a plurality of upper structures having steel main girders in the bridge axis direction arranged at predetermined intervals in the bridge axis perpendicular direction are arranged in the bridge axis direction, the bridge axis direction While the ends of the steel main girders of the superstructure adjacent to each other have been provided with a telescopic device (joint) as shown in Patent Document 1 so far, the traveling performance is improved and the joint is caused by the joint. In order to improve vibration and noise, as shown in Patent Document 2, the main girder connecting method for connecting the web members of the steel main girder of the superstructure adjacent in the bridge axis direction is a jointless method (no joint Proposed as a chemical method).

しかしながら、上述のような主桁連結工法においては、橋軸方向に隣り合う上部構造物における鋼製主桁の断面形状が異なったり、前記橋軸直角方向の位置が異なったり、つまり桁通りが合っていなかったり、さらには鋼製主桁の桁数が異なるなどの場合、鋼製主桁におけるウェブ材同士を連結することは困難であり、主桁連結工法を適用できない構造が多くあった。   However, in the main girder connecting method as described above, the cross-sectional shape of the steel main girder in the superstructure adjacent in the bridge axis direction is different, or the position in the direction perpendicular to the bridge axis is different, that is, the string is aligned. If the number of digits of the steel main girder is different, it is difficult to connect the web members in the steel main girder, and there are many structures to which the main girder connection method cannot be applied.

特開平10−159023号公報JP-A-10-159023 特開平09−013319号公報JP 09-013319 A

そこで、この発明は、様々な主桁構造を備えた鋼桁橋梁の上部構造物をジョイントレス化できる連結構造及び既設鋼桁橋梁における連結工法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a connection structure capable of jointless upper structures of steel girder bridges having various main girder structures and a connection method for existing steel girder bridges.

この発明は、橋軸直角方向に所定間隔を隔てて配置された橋軸方向の鋼製主桁と、該鋼製主桁の端部近傍に配置された橋軸直角方向の鋼製横桁とを備えた上部構造物を前記橋軸方向に複数配置した鋼桁橋梁の連結構造であって、前記橋軸方向に隣り合う前記上部構造物同士の対向部分において、前記鋼製横桁同士の間に設けられた連結部コンクリートと、前記鋼製横桁同士を連結する連結鋼棒とで構成される連結横桁が備えられるとともに、前記連結鋼棒が前記連結横桁における上部に配置され、前記連結横桁が、前記鋼製主桁の下端より所定高さ高い位置に設けられたことを特徴とする。   The present invention includes a steel main girder in a bridge axis direction arranged at a predetermined interval in a direction perpendicular to the bridge axis, and a steel cross girder in a direction perpendicular to the bridge axis arranged in the vicinity of the end of the steel main girder. A steel girder bridge connecting structure in which a plurality of upper structures provided in the direction of the bridge axis are arranged between the steel cross beams in a facing portion between the upper structures adjacent to each other in the bridge axis direction. And a connecting cross beam composed of a connecting portion concrete provided to the steel cross beams and connecting steel bars connecting the steel cross beams, and the connecting steel bars are arranged in the upper part of the connecting cross beams, The connecting cross beam is provided at a position higher than the lower end of the steel main beam by a predetermined height.

あるいは、この発明は、橋軸直角方向に所定間隔を隔てて配置された橋軸方向の鋼製主桁と、該鋼製主桁の端部近傍に橋軸直角方向の鋼製横桁とを備えた上部構造物を前記橋軸方向に複数配置した既設鋼桁橋梁の連結工法であって、前記橋軸方向に隣り合う前記上部構造物同士の対向部分において、前記鋼製主桁における上部位置に配置された連結鋼棒で前記鋼製横桁同士を連結する鋼製横桁連結工程と、前記鋼製横桁同士の間における、前記鋼製主桁の下端より所定高さ高い位置にコンクリートを打設して連結部コンクリートを構築するコンクリート打設工程とを行うことを特徴とする。   Alternatively, according to the present invention, a steel main girder in a bridge axis direction arranged at a predetermined interval in a direction perpendicular to the bridge axis, and a steel cross girder in a direction perpendicular to the bridge axis in the vicinity of the end of the steel main girder. It is a connecting method of existing steel girder bridges in which a plurality of upper structures provided are arranged in the bridge axis direction, and the upper position in the steel main girder in the facing portion between the upper structures adjacent in the bridge axis direction The steel cross beam connecting step for connecting the steel cross beams with a connecting steel rod arranged in the concrete, and the concrete at a predetermined height higher than the lower end of the steel main beam between the steel cross beams And a concrete placing process for constructing a connecting portion concrete.

上述の鋼製主桁は、ウェブの上下端にそれぞれフランジを備えたI型に形成された鋼製部材や、いわゆるI型鋼、H型鋼、あるいは鋼製箱桁などとすることができ、種類や形状の異なる鋼製主桁あるいは同じ鋼製主桁で構成された上部構造物であってもよいし、前記橋軸方向に隣り合う上部構造物において鋼製主桁の種類が異なってもよいし、同じ種類の鋼製主桁であってもよい。   The steel main girder described above can be a steel member formed in an I shape having flanges on the upper and lower ends of the web, a so-called I type steel, H type steel, or a steel box girder. It may be a steel main girder having a different shape or an upper structure composed of the same steel main girder, and the type of steel main girder may be different in the upper structure adjacent in the bridge axis direction. The same kind of steel main girder may be used.

なお、同じ種類の鋼製主桁として、ともに鋼製主桁がI型に形成された鋼製部材や鋼製箱桁で構成されている場合であっても、前記橋軸直角方向に複数配置された前記鋼製主桁のうち少なくとも一本の前記鋼製主桁の断面形状、軸方向、並びに位置のうち少なくともひとつが、前記橋軸方向に隣り合う前記上部構造物において異なってもよい。   Even if the steel main girder is the same type, the steel main girder is composed of a steel member or steel box girder formed in an I shape, and a plurality of them are arranged in the direction perpendicular to the bridge axis. At least one of the cross-sectional shape, the axial direction, and the position of at least one of the steel main girders may be different in the superstructure adjacent to the bridge axial direction.

上述の鋼製主桁の断面形状が異なるとは、前記鋼製主桁の桁高、桁幅さらには板厚などの断面サイズが異なることをいう。
また、上述の鋼製主桁の軸方向が異なるとは、いずれかの鋼製主桁の軸方向が水平方向、鉛直方向及び斜め方向のうち少なくともいずれかに異なることにより、それぞれの軸方向が平面視又は断面視でハの字形若しくは逆ハの字形を形成するなど軸方向が一致しないことをいい、より詳しくは、それぞれの鋼製主桁の軸方向による交角が所定の角度以上であることをいう。
The difference in cross-sectional shape of the above-mentioned steel main girders means that the cross-sectional sizes of the steel main girders such as the girder height, girder width and plate thickness are different.
Moreover, that the axial directions of the steel main girders described above are different, the axial directions of any of the steel main girders are different from each other in at least one of a horizontal direction, a vertical direction, and an oblique direction. It means that the axial directions do not match, such as forming a square shape or inverted square shape in plan view or cross-sectional view, and more specifically, the crossing angle of each steel main beam in the axial direction is a predetermined angle or more. Say.

また、上述の鋼製主桁の位置が異なるとは、対向する鋼製主桁の位置が水平方向、鉛直方向及び斜め方向のうち少なくともいずれかに異なることをいう。なお、位置が異なる場合としては、上部構造物に備えられた鋼製主桁の本数が異なることで位置が異なる場合や対向する鋼製主桁が存在しない場合も含まれることとなる。
上記連結鋼棒は、PC鋼線を含むPC鋼材で構成された連結鋼棒や鉄筋で構成された連結鋼棒など、所定の引張軸力に抗する連結鋼棒であれば素材を問わず含むものとする。
Moreover, that the position of the above-mentioned steel main girder is different means that the position of the opposing steel main girder is different in at least one of the horizontal direction, the vertical direction, and the diagonal direction. In addition, as a case where a position differs, the case where a position differs because the number of the steel main girders with which the upper structure was equipped differs, and the case where the steel main girders which oppose do not exist are also included.
The above-mentioned connecting steel bar includes any material as long as it is a connecting steel bar that resists a predetermined tensile axial force, such as a connecting steel bar made of PC steel including PC steel wire or a connecting steel bar made of rebar. Shall be.

この発明により、前記鋼製横桁と一体化された前記橋軸直角方向の連結部コンクリートを介して前記橋軸方向に隣り合う上部構造物における鋼製主桁同士を力学的に連結して一体化し、上部構造物同士をジョイントレス化することができる。   According to this invention, the steel main girders in the upper structure adjacent to the bridge axis direction are mechanically connected and integrated through the connecting portion concrete in the direction perpendicular to the bridge axis integrated with the steel cross beam. And the upper structures can be made jointless.

詳述すると、前記鋼製横桁同士の間に設けられた連結部コンクリートと、前記鋼製横桁同士を連結する連結鋼棒とが備えられているため、鋼製横桁と連結部コンクリートとで一体化されたRC構造の横桁(以下において連結横桁という)を構成することができる。また、RC構造の連結横桁を構成する連結鋼棒によって、橋軸方向に隣り合う上部構造物の鋼製横桁に軸力を伝達することができる。したがって、前記橋軸方向に隣り合う上部構造物における鋼製主桁同士を力学的に連結して一体化することができる。   More specifically, since a connecting portion concrete provided between the steel cross beams and a connecting steel rod for connecting the steel cross beams are provided, the steel cross beam and the connecting portion concrete are provided. An RC structure cross beam integrated with (1) can be formed. Moreover, axial force can be transmitted to the steel cross beams of the upper structure adjacent to the bridge axis direction by the connecting steel bars constituting the connecting cross beams of the RC structure. Therefore, the steel main girders in the upper structures adjacent to each other in the bridge axis direction can be mechanically connected and integrated.

また、前記連結鋼棒が前記連結部コンクリートにおける上部に配置され、前記連結横桁が、前記鋼製主桁の下端より所定高さ高い位置に設けられたことにより、連結横桁は鋼製横桁や鋼製主桁の桁高さより低くなり、また、支承装置による支持箇所から前記連結部コンクリートまでの距離が確保できるため、変形性能が高くなり、柔な連結構造を構築することができる。   In addition, the connecting steel bar is disposed at the upper part of the connecting part concrete, and the connecting cross beam is provided at a position higher than the lower end of the steel main beam by a predetermined height. Since it becomes lower than the girder or steel girder height and the distance from the support location by the support device to the connecting part concrete can be secured, the deformation performance is improved and a flexible connecting structure can be constructed.

そのため、連結横桁には鋼製主桁のたわみ変形に伴う引張方向の軸力が作用することとなり、曲げモーメントに引張軸力を加えることになり、圧縮力が低減され引張力が増大する。増大した引張力には連結鋼棒で抗することができ、連結横桁の連結部コンクリートの圧縮応力度を低減することができる。
このように、本発明の連結構造により、様々な主桁構造を備えた鋼桁橋梁の上部構造物をジョイントレス化することができる。
Therefore, an axial force in the tensile direction associated with the deflection deformation of the steel main girder acts on the connecting cross beam, and the tensile axial force is applied to the bending moment, so that the compressive force is reduced and the tensile force is increased. The increased tensile force can be resisted by the connecting steel rod, and the degree of compressive stress of the connecting concrete of the connecting cross beam can be reduced.
Thus, the connection structure of the present invention makes it possible to make the upper structure of the steel girder bridge having various main girder structures jointless.

なお、上述の鋼製主桁同士を力学的に連結して一体化するとは、上部構造物に作用する断面力(軸力)を確実に伝達できる状態をいい、前記橋軸直角方向に所定間隔を隔てて複数配置された鋼製主桁のそれぞれを、前記橋軸方向に隣り合う上部構造物における鋼製主桁と連結して一体化することのみならず、上部構造物に備えられ、連結された鋼製主桁を全体として捉えて一体化すること含むものとする。   In addition, the above-mentioned steel main girders are mechanically connected and integrated to each other means a state in which a cross-sectional force (axial force) acting on the superstructure can be reliably transmitted, and at a predetermined interval in the direction perpendicular to the bridge axis. In addition to connecting and integrating each of the steel main girders arranged in plural with a steel main girder in the upper structure adjacent to the bridge axis direction, the upper main structure is provided with a connection. Including the integrated steel main girder as a whole.

この発明の態様として、前記連結鋼棒を、前記連結部コンクリート内部に配置してもよい。
この発明により、連結鋼棒が露出しないため、耐久性のある連結横桁を構成することができる。また、連結部コンクリート、前記鋼製横桁及び前記連結鋼棒が一体化して連結横桁を構成するため、主として作用する引張軸力に対して効率よく前記連結鋼棒によって抗することができる。
As an aspect of the present invention, the connecting steel rod may be disposed inside the connecting portion concrete.
According to this invention, since the connecting steel bar is not exposed, a durable connecting cross beam can be configured. Further, since the connecting portion concrete, the steel cross beam and the connecting steel bar are integrated to form a connecting cross beam, the connecting steel bar can effectively resist the tensile axial force acting mainly.

またこの発明の態様として、前記連結部コンクリート内部には、前記鋼製主桁の端部に対して前記橋軸直角方向のせん断鉄筋が備えられてもよい。
前記鋼製主桁の端部に対して前記橋軸直角方向のせん断鉄筋は、前記鋼製主桁の端部を前記橋軸直角方向に貫通するせん断鉄筋であってもよいし、前記鋼製主桁の端部に対してスタッド溶接された前記橋軸直角方向のせん断鉄筋であってもよい。
この発明により、連結横桁を介して、作用する軸力を確実に鋼製主桁に伝達することができる。
Moreover, as an aspect of the present invention, a shear reinforcing bar in a direction perpendicular to the bridge axis with respect to the end portion of the steel main girder may be provided inside the connecting portion concrete.
The shear rebar in the direction perpendicular to the bridge axis with respect to the end portion of the steel main girder may be a shear rebar penetrating the end portion of the steel main girder in the direction perpendicular to the bridge axis. It may be a shear rebar in the direction perpendicular to the bridge axis that is stud welded to the end of the main girder.
According to the present invention, the acting axial force can be reliably transmitted to the steel main beam via the connecting cross beam.

またこの発明の態様として、前記連結横桁は、前記鋼製主桁の高さ方向中央より上部に配置されてもよい。
前記鋼製主桁の高さ方向中央より上部に配置される前記連結横桁は、前記連結横桁全体が前記鋼製主桁の高さ方向中央より上部に配置されてもよいし、前記連結横桁の主たる部分が前記鋼製主桁の高さ方向中央より上部に配置されていてもよい。具体的には、前記連結横桁の中立軸が前記鋼製主桁の高さ方向中央より上部に配置されていれば、高さ方向の一部が前記鋼製主桁の高さ方向中央を跨いで中央より下側に延出される態様であってもよい。
As an aspect of the present invention, the connecting cross beam may be disposed above the center in the height direction of the steel main beam.
As for the connection cross beam arranged above the center in the height direction of the steel main beam, the whole connection cross beam may be arranged above the center in the height direction of the steel main beam, or the connection The main part of the cross beam may be arranged above the center in the height direction of the steel main beam. Specifically, if the neutral axis of the connecting cross beam is arranged above the center of the steel main beam in the height direction, a part of the height direction may be the center of the steel main beam in the height direction. The aspect extended below the center may be straddled.

この発明により、連結横桁の下方、つまり鋼製主桁の高さ方向中央より下部に遊間が形成され、上部構造物に作用する活荷重による鋼製主桁の撓みが生じた場合における、前記連結横桁による鋼製主桁の変形の拘束が小さくなる。つまり、活荷重による鋼製主桁の変形は大きくなるため、連結横桁に作用する曲げモーメントが小さくなり、その反面、連結横桁に作用する引張方向の軸力が増大することとなる。   According to the present invention, a gap is formed below the connecting cross beam, that is, below the center in the height direction of the steel main girder, and the steel main girder is bent due to a live load acting on the upper structure. The restraint of deformation of the steel main girder by the connecting cross beam is reduced. That is, since the deformation of the steel main girder due to the live load is increased, the bending moment acting on the connecting cross beam is reduced. On the other hand, the axial force in the tensile direction acting on the connecting cross beam is increased.

特に、高さ方向中央より上部に配置された前記連結横桁は、鋼製主桁における引張領域に配置されることとなるため、前記連結横桁に対して、主として作用する引っ張り方向の軸力に対して、前記連結横桁を構成する前記連結鋼棒が主として効率よく抗することとなる。   In particular, since the connecting cross beam arranged above the center in the height direction is arranged in a tensile region in the steel main beam, the axial force in the pulling direction mainly acting on the connecting cross beam. On the other hand, the connecting steel rods constituting the connecting cross beam mainly resist efficiently.

またこの発明の態様として、前記橋軸方向に隣り合う前記上部構造物の一方が下部構造物に対して固定支承装置で支持されるとともに、他方が可動支承装置によって支持されてもよい。
この発明により、連結横桁によって柔な連結構造を構築するため、活荷重による鋼製主桁の撓みによる可動支承装置における移動を許容することができる。
As an aspect of the present invention, one of the upper structures adjacent to the bridge axis direction may be supported by a fixed support device with respect to the lower structure, and the other may be supported by a movable support device.
According to the present invention, since a flexible connecting structure is constructed by the connecting cross beams, it is possible to allow movement in the movable support device due to the deflection of the steel main beam due to a live load.

また、前記固定支承装置は前記鋼製主桁の移動を制限する一方、前記可動支承装置は前記鋼製主桁の移動を制限しないため、前記鋼製主桁の撓みによって前記可動支承装置上を移動することができる。しかしながら、前記鋼製主桁は前記連結横桁によって前記橋軸方向の自由な移動が制限されているため、前記連結横桁による制限により生じた荷重は前記連結横桁を介して前記固定支承装置に作用することになる。   The fixed bearing device limits the movement of the steel main girder, while the movable bearing device does not limit the movement of the steel main girder. Can move. However, since the steel main girder is restricted in its free movement in the direction of the bridge axis by the connecting cross beam, the load generated by the restriction by the connecting cross beam is applied to the fixed support device via the connecting cross beam. Will act.

さらに、その荷重、つまり、連結横桁に作用した軸力の反力は、前記固定支承装置が設置された前記下部構造物に水平荷重として伝達され、下部構造物が変形することとなる。このように、前記鋼製主桁の撓みの一部を前記下部構造物の変形によって吸収するため、前記連結横桁に作用する断面力を低減でき、部材断面を小型化することができる。   Further, the load, that is, the reaction force of the axial force acting on the connecting cross beam is transmitted as a horizontal load to the lower structure on which the fixed support device is installed, and the lower structure is deformed. As described above, since a part of the deflection of the steel main girder is absorbed by the deformation of the lower structure, the cross-sectional force acting on the connecting cross girder can be reduced, and the member cross-section can be downsized.

この発明により、様々な主桁構造を備えた鋼桁橋梁の上部構造物をジョイントレス化できる連結構造及び既設鋼桁橋梁における連結工法を提供することができる。   According to the present invention, it is possible to provide a connecting structure capable of jointless steel girder bridge superstructures having various main girder structures and a connecting method for existing steel girder bridges.

本発明の連結構造で連結した鋼桁橋梁の斜視図。The perspective view of the steel girder bridge connected with the connection structure of this invention. 本発明の連結構造で連結した鋼桁橋梁の斜視図。The perspective view of the steel girder bridge connected with the connection structure of this invention. 本発明の連結構造で連結した鋼桁橋梁の斜視図。The perspective view of the steel girder bridge connected with the connection structure of this invention. 本発明の連結構造で連結した鋼桁橋梁の説明図。Explanatory drawing of the steel girder bridge connected with the connection structure of this invention. 従来構造の既設鋼桁橋梁の斜視図。The perspective view of the existing steel girder bridge of conventional structure. 既設鋼桁橋梁における連結工法のフローチャート。The flowchart of the connection construction method in the existing steel girder bridge. 既設鋼桁橋梁における連結工法における説明図。Explanatory drawing in the connection construction method in the existing steel girder bridge. 既設鋼桁橋梁における連結工法における説明図。Explanatory drawing in the connection construction method in the existing steel girder bridge. 既設鋼桁橋梁における連結工法における説明図。Explanatory drawing in the connection construction method in the existing steel girder bridge. 本発明の連結構造で連結した鋼桁橋梁の作用説明図。Action | operation explanatory drawing of the steel girder bridge connected with the connection structure of this invention.

この発明の一実施形態を以下図面に基づいて詳述する。
なお、図1乃至3は本発明の連結構造で連結した鋼桁橋梁1の斜視図を示し、図4は本発明の連結構造で連結した鋼桁橋梁1の説明図を示し、図5は既設鋼桁橋梁1aの斜視図を示している。
An embodiment of the present invention will be described in detail with reference to the drawings.
1 to 3 are perspective views of the steel girder bridge 1 connected with the connecting structure of the present invention, FIG. 4 is an explanatory view of the steel girder bridge 1 connected with the connecting structure of the present invention, and FIG. The perspective view of the steel girder bridge 1a is shown.

詳しくは、図2は、鋼製主桁10及び鋼製横桁20を透過状態で図示し、図3は終点側の終点側上部構造物2の図示を省略するとともに、連結横桁30の橋軸直角方向Wの一方側の内部構造を図示している。また、図4(a),(b)は図1におけるa−a断面図を示し、図4(b)では連結横桁30を透過状態で図示している。また、図1乃至3及び図5では表面の舗装部5及びRC床版4の図示を省略している。   Specifically, FIG. 2 illustrates the steel main girder 10 and the steel cross girder 20 in a transparent state, and FIG. 3 omits the illustration of the end-point-side upper structure 2 on the end-point side and the bridge of the connecting cross-girder 30. The internal structure on one side in the direction perpendicular to the axis W is illustrated. 4 (a) and 4 (b) are cross-sectional views taken along the line aa in FIG. 1, and FIG. 4 (b) illustrates the connecting cross beam 30 in a transparent state. Further, in FIGS. 1 to 3 and FIG. 5, illustration of the surface pavement 5 and the RC floor slab 4 is omitted.

また、図6は既設鋼桁橋梁1aにおける連結工法のフローチャートを示し、図7乃至図9は既設鋼桁橋梁1aにおける連結工法における説明図を示し、図10は本発明の連結構造で連結した鋼桁橋梁1の作用説明図を示している。   6 shows a flowchart of the connecting method in the existing steel girder bridge 1a, FIGS. 7 to 9 show explanatory diagrams in the connecting method in the existing steel girder bridge 1a, and FIG. 10 shows the steel connected by the connecting structure of the present invention. The action explanatory view of the girder bridge 1 is shown.

詳述すると、図7乃至図9は、図1または図5におけるa−a断面図によって各工程を図示しており、図7(a)は施工前の既設鋼桁橋梁1aのa−a断面図を示し、図7(b)はウェブ穿孔完了後のa−a断面図を示し、図8(a)はPC鋼棒・鉄筋組み付け完了後のa−a断面図を示し、図8(b)は伸縮装置7の撤去後の既設鋼桁橋梁1aのa−a断面図を示し、図9(a)はコンクリート打設完了後のa−a断面図を示し、図9(b)は舗装完了後のa−a断面図を示している。   Specifically, FIG. 7 to FIG. 9 illustrate each process by the aa sectional view in FIG. 1 or FIG. 5, and FIG. 7 (a) is an aa section of the existing steel girder bridge 1a before construction. 7 (b) shows a cross-sectional view taken along the line aa after completion of the web drilling, FIG. 8 (a) shows a cross-sectional view taken along the line aa after the assembly of the PC steel bar / rebar, and FIG. ) Shows an aa cross-sectional view of the existing steel girder bridge 1a after the telescopic device 7 is removed, FIG. 9 (a) shows an aa cross-sectional view after completion of concrete placement, and FIG. 9 (b) shows a pavement. The aa sectional drawing after completion is shown.

この発明は、橋軸直角方向Wに所定間隔を隔てて配置された橋軸方向Lの鋼製主桁10と、鋼製主桁10の端部近傍に配置された橋軸直角方向Wの鋼製横桁20とを備えた上部構造物2,3を橋軸方向Lに配置した鋼桁橋梁1において、橋軸方向Lに隣り合う上部構造物2,3同士の対向部分を連結横桁30で連結してジョイントレス化(ノージョイント化)している。   The present invention relates to a steel main girder 10 in the bridge axis direction L arranged at a predetermined interval in the bridge axis perpendicular direction W, and a steel in the bridge axis perpendicular direction W arranged in the vicinity of the end of the steel main girder 10. In the steel girder bridge 1 in which the upper structures 2 and 3 provided with the cross beams 20 are arranged in the bridge axis direction L, the facing portions of the upper structures 2 and 3 adjacent to each other in the bridge axis direction L are connected to the cross beams 30. It is connected with a jointless (no joint).

詳述すると、鋼桁橋梁1は、橋軸方向Lに沿った複数本の鋼製主桁10と、鋼製主桁10の端部付近に配置された橋軸直角方向Wの鋼製横桁20と、鋼製主桁10の上面に配置されたRC床版4、RC床版4の上面に配置された舗装部5(図1乃至図3、図5ではRC床版4及び舗装部5を図示省略)で構成された上部構造物2,3を橋軸方向Lに配置し、橋脚6の上面に配置した支承装置60で支持して構成している。
なお、橋軸方向Lの起点側(図1、2において右上側)の上部構造物を起点側上部構造物3とし、終点側(図1、2において左下側)の上部構造物を終点側上部構造物2としている。
More specifically, the steel girder bridge 1 includes a plurality of steel main girders 10 along the bridge axis direction L, and a steel cross girder in the direction perpendicular to the bridge axis W arranged near the ends of the steel main girder 10. 20 and an RC floor slab 4 disposed on the upper surface of the steel main girder 10, and a pavement portion 5 disposed on the upper surface of the RC floor slab 4 (the RC floor slab 4 and the pavement portion 5 in FIGS. 1 to 3 and FIG. 5). Are arranged in the bridge axis direction L and supported by a support device 60 arranged on the upper surface of the pier 6.
The upper structure on the starting side in the bridge axis direction L (upper right side in FIGS. 1 and 2) is the starting upper structure 3, and the upper structure on the end side (lower left in FIGS. 1 and 2) is the upper end side. The structure 2 is used.

鋼製主桁10は、高さ方向に適宜の間隔で配置されたフランジ11と、フランジ11同士を連結する高さ方向Hのウェブ12とで構成され、I型に形成された鋼製部材であり、ウェブ12に沿わせた高さ方向Hのリブ13が橋軸方向Lにおいて所定間隔を隔てて複数配置している。   The steel main girder 10 is a steel member formed of a flange 11 arranged at an appropriate interval in the height direction and a web 12 in the height direction H that connects the flanges 11 to each other, and is formed in an I shape. Yes, a plurality of ribs 13 in the height direction H along the web 12 are arranged at predetermined intervals in the bridge axis direction L.

鋼製横桁20は、フランジ21とウェブ22とで構成する、鋼製主桁10に比べて高さの低い、I型に形成された鋼製部材であり、橋軸直角方向Wに隣り合う鋼製主桁10同士の間に配置され、鋼製主桁10のウェブ12と接続され、構造的に一体化されている。   The steel cross girder 20 is a steel member formed in an I shape, which is composed of a flange 21 and a web 22 and has a lower height than the steel main girder 10, and is adjacent to the direction W perpendicular to the bridge axis. It arrange | positions between the steel main beams 10, and is connected with the web 12 of the steel main beam 10, and is integrated structurally.

鋼製主桁10及び鋼製横桁20は、図1乃至図3及び図5で図示省略するRC床版4の底面側に配置され、構造的に一体化され、RC床版4の上部に舗装部5が設けられ、上部構造物2,3を構成している。なお、RC床版4は、適宜の厚みを有するRC部材であり、舗装部5も適宜の厚みで構成されたアスファルトである。   The steel main girder 10 and the steel cross girder 20 are arranged on the bottom surface side of the RC floor slab 4 not shown in FIGS. 1 to 3 and 5 and are structurally integrated. A pavement 5 is provided and constitutes the upper structures 2 and 3. The RC floor slab 4 is an RC member having an appropriate thickness, and the pavement 5 is also an asphalt configured with an appropriate thickness.

なお、鋼製主桁10の本数や鋼製主桁10の高さなどの形状は、上部構造物に求められる要求性能を満足する適宜の本数や高さで構成されており、本実施形態では、橋軸方向Lの終点側の終点側上部構造物2は、3本の鋼製主桁10が配置され、橋軸方向Lの起点側の起点側上部構造物3は4本の鋼製主桁10が配置されている。つまり、橋軸方向Lに隣り合う上部構造物2,3では、橋軸直角方向Wの両側の鋼製主桁10は軸方向が橋軸直角方向Wにおいて一致しているが、橋軸直角方向Wの間の鋼製主桁10は軸方向が橋軸直角方向Wにずれることとなる。   In addition, shapes, such as the number of the steel main girders 10 and the height of the steel main girders 10, are configured with an appropriate number and height that satisfy the required performance required for the upper structure. The end-point-side upper structure 2 on the end-point side in the bridge axis direction L is provided with three steel main girders 10, and the start-point-side upper structure 3 on the start-point side in the bridge axis direction L is composed of four steel owners. A digit 10 is arranged. That is, in the upper structures 2 and 3 adjacent to the bridge axis direction L, the steel main girders 10 on both sides of the bridge axis perpendicular direction W have the same axial direction in the bridge axis perpendicular direction W. The steel main girder 10 between W is shifted in the direction perpendicular to the bridge axis W in the axial direction.

このように構成された上部構造物2,3は、橋脚6の上面に配置された支承装置60で支持されている。具体的には、起点側上部構造物3の鋼製主桁10における橋軸方向Lの終点側の端部付近が固定支承装置61で支持され、終点側上部構造物2の鋼製主桁10における橋軸方向Lの起点側の端部付近が可動支承装置62で支持されている。   The upper structures 2 and 3 configured in this way are supported by a support device 60 disposed on the upper surface of the pier 6. Specifically, the end portion of the steel main girder 10 of the starting side upper structure 3 in the vicinity of the end of the bridge axis direction L is supported by the fixed support device 61, and the steel main girder 10 of the end side superstructure 2 is supported. The vicinity of the end portion on the starting point side in the bridge axis direction L is supported by the movable support device 62.

なお、固定支承装置61及び可動支承装置62は従来の支持構造であり、その構造の詳細な説明は省略するとともに、簡略化して図示しているが、固定支承装置61は、橋軸方向L及び橋軸直角方向Wの移動及び浮き上がりを規制し、回転可能に支持し、可動支承装置62は、橋軸直角方向Wの移動及び浮き上がりを規制し、回転可能かつ橋軸方向Lにおいて所定の移動量で移動可能に支持している。   The fixed support device 61 and the movable support device 62 are conventional support structures, and a detailed description of the structure is omitted and simplified, but the fixed support device 61 has a bridge axial direction L and The movement and lifting in the direction perpendicular to the bridge axis W are regulated and supported so as to be rotatable. The movable support device 62 regulates the movement and lifting in the direction perpendicular to the bridge axis W, is rotatable and has a predetermined amount of movement in the bridge axis direction L. It is supported so that it can move.

このように構成された上部構造物2,3を連結してジョイントレス化する連結横桁30は、橋軸方向Lにおいて対向する鋼製横桁20同士の間において、鋼製主桁10の下フランジ11bより所定高さ高い位置に設けられた連結部コンクリート31と、鋼製横桁20同士を連結するPC鋼棒32(連結鋼棒に対応する)とで構成されている。   The connecting cross beam 30 that connects the upper structures 2 and 3 configured as described above to be jointless is formed between the steel cross beams 20 facing each other in the bridge axis direction L and below the steel main beam 10. It is comprised by the connection part concrete 31 provided in the position higher predetermined height than the flange 11b, and the PC steel bar 32 (corresponding to a connection steel bar) which connects the steel cross beams 20 to each other.

連結部コンクリート31は、上端が鋼製主桁10の上フランジ11aと面一であり、高さが鋼製主桁10の1/2程度に形成されている。具体的には、本実施形態では、桁高さ1500mmの鋼製主桁10に対して、連結部コンクリート31を高さ800mmで構成している。したがって、連結横桁30は、おおむね鋼製主桁10の高さ方向Hの中央より上部に配置され、連結横桁30の下方には空間が形成されることとなる。なお、連結横桁30は、鋼製主桁10の桁高さに対して1/2程度のみならず、2/3以下の高さで構成されていればよい。   The connecting portion concrete 31 has an upper end that is flush with the upper flange 11a of the steel main girder 10 and has a height that is about ½ that of the steel main girder 10. Specifically, in this embodiment, the connecting portion concrete 31 is configured with a height of 800 mm with respect to the steel main girder 10 having a girder height of 1500 mm. Therefore, the connecting cross beam 30 is generally disposed above the center in the height direction H of the steel main beam 10, and a space is formed below the connecting cross beam 30. In addition, the connection cross beam 30 should just be comprised not only about 1/2 with respect to the height of the steel main beam 10 but 2/3 or less in height.

また、連結部コンクリート31は、鋼製主桁10におけるウェブ12の端部を橋軸直角方向Wに貫通する複数のせん断鉄筋33と、複数のせん断鉄筋33に対して束ねるように巻き付け、橋軸直角方向Wに所定間隔を隔てて配置するせん断補強鉄筋34とが配筋され、早強・膨張コンクリートで構成された鉄筋コンクリート構造である。   Further, the connecting portion concrete 31 is wound around the ends of the web 12 in the steel main girder 10 so as to be bundled with the plurality of shear rebars 33 penetrating in the direction W perpendicular to the bridge axis and the plurality of shear rebars 33. This is a reinforced concrete structure in which shear reinforcing bars 34 arranged at a predetermined interval in the right-angle direction W are arranged and made of early-strength / expanded concrete.

なお、せん断鉄筋33は、ウェブ12に穿孔された貫通孔35を貫通して配筋されているが、鋼製主桁10のウェブ12に対して直交する橋軸直角方向Wに配筋されていれば、ウェブ12を貫通せずとも、スタッド溶接等でウェブ12に対して直交する方向に配筋してもよい。   The shear reinforcing bars 33 are arranged through the through holes 35 drilled in the web 12, but are arranged in the bridge axis perpendicular direction W perpendicular to the web 12 of the steel main girder 10. If so, the bars may be arranged in a direction orthogonal to the web 12 by stud welding or the like without penetrating the web 12.

また、連結部コンクリート31は、早強・膨張コンクリートで構成されずとも、普通コンクリートで構成してもよいが、早強・膨張コンクリートで構成する方が早期に強度が発現するため、供用中の既設鋼桁橋梁1aに対して施工する場合にはより好ましい。   Moreover, although the connection part concrete 31 may be comprised with normal concrete, even if it is not comprised with early-strength and expanded concrete, since the direction expresses with the early-strength and expanded concrete, strength is expressed early, It is more preferable when constructing the existing steel girder bridge 1a.

連結鋼棒に対応するPC鋼棒32は、PC鋼材で構成された棒状体であり、鋼製横桁20のウェブ22において上フランジ21aから適宜の間隔を隔てて穿孔された貫通孔23を貫通して橋軸方向Lに沿って配置されている。したがって、PC鋼棒32は、両鋼製横桁20の対向部分に配置された連結部コンクリート31における上方を橋軸方向Lに貫通する態様となる。   The PC steel bar 32 corresponding to the connecting steel bar is a bar-shaped body made of PC steel material, and penetrates the through hole 23 which is perforated at an appropriate interval from the upper flange 21a in the web 22 of the steel cross beam 20. And arranged along the bridge axis direction L. Therefore, the PC steel bar 32 is in a mode of penetrating upward in the bridge axis direction L in the connecting portion concrete 31 disposed in the facing portion of the both steel cross beams 20.

このように橋軸方向Lに隣り合う上部構造物2,3同士の対向部分を連結横桁30で連結してジョイントレス化された鋼桁橋梁1は、新設構造物として構築してもよいが、同様の上部構造物2,3で構成され、伸縮装置7が設けられた既設鋼桁橋梁1aに対して、伸縮装置7を撤去し、連結横桁30で連結してジョイントレス化して鋼桁橋梁1を構成してもよい。既設鋼桁橋梁1aを連結横桁30で連結してジョイントレス化するための連結工法について、以下で説明する。   In this way, the steel girder bridge 1 that is jointless by connecting the opposing portions of the upper structures 2 and 3 adjacent to each other in the bridge axis direction L with the connecting cross beam 30 may be constructed as a new structure. The existing steel girder bridge 1a, which is composed of the same superstructures 2 and 3 and provided with the telescopic device 7, is removed from the telescopic device 7 and connected with a connecting cross beam 30 to make it jointless. The bridge 1 may be configured. A connecting method for connecting the existing steel girder bridge 1a with the connecting cross beam 30 to make it jointless will be described below.

伸縮装置7を有する既設鋼桁橋梁1aをジョイントレス化する連結工法は、まず路下施工を行ってから最後に路上施工を行うことで、供用中の既設鋼桁橋梁1aであっても通行止め等の規制を最小限とすることができる。   The joint method of making the existing steel girder bridge 1a having the telescopic device 7 jointless is to close the road first and then finally to the road so that even the existing steel girder bridge 1a in service is closed. Regulations can be minimized.

具体的には、まず、路下施工として、連結横桁30を構築するため、ウェブ22とフランジ11の適宜の箇所を穿孔して貫通孔23と貫通孔35を形成し(ステップs1:図7(b)参照)、両貫通孔23を貫通させてPC鋼棒32を配置するとともに、貫通孔35を貫通させたせん断鉄筋33とせん断補強鉄筋34とを配筋して組付ける(ステップs2:図8(a)参照)。ここまでを路下施工とする。   Specifically, first, in order to construct the connecting cross beam 30 as a road construction, the web 22 and the appropriate portion of the flange 11 are perforated to form the through hole 23 and the through hole 35 (step s1: FIG. 7). (Refer to (b)), the PC steel rod 32 is disposed through both the through holes 23, and the shear reinforcing bar 33 and the shear reinforcing bar 34 that are penetrated through the through hole 35 are arranged and assembled (step s2: (See FIG. 8 (a)). This is the road construction.

PC鋼棒32並びにせん断鉄筋33及びせん断補強鉄筋34の組み付け完了後、つまり路下施工の完了後、図8(b)に示すように、舗装部5に現れている伸縮装置7を撤去し(ステップs3)、伸縮装置7が撤去された路上より早強・膨張コンクリートを打設し、連結部コンクリート31を構築する(ステップs4:図9(a)参照)。   After the completion of the assembly of the PC steel bar 32 and the shear reinforcing bar 33 and the shear reinforcing bar 34, that is, after the completion of the road construction, as shown in FIG. 8B, the telescopic device 7 appearing on the pavement 5 is removed ( Step s3), early-strength / expanded concrete is placed on the road from which the expansion and contraction device 7 has been removed, and the connecting portion concrete 31 is constructed (step s4: see FIG. 9A).

連結部コンクリート31の構築完了後、図9(b)に示すように、連結部コンクリート31とRC床版4との間に床版部コンクリート41を打設してRC床版4を復旧するとともに、伸縮装置7を撤去した箇所を舗装して(ステップs5)、連結横桁30による連結工法は完了し、伸縮装置7を有する既設鋼桁橋梁1aは、連結横桁30によってジョイント化された鋼桁橋梁1を構成することができる。なお、床版部コンクリート41と連結部コンクリート31との間にウレタンや発泡スチロールなどの縁切り材(図示省略)で、床版部コンクリート41と連結部コンクリート31とを縁切りした方がよい。   After the completion of the construction of the connecting part concrete 31, as shown in FIG. 9B, the floor slab part concrete 41 is placed between the connecting part concrete 31 and the RC floor slab 4 to restore the RC floor slab 4. Then, the place where the telescopic device 7 has been removed is paved (step s5), and the connecting method using the connecting cross beam 30 is completed. The girder bridge 1 can be configured. In addition, it is better to edge the floor slab concrete 41 and the connecting part concrete 31 between the floor slab concrete 41 and the connecting part concrete 31 with an edge cutting material (not shown) such as urethane or polystyrene foam.

なお、連結部コンクリート31の硬化後、PC鋼棒32を締め付けて連結横桁30にプレストレストを作用させてもよい。
また、上述の説明では、伸縮装置7の撤去後、路上施工として、伸縮装置7が撤去された路上よりコンクリートを打設し、連結部コンクリート31を構築した(ステップs4)が、路上施工である伸縮装置7の撤去(ステップs3)の前に、路下施工として、連結部コンクリート31の構築箇所に、自己充填性の高いコンクリートを充填して連結横桁30を構成してもよい。
In addition, after the connection part concrete 31 is hardened, the PC steel rod 32 may be tightened to prestress the connection cross beam 30.
Moreover, in the above-mentioned description, after removing the expansion and contraction device 7, as the construction on the road, concrete is placed from the road from which the expansion and contraction device 7 is removed, and the connecting portion concrete 31 is constructed (step s4). Prior to the removal of the expansion and contraction device 7 (step s3), as the road construction, the construction place of the connecting portion concrete 31 may be filled with concrete having a high self-filling property to constitute the connecting cross beam 30.

このように、橋軸直角方向Wに所定間隔を隔てて配置された橋軸方向Lの鋼製主桁10と、鋼製主桁10の端部近傍に配置された橋軸直角方向Wの鋼製横桁20とを備えた上部構造物2,3を橋軸方向Lに複数配置した鋼桁橋梁1(既設鋼桁橋梁1a)の連結構造であって、橋軸方向Lに隣り合う上部構造物2,3同士の対向部分において、鋼製横桁20同士の間に設けられた連結部コンクリート31と、鋼製横桁20同士を連結するPC鋼棒32とで構成する連結横桁30が備えられるとともに、PC鋼棒32が鋼製主桁10における上部に配置され、連結横桁30が、鋼製主桁10の下端より所定高さ高い位置に設けられているため、鋼製横桁20と一体化された橋軸直角方向Wの連結横桁30を介して橋軸方向Lに隣り合う上部構造物2,3における鋼製主桁10同士を力学的に連結して一体化し、上部構造物2,3同士をジョイントレス化することができる。   As described above, the steel main girder 10 in the bridge axis direction L arranged at a predetermined interval in the direction perpendicular to the bridge axis W, and the steel in the bridge axis perpendicular direction W arranged in the vicinity of the end of the steel main girder 10. A connecting structure of steel girder bridges 1 (existing steel girder bridges 1a) in which a plurality of superstructures 2 and 3 each having a horizontal girder 20 are arranged in the bridge axis direction L, and is adjacent to the bridge axis direction L In the facing part between the objects 2 and 3, there is a connecting cross beam 30 constituted by a connecting portion concrete 31 provided between the steel cross beams 20 and a PC steel rod 32 connecting the steel cross beams 20. Since the PC steel bar 32 is provided at the upper part of the steel main girder 10 and the connecting cross girder 30 is provided at a predetermined height higher than the lower end of the steel main girder 10, the steel cross girder is provided. 20 is an upper structure adjacent to the bridge axis direction L via a connecting cross beam 30 in a direction W perpendicular to the bridge axis integrated with the bridge 20. The steel main beam 10 to each other in the 3 and integrated with mechanically linked and can be jointless the upper structure 2, 3 to each other.

詳述すると、鋼製横桁20同士の間に設けられた連結部コンクリート31と、鋼製横桁20同士を連結するPC鋼棒32とで構成される連結横桁30が備えられているため、鋼製横桁20と連結部コンクリート31とPC鋼棒32とで一体化されたRC構造の連結横桁30を構成することができる。   If it explains in full detail, since the connection crossing part 30 comprised by the connection part concrete 31 provided between steel cross beams 20 and the PC steel rod 32 which connects steel cross beams 20 will be provided. The steel cross beam 20, the connecting portion concrete 31, and the PC steel bar 32 can be integrated to form a connecting cross beam 30 having an RC structure.

また、RC構造の連結横桁30を構成するPC鋼棒32によって、橋軸方向Lに隣り合う上部構造物2,3の鋼製横桁20に軸力を伝達することができる。したがって、橋軸方向Lに隣り合う上部構造物2,3における鋼製主桁10同士を力学的に連結して一体化することができる。   Also, the axial force can be transmitted to the steel cross beams 20 of the upper structures 2 and 3 adjacent to each other in the bridge axial direction L by the PC steel bars 32 constituting the connecting cross beams 30 of the RC structure. Therefore, the steel main beams 10 in the upper structures 2 and 3 adjacent to each other in the bridge axis direction L can be mechanically connected and integrated.

また、PC鋼棒32が鋼製主桁10における上部に配置され、連結横桁30が鋼製主桁10の下端より所定高さ高い位置に設けられたことにより、連結横桁30は鋼製横桁20や鋼製主桁10の桁高さより低くなり、また、支承装置60による支持箇所から連結横桁30までの距離が確保できるため、変形性能が高くなり、柔な連結構造を構築することができる。   Further, the PC steel bar 32 is arranged on the upper part of the steel main girder 10 and the connecting cross beam 30 is provided at a position higher than the lower end of the steel main girder 10 by a predetermined height. Since the height of the cross beam 20 and the steel main beam 10 is lower than that of the main beam 10 and the distance from the support location by the support device 60 to the connection cross beam 30 can be secured, the deformation performance is improved and a flexible connection structure is constructed. be able to.

そのため、連結横桁30には鋼製主桁10のたわみ変形に伴う引張方向の軸力が作用することとなり、曲げモーメントに引張軸力を加えることになり、圧縮力が低減され引張力が増大する。増大した引張力にはPC鋼棒32で抗することができ、連結横桁30の連結部コンクリート31の圧縮応力度を低減することができる。
このように、本発明の連結構造により、様々な主桁構造を備えた鋼桁橋梁1(既設鋼桁橋梁1a)の上部構造物2,3をジョイントレス化することができる。
For this reason, an axial force in the tensile direction accompanying the deflection deformation of the steel main beam 10 acts on the connecting cross beam 30, and a tensile axial force is applied to the bending moment, reducing the compressive force and increasing the tensile force. To do. The increased tensile force can be resisted by the PC steel bar 32, and the degree of compressive stress of the connecting portion concrete 31 of the connecting cross beam 30 can be reduced.
Thus, the connection structure of the present invention makes it possible to make the upper structures 2 and 3 of the steel girder bridge 1 (existing steel girder bridge 1a) having various main girder structures jointless.

また、PC鋼棒32を、連結部コンクリート31の内部に配置しているため、PC鋼棒32が露出しないため、耐久性のある連結横桁30を構成することができる。また、連結部コンクリート31とPC鋼棒32とが一体化して連結横桁30を構成するため、主として作用する引張軸力に対して効率よくPC鋼棒32によって抗することができる。   Moreover, since the PC steel bar 32 is disposed inside the connecting portion concrete 31, the PC steel bar 32 is not exposed, and therefore, a durable connecting cross beam 30 can be configured. In addition, since the connecting portion concrete 31 and the PC steel bar 32 are integrated to form the connecting cross beam 30, the PC steel bar 32 can efficiently resist the tensile axial force acting mainly.

また、連結部コンクリート31内部に、鋼製主桁10の端部に対して橋軸直角方向Wのせん断鉄筋が備えられているため、連結横桁30を介して、作用する軸力を確実に鋼製主桁10に伝達することができる。   Moreover, since the shear rebar in the direction perpendicular to the bridge axis W with respect to the end portion of the steel main girder 10 is provided inside the connecting portion concrete 31, the acting axial force is reliably ensured via the connecting cross beam 30. It can be transmitted to the steel main beam 10.

また、連結横桁30は、鋼製主桁10の高さ方向中央より上部に配置されているため、連結部コンクリート31の下方、つまり鋼製主桁10の高さ方向中央より下部に遊間が形成され、上部構造物2,3に作用する活荷重による鋼製主桁10の撓みが生じた場合における、連結横桁30による鋼製主桁10の変形の拘束が小さくなる。つまり、活荷重による鋼製主桁10の変形は大きくなるため、連結横桁30に作用する曲げモーメントが小さくなり、その反面、連結横桁30に作用する引張方向の軸力が増大することとなる。   Moreover, since the connection cross beam 30 is arrange | positioned above the center of the steel main girder 10 in the height direction, there is a space below the connection part concrete 31, that is, below the center of the steel main girder 10 in the height direction. The deformation of the steel main beam 10 by the connecting cross beam 30 when the steel main beam 10 is bent due to the live load acting on the upper structures 2 and 3 is reduced. In other words, since the deformation of the steel main girder 10 due to the live load is increased, the bending moment acting on the connecting cross beam 30 is reduced, while the axial force in the tensile direction acting on the connecting cross beam 30 is increased. Become.

特に、高さ方向中央より上部に配置された連結部コンクリート31及びPC鋼棒32は、鋼製主桁10における引張領域に配置されることとなるため、連結部コンクリート31によって構成される連結横桁30に対して、主として作用する引っ張り方向の軸力に対して、連結横桁30を構成するPC鋼棒32が主として効率よく抗することとなる。   In particular, since the connecting portion concrete 31 and the PC steel bar 32 disposed above the center in the height direction are disposed in the tensile region of the steel main girder 10, the connecting lateral portion constituted by the connecting portion concrete 31 is used. The PC steel rod 32 constituting the connecting cross beam 30 mainly effectively resists the axial force in the pulling direction that mainly acts on the beam 30.

また、橋軸方向Lに隣り合う上部構造物2,3のうち起点側上部構造物3が橋脚6に対して固定支承装置61で支持されるとともに、終点側上部構造物2が可動支承装置62によって支持されているため、連結横桁30によって柔な連結構造が構築され、活荷重による鋼製主桁10の撓みによる可動支承装置62における移動を許容することができる。   Of the upper structures 2 and 3 adjacent to each other in the bridge axis direction L, the starting-side upper structure 3 is supported by the fixed support device 61 with respect to the pier 6 and the end-point-side upper structure 2 is supported by the movable support device 62. Therefore, a flexible connection structure is constructed by the connection cross beam 30 and the movement in the movable support device 62 due to the bending of the steel main beam 10 due to a live load can be allowed.

また、固定支承装置61は起点側上部構造物3の鋼製主桁10の移動を制限する一方、可動支承装置62は終点側上部構造物2の鋼製主桁10の移動を制限しないため、鋼製主桁10の撓みによって可動支承装置62上を移動することができる。しかしながら、終点側上部構造物2の鋼製主桁10は連結横桁30によって橋軸方向Lの自由な移動が制限されているため、連結横桁30による制限により生じた荷重は連結横桁30を介して固定支承装置61に作用することになる。   The fixed support device 61 restricts the movement of the steel main girder 10 of the starting side upper structure 3, while the movable support device 62 does not restrict the movement of the steel main girder 10 of the end side upper structure 2. It is possible to move on the movable bearing device 62 by the bending of the steel main beam 10. However, since the steel main girder 10 of the upper structure 2 on the end point side is restricted from freely moving in the bridge axis direction L by the connecting cross beam 30, the load generated by the restriction by the connecting cross beam 30 is the connecting cross beam 30. It acts on the fixed support device 61 via the.

さらに、その荷重、つまり、連結横桁30に作用した軸力の反力は、固定支承装置61が設置された橋脚6に水平荷重として伝達され、橋脚6が変形することとなる。このように、鋼製主桁10の撓みの一部を橋脚6の変形によって吸収するため、連結横桁30に作用する断面力を低減でき、連結部コンクリート31の部材断面を小型化することができる。   Furthermore, the load, that is, the reaction force of the axial force acting on the connecting cross beam 30 is transmitted as a horizontal load to the pier 6 on which the fixed support device 61 is installed, and the pier 6 is deformed. Thus, since a part of the bending of the steel main girder 10 is absorbed by the deformation of the bridge pier 6, the cross-sectional force acting on the connecting cross beam 30 can be reduced, and the member cross section of the connecting portion concrete 31 can be reduced in size. it can.

具体的には、連結横桁30は鋼製主桁10に作用する活荷重による撓みによって曲げモーメントが発生するが、これに抵抗する断面を小さくすること、つまり連結横桁30の高さを低く形成することにより、変形性能をもたせ発生する曲げモーメントを小さくし、主として作用する軸力に抗することができる柔な構造となる。   Specifically, the connecting cross beam 30 generates a bending moment due to bending due to a live load acting on the steel main beam 10, but the cross section resisting this is reduced, that is, the height of the connecting cross beam 30 is reduced. By forming, it becomes a flexible structure which can give the deformation performance, reduce the generated bending moment, and resist the axial force acting mainly.

上部構造物2,3に活荷重が作用すると、鋼製主桁10に撓みが発生し、鋼製主桁10の桁端部はキックアップすると同時に、終点側上部構造物2の鋼製主桁10が可動支承装置62によって移動することとなる。   When a live load is applied to the upper structures 2 and 3, the steel main girder 10 is bent, and the end of the steel main girder 10 kicks up, and at the same time, the steel main girder of the upper structure 2 on the end point side 10 is moved by the movable support device 62.

従来の連結構造である主桁連結のように連結部の高さが高いと、連結部分は剛な構造となるため、大きな曲げモーメントを伝達することとなり、可動支承装置62で支持された終点側上部構造物2の鋼製主桁10はあまり移動せず、撓みによる変形は連結部分に曲げ応力として作用することとなる。   When the height of the connecting part is high as in the main girder connection which is a conventional connecting structure, the connecting part becomes a rigid structure, so that a large bending moment is transmitted, and the end point side supported by the movable support device 62 The steel main girder 10 of the superstructure 2 does not move so much, and the deformation due to bending acts as a bending stress on the connecting portion.

これに対し、連結横桁30の高さを低くすることで、連結横桁30における剛性が小さくなるため、図10(a)に示すように、可動支承装置62で支持された鋼製主桁10の移動量が増加し、鋼製主桁10の移動量が増加することで、連結横桁30に軸力が生じ、曲げモーメントが減少することとなる。   On the other hand, since the rigidity in the connection cross beam 30 is reduced by lowering the height of the connection cross beam 30, the steel main beam supported by the movable support device 62 as shown in FIG. When the movement amount of 10 increases and the movement amount of the steel main girder 10 increases, an axial force is generated in the connecting cross beam 30 and the bending moment is reduced.

詳しくは、鋼製横桁20同士の間に構成された連結横桁30をラーメン構造の梁、連結横桁30と支承装置60までの間をラーメンの柱とした模式図(図10(b)参照)で、剛性の差による桁端の変形と、発生している力を比較すると、図10(c)に示すように、連結部の剛性が比較的高い場合、連結部(ラーメン梁部)の変形は小さく、そのためラーメン隅角部まわりの回転変形が小さくなり、可動支承装置62の移動も小さくなる。   Specifically, a schematic diagram in which the connecting cross beam 30 formed between the steel cross beams 20 is a beam of a ramen structure, and the space between the connecting cross beam 30 and the support device 60 is a pillar of a ramen (FIG. 10B). 10), the deformation of the beam end due to the difference in rigidity and the generated force are compared. As shown in FIG. 10C, when the rigidity of the connecting portion is relatively high, the connecting portion (ramen beam portion) Therefore, the rotational deformation around the corner of the ramen is small, and the movement of the movable support device 62 is also small.

これに対し、鋼製主桁10の高さ方向Hの中央より高い位置に配置された連結横桁30による連結構造のように、連結部の剛性が比較的低い場合、連結部(ラーメン梁部)の変形は大きく、ラーメン隅角部の回転変形が大きくなり、可動支承装置62の移動が大きくなる(図10(d)参照)。   On the other hand, when the rigidity of the connecting portion is relatively low, such as a connecting structure by the connecting cross beam 30 arranged at a position higher than the center of the steel main beam 10 in the height direction H, the connecting portion (ramen beam portion) ) Is large, the rotational deformation of the corners of the ramen is large, and the movement of the movable support device 62 is large (see FIG. 10D).

しかしながら、現実的には、可動支承装置62で支持する終点側上部構造物2の鋼製主桁10が撓みによって無制限に伸びる(桁長が長くなる)ことはなく、その移動は制限される。このときに固定支承装置61を橋軸方向Lの終点側に引っ張る軸力が生じ、この軸力は内力として連結横桁30に作用し、その反力として固定支承装置61に水平力として作用することとなる。   However, in reality, the steel main girder 10 of the end-point-side upper structure 2 supported by the movable bearing device 62 does not extend indefinitely (the girder length becomes longer) due to bending, and the movement is limited. At this time, an axial force is generated that pulls the fixed support device 61 toward the end point side in the bridge axial direction L. This axial force acts on the connecting cross beam 30 as an internal force, and acts on the fixed support device 61 as a horizontal force as a reaction force. It will be.

このように、鋼製主桁10の高さ方向Hの中央より高い位置に配置された連結横桁30による連結構造は、連結部でモーメントに抵抗する構造である主桁連結構造に対し、連結部の剛性を小さくすることにより曲げモーメントを小さくし、減少した曲げモーメント分は固定支承装置61の水平抵抗力と連結横桁30の軸力で抗する構造である。   Thus, the connection structure by the connection cross beam 30 arrange | positioned in the position higher than the center of the height direction H of the steel main beam 10 is connected with respect to the main beam connection structure which is a structure which resists a moment in a connection part. The bending moment is reduced by reducing the rigidity of the portion, and the reduced bending moment is resisted by the horizontal resistance force of the fixed support device 61 and the axial force of the connecting cross beam 30.

さらに、連結横桁30による連結構造では、橋脚6の変形を考慮する(橋脚バネ)ことによって、連結横桁30に作用する力を低減している。
具体的には、上述したように、連結横桁30で起点側上部構造物3の鋼製主桁10と一体化された終点側上部構造物2の鋼製主桁10は可動支承装置62での移動を拘束するため、鋼製主桁10の撓みが水平荷重となり橋脚6に伝達される。
Furthermore, in the connection structure by the connection cross beam 30, the force acting on the connection cross beam 30 is reduced by considering the deformation of the bridge pier 6 (bridge pier spring).
Specifically, as described above, the steel main girder 10 of the end-point-side upper structure 2 integrated with the steel main girder 10 of the start-side superstructure 3 at the connecting cross beam 30 is the movable support device 62. Therefore, the bending of the steel main girder 10 becomes a horizontal load and is transmitted to the pier 6.

このように、鋼製主桁10の撓みが水平荷重となり伝達され、橋脚6が変形することで、すなわち橋脚6に水平変位を発生させることで連結横桁30に発生する曲げモーメントを緩和し、支承装置60の発生応力を抑制することができ、鋼製主桁10の桁高の半分程度で構成された連結横桁30のように部材断面を小さくすることができる。   In this way, the bending of the steel main girder 10 is transmitted as a horizontal load, and the bridge pier 6 is deformed, that is, the horizontal moment is generated in the pier 6 so that the bending moment generated in the connecting cross beam 30 is relaxed, The generated stress of the support device 60 can be suppressed, and the member cross section can be made small like the connecting cross beam 30 configured with about half the height of the steel main beam 10.

この発明の構成と、実施形態との対応において、この発明の上部構造物は終点側上部構造物2,起点側上部構造物3に対応し、
以下同様に、
連結鋼棒は、PC連結鋼棒32に対応し、
鋼製主桁の下端は鋼製主桁10の下フランジ11bに対応し、
上部構造物の一方は起点側上部構造物3に対応し、
下部構造物は橋脚6に対応し、
上部構造物の他方は終点側上部構造物2に対応し、
鋼製横桁連結工程はステップs2に対応し
コンクリート打設工程はステップs4に対応するも、この発明は、上述の実施形態の構成のみに限定されるものではなく、請求項に示される技術思想に基づいて応用することができ、多くの実施の形態を得ることができる。
In the correspondence between the configuration of the present invention and the embodiment, the superstructure of the present invention corresponds to the end-point-side superstructure 2, the start-point-side superstructure 3,
Similarly,
The connecting steel bar corresponds to the PC connecting steel bar 32,
The lower end of the steel main beam corresponds to the lower flange 11b of the steel main beam 10,
One of the upper structures corresponds to the starting-side upper structure 3,
The substructure corresponds to the pier 6,
The other of the superstructure corresponds to the end-side superstructure 2,
Although the steel cross beam connecting process corresponds to step s2 and the concrete placing process corresponds to step s4, the present invention is not limited to the configuration of the above-described embodiment, and the technical idea shown in the claims. And many embodiments can be obtained.

例えば、上述の説明では、鋼製主桁10は、フランジ11とウェブ12とでI型に形成された鋼製部材であったが、いわゆるI型鋼やH型鋼、あるいは鋼製箱桁などであってもよく、種類や形状の異なる鋼製主桁10で構成された上部構造物2,3であってもよいし、橋軸方向Lに隣り合う上部構造物2,3において鋼製主桁10の種類が異なってもよいし、同じ種類の鋼製主桁10であってもよい。   For example, in the above description, the steel main girder 10 is a steel member formed in an I shape with the flange 11 and the web 12, but is a so-called I-shaped steel, H-shaped steel, or a steel box girder. Alternatively, it may be the upper structures 2 and 3 constituted by the steel main girders 10 of different types and shapes, or the steel main girders 10 in the upper structures 2 and 3 adjacent in the bridge axis direction L. May be different, or the same type of steel main beam 10 may be used.

また、RC床版4を適宜の厚みを有するRC部材で構成したが鋼床版で構成してもよい。また、PC鋼材で構成された棒状体であるPC鋼棒32の代わりに、連結横桁30に作用する軸力に抗することができれば、鉄筋を用いてもよい。   Moreover, although RC floor slab 4 was comprised with the RC member which has appropriate thickness, you may comprise with a steel floor slab. Further, instead of the PC steel rod 32 which is a rod-shaped body made of PC steel material, a reinforcing bar may be used as long as it can resist the axial force acting on the connecting cross beam 30.

さらには、橋軸方向Lに対向する鋼製横桁20同士の間に連結部コンクリート31を構成したが、例えば、鋼製主桁10同士の橋軸直角方向Wの間隔が広い場合など、鋼製横桁20の背面側にも連結部コンクリート31を設け、鋼製横桁20同士の間に設けられた連結部コンクリート31とPC鋼棒32によって一体化してもよい。   Furthermore, although the connection part concrete 31 was comprised between the steel cross beams 20 which oppose the bridge-axis direction L, for example, when the space | interval of the bridge-axis perpendicular direction W of the steel main beams 10 is wide, steel, etc. The connecting portion concrete 31 may also be provided on the back side of the cross beam 20 and may be integrated by the connecting portion concrete 31 and the PC steel rod 32 provided between the steel cross beams 20.

1…鋼桁橋梁
1a…既設鋼桁橋梁
2…終点側上部構造物
3…起点側上部構造物
6…橋脚
10…鋼製主桁
11b…下フランジ
20…鋼製横桁
31…連結部コンクリート
32…PC鋼棒
33…せん断鉄筋
61…固定支承装置
62…可動支承装置
L…橋軸方向
W…橋軸直角方向
DESCRIPTION OF SYMBOLS 1 ... Steel girder bridge 1a ... Existing steel girder bridge 2 ... End side upper structure 3 ... Starting side upper structure 6 ... Pier 10 ... Steel main girder 11b ... Lower flange 20 ... Steel cross girder 31 ... Connection part concrete 32 ... PC steel bar 33 ... Shear rebar 61 ... Fixed bearing device 62 ... Moving bearing device L ... Bridge axis direction W ... Bridge axis perpendicular direction

Claims (6)

橋軸直角方向に所定間隔を隔てて配置された橋軸方向の鋼製主桁と、該鋼製主桁の端部近傍に配置された橋軸直角方向の鋼製横桁とを備えた上部構造物を前記橋軸方向に複数配置した鋼桁橋梁の連結構造であって、
前記橋軸方向に隣り合う前記上部構造物同士の対向部分において、
前記鋼製横桁同士の間に設けられた連結部コンクリートと、前記鋼製横桁同士を連結する連結鋼棒とで構成される連結横桁が備えられるとともに、
前記連結鋼棒が前記連結横桁における上部に配置され、
前記連結横桁が、前記鋼製主桁の下端より所定高さ高い位置に設けられた
鋼桁橋梁の連結構造。
An upper portion having a steel main girder in the bridge axis direction arranged at a predetermined interval in the direction perpendicular to the bridge axis, and a steel cross girder in the direction perpendicular to the bridge axis arranged in the vicinity of the end of the steel main girder. A steel girder bridge connection structure in which a plurality of structures are arranged in the direction of the bridge axis,
In the facing part between the upper structures adjacent to each other in the bridge axis direction,
A connecting cross beam composed of a connecting portion concrete provided between the steel cross beams and a connecting steel rod connecting the steel cross beams is provided,
The connecting steel bar is arranged at the top of the connecting cross beam;
A connecting structure of steel girder bridges in which the connecting cross girder is provided at a position higher than a lower end of the steel main girder by a predetermined height.
前記連結鋼棒は、前記連結部コンクリート内部に配置されている
請求項1に記載の鋼桁橋梁の連結構造。
The connection structure of the steel girder bridge according to claim 1, wherein the connection steel bar is arranged inside the connection portion concrete.
前記連結部コンクリート内部には、前記鋼製主桁の端部に対して前記橋軸直角方向のせん断鉄筋が備えられている
請求項1または2に記載の鋼桁橋梁の連結構造。
The connection structure of the steel girder bridge according to claim 1 or 2, wherein a shear rebar in the direction perpendicular to the bridge axis with respect to an end of the steel main girder is provided inside the connection part concrete.
前記連結横桁は、前記鋼製主桁の高さ方向中央より上部に配置された
請求項1乃至3のうちいずれかに記載の鋼桁橋梁の連結構造。
The said connection cross beam is the connection structure of the steel girder bridge in any one of the Claims 1 thru | or 3 arrange | positioned from the height direction center of the said steel main beam.
前記橋軸方向に隣り合う前記上部構造物の一方が下部構造物に対して固定支承装置で支持されるとともに、他方が可動支承装置によって支持されている
請求項1乃至4のうちいずれかに記載の鋼桁橋梁の連結構造。
5. One of the upper structures adjacent to the bridge axis direction is supported by a fixed support device with respect to the lower structure, and the other is supported by a movable support device. Steel girder bridge connection structure.
橋軸直角方向に所定間隔を隔てて配置された橋軸方向の鋼製主桁と、該鋼製主桁の端部近傍に橋軸直角方向の鋼製横桁とを備えた上部構造物を前記橋軸方向に複数配置した既設鋼桁橋梁の連結工法であって、
前記橋軸方向に隣り合う前記上部構造物同士の対向部分において、前記鋼製主桁における上部位置に配置された連結鋼棒で前記鋼製横桁同士を連結する鋼製横桁連結工程と、
前記鋼製横桁同士の間における、前記鋼製主桁の下端より所定高さ高い位置にコンクリートを打設して連結部コンクリートを構築するコンクリート打設工程とを行う
既設鋼桁橋梁の連結工法。
An upper structure comprising a steel main girder in a bridge axis direction arranged at a predetermined interval in a direction perpendicular to the bridge axis, and a steel cross girder in a direction perpendicular to the bridge axis in the vicinity of the end of the steel main girder. It is a connecting method of existing steel girder bridges arranged in the bridge axis direction,
In the facing portion between the upper structures adjacent to each other in the bridge axis direction, a steel cross beam connecting step of connecting the steel cross beams with a connecting steel rod arranged at an upper position in the steel main beam,
An existing steel girder bridge connecting method for performing a concrete placing step in which concrete is placed at a predetermined height higher than the lower end of the steel main girder between the steel transverse girders to construct a connecting portion concrete. .
JP2016165817A 2016-08-26 2016-08-26 Connection structure for steel girder bridge and connection method for existing steel girder bridge Pending JP2018031235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016165817A JP2018031235A (en) 2016-08-26 2016-08-26 Connection structure for steel girder bridge and connection method for existing steel girder bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016165817A JP2018031235A (en) 2016-08-26 2016-08-26 Connection structure for steel girder bridge and connection method for existing steel girder bridge

Publications (1)

Publication Number Publication Date
JP2018031235A true JP2018031235A (en) 2018-03-01

Family

ID=61302861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016165817A Pending JP2018031235A (en) 2016-08-26 2016-08-26 Connection structure for steel girder bridge and connection method for existing steel girder bridge

Country Status (1)

Country Link
JP (1) JP2018031235A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110670470A (en) * 2019-07-29 2020-01-10 四川省公路规划勘察设计研究院有限公司 Steel structure bridge with steel-concrete combined cross beam arranged at beam end
CN114108452A (en) * 2021-12-31 2022-03-01 福州大学 Folding embedded type bridge floor continuous telescopic device and construction method thereof
CN114592440A (en) * 2022-03-21 2022-06-07 武汉市规划设计有限公司 Fabricated steel-concrete composite bridge superstructure and construction process thereof
CN114717971A (en) * 2022-05-26 2022-07-08 中铁十二局集团建筑安装工程有限公司 Support system for quickly pushing spatial double-fold steel truss girder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110670470A (en) * 2019-07-29 2020-01-10 四川省公路规划勘察设计研究院有限公司 Steel structure bridge with steel-concrete combined cross beam arranged at beam end
CN114108452A (en) * 2021-12-31 2022-03-01 福州大学 Folding embedded type bridge floor continuous telescopic device and construction method thereof
CN114108452B (en) * 2021-12-31 2024-03-08 福州大学 Folding type embedded bridge deck continuous expansion device and construction method thereof
CN114592440A (en) * 2022-03-21 2022-06-07 武汉市规划设计有限公司 Fabricated steel-concrete composite bridge superstructure and construction process thereof
CN114592440B (en) * 2022-03-21 2024-03-19 武汉市规划设计有限公司 Upper structure of assembled steel-concrete combined bridge and construction process thereof
CN114717971A (en) * 2022-05-26 2022-07-08 中铁十二局集团建筑安装工程有限公司 Support system for quickly pushing spatial double-fold steel truss girder

Similar Documents

Publication Publication Date Title
KR102212482B1 (en) Half deck with supporting bracket and construction method thereof
JP2018031235A (en) Connection structure for steel girder bridge and connection method for existing steel girder bridge
KR101398815B1 (en) Composite beam with reinforced support member and the building construction method therewith
JP6749673B1 (en) Joint structure of concrete columns and steel beams
KR101538516B1 (en) A box girder using steel and foam concrete insertion, and method for construction bridge using the same
KR100676627B1 (en) Shear reinforcement device arranged in the slab-column connection and the shear reinforcement structure using the device
JP4996189B2 (en) Column / beam joint structure
KR101139761B1 (en) Reinforcing wall for construction
KR101814038B1 (en) Structure Having Hollowness Slave and Its Construction Method
JP6266246B2 (en) Steel column and footing joint structure and construction method
KR102314546B1 (en) Reinforcing structure for Column and Beam
JP7118507B2 (en) Steel reinforced concrete wall pillar building structure
JP4585614B1 (en) Method for constructing synthetic steel slab bridge, ribbed steel slab, and synthetic steel slab bridge
KR20170066193A (en) Connecting structure of beam and column of a building and method of manufacturing using the same
JP4780618B2 (en) Seismic reinforcement structure for viaduct
JP6536895B2 (en) Concrete wall structure and construction method for reinforced embankment integrated bridge
KR102042090B1 (en) Abutment integrated with H-pile in integral abutment bridge, and Constructing method thereof
KR20100045740A (en) Support assembly for precast half depth cantilever deck, constructing method of such cantilever deck, bridge using such assembly and constructing method for such bridge
JP2009161905A (en) Composite hollow structure of column head part or girder end part of bridge
JP2009013682A (en) Synthetic flooring, precast concrete floor plate, and method of constructing synthetic flooring
JP2020020231A (en) Exterior wall structure
JP5024696B2 (en) Seismic reinforcement structure for existing buildings
JP6684088B2 (en) Seismic retrofitting structure and method for existing buildings
JP2006169837A (en) Column-beam joint structure of reinforced concrete construction
KR102479370B1 (en) Hybrid Composite Girder and Bridge Construction Method Using Thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160913