JP2018025429A - Reduction filter of mercury concentration measuring apparatus - Google Patents

Reduction filter of mercury concentration measuring apparatus Download PDF

Info

Publication number
JP2018025429A
JP2018025429A JP2016156326A JP2016156326A JP2018025429A JP 2018025429 A JP2018025429 A JP 2018025429A JP 2016156326 A JP2016156326 A JP 2016156326A JP 2016156326 A JP2016156326 A JP 2016156326A JP 2018025429 A JP2018025429 A JP 2018025429A
Authority
JP
Japan
Prior art keywords
catalyst
combustion
reduction
mercury
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016156326A
Other languages
Japanese (ja)
Inventor
長武 瀬渡
Nagatake Sedo
長武 瀬渡
希見子 山中
Kimiko Yamanaka
希見子 山中
孝則 埜中
Takanori Nonaka
孝則 埜中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP2016156326A priority Critical patent/JP2018025429A/en
Publication of JP2018025429A publication Critical patent/JP2018025429A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To remove an organic material in combustion exhaust gas input into a mercury concentration measuring apparatus.SOLUTION: A reduction filter is disposed on the pre-stage of a mercury concentration measuring apparatus, and is formed of a reduction catalyst, a combustion catalyst, a cylindrical body, and a heating member to achieve the above-mentioned objective. The reduction catalyst reduces mercury compounds in combustion exhaust gas, and the combustion catalyst promotes the combustion of an organic material in the combustion exhaust gas. The reduction catalyst and the combustion catalyst are filled into the cylindrical body, and the reduction catalyst is disposed on the upstream side and the combustion catalyst is disposed on the downstream side. The cylindrical body is heated by the heating member to a prescribed temperature. The combustion catalyst is at least one of copper oxide, cerium oxide, and cobalt oxide. The combustion catalyst is carried by a base material, and, at this time, is sometimes carried together with the reduction catalyst by the base material.SELECTED DRAWING: Figure 2

Description

燃焼排ガスの水銀濃度測定装置の還元フィルタに関し、特に、有機物を含む燃焼排ガスの還元フィルタに関するものである。   More particularly, the present invention relates to a reduction filter for combustion exhaust gas containing organic matter.

ごみ焼却処理場等の焼却施設の燃焼排ガスに含まれる水銀の濃度を検出する装置として、例えば原子吸光分析法を用いた水銀濃度測定装置が使用されている。このような水銀濃度測定装置は、測定装置へ導入した試料ガスに紫外線を照射して特定波長(254nm)の光の吸収量を検出し、この吸光量に基づいて試料ガスに含まれる水銀の濃度を求めるものである。   As a device for detecting the concentration of mercury contained in combustion exhaust gas from an incineration facility such as a garbage incineration plant, a mercury concentration measuring device using, for example, atomic absorption spectrometry is used. Such a mercury concentration measuring device detects the amount of absorption of light of a specific wavelength (254 nm) by irradiating the sample gas introduced into the measuring device with ultraviolet light, and based on this amount of absorption, the concentration of mercury contained in the sample gas Is what you want.

上記測定装置では、原子状水銀の吸光量に基づいて水銀濃度の検出を行うため、正確な水銀濃度の測定を行うには、試料ガス中に含まれる水銀化合物を原子状水銀に還元する必要がある。このため、上記測定装置に試料ガスを導入する導入路には、前記水銀化合物を原子状水銀に還元するための還元フィルタが設けられている。   In the above measurement apparatus, since the mercury concentration is detected based on the absorbance of atomic mercury, it is necessary to reduce the mercury compound contained in the sample gas to atomic mercury in order to accurately measure the mercury concentration. is there. Therefore, a reduction filter for reducing the mercury compound to atomic mercury is provided in the introduction path for introducing the sample gas into the measuring apparatus.

焼却施設等の燃焼排ガスでは、上記水銀化合物は主に塩化水銀であり、この塩化水銀を還元するための還元フィルタが設けられる。   In combustion exhaust gas from an incineration facility or the like, the mercury compound is mainly mercury chloride, and a reduction filter is provided for reducing the mercury chloride.

前記還元フィルタとして、還元触媒を封入した筒体を用いるが、前記還元触媒としては、例えば特開2005-98713号に開示されているように、所定温度に加熱したアルカリ金属あるいはアルカリ土類金属の塩基性化合物、例えば炭酸ナトリウムが用いられる。   As the reduction filter, a cylindrical body in which a reduction catalyst is enclosed is used. As the reduction catalyst, for example, as disclosed in JP-A-2005-98713, an alkali metal or alkaline earth metal heated to a predetermined temperature is used. Basic compounds such as sodium carbonate are used.

関連する技術としては、前記還元触媒として、2種の還元触媒を用いる特許第5468483号、あるいは、還元触媒の径として2種の径を用いる特許5877540号等があり、更に、還元触媒として、カリウム、ナトリウム、カルシウム、マグネシウムの亜硫酸塩あるいはリン酸塩を用いる特許第5192652号等がある。   Related techniques include, as the reduction catalyst, Patent No. 554683 using two kinds of reduction catalysts, or Patent No. 5877540 using two kinds of diameters as the diameter of the reduction catalyst. Patent No. 5192562 using sodium, calcium, magnesium sulfite or phosphate.

特開2005-98713号公報JP 2005-98713 A 特許第5468483号公報Japanese Patent No. 5464883 特許第5877540号公報Japanese Patent No. 5877540 特許第5192652号公報Japanese Patent No.5192652

都市ゴミは完全燃焼を前提とするので、燃焼排ガス中に有機物が含まれることは少ないが、燃焼条件によっては、一時的に燃焼排ガス中に有機物が含まれる場合もある。例えば不完全燃焼が発生し易い燃焼炉の立ち上げ、立ち下げ時にこの現象が現れ、例えば立ち上げ時に高い吸光度を示し、あたかも、水銀が燃焼排ガスに含まれているかのごとくの挙動を示すことがある。   Since municipal waste is based on the premise of complete combustion, organic substances are rarely contained in the combustion exhaust gas, but depending on the combustion conditions, organic substances may be temporarily included in the combustion exhaust gas. For example, this phenomenon appears during startup and shutdown of a combustion furnace where incomplete combustion is likely to occur.For example, it shows a high absorbance at startup, and it behaves as if mercury is contained in the combustion exhaust gas. is there.

この現象は、水銀が燃焼排ガス中に含まれているのではなく、不完全燃焼によって燃焼排ガス中に有機物が含まれていることによるのであるが、水銀濃度計では水銀濃度として現れることになる。   This phenomenon is not due to mercury being contained in the combustion exhaust gas, but due to the incomplete combustion containing organic matter in the combustion exhaust gas, but appears as mercury concentration in the mercury concentration meter.

また、有機物が水銀ガス測定装置の接ガス部に吸着し、その後吸着した有機物が脱着して検出部に流れ込むと、誤った水銀濃度として検出されるおそれがある。   In addition, if organic substances are adsorbed on the gas contact part of the mercury gas measuring device, and then adsorbed organic substances are desorbed and flow into the detection part, there is a possibility that an incorrect mercury concentration is detected.

更に、前記接ガス部に吸着した有機物が燃焼排ガス中の水銀化合物を捕捉することがあり、この場合は実際より低い水銀濃度として検出されることになる。   Furthermore, the organic substance adsorbed on the gas contact part may trap the mercury compound in the combustion exhaust gas. In this case, the mercury concentration is detected as lower than the actual concentration.

上記の接ガス部に吸着し易く、吸着すると水銀化合物を捕捉し易い有機物として、例えばフタル酸ビス(2−エチルヘキシル)やトリメリット酸トリス(2−エチルヘキシル)があるが、これら物質は、例えば燃料として廃プラスチック、廃油を用いた場合の燃料排ガスに多く含まれており、これら燃焼施設からの燃焼排ガスの水銀測定精度が問題となる。   Examples of organic substances that are easily adsorbed by the gas contact part and can easily trap mercury compounds when adsorbed include bis (2-ethylhexyl) phthalate and tris (2-ethylhexyl) trimellitic acid. As a result, the amount of mercury contained in the fuel exhaust gas when using waste plastic and waste oil is high, and the mercury measurement accuracy of the combustion exhaust gas from these combustion facilities becomes a problem.

本発明は上記従来の事情に鑑みて提案されたものであって、有機物が含まれる燃焼排ガスであっても精度よく水銀濃度を測定できる水銀濃度測定装置の前段に配置する還元フィルタを提供することを目的とするものである。   The present invention has been proposed in view of the above-described conventional circumstances, and provides a reduction filter disposed in a preceding stage of a mercury concentration measuring apparatus capable of accurately measuring the mercury concentration even in the case of combustion exhaust gas containing organic matter. It is intended.

本発明は燃焼排ガス中の水銀濃度を定量するための水銀濃度測定装置の前段に配置する還元フィルタであって、上記目的を達成するために、還元触媒、燃焼触媒、筒体、加熱部材より構成される。   The present invention is a reduction filter disposed in a preceding stage of a mercury concentration measuring device for quantifying the mercury concentration in combustion exhaust gas, and comprises a reduction catalyst, a combustion catalyst, a cylinder, and a heating member in order to achieve the above object. Is done.

還元触媒は、燃焼排ガス中の水銀化合物を還元する、燃焼触媒は、燃焼排ガス中の有機物の燃焼を促進する。前記還元触媒と前記還元触媒は筒体に充填され、上流側に還元触媒が、その下流側に燃焼触媒が配置される。当該筒体は加熱部材で所定温度にまで加熱される。   The reduction catalyst reduces mercury compounds in the combustion exhaust gas, and the combustion catalyst promotes the combustion of organic substances in the combustion exhaust gas. The reduction catalyst and the reduction catalyst are filled in a cylinder, and a reduction catalyst is disposed upstream and a combustion catalyst is disposed downstream thereof. The cylinder is heated to a predetermined temperature by a heating member.

前記燃焼触媒は、酸化銅、酸化セリウム、酸化コバルトのうちの少なくとも1種である。前記燃焼触媒は、母材に担持され、このとき、還元触媒とともに母材に担持される場合もある。   The combustion catalyst is at least one of copper oxide, cerium oxide, and cobalt oxide. The combustion catalyst is supported on a base material, and at this time, it may be supported on the base material together with the reduction catalyst.

更に、前記還元触媒が、水銀に対する還元機能を備えるとともに酸性ガス除去能力を備えた第一還元触媒と、酸性ガス除去能力を持たないが水銀に対する還元性を備えた第二還元触媒とよりなり、前記燃焼触媒が前記第二還元触媒とともに母材に担持された構成とすることができる。   Further, the reduction catalyst comprises a first reduction catalyst having a reduction function for mercury and having an acid gas removal capability, and a second reduction catalyst having no acid gas removal capability but having a reduction capability for mercury, The combustion catalyst may be supported on a base material together with the second reduction catalyst.

上記構成によると、燃焼排ガス中の有機物濃度が数千ppm未満、燃焼排ガス流速が数百ml/分程度であれば、少量の燃焼触媒でも、高い有機物分解能力を示すとともに、数ヶ月程度の耐久性を維持することできる。   According to the above configuration, if the organic matter concentration in the combustion exhaust gas is less than several thousand ppm and the combustion exhaust gas flow rate is about several hundred ml / min, even a small amount of combustion catalyst shows high organic matter decomposition ability and durability for several months. Can maintain sex.

水銀測定システムの概略図である。It is the schematic of a mercury measuring system. 本発明の主要部となるフィルタの縦断面図である。It is a longitudinal cross-sectional view of the filter used as the principal part of this invention.

図1は水銀濃度測定装置を含めた、水銀濃度測定システムの概略図である。   FIG. 1 is a schematic diagram of a mercury concentration measuring system including a mercury concentration measuring device.

燃焼炉の煙道の壁には、当該煙道の内側から外部に燃焼排ガスを導き出すプローブ10が設置される。燃焼排ガスは、当該プローブ10の先端の採取管11から、以下に説明する還元フィルタ20に導かれ、当該還元フィルタ20の下流側から、前記煙道の外側に導かれ、更に、導管12を介して水銀濃度測定装置30に入力される。水銀濃度測定装置30には吸引ポンプ35が内蔵され、当該吸引ポンプ35の吸引によって、前記還元フィルタ20から燃焼排ガスは水銀濃度測定装置30に導かれる。   A probe 10 that guides combustion exhaust gas from the inside of the flue to the outside is installed on the wall of the flue of the combustion furnace. Combustion exhaust gas is led from a sampling tube 11 at the tip of the probe 10 to a reduction filter 20 described below, and is led from the downstream side of the reduction filter 20 to the outside of the flue, and further via a conduit 12. And input to the mercury concentration measuring device 30. The mercury concentration measuring device 30 includes a suction pump 35, and the exhaust gas from the reduction filter 20 is guided to the mercury concentration measuring device 30 by the suction of the suction pump 35.

水銀濃度測定装置30では、前記導管12からの燃焼排ガスは、先ず水分トラップ31で水分が除去され、フィルタ32に導かれ、当該フィルタ32を通過して更に、特開2005-77355に開示するような干渉低減機構33を介して検出部34に導入される。この干渉低減機構33は有機物の影響を数十分の一にまで低減する機能を備えているが、本願発明では当該干渉低減機構33に至るまでの有機物の除去を対象としている。   In the mercury concentration measuring device 30, the combustion exhaust gas from the conduit 12 is first removed from the moisture by the moisture trap 31, guided to the filter 32, passed through the filter 32, and further disclosed in JP-A-2005-77355. It is introduced into the detection unit 34 via the interference reduction mechanism 33. The interference reduction mechanism 33 has a function of reducing the influence of organic matter to several tenths, but the present invention is intended for removal of organic matter up to the interference reduction mechanism 33.

検出部34は、水銀の原子吸光法による特定波長(例えば254nm)の光の吸収量を測定する。前記検出部34では、水銀を含むガスと、水銀を含まないガスの両者の差で水銀量の真値を得るために、前記干渉低減機構33は、水銀を含むガスと、水銀を含まないガスを作るようになっている。   The detection unit 34 measures the amount of absorption of light having a specific wavelength (for example, 254 nm) by mercury atomic absorption. In the detection unit 34, in order to obtain the true value of the mercury amount by the difference between the gas containing mercury and the gas not containing mercury, the interference reduction mechanism 33 is configured to use the gas containing mercury and the gas not containing mercury. Is supposed to make.

測定が終わった燃焼排ガスは流量調整弁36、流量計37、水銀除去器38を介して外部に排出される。   The exhaust gas after measurement is discharged to the outside through the flow rate adjusting valve 36, the flow meter 37, and the mercury remover 38.

図2は発明に係る還元フィルタ20の縦断面を示す図である。   FIG. 2 is a view showing a longitudinal section of the reduction filter 20 according to the invention.

従来から用いられていた還元触媒22が筒体(石英カラム)21の上流側に、その下流側に有機物を燃焼させるための燃焼触媒23が配設され、上流側端、下流側端はシリカウール24を詰めて蓋をするとともに、前記還元触媒22と燃焼触媒23との間にもセパレータとしてシリカウール24が介在するようにしている。更に、筒体21の外周側にヒータ25が設けられ、300〜500℃で運用される。   A conventionally used reduction catalyst 22 is disposed on the upstream side of the cylinder (quartz column) 21 and a combustion catalyst 23 for burning organic substances on the downstream side thereof. The upstream end and the downstream end are silica wool. In addition, a silica wool 24 is interposed between the reduction catalyst 22 and the combustion catalyst 23 as a separator. Further, a heater 25 is provided on the outer peripheral side of the cylinder 21 and is operated at 300 to 500 ° C.

還元触媒22は、前記したように炭酸ナトリウム等のアルカリ金属の塩基性化合物、あるいはアルカリ土類金属の塩基性化合物であり、燃焼排ガス中の水銀化合物、例えば塩化水銀を原子水銀の状態に還元する。更に、燃焼排ガス中には塩化水素、二酸化硫黄、窒素酸化物等の酸性ガスも含まれ、これら酸性ガスが前記水銀原子に触れると、水銀が再酸化されて再び水銀化合物を形成することになり、加えて、本願発明の燃焼触媒(後に説明する第二還元触媒を含む)が被毒されることになる。そこで、前記還元触媒22として酸性ガス除去能力を備えたアルカリ金属の炭酸塩を使用すると、水銀が再酸化することを防止するとともに、前記燃焼触媒が被毒することを防止する効果がある。尚、ここでは顆粒状の還元触媒22が用いられる。   The reduction catalyst 22 is an alkali metal basic compound such as sodium carbonate or an alkaline earth metal basic compound as described above, and reduces a mercury compound such as mercury chloride in the combustion exhaust gas to a state of atomic mercury. . Further, the combustion exhaust gas contains acidic gases such as hydrogen chloride, sulfur dioxide, nitrogen oxides, etc. When these acidic gases come into contact with the mercury atoms, mercury is reoxidized to form mercury compounds again. In addition, the combustion catalyst of the present invention (including a second reduction catalyst described later) is poisoned. Therefore, when an alkali metal carbonate having an acid gas removing ability is used as the reduction catalyst 22, it is effective in preventing mercury from being reoxidized and preventing the combustion catalyst from being poisoned. Here, a granular reduction catalyst 22 is used.

前記燃焼触媒23は、還元触媒22と同じ温度域で働くこと、水銀を捕捉しないこと、有機物を効率よく分解すること、水銀化合物の還元を妨害しないこと、あるいは還元された原子状の水銀を水銀化合物に戻さないことを条件に選択され、酸化銅、酸化セリウム、酸化コバルトのうちの少なくとも1種が選択される。当該燃焼触媒23は粉末状、顆粒状であってもよいが、ここではアルミナ、ゼオライト、珪藻土等の母材に担持される。母材の形状は一般的には径数ミリの粒状ではあるが、ハニカム状等、通気抵抗が少なく排ガス効率が高ければ粒状に限定されない。   The combustion catalyst 23 works in the same temperature range as the reduction catalyst 22, does not capture mercury, efficiently decomposes organic substances, does not interfere with reduction of mercury compounds, or reduces reduced atomic mercury to mercury. It is selected on the condition that it does not return to the compound, and at least one of copper oxide, cerium oxide, and cobalt oxide is selected. The combustion catalyst 23 may be in the form of powder or granules, but is supported on a base material such as alumina, zeolite, or diatomaceous earth here. Although the shape of the base material is generally granular with a diameter of several millimeters, it is not limited to a granular shape, such as a honeycomb shape, if the ventilation resistance is low and the exhaust gas efficiency is high.

ところで、炭酸ガスの存在下では、還元触媒(第一の還元触媒22a)として、前記アルカリ金属の炭酸塩を用いるのが有効であり、更に、アルカリ金属の炭酸塩を用いると、燃焼排ガス中の酸性ガスをも除去することができる。従って、前記第一の還元触媒の下流側に、還元機能を持つが酸性ガスに対する耐性を持たない、活性アルミナやモレキュラーシーブスよりなる還元触媒(第二の還元触媒22b)を配置して還元効率を上げる構成とすることできる(特許5468483号)。   By the way, in the presence of carbon dioxide gas, it is effective to use the alkali metal carbonate as the reduction catalyst (first reduction catalyst 22a). Further, when the alkali metal carbonate is used, Acid gas can also be removed. Therefore, a reduction catalyst (second reduction catalyst 22b) made of activated alumina or molecular sieves that has a reduction function but does not have resistance to acidic gas is disposed downstream of the first reduction catalyst to increase the reduction efficiency. It can be configured to be raised (Japanese Patent No. 5464883).

そこで、前記燃焼触媒23として、第二の還元触媒22bに使用する材料と前記の燃焼触媒23の混合物を母材に担持、あるいは第二の燃焼触媒を母材とし、前記燃焼触媒を担持する構成を採ることができる。   Accordingly, as the combustion catalyst 23, a mixture of the material used for the second reduction catalyst 22b and the combustion catalyst 23 is supported on a base material, or the second combustion catalyst is used as a base material and the combustion catalyst is supported. Can be taken.

上記の構成では、前記燃焼触媒23が、水銀原子を捕捉して、検出された水銀濃度に悪影響を及ぼすことがない必要があり、逆に燃焼触媒23を下流側に置くことによって、還元触媒の還元効果に低下を来たさないことが要求される。   In the above configuration, the combustion catalyst 23 needs to capture mercury atoms and not adversely affect the detected mercury concentration, and conversely, by placing the combustion catalyst 23 downstream, It is required that the reduction effect does not decrease.

更に、上記構成の還元フィルタは還元触媒22が働く300〜500℃で運用されるが、この温度範囲であると、前記のように選択した燃焼触媒23は有機物の燃焼分解による除去に有効に働く。従って、前記の種類の燃焼触媒23を採用することによって、従前からの還元温度範囲を変更する必要もなく、あるいは、還元触媒部分と燃焼触媒部分とで加熱温度を変える必要もなく、充填物を変更あるいは追加するだけで足りることになる。   Further, the reduction filter having the above-described configuration is operated at 300 to 500 ° C. at which the reduction catalyst 22 works. When the temperature is within this temperature range, the combustion catalyst 23 selected as described above works effectively for removing organic substances by combustion decomposition. . Therefore, by adopting the above-mentioned type of combustion catalyst 23, there is no need to change the conventional reduction temperature range, or there is no need to change the heating temperature between the reduction catalyst portion and the combustion catalyst portion, and the packing can be reduced. All you have to do is change or add.

また、以下の実験結果が示すように、前記のように選択された物質よりなる燃焼触媒23による水銀の捕捉量は零であり、燃焼触媒が測定に悪影響を及ぼすことはない。   Further, as the following experimental results show, the amount of mercury trapped by the combustion catalyst 23 made of the material selected as described above is zero, and the combustion catalyst does not adversely affect the measurement.

<実施例1>
表1は燃焼触媒として使用可能な物質について、有機物除去率と、水銀捕捉の有無を調べた実験結果を示すものである。
<Example 1>
Table 1 shows the experimental results of examining the organic substance removal rate and the presence or absence of mercury capture for substances that can be used as combustion catalysts.

触媒形状は粉末(担持なし)、触媒温度400℃、有機物濃度はトルエン350ppm、ガス流量0.03L/分(キャリアガスは空気)の条件下、内径3mm、充填長さ5mm(粉末であるため長くはできない)の大きさ、触媒量は0.2g程度を使用。   Catalyst shape is powder (no support), catalyst temperature is 400 ° C, organic substance concentration is 350ppm of toluene, gas flow rate is 0.03L / min (carrier gas is air), inner diameter is 3mm, packing length is 5mm ) And the amount of catalyst is about 0.2g.

表1に示すように、酸化セリウム、酸化コバルト、酸化銅は、有機物を効率よく除去するとともに、水銀捕捉が無いことから、本願発明の燃焼触媒として使用することができる。特に酸化コバルト、酸化銅は有機物除去率が高く有望である。白金やパラジウムは有機物を効率よく捕捉するが水銀も捕捉し、本願の燃焼触媒としては採用できないことが理解できる。   As shown in Table 1, cerium oxide, cobalt oxide, and copper oxide can be used as a combustion catalyst of the present invention because they efficiently remove organic substances and do not capture mercury. In particular, cobalt oxide and copper oxide are promising because of their high organic matter removal rate. It can be understood that platinum and palladium capture organic substances efficiently but also capture mercury and cannot be used as a combustion catalyst of the present application.

Figure 2018025429

<実施例2>
表2は燃焼触媒として酸化銅を使用したときの各種の有機物の除去率を示す実験結果である。酸化銅は球形アルミナに担持、温度400℃、ガス流量0.3L/分(キャリアガスは空気)の条件下で、トルエン、フタル酸ビス、トリメリット酸トリスについて調べた。トルエン、フタル酸ビス(2−エチルヘキシル)、については効率よく除去されているが、粘着性の強いトリメリット酸トリス(2−エチルヘキシル)については除去率が多少落ちることになる。水銀と有機物が同じ濃度であるとき有機物の紫外線吸収量は水銀の1万分の1以下、ではあるが、燃焼排ガス中の有機物の量が多くなると当該有機物の紫外線吸収量による水銀濃度測定への干渉の影響は無視できなくなる。この場合であっても、当該実施例のように、50%前後の除去率が達成できるとかなり水銀濃度の誤差は改善されることになる。
Figure 2018025429

<Example 2>
Table 2 shows the experimental results showing the removal rates of various organic substances when copper oxide is used as the combustion catalyst. Copper oxide was supported on spherical alumina, and toluene, bisphthalate, and trimellitic acid tris were examined under conditions of a temperature of 400 ° C. and a gas flow rate of 0.3 L / min (the carrier gas was air). Toluene and bis (2-ethylhexyl) phthalate are efficiently removed, but the removal rate of trimellitic acid tris (2-ethylhexyl), which is highly tacky, is somewhat lowered. When mercury and organic matter have the same concentration, the amount of UV absorption of organic matter is 1 / 10,000 or less of mercury, but when the amount of organic matter in combustion exhaust gas increases, the amount of UV absorption of organic matter interferes with mercury concentration measurement. The effects of can not be ignored. Even in this case, if the removal rate of around 50% can be achieved as in this embodiment, the error in mercury concentration is considerably improved.

Figure 2018025429

<実施例3>
表3は温度を変えての燃焼触媒の効果を確認する実験結果を示すものである。
Figure 2018025429

<Example 3>
Table 3 shows experimental results for confirming the effect of the combustion catalyst at different temperatures.

実験条件は、有機物はトルエン500ppm,1000ppmのそれぞれに対して、燃焼触媒は酸化銅(6.8g)、還元触媒(16.8g)、ガス流量0.3g/分とし、触媒温度を300〜500℃に変化させた。前記各触媒は担体を含む重量で、酸化銅と還元触媒を混合して使用。   The experimental conditions are that organic substances are 500 ppm and 1000 ppm of toluene respectively, the combustion catalyst is copper oxide (6.8 g), the reduction catalyst (16.8 g), the gas flow rate is 0.3 g / min, and the catalyst temperature is changed to 300 to 500 ° C. I let you. Each catalyst is a weight including a carrier, and is used by mixing copper oxide and a reduction catalyst.

有機物(トルエン)は400℃以上で略完全に分解することが理解できる。300℃でも50%以上の除去ができており、低温でも有機物の分解効果があることになる。   It can be understood that organic matter (toluene) decomposes almost completely at 400 ° C. or higher. 50% or more can be removed even at 300 ° C, and organic substances can be decomposed even at low temperatures.

Figure 2018025429
<実施例4>
表4は、還元触媒と燃焼触媒を組み合わせたときと燃焼触媒のみのときとでの塩化水銀の還元効率を確認した実験結果である。
Figure 2018025429
<Example 4>
Table 4 shows the experimental results for confirming the reduction efficiency of mercury chloride when the reduction catalyst and the combustion catalyst are combined and when only the combustion catalyst is used.

水銀濃度179μg/m、触媒温度400℃、燃焼触媒は酸化銅(20g:還元触媒なし)、ガス流量0.3g/分とした。燃焼触媒での還元率75%という値は、400℃での熱分解と同等であり、燃焼触媒では水銀還元能力はないことになる。これに対して、還元触媒と燃焼触媒を組み合わせたときの還元率は100%であり、還元触媒が有効に働いているとともに、燃焼触媒が還元触媒の還元機能を妨げていないことが理解できる。 The mercury concentration was 179 μg / m 3 , the catalyst temperature was 400 ° C., the combustion catalyst was copper oxide (20 g: no reduction catalyst), and the gas flow rate was 0.3 g / min. The reduction rate of 75% with the combustion catalyst is equivalent to thermal decomposition at 400 ° C, and the combustion catalyst has no mercury reduction ability. On the other hand, the reduction rate when the reduction catalyst and the combustion catalyst are combined is 100%, and it can be understood that the reduction catalyst works effectively and that the combustion catalyst does not hinder the reduction function of the reduction catalyst.

Figure 2018025429

以上説明した構成によると、燃焼排ガス中の有機物濃度が数千ppm未満、燃焼排ガス流速が数百ml/分程度であれば、少量(例えば10g程度)の燃焼触媒でも、高い有機物分解能力を示すとともに、数ヶ月程度の耐久性を維持することが確認されている。
Figure 2018025429

According to the configuration described above, if the organic matter concentration in the combustion exhaust gas is less than several thousand ppm and the combustion exhaust gas flow rate is about several hundred ml / min, even a small amount (for example, about 10 g) of the combustion catalyst exhibits high organic matter decomposition ability. In addition, it has been confirmed that the durability of about several months is maintained.

以上説明したように、本発明は燃焼排ガス中に有機物が含まれる場合であっても、従来からの水銀化合物還元機能を維持しつつ、有機物も分解することができるので、有機物による水銀濃度の測定誤差を抑えることができる。   As described above, the present invention is capable of decomposing organic matter while maintaining the conventional mercury compound reduction function even when organic matter is contained in the combustion exhaust gas. Errors can be suppressed.

10 プローブ
11 採取管
12 導管
20 還元フィルタ
21 筒体
22 還元触媒
23 燃焼触媒
30 水銀濃度計
31 水分トラップ
32 フィルタ
33 干渉低減機構
34 検出部
35 吸引ポンプ
36 流量調整弁
37 流量計
38 水銀除去器
DESCRIPTION OF SYMBOLS 10 Probe 11 Sampling pipe 12 Conduit 20 Reduction filter 21 Tube 22 Reduction catalyst 23 Combustion catalyst 30 Mercury concentration meter 31 Moisture trap 32 Filter 33 Interference reduction mechanism 34 Detection part 35 Suction pump 36 Flow control valve 37 Flow meter 38 Mercury remover

Claims (5)

燃焼排ガス中の水銀濃度を定量するための水銀濃度測定装置の前段に配置する還元フィルタにおいて、
燃焼排ガス中の水銀化合物を還元する還元触媒と、
燃焼排ガス中の有機物の燃焼を促進する燃焼触媒と、
前記還元触媒と、当該還元触媒の下流側に前記燃焼触媒を充填した筒体と、
当該筒体を所定温度にまで加熱する加熱部材と、
を備えたことを特徴とする還元フィルタ。
In the reduction filter placed in the front stage of the mercury concentration measuring device to quantify the mercury concentration in the combustion exhaust gas,
A reduction catalyst for reducing mercury compounds in combustion exhaust gas,
A combustion catalyst that promotes the combustion of organic matter in the flue gas,
The reduction catalyst and a cylinder filled with the combustion catalyst on the downstream side of the reduction catalyst;
A heating member for heating the cylinder to a predetermined temperature;
A reduction filter comprising:
前記燃焼触媒が、酸化銅、酸化セリウム、酸化コバルトのうちの少なくとも1種である請求項1に記載の還元フィルタ。   The reduction filter according to claim 1, wherein the combustion catalyst is at least one of copper oxide, cerium oxide, and cobalt oxide. 前記燃焼触媒が、母材に担持された請求項2に記載の還元フィルタ。   The reduction filter according to claim 2, wherein the combustion catalyst is supported on a base material. 前記燃焼触媒が、還元触媒とともに母材に担持された請求項2に記載の還元フィルタ。   The reduction filter according to claim 2, wherein the combustion catalyst is supported on a base material together with a reduction catalyst. 前記還元触媒が、水銀に対する還元機能を備えるとともに酸性ガス除去能力を備えた第一還元触媒と、酸性ガス除去能力を持たないが水銀に対する還元性を備えた第二還元触媒とよりなり、前記燃焼触媒が前記第二還元触媒とともに母材に担持された請求項2に記載の還元フィルタ。   The reduction catalyst comprises a first reduction catalyst having a reduction function for mercury and having an acid gas removal capability, and a second reduction catalyst having no acid gas removal capability but having a reduction capability for mercury, and the combustion The reduction filter according to claim 2, wherein the catalyst is supported on a base material together with the second reduction catalyst.
JP2016156326A 2016-08-09 2016-08-09 Reduction filter of mercury concentration measuring apparatus Pending JP2018025429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016156326A JP2018025429A (en) 2016-08-09 2016-08-09 Reduction filter of mercury concentration measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016156326A JP2018025429A (en) 2016-08-09 2016-08-09 Reduction filter of mercury concentration measuring apparatus

Publications (1)

Publication Number Publication Date
JP2018025429A true JP2018025429A (en) 2018-02-15

Family

ID=61194316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016156326A Pending JP2018025429A (en) 2016-08-09 2016-08-09 Reduction filter of mercury concentration measuring apparatus

Country Status (1)

Country Link
JP (1) JP2018025429A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019178796A (en) * 2018-03-30 2019-10-17 Jx金属株式会社 Method for managing mercury
JP7552220B2 (en) 2020-10-08 2024-09-18 株式会社Ihi Exhaust gas treatment equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271460A (en) * 2006-03-31 2007-10-18 Horiba Ltd Method and instrument for measuring mercury in coal combustion exhaust gas
JP2007268426A (en) * 2006-03-31 2007-10-18 Nippon Instrument Kk Mercury-reducing catalyst, mercury-converting unit, and measuring device using the unit for measuring whole mercury in exhaust gas
JP2012021908A (en) * 2010-07-15 2012-02-02 Kyoto Electron Mfg Co Ltd Mercury concentration measuring apparatus and mercury concentration measuring method
JP2012117889A (en) * 2010-11-30 2012-06-21 Nippon Instrument Kk Heating/combustion tube for use in analysis of mercury, thermal decomposition apparatus, and mercury analysis apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271460A (en) * 2006-03-31 2007-10-18 Horiba Ltd Method and instrument for measuring mercury in coal combustion exhaust gas
JP2007268426A (en) * 2006-03-31 2007-10-18 Nippon Instrument Kk Mercury-reducing catalyst, mercury-converting unit, and measuring device using the unit for measuring whole mercury in exhaust gas
JP2012021908A (en) * 2010-07-15 2012-02-02 Kyoto Electron Mfg Co Ltd Mercury concentration measuring apparatus and mercury concentration measuring method
JP2012117889A (en) * 2010-11-30 2012-06-21 Nippon Instrument Kk Heating/combustion tube for use in analysis of mercury, thermal decomposition apparatus, and mercury analysis apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019178796A (en) * 2018-03-30 2019-10-17 Jx金属株式会社 Method for managing mercury
JP7552220B2 (en) 2020-10-08 2024-09-18 株式会社Ihi Exhaust gas treatment equipment

Similar Documents

Publication Publication Date Title
US10295517B2 (en) Heated graphite scrubber to reduce interferences in ozone monitors
US7381388B2 (en) Method for removing mercury from a gas stream using iodine-doped dilution gas
WO2012073617A1 (en) Heating/combustion tube for use in analysis of mercury, thermal decomposition apparatus, and mercury analysis apparatus
US20050260112A1 (en) Removal of elemental mercury from gas by modifying wet scrubber systems with an organic compound
JP2010236877A (en) Device and method for measurement of ammonia concentration in exhaust gas
BR112018002339B1 (en) METHOD AND SYSTEM TO REDUCE PARTICULATE MATTER IN AN EXHAUST GAS
JP2015139775A (en) mercury re-emission control
JP2010096688A (en) Pyrolytically decomposing apparatus for analyzing mercury, mercury analyzer, and its method
EP3032254A1 (en) Method and device for detection of elemental gaseous mercury in air or in other gases
JP2018025429A (en) Reduction filter of mercury concentration measuring apparatus
JP2008190950A (en) Removing method and removing device for selenium oxide in sample, and measuring method and measuring device for mercury in coal combustion exhaust gas using them
JP2007278836A (en) Method of analyzing mercury in exhaust gas, and device therefor
CN116026649B (en) Online continuous monitoring system and method for total mercury concentration and form of fixed source flue gas
JP2007271460A (en) Method and instrument for measuring mercury in coal combustion exhaust gas
JP2006284422A (en) Method and instrument for measuring organohalogen compound
JP6217290B2 (en) Sample gas measuring apparatus and sample gas measuring method
Won et al. Design and production of Hg0 calibrator, Hg2+ calibrator, and Hg2+ to Hg0 converter for a continuous Hg emission monitor
Nguyen et al. Fast and stable real time monitoring of gaseous mercury in its catalytic oxidation using a fully modified cold-vapor atomic absorption mercury analyzer
JP2010122160A (en) Mercury analyzing apparatus and method therefor
US20130004395A1 (en) Processes and apparatuses for oxidizing elemental mercury in flue gas using oxychlorination catalysts
JP2007181757A (en) Method of removing mercury from exhaust gas
JP2013007636A (en) Combustible gas measurement method and device
JP2000065696A (en) Filter device and sulfur analytical system provided with filter device
CN218871737U (en) Corrosive gas concentration detection device
JP4767575B2 (en) Organic halogen compound take-out apparatus and organic halogen compound take-out method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201201