JP2018023977A - Photocatalyst using reductive organic article - Google Patents

Photocatalyst using reductive organic article Download PDF

Info

Publication number
JP2018023977A
JP2018023977A JP2017212411A JP2017212411A JP2018023977A JP 2018023977 A JP2018023977 A JP 2018023977A JP 2017212411 A JP2017212411 A JP 2017212411A JP 2017212411 A JP2017212411 A JP 2017212411A JP 2018023977 A JP2018023977 A JP 2018023977A
Authority
JP
Japan
Prior art keywords
iron
iii
photocatalyst
feedstock
organic substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017212411A
Other languages
Japanese (ja)
Other versions
JP6478209B2 (en
Inventor
クラウジオ 健治 森川
Claudio Kenji Morikawa
クラウジオ 健治 森川
信 篠原
Makoto Shinohara
信 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2017212411A priority Critical patent/JP6478209B2/en
Publication of JP2018023977A publication Critical patent/JP2018023977A/en
Application granted granted Critical
Publication of JP6478209B2 publication Critical patent/JP6478209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalyst available for organic material degradation or high in safety without receiving limitation of using scene or sterilization, and exhibiting activities by absorbing light with wide wavelength including visible light at low cost.SOLUTION: There are provided a photocatalyst consisting of a reaction product manufactured by mixing a reductive organic material having iron reduction performance (ascorbic acid) and an iron feedstock in the presence of water, especially the photocatalyst exhibiting photocatalyst activity when light with wavelength belonging to ultraviolet light, visible light or infrared light, an organic material degradation method including contacting the photocatalyst and a degradation object and exhibiting the light with wavelength belonging to ultraviolet light, visible light or infrared light, and a sterilization method including contacting the photocatalyst and the degradation object and exhibiting the light with wavelength belonging to ultraviolet light, visible light or infrared light.SELECTED DRAWING: Figure 1

Description

本発明は、鉄還元能を有する還元性有機物と鉄との反応生成物を利用した光触媒に関する技術である。また、本発明は、当該光触媒を利用した有機物分解方法又は殺菌方法に関する技術である。   The present invention relates to a photocatalyst using a reaction product of a reducing organic substance having iron reducing ability and iron. Moreover, this invention is a technique regarding the organic substance decomposition | disassembly method or the disinfection method using the said photocatalyst.

・従来の光触媒技術
光触媒は光を当てるだけで有機系の有害物質の分解や殺菌などに利用できることから、手軽で汎用性が高い技術として社会的ニーズが高まっている。
光触媒活性を示すものとして酸化チタンの他、タングステン、インジウム、バナジウム、銀、モリブデン、亜鉛、ガリウムリン、ガリウム、ヒ素などの金属化合物が知られているが、これらはいずれも400nm以下の紫外波長でのみしか光触媒活性を示さない物質である。これらのうち、酸化チタン以外の光触媒は非常に高価で毒性が強いなどの問題があることから実用化が進んでおらず、現段階で光触媒として実用化されているのは酸化チタンだけである。
・ Conventional photocatalytic technology Because photocatalysts can be used for the decomposition and sterilization of organic harmful substances by simply shining light, there is a growing social need as a simple and versatile technology.
In addition to titanium oxide, metal compounds such as tungsten, indium, vanadium, silver, molybdenum, zinc, gallium phosphide, gallium, and arsenic are known as photocatalytic activities, all of which have an ultraviolet wavelength of 400 nm or less. It is a substance that exhibits only photocatalytic activity. Among these, photocatalysts other than titanium oxide have not been put into practical use because they have problems such as being very expensive and highly toxic. At present, only titanium oxide has been put into practical use as a photocatalyst.

酸化チタンは紫外線を吸収すると活性酸素を発生させ、有機物の分解や殺菌などの光触媒活性を示す。この効果を利用して、外壁に酸化チタンを塗装し汚れを付きにくくするなどの利用が進んでいる。
しかし、酸化チタンは400nm以上の可視光では光触媒活性を示さないため、蛍光灯などの可視光しか使用できない居住空間での殺菌・分解などには利用することができず、適用場面が限られているという問題があった。
また、可視光での光触媒活性を実現するために不純物を混入させる技術(ドーピング)が試みられているが(例えば、特許文献1,2等 参照)、加工技術が難しく非常に高価になるという問題がある。さらにドーピング技術で製造される光触媒の活性はとても弱いため、実用化に至っているものは存在しない状況である。
また、米国においては、酸化チタンは発癌物質の認定を受けている物質であり、酸化チタン自体の安全性が疑問視されているため、酸化チタンが利用可能な場面はかなり限定されたものとなっている。
When titanium oxide absorbs ultraviolet rays, it generates active oxygen and exhibits photocatalytic activity such as decomposition and sterilization of organic substances. Utilizing this effect, titanium oxide is coated on the outer wall to make it difficult to get dirty.
However, since titanium oxide does not show photocatalytic activity in visible light of 400 nm or more, it cannot be used for sterilization and decomposition in living spaces where only visible light such as fluorescent lamps can be used, and the application scene is limited. There was a problem of being.
In addition, techniques for doping impurities (doping) have been attempted to achieve photocatalytic activity under visible light (see, for example, Patent Documents 1 and 2), but the processing technique is difficult and very expensive. There is. Furthermore, since the activity of the photocatalyst produced by the doping technique is very weak, there is no situation that has been put to practical use.
In addition, in the United States, titanium oxide is a substance that has been certified as a carcinogen, and the safety of titanium oxide itself has been questioned, so the situations where titanium oxide can be used are quite limited. ing.

以上の状況から、利用場面の限定を受けない安全性の高い光触媒であり、可視光で活性を示す安価な光触媒の開発が期待されていた。   From the above situation, it has been expected to develop a photocatalyst that is highly safe and is not limited by the use scene, and that is inexpensive and exhibits activity with visible light.

特開平7-303835号公報Japanese Unexamined Patent Publication No. 7-303835 特開2006-305532号公報JP 2006-305532 A

本発明は、上記課題を解決し、有機物分解又は殺菌に利用可能であって、利用場面の限定を受けない安全性の高い光触媒であり、可視光を含む幅広い波長の光を吸収して活性を示す光触媒を、安価に提供することを目的とする。   The present invention solves the above problems, is a highly safe photocatalyst that can be used for organic matter decomposition or sterilization, and is not limited by the usage scene, and absorbs light of a wide range of wavelengths including visible light and is active. It aims at providing the photocatalyst shown at low cost.

本発明者らは鋭意研究を重ねたところ、鉄還元能を有する還元性有機物, 又は, 前記還元性有機物の供給原料を、水存在下で鉄供給原料と混合して得た反応生成物に、強力な光触媒活性が付与されることを見出した。また、本発明者らは、当該光触媒活性が、紫外線だけでなく可視光や赤外線を照射した場合にも発揮される活性であることを見出した。さらに、本発明者らは、当該光触媒が物質として安定性を有するものであり、繰り返しての使用が可能であることを見出した。なお、当該光触媒の原料である鉄還元性有機物と鉄供給原料は、安価で身近な物質であり、人体や環境に対して安全性の高い原料であった。
そして、本発明者らは、当該光触媒を利用することによって、紫外線だけでなく可視光や赤外線を照射して有機物分解及び殺菌が可能となることを見出した。
As a result of extensive research, the inventors of the present invention have found that a reducing organic substance having iron reducing ability, or a reaction product obtained by mixing the reducing organic substance feedstock with an iron feedstock in the presence of water, It has been found that strong photocatalytic activity is imparted. Further, the present inventors have found that the photocatalytic activity is an activity exhibited not only when irradiated with visible light or infrared light but also with ultraviolet light. Furthermore, the present inventors have found that the photocatalyst has stability as a substance and can be used repeatedly. Note that the iron-reducing organic substance and the iron supply material, which are raw materials for the photocatalyst, are inexpensive and familiar substances, and are highly safe materials for the human body and the environment.
Then, the present inventors have found that by using the photocatalyst, it is possible to decompose and sterilize organic matter by irradiating not only ultraviolet rays but also visible light and infrared rays.

本発明はこれらの知見に基づいてなされたものである。
即ち、[請求項1]に係る本発明は、三価鉄を二価鉄に還元する作用を有する還元性有機物、及び、鉄供給原料を、40℃〜100℃で10秒〜10日間の条件で、水存在下にて混合し、得られた前記還元性有機物のFe2+錯体を含む反応生成物を活性成分としてなる光触媒であって、
前記還元性有機物が、アスコルビン酸であり、
前記鉄供給原料が、塩化鉄(II)、硝酸鉄(II)、水酸化鉄(II)、酸化鉄(II)、酢酸鉄(II)、乳酸鉄(II)、クエン酸鉄(II)ナトリウム、グルコン酸鉄(II)、炭酸鉄(II)、フマル酸鉄(II)から選ばれる二価鉄の供給原料;塩化鉄(III)、硫酸鉄(III)、クエン酸鉄(III)、クエン酸鉄(III)アンモニウム、EDTA鉄(III)、酸化鉄(III)、硝酸鉄(III)、水酸化鉄(III)、ピロリン酸鉄(III)から選ばれる三価鉄の供給原料;から選ばれる1以上のものであり、
前記混合が、前記還元性有機物、又は、前記還元性有機物の供給原料、の乾燥重量100重量部に対して、鉄元素の重量換算で0.1〜10重量部含有するように前記鉄供給原料を混合するものである、光触媒に関するものである。
また、[請求項2]に係る本発明は、前記鉄供給原料が、塩化鉄(III)、硫酸鉄(III)、クエン酸鉄(III)、クエン酸鉄(III)アンモニウム、EDTA鉄(III)、酸化鉄(III)、硝酸鉄(III)、水酸化鉄(III)、ピロリン酸鉄(III)から選ばれる1以上の三価鉄の供給原料である、請求項1に記載の光触媒に関するものである。
また、[請求項3]に係る本発明は、前記還元性有機物、前記鉄供給原料、及び、これらの合計重量の倍の重量の水を混合することによって、前記反応生成物を得ることを特徴とする、請求項1又は2に記載の光触媒に関するものである。
また、[請求項4]に係る本発明は、三価鉄を二価鉄に還元する作用を有する還元性有機物、及び、鉄供給原料を、40℃〜100℃で10秒〜10日間の条件で、水存在下にて混合し、得られた前記還元性有機物のFe2+錯体を含む反応生成物を活性成分として用いること、並びに、
前記還元性有機物が、アスコルビン酸であり、
前記鉄供給原料が、塩化鉄(II)、硝酸鉄(II)、水酸化鉄(II)、酸化鉄(II)、酢酸鉄(II)、乳酸鉄(II)、クエン酸鉄(II)ナトリウム、グルコン酸鉄(II)、炭酸鉄(II)、フマル酸鉄(II)から選ばれる二価鉄の供給原料;塩化鉄(III)、硫酸鉄(III)、クエン酸鉄(III)、クエン酸鉄(III)アンモニウム、EDTA鉄(III)、酸化鉄(III)、硝酸鉄(III)、水酸化鉄(III)、ピロリン酸鉄(III)から選ばれる三価鉄の供給原料;から選ばれる1以上のものであり、
前記混合が、前記還元性有機物の乾燥重量100重量部に対して、鉄元素の重量換算で0.1〜10重量部含有するように前記鉄供給原料を混合するものであること、を特徴とする光触媒の製造方法に関するものである。
また、[請求項5]に係る本発明は、前記鉄供給原料が、塩化鉄(III)、硫酸鉄(III)、クエン酸鉄(III)、クエン酸鉄(III)アンモニウム、EDTA鉄(III)、酸化鉄(III)、硝酸鉄(III)、水酸化鉄(III)、ピロリン酸鉄(III)から選ばれる1以上の三価鉄の供給原料である、請求項4に記載の方法に関するものである。
また、[請求項6]に係る本発明は、前記還元性有機物、前記鉄供給原料、及び、これらの合計重量の倍の重量の水を混合することによって、前記反応生成物を得ることを特徴とする、請求項4又は5に記載の方法に関するものである。
また、[請求項7]に係る本発明は、請求項1〜3のいずれかに記載の光触媒を含有してなる有機物質分解剤であって、過酸化水素を用いないこと、を特徴とする有機物質分解剤に関するものである。
また、[請求項8]に係る本発明は、請求項4〜6のいずれかに記載の方法により光触媒を得て、当該光触媒を活性成分として用いること、並びに、過酸化水素を用いないこと、を特徴とする有機物質分解剤の製造方法に関するものである。
また、[請求項9]に係る本発明は、請求項4〜6のいずれかに記載の方法により光触媒を得て、当該光触媒と分解対象有機物を接触させ、紫外線、可視光、又は赤外線に属する波長の光を照射すること、並びに、過酸化水素を用いないこと、を特徴とする有機物分解方法に関するものである。
また、[請求項10]に係る本発明は、可視光又は赤外線に属する波長の光を照射する、請求項9に記載の方法に関するものである。
また、[請求項11]に係る本発明は、請求項1〜3のいずれかに記載の光触媒を含有してなる殺菌剤であって、過酸化水素を用いないこと、を特徴とする有機物質分解剤に関するものである。
また、[請求項12]に係る本発明は、請求項4〜6のいずれかに記載の方法により光触媒を得て、当該光触媒を活性成分として用いること、並びに、過酸化水素を用いないこと、を特徴とする殺菌剤の製造方法に関するものである。
また、[請求項13]に係る本発明は、請求項4〜6のいずれかに記載の方法により光触媒を得て、当該光触媒と殺菌対象物を接触させ、紫外線、可視光、又は赤外線に属する波長の光を照射すること、並びに、過酸化水素を用いないこと、を特徴とする殺菌方法に関するものである。
また、[請求項14]に係る本発明は、可視光又は赤外線に属する波長の光を照射する、請求項13に記載の方法に関するものである。
The present invention has been made based on these findings.
That is, the present invention according to [Claim 1] is directed to a reducing organic substance having an action of reducing trivalent iron to divalent iron, and an iron feedstock at 40 ° C. to 100 ° C. for 10 seconds to 10 days. A photocatalyst comprising, as an active component, a reaction product containing the Fe 2+ complex of the reducing organic compound obtained by mixing in the presence of water,
The reducing organic substance is ascorbic acid,
The iron feedstock is iron (II) chloride, iron nitrate (II), iron hydroxide (II), iron oxide (II), iron acetate (II), iron lactate (II), iron citrate (II) sodium , Iron (II) gluconate, iron carbonate (II), divalent iron feedstock selected from iron (II) fumarate; iron (III) chloride, iron (III) sulfate, iron (III) citrate, citric acid A feedstock of trivalent iron selected from iron (III) ammonium oxide, iron (III) EDTA, iron (III) oxide, iron (III) nitrate, iron (III) hydroxide, iron (III) pyrophosphate One or more
The iron feedstock is mixed so that the mixture contains 0.1 to 10 parts by weight in terms of the weight of iron element with respect to a dry weight of 100 parts by weight of the reducible organic substance or the feedstock of the reducible organic substance. It relates to a photocatalyst.
Further, in the present invention according to [Claim 2], the iron feedstock is composed of iron (III) chloride, iron (III) sulfate, iron (III) citrate, iron (III) ammonium citrate, iron EDTA (III ), Iron (III) oxide, iron nitrate (III), iron hydroxide (III), or iron (III) pyrophosphate as a feedstock for one or more trivalent irons. Is.
Further, the present invention according to [Claim 3] is characterized in that the reaction product is obtained by mixing the reducing organic substance, the iron feedstock, and water having a weight twice the total weight thereof. The photocatalyst according to claim 1 or 2.
Further, the present invention according to [Claim 4] is directed to a reducing organic substance having an action of reducing trivalent iron to divalent iron and an iron feedstock at 40 ° C to 100 ° C for 10 seconds to 10 days. Using the reaction product containing the Fe 2+ complex of the reducing organic substance obtained by mixing in the presence of water as an active ingredient, and
The reducing organic substance is ascorbic acid,
The iron feedstock is iron (II) chloride, iron nitrate (II), iron hydroxide (II), iron oxide (II), iron acetate (II), iron lactate (II), iron citrate (II) sodium , Iron (II) gluconate, iron carbonate (II), divalent iron feedstock selected from iron (II) fumarate; iron (III) chloride, iron (III) sulfate, iron (III) citrate, citric acid A feedstock of trivalent iron selected from iron (III) ammonium oxide, iron (III) EDTA, iron (III) oxide, iron (III) nitrate, iron (III) hydroxide, iron (III) pyrophosphate One or more
The photocatalyst characterized in that the mixing is performed by mixing the iron feedstock so as to contain 0.1 to 10 parts by weight in terms of the weight of iron element with respect to 100 parts by weight of the dry weight of the reducing organic substance. It is related with the manufacturing method.
Further, the present invention according to [Claim 5] is characterized in that the iron feedstock contains iron (III) chloride, iron (III) sulfate, iron (III) citrate, iron (III) ammonium citrate, iron EDTA (III ), Iron (III) oxide, iron (III) nitrate, iron (III) hydroxide, iron (III) pyrophosphate, and a feedstock of one or more trivalent irons. Is.
Further, the present invention according to [Claim 6] is characterized in that the reaction product is obtained by mixing the reducing organic substance, the iron feedstock, and water having a weight twice the total weight thereof. It is related with the method of Claim 4 or 5.
The present invention according to [Claim 7] is an organic substance decomposing agent comprising the photocatalyst according to any one of claims 1 to 3, wherein hydrogen peroxide is not used. It relates to an organic substance decomposing agent.
Further, the present invention according to [Claim 8] is to obtain a photocatalyst by the method according to any one of claims 4 to 6, and to use the photocatalyst as an active component, and not to use hydrogen peroxide, The present invention relates to a method for producing an organic substance decomposing agent.
Further, the present invention according to [Claim 9] obtains a photocatalyst by the method according to any one of Claims 4 to 6, contacts the photocatalyst with an organic substance to be decomposed, and belongs to ultraviolet light, visible light, or infrared light. The present invention relates to a method for decomposing organic matter characterized by irradiating light of a wavelength and not using hydrogen peroxide.
The present invention according to [Claim 10] relates to the method according to claim 9, wherein the light having a wavelength belonging to visible light or infrared light is irradiated.
Moreover, the present invention according to [Claim 11] is an organic substance comprising the photocatalyst according to any one of Claims 1 to 3, wherein hydrogen peroxide is not used. It relates to a decomposing agent.
Further, the present invention according to [Claim 12] is to obtain a photocatalyst by the method according to any one of claims 4 to 6, and to use the photocatalyst as an active component, and not to use hydrogen peroxide. The present invention relates to a method for producing a bactericide.
Further, the present invention according to [Claim 13] obtains a photocatalyst by the method according to any one of Claims 4 to 6, contacts the photocatalyst with an object to be sterilized, and belongs to ultraviolet light, visible light, or infrared light. The present invention relates to a sterilization method characterized by irradiating light of a wavelength and not using hydrogen peroxide.
Further, the present invention according to [Claim 14] relates to the method according to claim 13, wherein the light having a wavelength belonging to visible light or infrared light is irradiated.

本発明の光触媒は、紫外線だけでなく可視光や赤外線を照射した場合にも活性を発揮する性質を有する。これにより本発明は、従来技術の酸化チタンでは利用が困難であった様々な用途での使用が期待される。例えば、通常の室内空間での利用が可能となる。   The photocatalyst of the present invention has a property of exhibiting activity when irradiated with visible light or infrared light as well as ultraviolet light. Accordingly, the present invention is expected to be used in various applications that have been difficult to use with the prior art titanium oxide. For example, it can be used in a normal indoor space.

また、本発明の光触媒は、その原料である鉄還元性有機物としてポリフェノール類やアスコルビン酸を用いるものであるため、人体や環境に対して、安全性の高いものとなる。一方、従来技術である酸化チタンは、米国では発癌物質の認定を受けている物質であり普及の妨げとなっている。
この点、本発明の光触媒は、酸化チタンでは利用が困難であった様々な用途での使用が期待される。
Moreover, since the photocatalyst of this invention uses polyphenols and ascorbic acid as the iron reducible organic substance which is the raw material, it becomes a high safety | security with respect to a human body and an environment. On the other hand, titanium oxide, which is a conventional technique, is a substance that has been certified as a carcinogen in the United States, and has been impeded by its spread.
In this respect, the photocatalyst of the present invention is expected to be used in various applications that have been difficult to use with titanium oxide.

また、本発明により、安価な原料(鉄化合物や植物体に含まれる還元性有機物など)のみを用いた簡便な手法により、優れた光触媒を提供することが可能となる。特に還元性有機物の供給原料として植物体抽出残渣(コーヒー粕や茶殻等)、植物乾留液(炭焼きの副産物)、植物搾汁液(ブドウジュースなど)などを用いた場合、特に安価に光触媒を製造することが可能となる。一方、従来技術である酸化チタンは10mgあたり数万円と極めて高価な資材である。
この点、本発明の光触媒は、酸化チタンの製造コストの問題を解決する技術となることが期待される。
In addition, according to the present invention, an excellent photocatalyst can be provided by a simple method using only inexpensive raw materials (such as iron compounds and reducing organic substances contained in plants). Photocatalysts are produced at a particularly low cost, especially when plant extract residues (such as coffee cakes and tea husks), plant dry distillation liquids (coal-baked byproducts), and plant juices (such as grape juice) are used as the feedstock for reducing organic substances. It becomes possible. On the other hand, titanium oxide, which is a conventional technology, is an extremely expensive material of tens of thousands of yen per 10 mg.
In this regard, the photocatalyst of the present invention is expected to be a technology that solves the problem of titanium oxide production costs.

本発明の光触媒は、食品、医療、公衆衛生、農業、環境浄化などの幅広い分野での殺菌や有機物分解に幅広く利用されることが期待される。
The photocatalyst of the present invention is expected to be widely used for sterilization and organic matter decomposition in a wide range of fields such as food, medicine, public health, agriculture, and environmental purification.

実施例5において、可視光を照射して大腸菌の殺菌試験を行った結果を示す写真像図である。図中の写真における青色呈色部分(白黒写真における黒色部分)は、大腸菌が存在する部分を示す。無色の部分は、大腸菌が存在しない部分を示す。In Example 5, it is a photograph image figure which shows the result of having performed visible light irradiation and having performed the bactericidal test of Escherichia coli. The blue colored portion in the photograph (black portion in the black-and-white photograph) indicates a portion where E. coli is present. The colorless part indicates a part where E. coli is not present. 実施例6において、太陽光を照射して大腸菌の殺菌試験を行った結果を示す写真像図である。図中の写真における青色呈色部分(白黒写真における黒色部分)は、大腸菌が存在する部分を示す。無色の部分は、大腸菌が存在しない部分を示す。In Example 6, it is a photograph image figure which shows the result of having irradiated sunlight and having performed the bactericidal test of colon_bacillus | E._coli. The blue colored portion in the photograph (black portion in the black-and-white photograph) indicates a portion where E. coli is present. The colorless part indicates a part where E. coli is not present. 実施例7において、太陽光を照射して大腸菌の殺菌試験を行った結果を示す写真像図である。図中の写真における青色呈色部分(白黒写真における黒色部分)は、大腸菌が存在する部分を示す。無色の部分は、大腸菌が存在しない部分を示す。In Example 7, it is a photograph image figure which shows the result of having irradiated sunlight and having performed the bactericidal test of Escherichia coli. The blue colored portion in the photograph (black portion in the black-and-white photograph) indicates a portion where E. coli is present. The colorless part indicates a part where E. coli is not present.

本発明は、鉄還元能を有する還元性有機物と鉄との反応生成物を利用した光触媒に関する技術である。また、本発明は、当該光触媒を利用した有機物分解方法又は殺菌方法に関する技術である。   The present invention relates to a photocatalyst using a reaction product of a reducing organic substance having iron reducing ability and iron. Moreover, this invention is a technique regarding the organic substance decomposition | disassembly method or the disinfection method using the said photocatalyst.

[還元性有機物]
本発明の光触媒の製造には、「鉄還元能を有する還元性有機物」を原料として用いる。当該有機物を定義すると、還元力が強く三価鉄を二価鉄に還元する作用を有する有機物と定義することができる。
当該有機物として具体的には、アスコルビン酸、ポリフェノール類等を挙げることができる。また、これらの化合物以外にも、植物体又はその加工品には鉄還元能を有する還元性有機物が多く含まれる場合があり、本発明の原料として好適に用いることができる。
[Reducible organic matter]
In the production of the photocatalyst of the present invention, “reducing organic substance having iron reducing ability” is used as a raw material. When the organic substance is defined, it can be defined as an organic substance having a strong reducing power and an action of reducing trivalent iron to divalent iron.
Specific examples of the organic substance include ascorbic acid and polyphenols. In addition to these compounds, the plant body or processed product thereof may contain a large amount of reducing organic substances having iron reducing ability, and can be suitably used as the raw material of the present invention.

ここで、‘アスコルビン酸’としては、アスコルビン酸のfree acidだけでなく、アスコルビン酸化合物(アスコルビン酸カリウム、アスコルビン酸ナトリウムなど)を用いることもできる。
また、‘ポリフェノール類’としては、複数のヒドロキシ基を有するフェノール性分子を指す。ほとんどの植物に含有される化合物であり、フラボノイドやフェノール酸など様々の種類が知られている。具体的な化合物の例としては、カテキン(エピカテキン、エピガロカテキン、エピカテキンガレート、エピガロカテキンガレートなど)、タンニン酸、タンニン、クロロゲン酸、カフェイン酸、ネオクロロゲン酸、シアニジン、プロアントシアニジン、テアルビジン、ルチン、フラボノイド(ケルシトリン、アントシアニン、フラバノン、フラバノール、フラボノール、イソフラボンなど)、フラボン、カルコン類(ナリンゲニンカルコンなど)、キサントフィル、カルノシン酸、エリオシトリン、ノビレチン、タンジェレチン、マグノロール、ホノキオール、エラグ酸、リグナン、クルクミン、クマリン、カテコール、プロシアニジン、テアフラビン、ロズマリン酸、キサントン、ケルセチン、レスベラトロール、没食子酸、フロロタンニン、などが挙げられる。また、分子内にこれらの化合物を1以上有する化合物(例えば、これらの化合物を含む形で結合し高分子化した複合体)も挙げることができる。
また、ある果実から抽出したポリフェノール組成物については、その果実の名称を付したポリフェノールとして呼ぶこともある。例えば、ブドウの果実から抽出したポリフェノール組成物はブドウポリフェノールと呼ばれる。
Here, as “ascorbic acid”, not only ascorbic acid free acid but also ascorbic acid compounds (potassium ascorbate, sodium ascorbate, etc.) can be used.
In addition, “polyphenols” refers to phenolic molecules having a plurality of hydroxy groups. It is a compound contained in most plants, and various types such as flavonoids and phenolic acids are known. Specific examples of the compound include catechin (epicatechin, epigallocatechin, epicatechin gallate, epigallocatechin gallate, etc.), tannic acid, tannin, chlorogenic acid, caffeic acid, neochlorogenic acid, cyanidin, proanthocyanidin, Thealvidin, rutin, flavonoids (such as quercitrin, anthocyanin, flavanone, flavanol, flavonol, isoflavone), flavones, chalcones (such as naringenin chalcone), xanthophyll, carnosic acid, eriocitrin, nobiletin, tangeretin, magnolol, honokiol, ellagic acid, Lignan, curcumin, coumarin, catechol, procyanidin, theaflavin, rosmarinic acid, xanthone, quercetin, resveratrol, gallic acid, fluorotanni , And the like. In addition, compounds having one or more of these compounds in the molecule (for example, a complex formed by combining these compounds to form a polymer) can also be mentioned.
Moreover, about the polyphenol composition extracted from a certain fruit, it may call as the polyphenol which attached | subjected the name of the fruit. For example, a polyphenol composition extracted from grape fruit is called grape polyphenol.

本発明では、当該原料として上記のような化合物の精製品を用いた場合、光触媒の活性が高くなり好適である。   In the present invention, when a purified product of the above compound is used as the raw material, the activity of the photocatalyst is increased, which is preferable.

・還元性有機物の供給原料
本発明では、ポリフェノール類及び/又はアスコルビン酸を含有する植物体又はその加工品を、当該還元性有機物の供給原料として用いることができる。
ここで植物体としては、果実、種子、茎葉、芽、花、根、及び地下茎から選ばれる1以上に由来するものを挙げることができる。
-Feedstock of reducible organic substance In this invention, the plant body containing polyphenols and / or ascorbic acid, or its processed goods can be used as a feedstock of the said reducible organic substance.
Here, examples of the plant include those derived from one or more selected from fruits, seeds, foliage, buds, flowers, roots, and underground stems.

例えば、‘アスコルビン酸’を多く含む植物体原料としては、トマト、ピーマン、唐辛子、冬瓜、ニガウリ、ズッキーニ、キュウリ、さやえんどう、かぼちゃ、なす、グリンピース、そらまめ、えだまめ、オクラ、アセロラ、柑橘類(レモン、ライム、オレンジ、グレープフルーツ、ネーブル、ゆず、きんかん、かぼす、夏みかん、はっさく、いよかん、ライム、温州ミカン、シークヮーサー、マンドリンなど)、柿、キウイフルーツ、パパイヤ、ブラックベリー、ブルーベリー、クランベリー、ラズベリー、ビルベリー、ハックルベリー、イチゴ、メロン、リンゴ、なし、西洋なし、いちじく、桃、スモモ、グァバ、ブドウ、プルーン、あけび、ドリアン、パイナップル、マンゴー、バナナ、サクランボ、ザクロ、スイカ、グミ、ビワ、カシス、栗、ライチ、ぎんなん、オリーブ、アボガド、茶、レタス、キャベツ、ケール、カラシナ、水菜、コマツナ、大根、かぶ、菜の花、白菜、チンゲンサイ、高菜、野沢菜、モロヘイヤ、ねぎ、野蒜、ニンニク、わけぎ、ニラ、タマネギ、エシャロット、しそ、あしたば、ツルムラサキ、クレソン、アスパラガス、バジル、セリ、セロリ、パセリ、ホウレン草、シュンギク、たけのこ、ブロッコリー、カリフラワー、サツマイモ、ジャガイモ、やまのいも、れんこん、かぶ、大根、芽キャベツ、海藻(海苔、ワカメ、昆布、アオサなど)などを挙げることができる。   For example, plant materials rich in 'ascorbic acid' include tomatoes, peppers, chili peppers, winter potatoes, bitter cucumbers, zucchini, cucumbers, peas, pumpkins, eggplants, green peas, broad bean, edamame, okra, acerola, citrus (lemon, lime) , Orange, grapefruit, navel, citron, mandarin orange, pumpkin, summer orange, hassaku, yokan, lime, Wenzhou mandarin orange, shikwasa, mandolin), strawberry, kiwifruit, papaya, blackberry, blueberry, cranberry, raspberry, bilberry, huckleberry, Strawberry, melon, apple, none, western, fig, peach, plum, guava, grape, prune, abalone, durian, pineapple, mango, banana, cherries, pomegranate, watermelon, gummy, loquat, mosquito Shrimp, chestnut, lychee, ginnan, olive, avocado, tea, lettuce, cabbage, kale, mustard, mizuna, komatsuna, radish, turnip, rape blossoms, Chinese cabbage, chingensai, takana, nozawana, morohaya, green onion, samurai, garlic, shrimp , Leek, onion, shallot, shiso, tomato, tsurumura, watercress, asparagus, basil, celery, celery, parsley, spinach, garlic, bamboo shoot, broccoli, cauliflower, sweet potato, potato, yam, lotus root, turnip, radish, Examples include brussels sprouts and seaweed (such as seaweed, wakame, kelp, and seaweed).

また、‘ポリフェノール類’を多く含む植物体原料としては、ブドウ、イチゴ、ブラックベリー、ブルーベリー、クランベリー、ラズベリー、ビルベリー、ハックルベリー、リンゴ、ウメ、桃、スモモ、ナシ、西洋ナシ、サクランボ、柑橘類(レモン、ライム、オレンジ、グレープフルーツ、ネーブル、ゆず、きんかん、かぼす、夏みかん、はっさく、いよかん、ライム、温州ミカン、シークヮーサー、マンダリンなど)、ビワ、キウイフルーツ、マンゴー、マンゴスチン、シシトウ、プルーン、柿、バナナ、メロン、ドラゴンフルーツ、コーヒー、クワ、クコ、カシス、カシュー、ガマズミ、グァバ、ザクロ、オリーブ、アサイー、アロニア、ナス、トマト、ブドウ、カカオ、大豆、黒大豆、小豆、サヤインゲン、落花生、黒胡麻、蕎麦、ダッタンソバ、コーヒー豆、ゴマ、紫キャベツ、茶葉、ウルシ、ヌルデ、シュンギク、ブロッコリー、サトウキビ、ホウレンソウ、コマツナ、ミツバ、オクラ、蕗、タマネギ、モロヘイヤ、シュンギク、ニンニク、紫タマネギ、アスパラガス、パセリ、ユーカリ、コーヒー、イチョウ、ミント、ウド、パパイヤ、シソ、ギムネマ・シルベスタ、センナ、タンポポ、スギナ、シダ(ワラビ、ゼンマイなど)、バナナ、カキ、ナラ、クヌギ、カエデ、セコイヤ、メタセコイヤ、マツ、スギ、ヒノキ、アカシア、アカメガシワ、タカノツメ、アマチャ、アケビ、ヤマウコギ、リョウブ、タムシバ、コブシ、サルナシ、シロモジ、クロモジ、コシアブラ、クサギ、ホオノキ、マタタビ、ユーカリ、グァバ、バナバ、ルイボス、ラフマ、クワ、クコ、クズ、メグスリノキ、ウリン、メルバオ、アオギリ、スオウ、ブラジルボク、メリンジョ、桃、サクラ、モクレン、イェルバ・マテ、メヒルギ、オヒルギ、ヤエヤマヒルギ、ハマザクロ、ニッパヤシ、ヒルギダマシ、ヒルギモドキ、サキシマスオウノキ、ゴボウ、サツマイモ、紫イモ(紫色素を多く含有するサツマイモ)、ジャガイモ、ヤマイモ、タロイモ(サトイモ、エビイモなど)、ウコン、レンコン、コンニャク、海藻(海苔、ワカメ、昆布、アオサ、アラメ、サガラメなど)などを挙げることができる。   In addition, plant materials rich in 'polyphenols' include grapes, strawberries, blackberries, blueberries, cranberries, raspberries, bilberries, huckleberries, apples, ume, peaches, plums, pears, pears, cherries, citrus fruits (lemons Lime, orange, grapefruit, navel, citron, mandarin orange, pumpkin, summer orange, hassaku, yokan, lime, Wenzhou mandarin orange, shikwasa, mandarin, etc.), loquat, kiwifruit, mango, mangosteen, citrus, prune, persimmon, banana, melon , Dragon fruit, coffee, mulberry, wolfberry, cassis, cashew, viburnum, guava, pomegranate, olive, acai, aronia, eggplant, tomato, grape, cacao, soybean, black soybean, red bean, green beans, peanut, black sesame, buckwheat, Tartary buckwheat, coffee beans, sesame, purple cabbage, tea leaves, urushi, mulde, garlic, broccoli, sugar cane, spinach, komatsuna, honeybee, okra, salmon, onion, morohaya, garlic, garlic, purple onion, asparagus, parsley, eucalyptus, Coffee, Ginkgo, Mint, Udo, Papaya, Perilla, Gymnema Silvesta, Senna, Dandelion, Horsetail, Fern (such as bracken, springfish), Banana, Oyster, Nara, Kunugi, Maple, Sequoia, Metasequoia, Pine, Sugi, Cypress, Acacia, Akamegasiwa, Takanotsume, Achacha, Akebi, Yamakogi, Ryubu, Tamshiba, Kobushi, Sarunasi, Shiromoji, Kuromoji, Kosiabura, Hagi, Hoonoki, Matatabi, Eucalyptus, Guava, Banaba, Rooibos, Ruffa, Kuwa, Kuku , Megurinoki, Urin, Merbao, Aogiri, Suou, Brazil Iku, Meringo, Peach, Sakura, Mokuren, Yerba Mate, Merugi, Ohigi, Yaeyama Hirugi, Hamasakuro, Nippa Palm, Hirugidae, Hirugimodoki, Purple Purple Potato, yam, taro (taro, shrimp, etc.), turmeric, lotus root, konjac, seaweed (seaweed, wakame, kelp, Aosa, arame, sagarame, etc.).

当該供給原料としては、植物体を、乾燥物、搾汁液、抽出物(特に、水もしくは熱水抽出物、アルコール抽出物、含水アルコール抽出物)などの状態に加工したものを用いることができる。また搾汁液や抽出液をさらに乾燥物の状態にして用いることもできる。
乾燥物にする場合は、破砕、粉砕、粉末化などの処理を行うことが望ましい。また、鉄との反応効率の観点を考慮すると、粒子径の小さい粉末にしたものが好適である。
ここで抽出に用いる溶媒としては、アスコルビン酸の場合であれば水を用いることが好適である。ポリフェノール類であれば、水、熱水、エタノール、含水エタノールを用いることが好適である。
As said feedstock, what processed the plant body into states, such as a dried material, a juice, and an extract (especially water or a hot-water extract, an alcohol extract, a hydrous alcohol extract), can be used. Further, the juice or the extract can be used in the state of a dried product.
When making a dry product, it is desirable to perform processing such as crushing, crushing, and powdering. In view of the reaction efficiency with iron, a powder having a small particle size is preferable.
As a solvent used for extraction here, it is preferable to use water in the case of ascorbic acid. For polyphenols, it is preferable to use water, hot water, ethanol, or hydrous ethanol.

また、当該供給原料としては、植物体又はその加工品を水もしくは熱水で抽出し、その後に残った残渣についても好適に用いることができる。
また、植物体又はその加工品を還元状態で熱分解して得られる乾留液(植物乾留液)についても好適に用いることができる。
Moreover, as the said feedstock, a plant body or its processed product is extracted with water or hot water, and the residue which remained after that can also be used suitably.
Moreover, it can use suitably also about the dry distillation liquid (plant dry distillation liquid) obtained by thermally decomposing a plant body or its processed goods in a reduced state.

・原料コストが有利な植物体由来原料
本発明では、当該還元性有機物の供給原料として果実搾汁液、茎葉搾汁液、植物乾留液、コーヒー豆焙煎物、茶葉を原料として用いることにより、さらに低コストで光触媒を製造することが可能となり、経済的に有利な効果を期待することができる。
-Plant-derived raw materials with advantageous raw material costs In the present invention, the use of fruit juice, stem and leaf juice, plant distillate, roasted coffee beans, and tea leaves as raw materials as the feedstock for the reducing organic matter further reduces the raw material cost. A photocatalyst can be produced at low cost, and an economically advantageous effect can be expected.

(a) 果実搾汁液
当該還元性有機物の供給原料としては、‘果実搾汁液’を用いることが好適である。果実搾汁に用いる果実の種類としては、上記段落に記載した果実を好適に用いることができる。特に、総ポリフェノール量の多いものが力価の点で好適である。また、原料コストの観点を踏まえると、ブドウ、バナナ、リンゴ、カキ、トマト、柑橘類などの搾汁液を用いることが好適である。
(a) Fruit juice liquid It is preferable to use “fruit juice liquid” as a feedstock for the reducing organic matter. As a kind of fruit used for fruit squeezing, the fruit described in the said paragraph can be used suitably. In particular, those having a large total amount of polyphenols are suitable in terms of titer. From the viewpoint of raw material costs, it is preferable to use juices such as grapes, bananas, apples, oysters, tomatoes and citrus fruits.

(b) 茎葉搾汁液
当該還元性有機物の供給原料としては、‘茎葉搾汁液’を用いることが好適である。茎葉搾汁に用いる植物の種類としては、上記段落に記載した植物体茎葉を好適に用いることができる。特に、総ポリフェノール量の多いものが力価の点で好適である。また、原料コストの観点を踏まえると、スギナ、ヒノキ、マツ、スギなどの搾汁液を用いることが好適である。
(b) Stalk-and-leaves juice As a feedstock for the reducing organic matter, “stem-and-leaf juice” is preferably used. As the kind of plant used for the foliage juice, the plant foliage described in the above paragraph can be suitably used. In particular, those having a large total amount of polyphenols are suitable in terms of titer. From the viewpoint of raw material costs, it is preferable to use a juice of cedar, cypress, pine, cedar and the like.

(c) 植物乾留液
当該還元性有機物の供給原料としては、‘植物乾留液’を用いることが好適である。当該原料には、ポリフェノール類が多く含まれることに加えて、フェノール類、有機酸、カルボニル類、アルコール類、アミン類、塩基性成分、その他中性成分などの多くの還元性有機物の分子が含まれると推測される。
ここで植物乾留液とは、還元状態の植物体を熱分解することによって得られる乾留液(粘りけのある褐色を呈する液体)を指す。外見は赤褐色〜暗褐色を呈する。原液のまま用いることもできるが、濃縮液、希釈液、これらの乾燥物として用いることも可能である。
植物乾留液として具体的には、木酢液、竹酢液、籾酢液などを挙げることができる。原料コストの観点からもこれらを好適に用いることができる。
(c) Plant dry distillation liquid As a feedstock for the reducing organic matter, it is preferable to use a “plant dry distillation liquid”. In addition to being rich in polyphenols, the raw materials contain many reducible organic molecules such as phenols, organic acids, carbonyls, alcohols, amines, basic components, and other neutral components. It is estimated that
Here, the plant dry distillation liquid refers to a dry distillation liquid (liquid having a dark brown color) obtained by pyrolyzing a reduced plant body. Appearance is reddish brown to dark brown. Although it can be used as the stock solution, it can also be used as a concentrated solution, a diluted solution, or a dried product thereof.
Specific examples of the plant dry distillation liquid include wood vinegar, bamboo vinegar, and persimmon vinegar. These can also be suitably used from the viewpoint of raw material costs.

(d) コーヒー豆焙煎物
当該還元性有機物の供給原料としては、‘コーヒー豆焙煎物’に由来する原料を用いることが好適である。当該原料には、ポリフェノール類が非常に多く含まれる。
本発明では、コーヒー豆焙煎物をそのままの状態で又は粉砕状態にして用いることができる。また、当該粉砕物を水又は熱水で抽出した成分(いわゆる淹れたコーヒーの成分)を用いることができる。また、水又は熱水で抽出した後の残渣(いわゆるコーヒー粕)を用いることができる。
特には、原料コストの観点を踏まえると、コーヒー成分抽出後に大量に廃棄される‘コーヒー粕’を用いることが最も好適である。
(d) Roasted coffee beans It is preferable to use a raw material derived from 'roasted coffee beans' as the feedstock for the reducing organic matter. The raw material contains a large amount of polyphenols.
In the present invention, the roasted coffee beans can be used as they are or in a pulverized state. In addition, a component obtained by extracting the pulverized product with water or hot water (a so-called brewed coffee component) can be used. Moreover, the residue (what is called coffee lees) after extracting with water or hot water can be used.
In particular, from the viewpoint of raw material cost, it is most preferable to use 'coffee koji' that is discarded in large quantities after coffee component extraction.

ここでコーヒー豆焙煎物とは、通常の方法に従ってコーヒー豆を焙煎したものであれば如何なるものも含まれる。いわゆる挽いた(粉砕した)コーヒー豆の状態もここに含まれる。また、コーヒー豆を粉砕したものを焙煎したものであってもよい。
ここでコーヒー豆としては、コーヒーノキであるCoffea arabica(アラビカ種)、C.canephora(ロブスタ種)、C.liberica(リベリカ種)の種子であれば如何なるものを用いることができる。なお、生のコーヒー豆であってもよいが、通常用いられるように乾燥保存されたものが好適である。原料コストの観点を踏まえると、工業的には、規格外のコーヒー豆を用いることが好ましい。
ここで焙煎としては、通常行われる如何なる方法を挙げることができ、例えば、直火焙煎、熱風焙煎、遠赤外線焙煎、マイクロ波焙煎、加熱水蒸気焙煎、低温焙煎などを挙げることができる。
また、粉砕としては、コーヒーミル、グラインダー、石臼などによって通常のコーヒー豆が挽かれた状態にすればよく、粗挽きから粉末化状態のものまで幅広く含むものである。鉄との反応効率の観点を考慮すると、表面積の大きい状態にした方が好適であるので、破砕、粉砕、粉末化等することが好適である。
Here, the roasted coffee beans include any coffee beans roasted according to a normal method. This includes the state of so-called ground (ground) coffee beans. Moreover, what crushed coffee beans and roasted them may be used.
Here, any coffee beans can be used as long as they are seeds of Coffea arabica, C. canephora (Robusta) and C. liberica (Coffea arabica), which are coffee trees. In addition, although raw coffee beans may be used, those that have been dried and stored as are commonly used are suitable. From the viewpoint of raw material costs, it is preferable industrially to use non-standard coffee beans.
Here, as the roasting, any method that is usually performed can be exemplified, for example, direct-fire roasting, hot-air roasting, far-infrared roasting, microwave roasting, heated steam roasting, low-temperature roasting, etc. be able to.
The pulverization may be performed by using a coffee mill, a grinder, a stone mortar or the like to grind ordinary coffee beans, and includes a wide range from coarsely ground to powdered. Considering the viewpoint of the reaction efficiency with iron, it is preferable to have a large surface area. Therefore, crushing, pulverization, pulverization and the like are preferable.

(d) 茶葉
当該還元性有機物の供給原料としては、‘茶葉’に由来する原料を用いることが好適である。当該原料には、ポリフェノール類が非常に多く含まれる。
本発明では、茶葉をそのままの状態で又は粉砕状態にして用いることができる。また、当該粉砕物を水又は熱水で抽出した成分(いわゆる淹れた茶の成分)を用いることができる。また、水又は熱水で抽出した後の残渣(いわゆる茶殻)を用いることができる。特には、原料コストの観点を踏まえると、茶成分抽出後に大量に廃棄される‘茶殻’を用いることが最も好適である。
(d) Tea leaves It is preferable to use raw materials derived from 'tea leaves' as the feedstock for the reducing organic matter. The raw material contains a large amount of polyphenols.
In the present invention, the tea leaves can be used as they are or in a pulverized state. In addition, a component obtained by extracting the pulverized product with water or hot water (a so-called brewed tea component) can be used. Further, a residue (so-called tea husk) after extraction with water or hot water can be used. In particular, from the viewpoint of raw material costs, it is most preferable to use “tea husk” that is discarded in large quantities after extraction of tea components.

ここで茶葉とは、チャノキであるCamellia sinensisの茎葉を摘んだものであれば如何なるものも用いることができる。また摘み方は如何なる方法でもよいが、コストの観点を踏まえると、特に機械摘みが好適である。
なお、摘んだ茶葉は細胞の内容物が混ざり合って酸化発酵が起こるが、本発明では如何なる発酵段階の茶葉であっても用いることができる。例えば、加熱して酸化発酵を抑えた緑茶(煎茶、番茶、茎茶、ほうじ茶など)、;ある程度発酵させた青茶(ウーロン茶など)、;完全に発酵させた紅茶、;酸化発酵後にさらに麹菌発酵させた黒茶(プーアル茶など)、;などを用いることができる。好ましくは、緑茶、紅茶、ウーロン茶を挙げることができる。なお、原料コストの観点を踏まえると、工業的には、規格外の茶葉を用いることが好ましい。
また、鉄との反応効率の観点を考慮すると、表面積の大きい状態にした方が好適であるので、破砕、粉砕、粉末化等して用いることが好適である。
Here, any tea leaves can be used as long as the leaves of the camellia Camellia sinensis are picked. The picking method may be any method, but from the viewpoint of cost, mechanical picking is particularly preferable.
The picked tea leaves are mixed with the contents of the cells to cause oxidative fermentation. In the present invention, any tea leaves at any fermentation stage can be used. For example, green tea (such as sencha, bancha, stem tea, and roasted tea) that has been heated to suppress oxidative fermentation; blue tea (such as oolong tea) that has been fermented to some extent; black tea that has been fully fermented; Black tea (such as puer tea), and the like can be used. Preferable examples include green tea, black tea, and oolong tea. From the viewpoint of raw material costs, it is preferable industrially to use nonstandard tea leaves.
In view of the reaction efficiency with iron, it is preferable to have a large surface area, so that it is preferable to use after crushing, pulverizing, pulverizing and the like.

[鉄供給原料]
本発明では、鉄元素を供給する原料として、二価鉄の供給原料、三価鉄の供給原料、又は金属鉄の供給原料のいずれをも用いることができる。また、複数のものを混合して用いることもできる。
[Iron feedstock]
In the present invention, as a raw material for supplying the iron element, any of a bivalent iron feedstock, a trivalent iron feedstock, or a metallic iron feedstock can be used. Moreover, a plurality of things can be mixed and used.

ここで、二価鉄の供給原料としては、塩化鉄(II)、硝酸鉄(II)、硫酸鉄(II)、水酸化鉄(II)、酸化鉄(II)、酢酸鉄(II)、乳酸鉄(II)、クエン酸鉄(II)ナトリウム、グルコン酸鉄(II)など水溶性の鉄化合物、;炭酸鉄(II)、フマル酸鉄(II)などの不溶性の鉄化合物を挙げることができる。
なお、当該二価鉄化合物のうち、水に不溶性の化合物であっても、上記還元性有機物のキレート能によって水溶化するため、本発明の鉄供給原料として直接用いることが可能である。
Here, as the feedstock for divalent iron, iron chloride (II), iron nitrate (II), iron sulfate (II), iron hydroxide (II), iron oxide (II), iron acetate (II), lactic acid Water-soluble iron compounds such as iron (II), sodium iron (II) citrate, iron (II) gluconate; and insoluble iron compounds such as iron (II) carbonate and iron (II) fumarate .
In addition, even if it is a compound insoluble in water among the said bivalent iron compounds, since it water-solubilizes by the chelating ability of the said reducing organic substance, it can be directly used as the iron feedstock of this invention.

また、三価鉄の供給原料としては、塩化鉄(III)、硫酸鉄(III)、クエン酸鉄(III)、クエン酸鉄(III)アンモニウム、EDTA鉄(III)などの水溶性の鉄化合物、;酸化鉄(III)、硝酸鉄(III)、水酸化鉄(III)、ピロリン酸鉄(III)などの不溶性の鉄化合物を挙げることができる。
また、三価鉄の化合物を多く含む天然原料としては、赤玉土、鹿沼土、ローム(アロフェン質の鉄分を多く含む土壌)、ラテライト(酸化鉄(III)を多く含む土壌)、ゲータイト(非結晶質の鉱物を含む土壌)などの土壌、;黄鉄鉱、白鉄鉱、菱鉄鉱、磁鉄鉱、針鉄鉱など天然の鉄鉱石、;前記鉄鉱石が砂塵化した砂鉄、;ヘム鉄、貝殻などの生体由来の物質、;を挙げることができる。なお、土壌や鉄鉱石に含まれる三価鉄の化合物は、通常は水に対して不溶性を示すものが多い。
In addition, as a feedstock for trivalent iron, water-soluble iron compounds such as iron (III) chloride, iron (III) sulfate, iron (III) citrate, iron (III) ammonium citrate, iron EDTA (III), etc. And insoluble iron compounds such as iron (III) oxide, iron (III) nitrate, iron (III) hydroxide, and iron (III) pyrophosphate.
In addition, natural raw materials that contain a large amount of trivalent iron compounds include red jade soil, Kanuma soil, loam (soils rich in allophane iron), laterite (soils rich in iron (III) oxide), goethite (non-crystalline). Soil containing high quality minerals); natural iron ore such as pyrite, pyrite, siderite, magnetite, goethite; sand iron in which the iron ore has become dust; heme iron, shells, etc. Substances; Many trivalent iron compounds contained in soil and iron ore usually show insolubility in water.

また、金属鉄の供給原料としては、製錬鉄や合金などの鉄材を挙げることができる。その他、錆びも原料として用いることができる。なお、これら金属鉄は、通常は水に対して不溶性を示す。   Moreover, iron materials, such as wrought iron and an alloy, can be mentioned as a feedstock of metallic iron. In addition, rust can also be used as a raw material. These metallic irons are usually insoluble in water.

また、上記鉄化合物が水に溶解した二価鉄イオン及び/又は三価鉄イオンを含む水溶液を用いることもできる。
なお、上記鉄供給原料のうち、水に不溶性のものであっても、上記還元性有機物のキレート能によって鉄が水溶化するため、本発明の鉄供給原料として直接用いることが可能である。
Moreover, the aqueous solution containing the bivalent iron ion and / or trivalent iron ion which the said iron compound melt | dissolved in water can also be used.
In addition, even if it is insoluble in water among the said iron supply materials, since iron is water-solubilized by the chelating ability of the said reducing organic substance, it can be directly used as the iron supply material of the present invention.

これらのうち、本発明の光触媒を効率よく製造するためには、水溶性の鉄化合物を用いることが好適である。特には安価な塩化鉄、硫酸鉄などを用いることが好適である。なお、化合物の鉄の価数は、二価でも三価でもいずれのものでも使用可能である。
また、原料コスト及び安定供給の観点を踏まえて製造するためには、天然物である土壌(特に赤玉土、鹿沼土、ロームなど)、金属鉄を鉄供給原料として用いることが好適である。
Among these, in order to efficiently produce the photocatalyst of the present invention, it is preferable to use a water-soluble iron compound. In particular, inexpensive iron chloride, iron sulfate, or the like is preferably used. The iron valence of the compound can be either divalent, trivalent or any other.
Moreover, in order to manufacture in view of raw material costs and stable supply, it is preferable to use natural soil (especially red jade soil, Kanuma soil, loam, etc.) and metallic iron as iron supply materials.

[混合処理]
本発明では、前記還元性有機物(又は前記還元性有機物供給原料)と前記鉄供給原料(もしくは鉄イオン)を、水存在下で混合することによって鉄を二価の鉄イオンに変換し、それを配位する形で光触媒能を有する活性成分である反応生成物を得ることができる。
[Mixing process]
In the present invention, the reducing organic substance (or the reducing organic substance feedstock) and the iron feedstock (or iron ions) are mixed in the presence of water to convert iron into divalent iron ions, A reaction product which is an active ingredient having photocatalytic ability in a coordinated form can be obtained.

・原料の混合比率
原料の混合比率としては、前記還元性有機物, 又は, 還元性有機物の供給原料, の乾燥重量100重量部に対して、前記鉄供給原料を鉄元素の重量換算で0.1重量部以上、好ましくは0.5重量部以上、より好ましくは1重量部以上、さらに好ましくは2重量部以上、特に好ましくは3重量部以上、一層好ましくは4重量部以上を含有するように混合すればよい。鉄元素の割合が少なすぎる場合(鉄元素に対して前記還元性有機物の混合割合が多すぎる場合)には、過剰に存在する還元性有機物がラジカル消去物質(スカベンジャー)として機能するため、光触媒活性を阻害する可能性がある。
また、鉄元素量の上限としては、鉄元素の重量換算で10重量部以下、好ましくは8重量部以下、より好ましくは6重量部以下を挙げることができる。鉄元素の割合が多すぎる場合(鉄元素に対して前記還元性有機物の混合割合が少なすぎる場合)には、鉄イオンを二価の状態で維持できなくなり光触媒活性が低下し、好ましくない。
-Mixing ratio of raw materials The mixing ratio of the raw materials is 0.1 parts by weight of the iron feedstock in terms of the weight of the iron element with respect to 100 parts by weight of the dry weight of the reducing organic substance or the reducing organic feedstock. The mixing may be performed so as to contain 0.5 part by weight or more, more preferably 1 part by weight or more, further preferably 2 parts by weight or more, particularly preferably 3 parts by weight or more, and still more preferably 4 parts by weight or more. When the ratio of iron element is too small (when the mixing ratio of the reducing organic substance is too large with respect to iron element), the excess reducing organic substance functions as a radical scavenging substance (scavenger), so photocatalytic activity May be disturbed.
Further, the upper limit of the amount of iron element is 10 parts by weight or less, preferably 8 parts by weight or less, more preferably 6 parts by weight or less in terms of the weight of iron element. When the ratio of the iron element is too large (when the mixing ratio of the reducing organic substance is too small with respect to the iron element), the iron ions cannot be maintained in a divalent state and the photocatalytic activity is lowered, which is not preferable.

・混合操作
本発明の混合操作は、水存在下において行うものである。ここで水存在下とは、還元性有機物と鉄が、水を媒質として反応できる条件であればよい。当該反応とは、具体的には、当該還元性有機物が鉄イオンを還元状態(二価鉄イオンであるFe2+の状態)にして、錯体を形成する反応であると推測される。
Mixing operation The mixing operation of the present invention is performed in the presence of water. Here, the presence of water may be any condition as long as the reducing organic substance and iron can react with water as a medium. More specifically, the reaction is presumed to be a reaction in which the reducing organic substance turns iron ions into a reduced state (a state of Fe 2+ that is a divalent iron ion) to form a complex.

水の量としては、少なくとも前記原料の混合や攪拌が可能な液量であれば良く、原料(還元性有機物と鉄)の混合物が湿潤する程度の量であってもよい。
なお、水としては、当該反応が起こる条件のものであれば如何なるものも用いることができる。例えば、水道水、井戸水、地下水、河川水、脱イオン水、蒸留水、などを挙げることができる。
なお、還元性有機物の供給原料として、植物体搾汁や植物乾留液などを液体のままを用いる場合は、新たに媒質を添加することなく、直接鉄供給原料と混合して反応させることができる。
The amount of water may be at least a liquid amount capable of mixing and stirring the raw materials, and may be an amount sufficient to wet the mixture of the raw materials (reducing organic substance and iron).
Note that any water can be used as long as the conditions under which the reaction occurs. For example, tap water, well water, ground water, river water, deionized water, distilled water and the like can be mentioned.
In addition, when using a plant body juice, a plant dry distillation liquid, etc. as a liquid as a feedstock of reducible organic substance, it can be made to mix and react directly with an iron feedstock, without newly adding a medium. .

混合操作としては、単純な攪拌混合を行えばよいが、ミキサー、大型攪拌槽、ボルテックス、シェーカーなどによっても行うことができる。
ここで水の温度としては、水が液体状態である温度(例えば1気圧であれば1〜100℃)であればよい。
加熱を要さない室温程度(例えば10〜35℃)を採用することが可能であるが、加熱する場合、40℃以上、好ましくは50℃以上での加熱を行うことにより、反応生成物の生成が促進され好適である。温度の上限としては200℃(加圧加熱の場合)を挙げることができるが、製造コストの観点から、常圧条件での通常加熱での沸点である100℃以下、好ましくは90℃以下、さらに好ましくは70℃以下で行うことが望ましい。なお、100℃以上の反応条件においては、還元性有機物の熱分解を抑制するために密閉容器内で行う方が好適である。
The mixing operation may be simple stirring and mixing, but can also be performed using a mixer, a large stirring tank, a vortex, a shaker, or the like.
Here, the temperature of the water may be a temperature at which the water is in a liquid state (for example, 1 to 100 ° C. if it is 1 atm).
It is possible to employ a room temperature that does not require heating (for example, 10 to 35 ° C.), but when heating, the reaction product is formed by heating at 40 ° C. or higher, preferably 50 ° C. or higher. Is promoted and suitable. The upper limit of the temperature can be 200 ° C. (in the case of pressure heating), but from the viewpoint of production cost, it is 100 ° C. or lower, preferably 90 ° C. or lower, which is the boiling point in normal heating under normal pressure conditions, It is desirable to carry out at 70 ° C. or lower. Note that, under reaction conditions of 100 ° C. or higher, it is preferable to perform the reaction in a sealed container in order to suppress thermal decomposition of the reducing organic substance.

混合時間としては、還元性有機物と鉄が十分に接触するまで、おおよそ10秒以上行えばよいが、均一性を向上させるためには、好ましくは1分以上、より好ましくは3分以上、さらに好ましくは5分以上の混合処理を行うことが望ましい。
また、上限としては、微生物の繁殖による有機物の腐敗を防止するため、10日以内、好ましくは7日以内、より好ましくは5日以内、さらに好ましくは3日以内、特に好ましくは1日以内で行うことが望ましい。ただし滅菌処理を伴う場合は特に上限はない。
なお、鉄供給原料として不溶性の鉄化合物を用いた場合、混合後、反応時間を長くすることによって、反応生成物の量を増加させることが可能となる。
The mixing time may be approximately 10 seconds or more until the reducing organic substance and iron sufficiently come into contact with each other. However, in order to improve uniformity, it is preferably 1 minute or more, more preferably 3 minutes or more, and even more preferably. It is desirable to perform a mixing process for 5 minutes or more.
In addition, the upper limit is 10 days, preferably 7 days, more preferably 5 days, more preferably 3 days, and particularly preferably 1 day in order to prevent the decay of organic matter due to the growth of microorganisms. It is desirable. However, there is no upper limit especially when sterilization is involved.
When an insoluble iron compound is used as the iron feedstock, the amount of the reaction product can be increased by increasing the reaction time after mixing.

[光触媒]
上記工程を経て得られる反応生成物(還元性有機物と鉄との反応物)は、優れた光触媒活性を有する。当該反応生成物では、当該還元性有機物が鉄イオンを二価の状態(Fe2+の状態)にして、錯体を形成しているものと推測される。
[photocatalyst]
The reaction product (reaction product of reducing organic substance and iron) obtained through the above steps has excellent photocatalytic activity. In the reaction product, it is presumed that the reducing organic substance forms a complex by changing the iron ion to a divalent state (Fe 2+ state).

上記工程にて得られる前記反応生成物は、反応後に得られた上清や含水状態の沈殿物のまま光触媒として用いることができる。また、上清や沈殿物をそれぞれ分離回収して、光触媒として用いることができる。また、上清及び/又は沈殿物の乾燥物(例えば、自然乾燥、焙煎など)や、前記乾燥物をさらに水に溶いた上清や懸濁物についても、光触媒として用いることが可能である。   The said reaction product obtained at the said process can be used as a photocatalyst with the supernatant obtained after reaction, or a hydrous precipitate. In addition, the supernatant and the precipitate can be separated and recovered and used as a photocatalyst. In addition, a dried product of the supernatant and / or precipitate (eg, natural drying, roasting, etc.), and a supernatant or suspension obtained by further dissolving the dried product in water can also be used as a photocatalyst. .

・本発明の光触媒の特徴
当該反応生成物は、200〜1400nmという幅広い波長域の光を照射した場合にも、即ち、紫外線だけでなく可視光や赤外線を照射した場合にも、これらの光を吸収して優れた光触媒活性を発揮する性質を有する。
ここで、‘紫外線’とは、380nm以下の波長域の光を指す。また、‘可視光’とは、ヒトの目で見える波長域である波長380〜750nmの光を指す。具体的には、380〜450nm(紫色光)、450〜495nm(青色光)、495〜570nm(緑色光)、570〜590nm(黄色光)、590〜620nm(橙色光)、620〜750nm(赤色光)の波長域の光を指す。また、赤外線とは、750nm以上の波長域の光を指す。
・ Characteristics of the photocatalyst of the present invention The reaction product emits these lights even when irradiated with light in a wide wavelength range of 200 to 1400 nm, that is, when irradiated with visible light or infrared light as well as ultraviolet light. Absorbs and exhibits excellent photocatalytic activity.
Here, 'ultraviolet rays' refers to light having a wavelength range of 380 nm or less. “Visible light” refers to light having a wavelength range of 380 to 750 nm, which is a wavelength range visible to the human eye. Specifically, 380-450 nm (purple light), 450-495 nm (blue light), 495-570 nm (green light), 570-590 nm (yellow light), 590-620 nm (orange light), 620-750 nm (red) Light). Infrared rays refer to light having a wavelength range of 750 nm or more.

当該反応生成物の光触媒活性は、紫外線を照射した時に極めて強い光触媒活性を示す。特に近紫外線である200〜380nmの波長の光においてのその活性の強さは、酸化チタンよりも遥かに大きな力価を示す。
また、当該反応生成物は、酸化チタンでは活性を示さない波長域である可視光及び赤外線を照射した時にも強い光触媒活性を示す。可視光では特に波長の短い紫色光〜青色光(380〜495nm)の波長域で強い活性を示す。赤外線では近赤外線である750〜1400nm(特に900〜1300nm付近、さらに特には1100〜1300nm付近)の波長域で強い活性を示す。このような可視光や赤外線での光触媒活性は、従来技術には見られない。
The photocatalytic activity of the reaction product exhibits extremely strong photocatalytic activity when irradiated with ultraviolet rays. In particular, the intensity of the activity in the near ultraviolet light having a wavelength of 200 to 380 nm shows a much higher titer than that of titanium oxide.
In addition, the reaction product exhibits strong photocatalytic activity even when irradiated with visible light and infrared light in a wavelength region that does not exhibit activity with titanium oxide. Visible light exhibits strong activity especially in the wavelength range of violet light to blue light (380 to 495 nm) having a short wavelength. Infrared rays exhibit strong activity in the near infrared range of 750 to 1400 nm (especially around 900 to 1300 nm, more particularly around 1100 to 1300 nm). Such photocatalytic activity with visible light or infrared light is not found in the prior art.

当該反応生成物は、照射された光エネルギーを吸収し、近傍の有機物質等を分解する活性を示す。当該活性は、光エネルギーによって励起した光触媒が発生させるラジカルによって奏される現象と推測される。   The reaction product absorbs irradiated light energy and exhibits an activity of decomposing nearby organic substances. The activity is presumed to be a phenomenon exhibited by radicals generated by a photocatalyst excited by light energy.

当該反応生成物は、光を連続的に照射した場合、照射している間は光触媒活性を連続して発揮する性質を有する。また、光照射を一度中断した場合においても、再度の照射によって光触媒活性が発揮される。即ち、当該反応生成物は、光触媒として繰り返して使用することが可能な資材である。
これは、当該反応生成物(当該還元性有機物のFe2+錯体)の分子内の共鳴構造が光エネルギーをFe2+に伝達して効率よくラジカルを発生させるとともに、自らの分子はラジカルによる攻撃を受けても共鳴構造によりスカベンジする安定した構造体であるためと推測される。
When the reaction product is continuously irradiated with light, it has a property of continuously exhibiting photocatalytic activity during irradiation. Moreover, even when light irradiation is interrupted once, photocatalytic activity is exhibited by re-irradiation. That is, the reaction product is a material that can be used repeatedly as a photocatalyst.
This is because the resonance structure in the molecule of the reaction product (the Fe 2+ complex of the reducing organic substance) efficiently transmits radicals by transmitting light energy to Fe 2+ , and its own molecule is attacked by radicals. However, it is presumed that this is a stable structure that scavenges due to the resonance structure.

[光触媒の具体的な利用用途]
本発明の光触媒(還元性有機物と鉄の反応生成物)は、人体や環境に対して安全性が高い物質であるので、医薬、食品、公衆衛生、農業等、工業等、様々な用途に用いることができる。
例えば、前記還元性有機物として、アスコルビン酸やポリフェノール類を用いた場合、これらは食品由来の供給原料に由来する物質であるので、特に食品分野での使用が期待される。特にアスコルビン酸は無色透明のため好適である。
また、還元性有機物供給原料として、植物乾留液を用いた場合、当該成分はやや匂いを有する物質を含む。しかし、当該原料は非常に安価であるため、農業、医薬、公衆衛生等の分野での使用が期待される。
[Specific use of photocatalyst]
The photocatalyst (reaction product of reducing organic substance and iron) of the present invention is a substance that is highly safe for the human body and the environment, so it is used for various uses such as medicine, food, public health, agriculture, industry, etc. be able to.
For example, when ascorbic acid and polyphenols are used as the reducing organic substance, since these are substances derived from food-derived feedstocks, they are expected to be used particularly in the food field. Ascorbic acid is particularly suitable because it is colorless and transparent.
Moreover, when a plant dry distillation liquid is used as a reducing organic substance feedstock, the component contains a substance having a slight odor. However, since the raw material is very inexpensive, it is expected to be used in fields such as agriculture, medicine, and public health.

・有機物分解
本発明では、当該光触媒が有する有機物分解活性を利用して、有機物全般の分解が可能であるが、特に有機系の汚染物質や有害物質の分解に好適に用いることができる。即ち、環境浄化の一工程に有用に用いることができる。
-Organic substance decomposition In this invention, although the organic substance decomposition | disassembly activity which the said photocatalyst has can be utilized, decomposition | disassembly of organic substance whole is possible, but it can use suitably especially for decomposition | disassembly of an organic type pollutant and a harmful substance. That is, it can be usefully used in one process of environmental purification.

ここで、汚染物質や有害物質としては、水質汚染、土壌汚濁、大気汚染を引き起こす物質をいう。例えば、生活排水、し尿水、工場排水、汚染された河川や湖沼水、ゴミ廃棄場の土壌、産業廃棄物、農地、工場跡地などに含まれる人体や環境に有害な有機系物質を挙げることができる。
分解対象となる具体的な有機物質としては、例えば、洗剤、飲食品残渣、し尿、糞便、農薬、悪臭物質、廃油、ダイオキシン、PCB、DNA、RNA、タンパク質など有機性廃棄物などを挙げることができる。
Here, the pollutants and harmful substances are substances that cause water pollution, soil pollution, and air pollution. Examples include organic substances that are harmful to humans and the environment, such as domestic wastewater, human waste water, factory wastewater, polluted river and lake water, soil in garbage disposal sites, industrial waste, farmland, and factory sites. it can.
Specific organic substances to be decomposed include, for example, detergents, food and drink residues, human waste, feces, agricultural chemicals, malodorous substances, waste oil, dioxins, PCBs, DNA, RNA, and organic waste such as proteins. it can.

本発明の光触媒を有機物分解剤の活性成分として使用する場合、その形態としては、例えば、粉末、顆粒、シート状、ボード状、キューブ状、スポンジ状などの固形の形態を挙げることができる。また、濃縮液、液体アンプルなどの液体の形態を挙げることができる。また、粉末状の形態、賦型剤等と混ぜて固形にした形態、カプセルに充填する形態、ゲル状の形態なども挙げることができる。
本発明においては、当該光触媒を分解対象に噴霧、散布、添加、混合、塗布、練り込み等した後、光照射することによって有機物の分解を行うことができる。
When the photocatalyst of the present invention is used as an active ingredient of an organic substance decomposing agent, examples of its form include solid forms such as powder, granule, sheet form, board form, cube form and sponge form. Moreover, liquid forms, such as a concentrate and a liquid ampule, can be mentioned. In addition, powdered forms, forms solidified by mixing with excipients, forms filled in capsules, gel-like forms, and the like can also be exemplified.
In the present invention, after the photocatalyst is sprayed, dispersed, added, mixed, applied, kneaded, etc. to the decomposition target, the organic matter can be decomposed by irradiating with light.

光触媒の使用量としては、有機物分解作用が発揮される溶液濃度にして使用すればよい。例えば、鉄換算濃度で0.001ppm以上、好ましくは0.01ppm以上、より好ましくは0.05ppm以上、さらに好ましくは0.1ppm以上、特に好ましくは0.5ppm以上、一層好ましくは1ppm以上、より一層好ましくは2.5ppm以上、さらに一層好ましくは5ppm以上、特に一層好ましくは5.5ppm以上、さらにより一層好ましくは10ppm以上、特にさらにより一層好ましくは20ppm以上となるように調製して使用することが望ましい。
また、上限としては特にないが、例えば、鉄換算濃度で40000ppm以下、好ましくは10000ppm以下、より好ましくは5000ppm以下、さらに好ましくは1000ppm以下、特に好ましくは750ppm、一層好ましくは500ppm以下を挙げることができる。
The amount of the photocatalyst used may be a solution concentration that exhibits an organic substance decomposing action. For example, the iron equivalent concentration is 0.001 ppm or more, preferably 0.01 ppm or more, more preferably 0.05 ppm or more, further preferably 0.1 ppm or more, particularly preferably 0.5 ppm or more, more preferably 1 ppm or more, and even more preferably 2.5 ppm or more. Further, it is desirable to prepare and use it so that it becomes 5 ppm or more, particularly preferably 5.5 ppm or more, even more preferably 10 ppm or more, and even more preferably 20 ppm or more.
Further, although there is no particular upper limit, for example, an iron equivalent concentration of 40,000 ppm or less, preferably 10,000 ppm or less, more preferably 5000 ppm or less, still more preferably 1000 ppm or less, particularly preferably 750 ppm, more preferably 500 ppm or less. .

当該光触媒の分解効果は極めて強力であるため、難分解性の有機物(例えば塩基性フクシン)について効率良く分解することができる。例えば、100W/m2の光を照射する場合であれば、1日あたり少なくとも2.5mg/L以上、多い場合には35mg/L以上の有機物分解が可能である。 Since the decomposition effect of the photocatalyst is extremely strong, it is possible to efficiently decompose a hardly decomposable organic substance (for example, basic fuchsin). For example, in the case of irradiation with light of 100 W / m 2 , it is possible to decompose organic substances at least 2.5 mg / L or more per day, and 35 mg / L or more when there are many.

・殺菌
本発明の光触媒の強力な有機物分解作用を利用して、様々な分野の殺菌に用いることができる。当該殺菌対象として、具体的には、医療器具、病室の壁、患者の患部、衣服、寝具など、食品の製造機器のライン、食材、まな板、包丁等の台所用品、食器、便座、手すり、農機具、養液栽培の装置や養液などを挙げることができる。本発明の光触媒では、通常の酸化チタンを用いた殺菌方法と違って可視光や赤外線の照射使用が可能であるため、使用用途や使用場面が大幅に向上したものとなる。
また、殺菌可能な対象としては、バクテリアだけでなく、真核微生物、藻類、古細菌、ウイルス、ウイロイドなどの殺菌が可能である。
-Sterilization Utilizing the powerful organic substance decomposition action of the photocatalyst of the present invention, it can be used for sterilization in various fields. Specific examples of the sterilization target include medical equipment, hospital room walls, affected areas of patients, clothes, bedding, food production equipment lines, foodstuffs, cutting boards, kitchen knives, kitchen utensils, tableware, toilet seats, handrails, farm equipment Examples include hydroponic equipment and nutrient solutions. Since the photocatalyst of the present invention can be used for irradiation with visible light or infrared light, unlike the conventional sterilization method using titanium oxide, the usage and usage scene are greatly improved.
In addition, as a target that can be sterilized, not only bacteria but also eukaryotic microorganisms, algae, archaea, viruses, viroids, and the like can be sterilized.

本発明の光触媒を殺菌剤の活性成分として使用する場合、その形態としては、例えば、粉末、顆粒、シート状、ボード状、キューブ状、スポンジ状などの固形の形態を挙げることができる。また、希釈液、濃縮液、液体アンプルなどの液体の形態を挙げることができる。また、粉末状の形態、賦型剤等と混ぜて固形にした形態、カプセルに充填する形態、ゲル状の形態なども挙げることができる。
本発明においては、当該光触媒を分解対象に噴霧、散布、添加、混合、塗布、練り込み等した後、光照射することによって殺菌を行うことができる。
When the photocatalyst of the present invention is used as an active ingredient of a bactericide, examples of its form include solid forms such as powder, granule, sheet form, board form, cube form and sponge form. Moreover, liquid forms, such as a dilution liquid, a concentrated liquid, and a liquid ampule, can be mentioned. In addition, powdered forms, forms solidified by mixing with excipients, forms filled in capsules, gel-like forms, and the like can also be exemplified.
In the present invention, the photocatalyst can be sterilized by irradiating it with light after spraying, spreading, adding, mixing, applying, kneading and the like to the decomposition target.

光触媒の使用量としては、殺菌作用が発揮される溶液濃度にして使用すればよい。例えば、鉄換算濃度で0.001ppm以上、好ましくは0.01ppm以上、より好ましくは0.05ppm以上、さらに好ましくは0.1ppm以上、特に好ましくは0.5ppm以上、一層好ましくは1ppm以上、より一層好ましくは2.5ppm以上、さらに一層好ましくは5ppm以上、特に一層好ましくは5.5ppm以上、さらにより一層好ましくは10ppm以上、特にさらにより一層好ましくは20ppm以上となるように調製して使用することが望ましい。
また、上限としては特にないが、例えば、鉄換算濃度で40000ppm以下、好ましくは10000ppm以下、より好ましくは5000ppm以下、さらに好ましくは1000ppm以下、特に好ましくは750ppm、一層好ましくは500ppm以下を挙げることができる。
The amount of the photocatalyst used may be a solution concentration that exhibits a bactericidal action. For example, the iron equivalent concentration is 0.001 ppm or more, preferably 0.01 ppm or more, more preferably 0.05 ppm or more, further preferably 0.1 ppm or more, particularly preferably 0.5 ppm or more, more preferably 1 ppm or more, and even more preferably 2.5 ppm or more. Further, it is desirable to prepare and use it so that it becomes 5 ppm or more, particularly preferably 5.5 ppm or more, even more preferably 10 ppm or more, and even more preferably 20 ppm or more.
Further, although there is no particular upper limit, for example, an iron equivalent concentration of 40,000 ppm or less, preferably 10,000 ppm or less, more preferably 5000 ppm or less, still more preferably 1000 ppm or less, particularly preferably 750 ppm, more preferably 500 ppm or less. .

当該光触媒の殺菌効果は極めて強力であるため、例えば表面殺菌の場合、太陽光照射を数分程度、好ましくは10分以上、より好ましくは20分以上の処理によって、十分な殺菌効果が発揮される。
また、LEDや蛍光灯等の比較的弱い光を照射する場合であっても、1時間以上、好ましくは6時間以上、より好ましくは12時間以上の処理によって十分な殺菌効果が発揮される。
Since the sterilization effect of the photocatalyst is extremely strong, for example, in the case of surface sterilization, a sufficient sterilization effect is exhibited by treatment with sunlight irradiation for about several minutes, preferably 10 minutes or more, more preferably 20 minutes or more. .
Even when a relatively weak light such as an LED or a fluorescent lamp is irradiated, a sufficient bactericidal effect is exhibited by treatment for 1 hour or longer, preferably 6 hours or longer, more preferably 12 hours or longer.

以下、実施例を挙げて本発明を具体的に説明するが、本発明の範囲は実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, the scope of the present invention is not limited to an Example.

[実施例1]『還元性有機物を含む原料』
三価鉄を二価鉄に還元する活性を有するかを検証することで、各種原料が還元性有機物であるかを判定した。
[Example 1] “Raw material containing reducing organic substances”
By examining whether it has an activity to reduce trivalent iron to divalent iron, it was determined whether various raw materials were reducing organic substances.

(1)「鉄還元能の検証」
表1に示す各原料のそれぞれ100重量部(乾燥重量換算)に対して、鉄元素換算で同重量の塩化鉄(III)を含む各水溶液(0.1wt%各原料, 0.1wt%塩化鉄溶液)を調製し、室温で数分静置した。その後、各水溶液にジピリジル2g/L、酢酸100g/Lとなるように添加混合して、呈色反応の有無を調べた。ここで、ジピリジルは、三価の鉄とは反応せず無色のままであるが、二価鉄と反応した時に赤色に呈色する物質である。二価鉄の検出に用いられる。 また、対照として、0.1wt%塩化鉄(III)水溶液を調製し、同様の操作を行った。結果を、表1に示した。
(1) "Verification of iron reduction ability"
Each aqueous solution containing 100 parts by weight (in terms of dry weight) of each raw material shown in Table 1 containing the same weight of iron (III) chloride in terms of iron element (0.1 wt% each raw material, 0.1 wt% iron chloride solution) Was prepared and allowed to stand at room temperature for several minutes. Thereafter, each aqueous solution was mixed with dipyridyl 2 g / L and acetic acid 100 g / L, and the presence or absence of a color reaction was examined. Here, dipyridyl is a substance that does not react with trivalent iron and remains colorless, but turns red when reacted with divalent iron. Used for detection of divalent iron. Further, as a control, a 0.1 wt% iron (III) chloride aqueous solution was prepared, and the same operation was performed. The results are shown in Table 1.

その結果、植物体に由来する各種原料(試料1-1〜1-8)、ポリフェノール類(試料1-9〜1-13)、アスコルビン酸(試料1-14)を添加した溶液では、赤色を呈した。即ち、これらの原料には、三価鉄を二価鉄に還元する作用を有する作用を有する還元性有機物を含む原料であることが示された。また、ここで還元された二価鉄は、二価鉄の状態で安定的に維持されることが示された。
一方、クエン酸(試料1-15)を添加した溶液では、溶液は無色のままであった。即ち、これらの原料には、三価鉄を二価鉄に還元する作用を有さない原料であることが示された。
As a result, in the solution containing various raw materials derived from plants (samples 1-1 to 1-8), polyphenols (samples 1-9 to 1-13), and ascorbic acid (sample 1-14), Presented. That is, these raw materials were shown to be raw materials containing a reducing organic substance having an action of reducing trivalent iron to divalent iron. Moreover, it was shown that the divalent iron reduced here is stably maintained in the state of divalent iron.
On the other hand, in the solution to which citric acid (sample 1-15) was added, the solution remained colorless. That is, these raw materials were shown to be raw materials that have no action of reducing trivalent iron to divalent iron.

(2) 考察
この結果から、ポリフェノール類とアスコルビン酸は、鉄還元能を有する還元性有機物であることが示された。また、植物体に由来する各種原料(特にポリフェノール類を多く含む原料)は、鉄還元能を有する還元性有機物の供給原料となることが示された。また、二価鉄イオンが安定的に維持されることから、当該還元性有機物は二価鉄イオンの錯体構造を形成しているものと推測された。
一方、クエン酸は、還元性を示すキレート剤として知られている物質であるが、鉄に対する還元能を有さないことが示された。
(2) Discussion From this result, it was shown that polyphenols and ascorbic acid are reducing organic substances having iron reducing ability. Moreover, it was shown that the various raw materials derived from a plant body (especially the raw material which contains many polyphenols) become a supply raw material of the reducing organic substance which has iron reduction ability. In addition, since divalent iron ions were stably maintained, it was assumed that the reducing organic substance formed a complex structure of divalent iron ions.
On the other hand, citric acid is a substance known as a chelating agent exhibiting reducibility, but it has been shown that it has no reducing ability for iron.

[実施例2]『光触媒活性を励起する波長』
茶殻又はコーヒー粕を原料として‘還元性有機物と鉄との反応生成物’を調製し、当該物質の光触媒活性を検討した。
[Example 2] “Wavelength for exciting photocatalytic activity”
'Reaction product of reducing organic substance and iron' was prepared from tea husk or coffee cake as raw material, and the photocatalytic activity of the substance was examined.

(1)「光触媒活性の測定」
茶殻(茶葉の熱湯抽出残渣)又はコーヒー粕(焙煎コーヒー豆粉砕物の熱湯抽出残渣)の100重量部(乾燥重量換算)に対して、鉄元素換算で4重量部の塩化鉄(III)(FeCl3)を混合し、両者の合計量の倍の重量の水を加え、98℃で1時間加熱処理し反応生成物を得た。濾過して得られた濾液をそれぞれ「茶葉成分・鉄」(試料2-1)又は「コーヒー豆焙煎物成分・鉄」(試料2-2)とした。また、比較試料として酸化チタン(TiO:酸化チタン(IV)アナタゼ型, 粒子サイズ100〜300nm, WAKO製)(比較2-1)を準備した。
(1) "Measurement of photocatalytic activity"
4 parts by weight of iron (III) chloride in terms of iron element (100 parts by weight in terms of dry weight) per 100 parts by weight (dry weight equivalent) of tea husk (tea leaf hot water extraction residue) or coffee cake (roasted coffee beans ground residue) FeCl 3 ) was mixed, water twice the total amount of both was added, and heat treatment was performed at 98 ° C. for 1 hour to obtain a reaction product. The filtrate obtained by filtration was designated as “tea leaf component / iron” (sample 2-1) or “coffee bean roast product / iron” (sample 2-2). In addition, titanium oxide (TiO 2 : titanium oxide (IV) anatase type, particle size 100 to 300 nm, manufactured by WAKO) (Comparative 2-1) was prepared as a comparative sample.

次いで、各試料又は比較試料を鉄元素換算(酸化チタンについてはチタン元素換算)で35ppmになるように加えた3.5ppm塩基性フクシン水溶液を、試料ごとに複数調製した。各水溶液に波長の異なるLEDを24時間照射して静置し、塩基性フクシンの定量を経時的に行った。ここでLEDの照射強度は、紫外線(375nm)については1mW/cmで行った。可視光(青色光(470nm), 緑色光(525nm), 黄色光(570nm), 赤色光(660nm))、及び、赤外線(940nm, 1200nm)の照射強度については、光量子密度100μmol/m/secにて行った。また、塩基性フクシンの定量は540nmの吸光度を測定することで行った。なお、対照として暗黒条件に24時間静置し、塩基性フクシンの定量を経時的に行った。
540nmの吸光度(塩基性フクシンの定量結果)を測定し、分解率を算出して表2-A〜2-Dに示した。
Next, a plurality of 3.5 ppm basic fuchsin aqueous solutions in which each sample or comparative sample was added to 35 ppm in terms of iron element (in terms of titanium element in terms of titanium oxide) were prepared for each sample. Each aqueous solution was irradiated with LEDs with different wavelengths for 24 hours and allowed to stand, and basic fuchsin was quantified over time. Here, the irradiation intensity of the LED was 1 mW / cm 2 for ultraviolet rays (375 nm). For the irradiation intensity of visible light (blue light (470nm), green light (525nm), yellow light (570nm), red light (660nm)) and infrared light (940nm, 1200nm), the photon density is 100μmol / m 2 / sec. I went there. Basic fuchsin was quantified by measuring absorbance at 540 nm. As a control, the sample was allowed to stand in dark conditions for 24 hours, and basic fuchsin was quantified over time.
The absorbance at 540 nm (basic fuchsin quantification result) was measured, and the decomposition rate was calculated and shown in Tables 2-A to 2-D.

その結果、「茶葉成分・鉄」(試料2-1)又は「コーヒー豆焙煎物成分・鉄」(試料2-2)を添加した溶液では、紫外線(375nm)だけでなく、可視光(470nm, 525nm, 570nm, 660nm)や赤外線(940nm, 1200nm)を照射した場合でも、塩基性フクシン(難分解性有機物)の分解が認められた。
具体的には、「茶葉成分・鉄」(試料2-1)を添加した場合、可視光及び赤外線(特に波長の長い赤外線である1200nm)を照射することで強い分解活性が認められた。特に、紫外線を照射した場合、照射開始から6時間以内の短時間の間での急激な分解が確認された。
また、「コーヒー豆焙煎物成分・鉄」(試料2-2)を添加した場合でも、可視光照射による分解活性が認められた。特に赤外線(特に波長の長い1200nm)を照射することで強い活性が認められた。また、特に紫外線を照射した場合、照射開始から6時間以内の短時間の間での極めて急激な分解が認められた。
一方、比較試料である酸化チタン(比較2-1)を添加した場合では、紫外波長である375nmを照射した場合にのみ塩基性フクシンの分解が認められた。なお、可視光以上の波長(>470nm)では塩基性フクシンの分解は全く認められなかった。即ち、酸化チタンの光触媒活性は、紫外線を照射した場合でしか確認されなかった。
As a result, not only ultraviolet light (375 nm) but also visible light (470 nm) is added to the solution containing “tea leaf / iron” (sample 2-1) or “roasted coffee beans / iron” (sample 2-2). , 525 nm, 570 nm, 660 nm) and infrared rays (940 nm, 1200 nm), the basic fuchsin (refractory organic matter) was decomposed.
Specifically, when “tea leaf component / iron” (sample 2-1) was added, strong decomposition activity was observed by irradiation with visible light and infrared light (particularly, 1200 nm which is infrared having a long wavelength). In particular, when ultraviolet rays were irradiated, rapid decomposition was confirmed within a short period of 6 hours from the start of irradiation.
In addition, even when “coffee beans roasted ingredient / iron” (Sample 2-2) was added, degradation activity by visible light irradiation was observed. In particular, strong activity was observed when irradiated with infrared rays (particularly with a long wavelength of 1200 nm). In particular, when ultraviolet rays were irradiated, extremely rapid decomposition was observed within a short period of 6 hours from the start of irradiation.
On the other hand, when titanium oxide (Comparative 2-1), which is a comparative sample, was added, decomposition of basic fuchsin was observed only when irradiated with 375 nm, which is an ultraviolet wavelength. In addition, decomposition of basic fuchsin was not recognized at all at wavelengths longer than visible light (> 470 nm). That is, the photocatalytic activity of titanium oxide was confirmed only when irradiated with ultraviolet rays.

(2)「考察」
以上の結果から、茶殻又はコーヒー粕を原料として調製した還元性有機物と鉄との反応生成物は、強い光触媒能を有することが明らかになった。特に、当該反応生成物には、酸化チタン(従来の光触媒)では反応しない波長である可視光及び赤外線を照射した場合にも、強い光触媒活性を発揮することが示された。
これらの反応生成物が有する光触媒活性は、紫外線と赤外線(特に波長の長い赤外線)を照射した場合に特に強い値を示した。特に紫外線を照射した場合、酸化チタンよりも急激で強い光触媒活性が短時間で発揮されることが示された。
(2) `` Discussion ''
From the above results, it has been clarified that the reaction product of reducible organic substance and iron prepared from tea husk or coffee cake has a strong photocatalytic ability. In particular, it has been shown that the reaction product exhibits strong photocatalytic activity even when irradiated with visible light and infrared light having wavelengths that do not react with titanium oxide (conventional photocatalyst).
The photocatalytic activity of these reaction products showed a particularly strong value when irradiated with ultraviolet rays and infrared rays (especially infrared rays having a long wavelength). In particular, when irradiated with ultraviolet rays, it was shown that photocatalytic activity that is more rapid and stronger than titanium oxide is exhibited in a short time.

[実施例3]『各種還元性有機物での検討』
各種還元性有機物と鉄との反応生成物を調製した場合においても、光触媒活性が認められるかを検討した。
[Example 3] "Examination with various reducing organic substances"
It was investigated whether photocatalytic activity was observed even when reaction products of various reducing organic substances and iron were prepared.

(1)「光触媒活性の測定」
アスコルビン酸、ブドウポリフェノール、カテキン、クロロゲン酸、カフェイン酸、タンニン酸、又は籾酢液のそれぞれ100重量部(乾燥重量換算)に対して、鉄元素換算で4重量部の塩化鉄(III)(FeCl)を混合し、両者の合計量の倍の重量の水を加え、98℃で1時間加熱処理し、表3に示す反応生成物を得た(試料3-1〜3-7)。また、比較試料として酸化チタン(TiO:酸化チタン(IV)アナタゼ型, 粒子サイズ100〜300nm, WAKO製)を準備した(比較3-1)。
(1) "Measurement of photocatalytic activity"
For 100 parts by weight (as dry weight) of ascorbic acid, grape polyphenol, catechin, chlorogenic acid, caffeic acid, tannic acid, or persimmon vinegar, 4 parts by weight of iron (III) chloride in terms of iron element ( FeCl 3 ) was mixed, water having a weight twice the total amount of both was added, and heat treatment was performed at 98 ° C. for 1 hour to obtain reaction products shown in Table 3 (Samples 3-1 to 3-7). In addition, titanium oxide (TiO 2 : titanium oxide (IV) anatase type, particle size 100 to 300 nm, manufactured by WAKO) was prepared as a comparative sample (Comparative 3-1).

次いで、各試料又は比較試料を鉄元素換算(酸化チタンについてはチタン元素換算)で5.5ppmになるように加えた3.5ppm塩基性フクシン水溶液を複数調製した。水溶液に、波長の異なるLEDを24時間照射して静置し、塩基性フクシンの定量を経時的に行った。塩基性フクシンの定量及びLEDの照射は、実施例2と同様にして行った。また、対照として暗黒条件に24時間静置し、塩基性フクシンの定量を経時的に行った。
540nmの吸光度(塩基性フクシンの定量結果)を測定し、分解率を算出して表3-A〜3-Dに示した。
Next, a plurality of 3.5 ppm basic fuchsin aqueous solutions in which each sample or comparative sample was added to 5.5 ppm in terms of iron element (in terms of titanium element in terms of titanium oxide) were prepared. The aqueous solution was irradiated with LEDs with different wavelengths for 24 hours and allowed to stand, and basic fuchsin was quantified over time. Basic fuchsin quantification and LED irradiation were carried out in the same manner as in Example 2. Further, as a control, the sample was allowed to stand in dark conditions for 24 hours, and basic fuchsin was quantified over time.
Absorbance at 540 nm (basic fuchsin quantification result) was measured, and the decomposition rate was calculated and shown in Tables 3-A to 3-D.

その結果、各種還元性有機物と鉄との反応生成物を添加した溶液では、紫外線(375nm)、可視光(470nm, 525nm, 570nm, 660nm)、赤外線(940nm, 1200nm)のいずれの波長の光を照射した場合でも、塩基性フクシンの分解が認められた。即ち、可視光及び赤外線(特に波長の長い赤外線である1200nm)を照射することで強い分解活性が認められた。また、紫外線を照射すると短時間の間に急激な分解活性が確認された。
特に、可視光及び赤外線を照射した場合では、カテキン、クロロゲン酸、カフェイン酸、タンニン酸等のポリフェノールと鉄との反応生成物に強い光触媒活性が認められた(試料3-3〜3-6)。また、紫外線を照射した場合では、全ての反応生成物試料に特に強い光触媒活性が認められた(試料3-1〜3-7)。
一方、比較試料である酸化チタンを添加した場合、可視光及び赤外線を照射した時には分解活性は認められず、紫外線を照射した時にしか分解活性が確認されなかった(比較3-1)。また、その分解速度は直線的で緩やかであった。
As a result, the solution containing the reaction product of various reducing organic substances and iron can emit light with any wavelength of ultraviolet (375 nm), visible light (470 nm, 525 nm, 570 nm, 660 nm) or infrared (940 nm, 1200 nm). Even when irradiated, degradation of basic fuchsin was observed. That is, strong decomposition activity was recognized by irradiation with visible light and infrared rays (particularly, 1200 nm which is an infrared ray having a long wavelength). Moreover, rapid decomposition activity was confirmed in a short time when irradiated with ultraviolet rays.
In particular, when irradiated with visible light and infrared light, strong photocatalytic activity was observed in the reaction products of polyphenols such as catechin, chlorogenic acid, caffeic acid, and tannic acid with iron (Samples 3-3 to 3-6) ). In addition, when UV light was irradiated, particularly strong photocatalytic activity was observed in all reaction product samples (Samples 3-1 to 3-7).
On the other hand, when titanium oxide as a comparative sample was added, the decomposition activity was not observed when irradiated with visible light and infrared light, and the decomposition activity was confirmed only when irradiated with ultraviolet light (Comparative 3-1). The decomposition rate was linear and slow.

(2)「考察」
以上の結果から、当該光触媒活性は、鉄還元能を有する還元性有機物と鉄との反応生成物に共通に見られる性質であると推測された。特に、酸化チタン(従来の光触媒)では反応しない波長である可視光及び赤外線を照射した場合において、光触媒活性を発揮することが示された。
また、可視光及び赤外線を照射した時の光触媒活性は、本発明の反応生成物に強く保持される性質であることが示された。
(2) `` Discussion ''
From the above results, it was speculated that the photocatalytic activity is a property commonly found in the reaction product of a reducing organic substance having iron reducing ability and iron. In particular, it has been shown that photocatalytic activity is exhibited when irradiated with visible light and infrared light, which are wavelengths that do not react with titanium oxide (conventional photocatalyst).
Moreover, it was shown that the photocatalytic activity when irradiated with visible light and infrared rays is a property that is strongly retained by the reaction product of the present invention.

[実施例4]『鉄還元能を有さない有機物との比較』
鉄還元能を有さない各種有機物と鉄との反応生成物を調製した場合に、光触媒活性が認められるかを検討した。
[Example 4] “Comparison with an organic substance having no iron reducing ability”
It was investigated whether photocatalytic activity was observed when reaction products of various organic substances not having iron reducing ability and iron were prepared.

(1)「光触媒活性の測定」
アスコルビン酸、ブドウポリフェノール、カテキン、クロロゲン酸、カフェイン酸、又は籾酢液のそれぞれ100重量部(乾重換算)に対して、鉄元素換算で4重量部の塩化鉄(III)(FeCl)を混合し、両者の合計量の倍の重量の水を加え、98℃で1時間加熱処理し、表4に示す反応生成物を得た(試料4-1〜4-6)。また、比較試料として塩化鉄(II)、塩化鉄(III)、EDTA鉄(III)、クエン酸鉄(III)、酸化チタン(TiO:酸化チタン(IV)アナタゼ型, 粒子サイズ100〜300nm, WAKO製)を準備した(比較4-1〜4-5)。
(1) "Measurement of photocatalytic activity"
4 parts by weight of iron (III) chloride (FeCl 3 ) in terms of iron element for each 100 parts by weight (as dry weight) of ascorbic acid, grape polyphenol, catechin, chlorogenic acid, caffeic acid, or persimmon vinegar Were added, water having a weight twice the total amount of the two was added, and heat treatment was performed at 98 ° C. for 1 hour to obtain reaction products shown in Table 4 (Samples 4-1 to 4-6). Moreover, as a comparative sample, iron (II) chloride, iron (III) chloride, iron (III) EDTA, iron (III) citrate, titanium oxide (TiO 2 : titanium oxide (IV) anatase type, particle size 100 to 300 nm, WAKO) was prepared (Comparative 4-1 to 4-5).

次いで、各試料又は比較試料を鉄元素換算(酸化チタンについてはチタン元素換算)で5.5ppmになるように加えた3.5ppm塩基性フクシン水溶液を複数調製した。水溶液に、可視光(赤色光:660nm、光量子密度100μmol/m/sec)のLEDを24時間照射して静置し、塩基性フクシンの定量を経時的に行った。塩基性フクシンの定量及びLEDの照射は、実施例2と同様にして行った。また、対照として暗黒条件に24時間静置し、塩基性フクシンの定量を経時的に行った。
540nmの吸光度(塩基性フクシンの定量結果)を測定し、分解率を算出して表4に示した。
Next, a plurality of 3.5 ppm basic fuchsin aqueous solutions in which each sample or comparative sample was added to 5.5 ppm in terms of iron element (in terms of titanium element in terms of titanium oxide) were prepared. The aqueous solution was irradiated with visible light (red light: 660 nm, photon density 100 μmol / m 2 / sec) LED for 24 hours and allowed to stand, and basic fuchsin was quantified over time. Basic fuchsin quantification and LED irradiation were carried out in the same manner as in Example 2. Further, as a control, the sample was allowed to stand in dark conditions for 24 hours, and basic fuchsin was quantified over time.
The absorbance at 540 nm (basic fuchsin quantification result) was measured, and the decomposition rate was calculated and shown in Table 4.

その結果、可視光波長である660nmを照射した場合、各種還元性有機物と鉄との反応生成物(試料4-1〜4-6)を添加した溶液では、塩基性フクシンの分解が認められた。
それに対して、比較試料である各種鉄化合物又は酸化チタンを添加した場合では、塩基性フクシンの分解は確認されなかった(比較4-1〜4-5)。特に、鉄還元能を有さない有機物と鉄との錯体であるEDTA鉄(III)(比較4-3)、クエン酸鉄(III)(比較4-4)を添加した場合においても塩基性フクシンの分解が確認されなかった。
As a result, when 660 nm, which is a visible light wavelength, was irradiated, decomposition of basic fuchsin was observed in the solution to which reaction products (samples 4-1 to 4-6) of various reducing organic substances and iron were added. .
On the other hand, when various iron compounds or titanium oxides as comparative samples were added, the decomposition of basic fuchsin was not confirmed (Comparison 4-1 to 4-5). In particular, even when EDTA iron (III) (comparative 4-3) or iron (III) citrate (comparative 4-4), which is a complex of iron and an organic substance that does not have iron reducing ability, is added. Decomposition of was not confirmed.

(2)「考察」
以上の結果から、当該光触媒活性は、「鉄還元能を有さない有機物」の鉄錯体(反応生成物)では全く発揮されないことが示唆された。このことから、還元性有機物と鉄との反応生成物が有する光触媒活性は、「鉄還元能を有する還元性有機物」と鉄との反応生成物に特異的な性質であることが示唆された。
(2) `` Discussion ''
From the above results, it was suggested that the photocatalytic activity was not exhibited at all in the “complex having no iron reducing ability” iron complex (reaction product). This suggests that the photocatalytic activity of the reaction product of the reducing organic substance and iron is a property specific to the reaction product of “reducing organic substance having iron reducing ability” and iron.

[実施例5]『可視光照射による殺菌効果』
上記還元性有機物と鉄との反応生成物を用いて、可視光を照射した大腸菌の殺菌が可能かを検証した。
[Example 5] “Bactericidal effect by visible light irradiation”
Using the reaction product of the reducing organic substance and iron, it was verified whether sterilization of E. coli irradiated with visible light was possible.

(1)「殺菌試験」
茶殻(茶葉の熱湯抽出残渣)の100重量部(乾燥重量換算)に対して、鉄元素換算で4重量部の塩化鉄(III)(FeCl3)を混合し、両者の合計量の倍の重量の水を加え、98℃で1時間加熱処理し反応生成物を得た。濾過して得られた固形分をそれぞれ「茶葉成分・鉄」(試料5-1)とした。また、比較試料として酸化チタン(TiO:酸化チタン(IV)アナタゼ型, 粒子サイズ100〜300nm, WAKO製)(比較5-1)を準備した。
(1) "Sterilization test"
4 parts by weight of iron (III) chloride (FeCl 3 ) in terms of iron element is mixed with 100 parts by weight (converted to dry weight) of tea husk (tea leaf hot water extraction residue), twice the total weight of both Was added, and heat treatment was performed at 98 ° C. for 1 hour to obtain a reaction product. The solid content obtained by filtration was designated as “tea leaf component / iron” (Sample 5-1). Moreover, titanium oxide (TiO 2 : titanium oxide (IV) anatase type, particle size 100 to 300 nm, manufactured by WAKO) (Comparative 5-1) was prepared as a comparative sample.

大腸菌(ATCC1124)の10cfu/mL懸濁液に、鉄元素換算(酸化チタンの場合はチタン元素換算)で表5に示す濃度の試料を添加混合し、可視光(青色光:470nm, 光量子密度50μmol/m/sec)を24時間照射した。その後、大腸菌検定プレートに塗布し、大腸菌の生存数を調べた。また、対照として、大腸菌のみを同様に塗布して同様の実験を行った。結果を図1に示した。また、殺菌力の有無を2段階(「+」:殺菌力あり、「−」:殺菌力なし)で評価し、表5に示した。 A sample of the concentration shown in Table 5 is added to and mixed with 10 6 cfu / mL suspension of E. coli (ATCC1124) in terms of iron element (in the case of titanium oxide), and visible light (blue light: 470 nm, photon) (Density 50 μmol / m 2 / sec) was irradiated for 24 hours. Then, it was applied to an Escherichia coli assay plate and the number of surviving E. coli was examined. As a control, only E. coli was applied in the same manner and the same experiment was performed. The results are shown in FIG. The presence or absence of bactericidal power was evaluated in two stages (“+”: with bactericidal power, “−”: without bactericidal power), and are shown in Table 5.

この結果、茶葉成分・鉄(濾過後の固形分)を鉄元素換算にて20ppm以上添加して可視光を照射することによって、大腸菌を死滅させることができることが示された(試料5-1)。
一方、比較試料である酸化チタンを添加した場合では、高濃度で添加した場合であっても、可視光照射による大腸菌の減少を全く確認することができなかった(比較5-1)。
As a result, it was shown that Escherichia coli can be killed by adding 20 ppm or more of the tea leaf component / iron (solid content after filtration) and irradiating it with visible light (Sample 5-1) .
On the other hand, when titanium oxide as a comparative sample was added, no decrease in E. coli due to visible light irradiation could be confirmed even when added at a high concentration (Comparative 5-1).

(2)「考察」
以上の結果から、鉄還元能を有する還元性有機物と鉄との反応生成物を用いて可視光のみを照射することによって、光触媒活性による殺菌作用が十分に奏されることが示された。また、20ppmという濃度で添加した場合でも殺菌効果は十分に発揮されることが確認された。また、当該光触媒活性は、反応液の固形部分にも強い活性があることが示された。(実施例2では、反応液の濾液の方に強い活性があることが示されている。)
一方、酸化チタンを用いた場合、可視光のみを照射しただけでは光触媒活性が発揮されず、殺菌作用が全く奏されないことが示された。
(2) `` Discussion ''
From the above results, it was shown that the bactericidal action by the photocatalytic activity is sufficiently exerted by irradiating only visible light using a reaction product of a reducing organic substance having iron reducing ability and iron. It was also confirmed that the bactericidal effect was sufficiently exhibited even when added at a concentration of 20 ppm. Further, it was shown that the photocatalytic activity also has a strong activity in the solid part of the reaction solution. (Example 2 shows that the filtrate of the reaction solution has a stronger activity.)
On the other hand, when titanium oxide was used, it was shown that photocatalytic activity was not exhibited only by irradiation with visible light, and no bactericidal action was achieved.

[実施例6]『太陽光照射による殺菌効果』
上記還元性有機物と鉄との反応生成物を用いて、太陽光を照射した大腸菌の殺菌が可能かを検証した。
[Example 6] "Bactericidal effect due to sunlight"
Using the reaction product of the reducing organic substance and iron, it was verified whether sterilization of E. coli irradiated with sunlight was possible.

(1)「殺菌試験」
茶殻(茶葉の熱湯抽出残渣)又はコーヒー粕(焙煎コーヒー豆粉砕物の熱湯抽出残渣)の100重量部(乾燥重量換算)に対して、鉄元素換算で4重量部の塩化鉄(III)(FeCl3)を混合し、両者の合計量の倍の重量の水を加え、98℃で1時間加熱処理し反応生成物を得た。濾過して得られた固形分をそれぞれ「茶葉成分・鉄」(試料6-1)又は「コーヒー豆焙煎物成分・鉄」(試料6-2)とした。また、比較試料として酸化チタン(TiO:酸化チタン(IV)アナタゼ型, 粒子サイズ100〜300nm, WAKO製)(比較6-1)を準備した。
(1) "Sterilization test"
4 parts by weight of iron (III) chloride in terms of iron element (100 parts by weight in terms of dry weight) per 100 parts by weight (dry weight equivalent) of tea husk (tea leaf hot water extraction residue) or coffee cake (roasted coffee beans ground residue) FeCl 3 ) was mixed, water twice the total amount of both was added, and heat treatment was performed at 98 ° C. for 1 hour to obtain a reaction product. The solid content obtained by filtration was designated as “tea leaf component / iron” (sample 6-1) or “coffee beans roasted product component / iron” (sample 6-2). In addition, titanium oxide (TiO 2 : titanium oxide (IV) anatase type, particle size 100 to 300 nm, manufactured by WAKO) (Comparative 6-1) was prepared as a comparative sample.

大腸菌(ATCC1124)の懸濁液(10cfu/mL)に、鉄元素換算(酸化チタンの場合はチタン元素換算)で5.5ppmの濃度で表6に示す試料を添加混合し、太陽光(放射照度763W/m, UV(A+B)3.28mW/cm、光量子密度1514μmol/m/sec)を10分間照射した。その後、大腸菌検定プレートに塗布し、大腸菌の生存数を調べた。また、対照として、大腸菌のみを同様に塗布して同様の実験を行った。結果を図2に示した。また、殺菌力の有無を2段階(「+」:殺菌力あり、「−」:殺菌力なし)で評価し、表6に示した。 The sample shown in Table 6 was added to and mixed with a suspension of E. coli (ATCC1124) (10 6 cfu / mL) at a concentration of 5.5 ppm in terms of iron element (in terms of titanium element in the case of titanium oxide). Irradiance 763 W / m 2 , UV (A + B) 3.28 mW / cm 2 , photon density 1514 μmol / m 2 / sec) was irradiated for 10 minutes. Then, it was applied to an Escherichia coli assay plate and the number of surviving E. coli was examined. As a control, only E. coli was applied in the same manner and the same experiment was performed. The results are shown in FIG. The presence or absence of bactericidal power was evaluated in two stages (“+”: bactericidal power, “−”: no bactericidal power), and are shown in Table 6.

その結果、反応生成物である茶葉成分・鉄(濾過後の固形分)又はコーヒー豆焙煎物成分・鉄(濾過後の固形分)を添加して太陽光を照射することによって、大腸菌を死滅させることができることが示された(試料6-1, 6-2)。当該殺菌作用は、鉄元素換算で5.5ppmという極めて低濃度の添加でも十分な効果が奏されることが示された。また、太陽光の照射時間は、10分間という極めて短時間でも十分な効果が奏されることが示された。
一方、比較試料である酸化チタンを添加した場合、試料2-1, 2-2と同条件での太陽光を照射しただけでは、大腸菌が大量に生存していた(比較6-1)。
As a result, Escherichia coli was killed by irradiating sunlight with the addition of tea leaf components and iron (solid content after filtration) or roasted coffee bean components and iron (solid content after filtration) as reaction products. (Samples 6-1 and 6-2). The bactericidal action was shown to be sufficiently effective even with the addition of an extremely low concentration of 5.5 ppm in terms of iron element. Moreover, it was shown that a sufficient effect can be obtained even when the irradiation time of sunlight is as short as 10 minutes.
On the other hand, when titanium oxide, which is a comparative sample, was added, E. coli survived in large quantities only by irradiating sunlight under the same conditions as Samples 2-1 and 2-2 (Comparative 6-1).

(2)「考察」
この結果から、還元性有機物と鉄との反応生成物を用いて太陽光を照射することによって、極めて強力な光触媒活性による殺菌作用が奏されることが示された。また、5.5ppmという極めて低濃度で添加し、10分間の照射を行った場合でも、十分な殺菌効果が発揮されることが確認された。
一方、酸化チタンを用いた場合、太陽光を短時間で照射しただけでは光触媒活性が十分に発揮されず、殺菌作用が不十分であることが示された。
(2) `` Discussion ''
From this result, it was shown that the bactericidal action by extremely strong photocatalytic activity is exhibited by irradiating sunlight using the reaction product of the reducing organic substance and iron. Further, it was confirmed that a sufficient bactericidal effect was exhibited even when added at an extremely low concentration of 5.5 ppm and irradiated for 10 minutes.
On the other hand, when titanium oxide was used, photocatalytic activity was not sufficiently exhibited only by irradiating sunlight for a short time, indicating that the bactericidal action was insufficient.

[実施例7]『太陽光を連続して複数回照射した場合の殺菌効果』
上記還元性有機物と鉄との反応生成物を用いて、太陽光を連続して複数回照射した場合でも大腸菌の殺菌が可能かを検証した。
[Example 7] “Bactericidal effect when irradiated with sunlight multiple times continuously”
Using the reaction product of the reducing organic substance and iron, it was verified whether Escherichia coli could be sterilized even when sunlight was continuously irradiated several times.

(1)「連続殺菌試験」
実施例6で調製したコーヒー豆焙煎物成分・鉄(試料6-1:濾過後の固形分)30mgを、滅菌水300mLに添加して混合し、密封可能なペットボトルに封入した。当該ペットボトルに大腸菌(ATCC1124)の懸濁液(3.5×10cfu/mL)を90μL添加し、太陽光を10分間照射した。照射後の菌液1mLを採取した。
その1時間後、当該ペットボトルに上記と同量の大腸菌懸濁液を再度添加し、2回目の太陽光照射を10分間行い、照射後の菌液1mLを採取した。さらにその1時間後、当該ペットボトルに上記と同量の大腸菌懸濁液を再度添加し、3回目の太陽光照射を10分間行い、照射後の菌液1mLを採取した。
採取した各菌液を大腸菌検定プレートに塗布し、大腸菌の生存数を調べた。また、対照として、大腸菌のみを同様に塗布して同様の実験を行った。結果を図3に示した。また、殺菌力の有無を2段階(「+」:殺菌力あり、「−」:殺菌力なし)で評価し、表7に示した。
(1) `` Continuous sterilization test ''
30 mg of roasted coffee bean component prepared in Example 6 and iron (sample 6-1: solid content after filtration) was added to 300 mL of sterilized water, mixed, and sealed in a sealable PET bottle. 90 μL of a suspension of Escherichia coli (ATCC1124) (3.5 × 10 8 cfu / mL) was added to the PET bottle and irradiated with sunlight for 10 minutes. 1 mL of bacterial solution after irradiation was collected.
After 1 hour, the same amount of the E. coli suspension was added to the PET bottle again, and a second solar irradiation was performed for 10 minutes, and 1 mL of the bacterial solution after irradiation was collected. Further, 1 hour later, the same amount of the E. coli suspension was added to the PET bottle again, and a third solar irradiation was performed for 10 minutes, and 1 mL of the bacterial solution after irradiation was collected.
Each collected bacterial solution was applied to an Escherichia coli assay plate, and the number of surviving E. coli was examined. As a control, only E. coli was applied in the same manner and the same experiment was performed. The results are shown in FIG. In addition, the presence or absence of bactericidal power was evaluated in two stages (“+”: with bactericidal power, “−”: without bactericidal power).

その結果、反応生成物であるコーヒー豆焙煎物成分・鉄を加えた溶液では、一度光触媒活性による殺菌を行った後においても、再度光を照射するだけで連続3回の大腸菌の殺菌が可能なことが示された。また、1〜3回目のいずれの殺菌後の試料においても大腸菌は完全に死滅していたことから、連続使用による光触媒活性の力価減少は認められなかった。   As a result, the solution containing the roasted coffee beans component and iron, which is the reaction product, can be sterilized three times in succession by irradiating light again after sterilizing once with photocatalytic activity. It was shown. Moreover, since E. coli was completely killed in any of the samples after the first to third sterilizations, no decrease in the titer of photocatalytic activity due to continuous use was observed.

(2)「考察」
この結果から、還元性有機物と鉄との反応生成物の光触媒活性は、一度の光触媒反応で失われる活性ではないことが示された。即ち、当該反応生成物は、光触媒活性として長時間安定して繰り返して使用可能な物質であることが示された。
なお、当該性質は、当該反応生成物(当該還元性有機物のFe2+錯体)が安定した構造体であることに起因する性質であると推測された。
(2) `` Discussion ''
From this result, it was shown that the photocatalytic activity of the reaction product of the reducing organic substance and iron was not the activity lost by one photocatalytic reaction. That is, the reaction product was shown to be a substance that can be used stably and repeatedly for a long time as photocatalytic activity.
In addition, it was estimated that the said property is a property resulting from the said reaction product (The Fe2 + complex of the said reducing organic substance) being a stable structure.

本発明の光触媒は、食品、医療、公衆衛生、農業、環境浄化などの幅広い分野での殺菌や有機物分解に幅広く利用されることが期待される。   The photocatalyst of the present invention is expected to be widely used for sterilization and organic matter decomposition in a wide range of fields such as food, medicine, public health, agriculture, and environmental purification.

本発明はこれらの知見に基づいてなされたものである。
即ち、[請求項1]に係る本発明は、光触媒を含有してなる有機物質分解剤であって、
前記光触媒が、三価鉄を二価鉄に還元する作用を有する還元性有機物、及び、鉄供給原料を、40℃〜100℃で10秒〜10日間の条件で、水存在下にて混合し、得られた前記還元性有機物のFe 2+ 錯体を含む反応生成物を活性成分としてなる光触媒であり、
前記還元性有機物が、アスコルビン酸であり、
前記鉄供給原料が、塩化鉄(II)、硝酸鉄(II)、水酸化鉄(II)、酸化鉄(II)、酢酸鉄(II)、乳酸鉄(II)、クエン酸鉄(II)ナトリウム、グルコン酸鉄(II)、炭酸鉄(II)、フマル酸鉄(II)から選ばれる二価鉄の供給原料;塩化鉄(III)、硫酸鉄(III)、クエン酸鉄(III)、クエン酸鉄(III)アンモニウム、EDTA鉄(III)、酸化鉄(III)、硝酸鉄(III)、水酸化鉄(III)、ピロリン酸鉄(III)から選ばれる三価鉄の供給原料;から選ばれる1以上のものであり、
前記混合が、前記還元性有機物の乾燥重量100重量部に対して、鉄元素の重量換算で0.1〜10重量部含有するように前記鉄供給原料を混合するものであり、かつ、
過酸化水素を用いないこと、を特徴とする有機物質分解剤に関するものである。
また、[請求項2]に係る本発明は、三価鉄を二価鉄に還元する作用を有する還元性有機物、及び、鉄供給原料を、40℃〜100℃で10秒〜10日間の条件で、水存在下にて混合し、得られた前記還元性有機物のFe 2+ 錯体を含む反応生成物を活性成分として用いることにより光触媒を得て、当該光触媒を活性成分として用いることを特徴とする、有機物質分解剤の製造方法であって、
前記還元性有機物が、アスコルビン酸であり、
前記鉄供給原料が、塩化鉄(II)、硝酸鉄(II)、水酸化鉄(II)、酸化鉄(II)、酢酸鉄(II)、乳酸鉄(II)、クエン酸鉄(II)ナトリウム、グルコン酸鉄(II)、炭酸鉄(II)、フマル酸鉄(II)から選ばれる二価鉄の供給原料;塩化鉄(III)、硫酸鉄(III)、クエン酸鉄(III)、クエン酸鉄(III)アンモニウム、EDTA鉄(III)、酸化鉄(III)、硝酸鉄(III)、水酸化鉄(III)、ピロリン酸鉄(III)から選ばれる三価鉄の供給原料;から選ばれる1以上のものであり、
前記混合が、前記還元性有機物の乾燥重量100重量部に対して、鉄元素の重量換算で0.1〜10重量部含有するように前記鉄供給原料を混合するものであり、かつ、
過酸化水素を用いないこと、を特徴とする有機物質分解剤の製造方法に関するものである。
また、[請求項3]に係る本発明は、三価鉄を二価鉄に還元する作用を有する還元性有機物、及び、鉄供給原料を、40℃〜100℃で10秒〜10日間の条件で、水存在下にて混合し、得られた前記還元性有機物のFe 2+ 錯体を含む反応生成物を活性成分として用いることにより光触媒を得て、当該光触媒と分解対象有機物を接触させ、紫外線、可視光、又は赤外線に属する波長の光を照射することを特徴とする有機物分解方法であって、
前記還元性有機物が、アスコルビン酸であり、
前記鉄供給原料が、塩化鉄(II)、硝酸鉄(II)、水酸化鉄(II)、酸化鉄(II)、酢酸鉄(II)、乳酸鉄(II)、クエン酸鉄(II)ナトリウム、グルコン酸鉄(II)、炭酸鉄(II)、フマル酸鉄(II)から選ばれる二価鉄の供給原料;塩化鉄(III)、硫酸鉄(III)、クエン酸鉄(III)、クエン酸鉄(III)アンモニウム、EDTA鉄(III)、酸化鉄(III)、硝酸鉄(III)、水酸化鉄(III)、ピロリン酸鉄(III)から選ばれる三価鉄の供給原料;から選ばれる1以上のものであり、
前記混合が、前記還元性有機物の乾燥重量100重量部に対して、鉄元素の重量換算で0.1〜10重量部含有するように前記鉄供給原料を混合するものであり、かつ、
過酸化水素を用いないこと、を特徴とする有機物分解方法に関するものである。
また、[請求項4]に係る本発明は、可視光又は赤外線に属する波長の光を照射する、請求項に記載の方法に関するものである。
また、[請求項5]に係る本発明は、光触媒を含有してなる殺菌剤であって、
前記光触媒が、三価鉄を二価鉄に還元する作用を有する還元性有機物、及び、鉄供給原料を、40℃〜100℃で10秒〜10日間の条件で、水存在下にて混合し、得られた前記還元性有機物のFe 2+ 錯体を含む反応生成物を活性成分としてなる光触媒であり、
前記還元性有機物が、アスコルビン酸であり、
前記鉄供給原料が、塩化鉄(II)、硝酸鉄(II)、水酸化鉄(II)、酸化鉄(II)、酢酸鉄(II)、乳酸鉄(II)、クエン酸鉄(II)ナトリウム、グルコン酸鉄(II)、炭酸鉄(II)、フマル酸鉄(II)から選ばれる二価鉄の供給原料;塩化鉄(III)、硫酸鉄(III)、クエン酸鉄(III)、クエン酸鉄(III)アンモニウム、EDTA鉄(III)、酸化鉄(III)、硝酸鉄(III)、水酸化鉄(III)、ピロリン酸鉄(III)から選ばれる三価鉄の供給原料;から選ばれる1以上のものであり、
前記混合が、前記還元性有機物の乾燥重量100重量部に対して、鉄元素の重量換算で0.1〜10重量部含有するように前記鉄供給原料を混合するものであり、かつ、
過酸化水素を用いないこと、を特徴とする殺菌剤に関するものである。
また、[請求項6]に係る本発明は、三価鉄を二価鉄に還元する作用を有する還元性有機物、及び、鉄供給原料を、40℃〜100℃で10秒〜10日間の条件で、水存在下にて混合し、得られた前記還元性有機物のFe 2+ 錯体を含む反応生成物を活性成分として用いることにより光触媒を得て、当該光触媒を活性成分として用いることを特徴とする、殺菌剤の製造方法であって、
前記還元性有機物が、アスコルビン酸であり、
前記鉄供給原料が、塩化鉄(II)、硝酸鉄(II)、水酸化鉄(II)、酸化鉄(II)、酢酸鉄(II)、乳酸鉄(II)、クエン酸鉄(II)ナトリウム、グルコン酸鉄(II)、炭酸鉄(II)、フマル酸鉄(II)から選ばれる二価鉄の供給原料;塩化鉄(III)、硫酸鉄(III)、クエン酸鉄(III)、クエン酸鉄(III)アンモニウム、EDTA鉄(III)、酸化鉄(III)、硝酸鉄(III)、水酸化鉄(III)、ピロリン酸鉄(III)から選ばれる三価鉄の供給原料;から選ばれる1以上のものであり、
前記混合が、前記還元性有機物の乾燥重量100重量部に対して、鉄元素の重量換算で0.1〜10重量部含有するように前記鉄供給原料を混合するものであり、かつ、
過酸化水素を用いないこと、を特徴とする殺菌剤の製造方法に関するものである。
また、[請求項7]に係る本発明は、三価鉄を二価鉄に還元する作用を有する還元性有機物、及び、鉄供給原料を、40℃〜100℃で10秒〜10日間の条件で、水存在下にて混合し、得られた前記還元性有機物のFe 2+ 錯体を含む反応生成物を活性成分として用いることにより光触媒を得て、当該光触媒と殺菌対象物を接触させ、紫外線、可視光、又は赤外線に属する波長の光を照射することを特徴とする殺菌方法であって、
前記還元性有機物が、アスコルビン酸であり、
前記鉄供給原料が、塩化鉄(II)、硝酸鉄(II)、水酸化鉄(II)、酸化鉄(II)、酢酸鉄(II)、乳酸鉄(II)、クエン酸鉄(II)ナトリウム、グルコン酸鉄(II)、炭酸鉄(II)、フマル酸鉄(II)から選ばれる二価鉄の供給原料;塩化鉄(III)、硫酸鉄(III)、クエン酸鉄(III)、クエン酸鉄(III)アンモニウム、EDTA鉄(III)、酸化鉄(III)、硝酸鉄(III)、水酸化鉄(III)、ピロリン酸鉄(III)から選ばれる三価鉄の供給原料;から選ばれる1以上のものであり、
前記混合が、前記還元性有機物の乾燥重量100重量部に対して、鉄元素の重量換算で0.1〜10重量部含有するように前記鉄供給原料を混合するものであり、かつ、
過酸化水素を用いないこと、を特徴とする殺菌方法に関するものである。
また、[請求項8]に係る本発明は、可視光又は赤外線に属する波長の光を照射する、請求項に記載の方法に関するものである。

The present invention has been made based on these findings.
That is, the present invention according to [Claim 1 ] is an organic substance decomposing agent containing a photocatalyst ,
The photocatalyst is mixed with a reducing organic substance having an action of reducing trivalent iron to divalent iron and an iron feedstock at 40 ° C. to 100 ° C. for 10 seconds to 10 days in the presence of water. A photocatalyst comprising, as an active component, a reaction product containing the Fe 2+ complex of the obtained reducing organic substance ,
The reducing organic substance is ascorbic acid,
The iron feedstock is iron (II) chloride, iron nitrate (II), iron hydroxide (II), iron oxide (II), iron acetate (II), iron lactate (II), iron citrate (II) sodium , Iron (II) gluconate, iron carbonate (II), divalent iron feedstock selected from iron (II) fumarate; iron (III) chloride, iron (III) sulfate, iron (III) citrate, citric acid A feedstock of trivalent iron selected from iron (III) ammonium oxide, iron (III) EDTA, iron (III) oxide, iron (III) nitrate, iron (III) hydroxide, iron (III) pyrophosphate One or more
The mixing is to mix the iron feedstock so as to contain 0.1 to 10 parts by weight in terms of the weight of iron element with respect to 100 parts by weight of dry weight of the reducing organic substance, and
The present invention relates to an organic substance decomposing agent characterized by not using hydrogen peroxide.
Further, the present invention according to [Claim 2 ] is directed to a reducing organic substance having an action of reducing trivalent iron to divalent iron and an iron feedstock at 40 ° C to 100 ° C for 10 seconds to 10 days. in, mixed with water presence to obtain a photocatalyst by using a reaction product containing Fe 2+ complex of the reducing organic substance obtained as an active ingredient, which comprises using the photocatalyst as active ingredient A method for producing an organic substance decomposing agent comprising:
The reducing organic substance is ascorbic acid,
The iron feedstock is iron (II) chloride, iron nitrate (II), iron hydroxide (II), iron oxide (II), iron acetate (II), iron lactate (II), iron citrate (II) sodium , Iron (II) gluconate, iron carbonate (II), divalent iron feedstock selected from iron (II) fumarate; iron (III) chloride, iron (III) sulfate, iron (III) citrate, citric acid A feedstock of trivalent iron selected from iron (III) ammonium oxide, iron (III) EDTA, iron (III) oxide, iron (III) nitrate, iron (III) hydroxide, iron (III) pyrophosphate One or more
The mixing is to mix the iron feedstock so as to contain 0.1 to 10 parts by weight in terms of the weight of iron element with respect to 100 parts by weight of dry weight of the reducing organic substance, and
The present invention relates to a method for producing an organic substance decomposing agent characterized by not using hydrogen peroxide.
Further, the present invention according to [Claim 3 ] is directed to a reducing organic substance having an action of reducing trivalent iron to divalent iron, and an iron feedstock at 40 ° C to 100 ° C for 10 seconds to 10 days. In the presence of water, a photocatalyst is obtained by using the obtained reaction product containing the Fe 2+ complex of the reducing organic substance as an active component, the photocatalyst and the organic substance to be decomposed are brought into contact with each other, ultraviolet rays, An organic material decomposition method characterized by irradiating light having a wavelength belonging to visible light or infrared light ,
The reducing organic substance is ascorbic acid,
The iron feedstock is iron (II) chloride, iron nitrate (II), iron hydroxide (II), iron oxide (II), iron acetate (II), iron lactate (II), iron citrate (II) sodium , Iron (II) gluconate, iron carbonate (II), divalent iron feedstock selected from iron (II) fumarate; iron (III) chloride, iron (III) sulfate, iron (III) citrate, citric acid A feedstock of trivalent iron selected from iron (III) ammonium oxide, iron (III) EDTA, iron (III) oxide, iron (III) nitrate, iron (III) hydroxide, iron (III) pyrophosphate One or more
The mixing is to mix the iron feedstock so as to contain 0.1 to 10 parts by weight in terms of the weight of iron element with respect to 100 parts by weight of dry weight of the reducing organic substance, and
The present invention relates to a method for decomposing organic substances characterized by not using hydrogen peroxide.
Further, the present invention according to [Claim 4 ] relates to a method according to claim 3 , wherein light having a wavelength belonging to visible light or infrared light is irradiated.
The present invention according to [Claim 5 ] is a bactericidal agent containing a photocatalyst ,
The photocatalyst is mixed with a reducing organic substance having an action of reducing trivalent iron to divalent iron and an iron feedstock at 40 ° C. to 100 ° C. for 10 seconds to 10 days in the presence of water. A photocatalyst comprising, as an active component, a reaction product containing the Fe 2+ complex of the obtained reducing organic substance ,
The reducing organic substance is ascorbic acid,
The iron feedstock is iron (II) chloride, iron nitrate (II), iron hydroxide (II), iron oxide (II), iron acetate (II), iron lactate (II), iron citrate (II) sodium , Iron (II) gluconate, iron carbonate (II), divalent iron feedstock selected from iron (II) fumarate; iron (III) chloride, iron (III) sulfate, iron (III) citrate, citric acid A feedstock of trivalent iron selected from iron (III) ammonium oxide, iron (III) EDTA, iron (III) oxide, iron (III) nitrate, iron (III) hydroxide, iron (III) pyrophosphate One or more
The mixing is to mix the iron feedstock so as to contain 0.1 to 10 parts by weight in terms of the weight of iron element with respect to 100 parts by weight of dry weight of the reducing organic substance, and
The present invention relates to a disinfectant characterized by not using hydrogen peroxide.
Further, the present invention according to [Claim 6 ] is directed to a reducing organic substance having an action of reducing trivalent iron to divalent iron, and an iron feedstock at 40 ° C to 100 ° C for 10 seconds to 10 days. in, mixed with water presence to obtain a photocatalyst by using a reaction product containing Fe 2+ complex of the reducing organic substance obtained as an active ingredient, which comprises using the photocatalyst as active ingredient A method for producing a bactericide,
The reducing organic substance is ascorbic acid,
The iron feedstock is iron (II) chloride, iron nitrate (II), iron hydroxide (II), iron oxide (II), iron acetate (II), iron lactate (II), iron citrate (II) sodium , Iron (II) gluconate, iron carbonate (II), divalent iron feedstock selected from iron (II) fumarate; iron (III) chloride, iron (III) sulfate, iron (III) citrate, citric acid A feedstock of trivalent iron selected from iron (III) ammonium oxide, iron (III) EDTA, iron (III) oxide, iron (III) nitrate, iron (III) hydroxide, iron (III) pyrophosphate One or more
The mixing is to mix the iron feedstock so as to contain 0.1 to 10 parts by weight in terms of the weight of iron element with respect to 100 parts by weight of dry weight of the reducing organic substance, and
The present invention relates to a method for producing a disinfectant characterized by not using hydrogen peroxide.
Further, the present invention according to [Claim 7 ] is directed to a reducing organic substance having an action of reducing trivalent iron to divalent iron and an iron feedstock at 40 ° C to 100 ° C for 10 seconds to 10 days. In the presence of water, a photocatalyst is obtained by using the obtained reaction product containing the Fe 2+ complex of the reducing organic substance as an active component, the photocatalyst and the sterilization object are brought into contact with each other, ultraviolet rays, A sterilization method characterized by irradiating light having a wavelength belonging to visible light or infrared light ,
The reducing organic substance is ascorbic acid,
The iron feedstock is iron (II) chloride, iron nitrate (II), iron hydroxide (II), iron oxide (II), iron acetate (II), iron lactate (II), iron citrate (II) sodium , Iron (II) gluconate, iron carbonate (II), divalent iron feedstock selected from iron (II) fumarate; iron (III) chloride, iron (III) sulfate, iron (III) citrate, citric acid A feedstock of trivalent iron selected from iron (III) ammonium oxide, iron (III) EDTA, iron (III) oxide, iron (III) nitrate, iron (III) hydroxide, iron (III) pyrophosphate One or more
The mixing is to mix the iron feedstock so as to contain 0.1 to 10 parts by weight in terms of the weight of iron element with respect to 100 parts by weight of dry weight of the reducing organic substance, and
The present invention relates to a sterilization method characterized by not using hydrogen peroxide.
The present invention according to [Claim 8 ] relates to a method according to claim 7 , wherein the light having a wavelength belonging to visible light or infrared light is irradiated.

Claims (14)

三価鉄を二価鉄に還元する作用を有する還元性有機物、及び、鉄供給原料を、40℃〜100℃で10秒〜10日間の条件で、水存在下にて混合し、得られた前記還元性有機物のFe2+錯体を含む反応生成物を活性成分としてなる光触媒であって、
前記還元性有機物が、アスコルビン酸であり、
前記鉄供給原料が、塩化鉄(II)、硝酸鉄(II)、水酸化鉄(II)、酸化鉄(II)、酢酸鉄(II)、乳酸鉄(II)、クエン酸鉄(II)ナトリウム、グルコン酸鉄(II)、炭酸鉄(II)、フマル酸鉄(II)から選ばれる二価鉄の供給原料;塩化鉄(III)、硫酸鉄(III)、クエン酸鉄(III)、クエン酸鉄(III)アンモニウム、EDTA鉄(III)、酸化鉄(III)、硝酸鉄(III)、水酸化鉄(III)、ピロリン酸鉄(III)から選ばれる三価鉄の供給原料;から選ばれる1以上のものであり、
前記混合が、前記還元性有機物、又は、前記還元性有機物の供給原料、の乾燥重量100重量部に対して、鉄元素の重量換算で0.1〜10重量部含有するように前記鉄供給原料を混合するものである、光触媒。
A reducing organic substance having an action of reducing trivalent iron to divalent iron and an iron feedstock were mixed at 40 ° C. to 100 ° C. for 10 seconds to 10 days in the presence of water, and obtained. A photocatalyst comprising, as an active ingredient, a reaction product containing the Fe 2+ complex of the reducing organic substance,
The reducing organic substance is ascorbic acid,
The iron feedstock is iron (II) chloride, iron nitrate (II), iron hydroxide (II), iron oxide (II), iron acetate (II), iron lactate (II), iron citrate (II) sodium , Iron (II) gluconate, iron carbonate (II), divalent iron feedstock selected from iron (II) fumarate; iron (III) chloride, iron (III) sulfate, iron (III) citrate, citric acid A feedstock of trivalent iron selected from iron (III) ammonium oxide, iron (III) EDTA, iron (III) oxide, iron (III) nitrate, iron (III) hydroxide, iron (III) pyrophosphate One or more
The iron feedstock is mixed so that the mixture contains 0.1 to 10 parts by weight in terms of the weight of iron element with respect to a dry weight of 100 parts by weight of the reducible organic substance or the feedstock of the reducible organic substance. Photocatalyst that is to be.
前記鉄供給原料が、塩化鉄(III)、硫酸鉄(III)、クエン酸鉄(III)、クエン酸鉄(III)アンモニウム、EDTA鉄(III)、酸化鉄(III)、硝酸鉄(III)、水酸化鉄(III)、ピロリン酸鉄(III)から選ばれる1以上の三価鉄の供給原料である、請求項1に記載の光触媒。   Said iron feedstock is iron (III) chloride, iron (III) sulfate, iron (III) citrate, iron (III) citrate ammonium, EDTA iron (III), iron (III) oxide, iron (III) nitrate The photocatalyst according to claim 1, wherein the photocatalyst is a feedstock of one or more trivalent irons selected from iron (III) hydroxide and iron (III) pyrophosphate. 前記還元性有機物、前記鉄供給原料、及び、これらの合計重量の倍の重量の水を混合することによって、前記反応生成物を得ることを特徴とする、請求項1又は2に記載の光触媒。   The photocatalyst according to claim 1 or 2, wherein the reaction product is obtained by mixing the reducing organic material, the iron feedstock, and water having a weight twice the total weight thereof. 三価鉄を二価鉄に還元する作用を有する還元性有機物、及び、鉄供給原料を、40℃〜100℃で10秒〜10日間の条件で、水存在下にて混合し、得られた前記還元性有機物のFe2+錯体を含む反応生成物を活性成分として用いること、並びに、
前記還元性有機物が、アスコルビン酸であり、
前記鉄供給原料が、塩化鉄(II)、硝酸鉄(II)、水酸化鉄(II)、酸化鉄(II)、酢酸鉄(II)、乳酸鉄(II)、クエン酸鉄(II)ナトリウム、グルコン酸鉄(II)、炭酸鉄(II)、フマル酸鉄(II)から選ばれる二価鉄の供給原料;塩化鉄(III)、硫酸鉄(III)、クエン酸鉄(III)、クエン酸鉄(III)アンモニウム、EDTA鉄(III)、酸化鉄(III)、硝酸鉄(III)、水酸化鉄(III)、ピロリン酸鉄(III)から選ばれる三価鉄の供給原料;から選ばれる1以上のものであり、
前記混合が、前記還元性有機物の乾燥重量100重量部に対して、鉄元素の重量換算で0.1〜10重量部含有するように前記鉄供給原料を混合するものであること、を特徴とする光触媒の製造方法。
A reducing organic substance having an action of reducing trivalent iron to divalent iron and an iron feedstock were mixed at 40 ° C. to 100 ° C. for 10 seconds to 10 days in the presence of water, and obtained. Using a reaction product containing the Fe 2+ complex of the reducing organic substance as an active ingredient, and
The reducing organic substance is ascorbic acid,
The iron feedstock is iron (II) chloride, iron nitrate (II), iron hydroxide (II), iron oxide (II), iron acetate (II), iron lactate (II), iron citrate (II) sodium , Iron (II) gluconate, iron carbonate (II), divalent iron feedstock selected from iron (II) fumarate; iron (III) chloride, iron (III) sulfate, iron (III) citrate, citric acid A feedstock of trivalent iron selected from iron (III) ammonium oxide, iron (III) EDTA, iron (III) oxide, iron (III) nitrate, iron (III) hydroxide, iron (III) pyrophosphate One or more
The photocatalyst characterized in that the mixing is performed by mixing the iron feedstock so as to contain 0.1 to 10 parts by weight in terms of the weight of iron element with respect to 100 parts by weight of the dry weight of the reducing organic substance. Manufacturing method.
前記鉄供給原料が、塩化鉄(III)、硫酸鉄(III)、クエン酸鉄(III)、クエン酸鉄(III)アンモニウム、EDTA鉄(III)、酸化鉄(III)、硝酸鉄(III)、水酸化鉄(III)、ピロリン酸鉄(III)から選ばれる1以上の三価鉄の供給原料である、請求項4に記載の方法。   Said iron feedstock is iron (III) chloride, iron (III) sulfate, iron (III) citrate, iron (III) citrate ammonium, EDTA iron (III), iron (III) oxide, iron (III) nitrate The method according to claim 4, wherein the feedstock is one or more trivalent irons selected from iron (III) hydroxide and iron (III) pyrophosphate. 前記還元性有機物、前記鉄供給原料、及び、これらの合計重量の倍の重量の水を混合することによって、前記反応生成物を得ることを特徴とする、請求項4又は5に記載の方法。   The method according to claim 4 or 5, wherein the reaction product is obtained by mixing the reducing organic material, the iron feedstock, and water having a weight twice the total weight thereof. 請求項1〜3のいずれかに記載の光触媒を含有してなる有機物質分解剤であって、過酸化水素を用いないこと、を特徴とする有機物質分解剤。   An organic substance decomposing agent comprising the photocatalyst according to any one of claims 1 to 3, wherein hydrogen peroxide is not used. 請求項4〜6のいずれかに記載の方法により光触媒を得て、当該光触媒を活性成分として用いること、並びに、過酸化水素を用いないこと、を特徴とする有機物質分解剤の製造方法。   A method for producing an organic substance decomposing agent, comprising: obtaining a photocatalyst by the method according to any one of claims 4 to 6, using the photocatalyst as an active ingredient, and not using hydrogen peroxide. 請求項4〜6のいずれかに記載の方法により光触媒を得て、当該光触媒と分解対象有機物を接触させ、紫外線、可視光、又は赤外線に属する波長の光を照射すること、並びに、過酸化水素を用いないこと、を特徴とする有機物分解方法。   A photocatalyst is obtained by the method according to any one of claims 4 to 6, the photocatalyst is brought into contact with an organic substance to be decomposed, irradiated with light having a wavelength belonging to ultraviolet light, visible light, or infrared light, and hydrogen peroxide. Organic substance decomposition method characterized by not using. 可視光又は赤外線に属する波長の光を照射する、請求項9に記載の方法。   The method of Claim 9 which irradiates the light of the wavelength which belongs to visible light or infrared rays. 請求項1〜3のいずれかに記載の光触媒を含有してなる殺菌剤であって、過酸化水素を用いないこと、を特徴とする殺菌剤。   A disinfectant comprising the photocatalyst according to any one of claims 1 to 3, wherein hydrogen peroxide is not used. 請求項4〜6のいずれかに記載の方法により光触媒を得て、当該光触媒を活性成分として用いること、並びに、過酸化水素を用いないこと、を特徴とする殺菌剤の製造方法。   A photocatalyst is obtained by the method according to any one of claims 4 to 6, the photocatalyst is used as an active ingredient, and hydrogen peroxide is not used. 請求項4〜6のいずれかに記載の方法により光触媒を得て、当該光触媒と殺菌対象物を接触させ、紫外線、可視光、又は赤外線に属する波長の光を照射すること、並びに、過酸化水素を用いないこと、を特徴とする殺菌方法。   A photocatalyst is obtained by the method according to any one of claims 4 to 6, the photocatalyst and an object to be sterilized are brought into contact with each other, irradiated with light having a wavelength belonging to ultraviolet light, visible light, or infrared light, and hydrogen peroxide. A sterilization method, characterized by not using. 可視光又は赤外線に属する波長の光を照射する、請求項13に記載の方法。   The method of Claim 13 which irradiates the light of the wavelength which belongs to visible light or infrared rays.
JP2017212411A 2017-11-02 2017-11-02 Photocatalyst using reducing organic substances Active JP6478209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017212411A JP6478209B2 (en) 2017-11-02 2017-11-02 Photocatalyst using reducing organic substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017212411A JP6478209B2 (en) 2017-11-02 2017-11-02 Photocatalyst using reducing organic substances

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013176411A Division JP6340657B2 (en) 2013-08-28 2013-08-28 Photocatalyst using reducing organic substances

Publications (2)

Publication Number Publication Date
JP2018023977A true JP2018023977A (en) 2018-02-15
JP6478209B2 JP6478209B2 (en) 2019-03-06

Family

ID=61193385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017212411A Active JP6478209B2 (en) 2017-11-02 2017-11-02 Photocatalyst using reducing organic substances

Country Status (1)

Country Link
JP (1) JP6478209B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102060521B1 (en) 2019-07-31 2019-12-30 주식회사 제이치글로벌 Water proofing material comprising visible light active photocatalyst for air cleaning
JP2020146013A (en) * 2019-03-15 2020-09-17 富士ゼロックス株式会社 Culture medium for hydroponic cultivation, and hydroponic cultivation device
JP2020195416A (en) * 2019-05-30 2020-12-10 永大産業株式会社 Sterilization device, and handrail
JP6950067B1 (en) * 2020-10-15 2021-10-13 ユシロ化学工業株式会社 Photocatalyst composition, photocatalyst composition solution, photocatalyst member, method of using photocatalyst composition, and space sterilization method
JP2022045318A (en) * 2020-09-08 2022-03-18 中国海洋大学 Photodynamic decomposition method for polycyclic aromatic hydrocarbon waste water
WO2022075450A1 (en) * 2020-10-09 2022-04-14 学校法人昭和大学 Virus inactivation method, virus inactivation device, and blower device provided with virus inactivation device
WO2022080101A1 (en) * 2020-10-15 2022-04-21 ユシロ化学工業株式会社 Photocatalyst composition, photocatalyst composition solution, photocatalyst member, method for using photocatalyst composition, and space sterilization method
CN116832868A (en) * 2023-05-23 2023-10-03 广东省科学院测试分析研究所(中国广州分析测试中心) Preparation method and application of iron nano-enzyme with oxidase-like and peroxidase-like properties

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156539A (en) * 1982-03-11 1983-09-17 Agency Of Ind Science & Technol Stabilizing method for aqueous solution of iron compound
JPS59207801A (en) * 1983-05-12 1984-11-26 Agency Of Ind Science & Technol Production of hydrogen
JP2008194662A (en) * 2007-02-08 2008-08-28 Tatsuhisa Mitoma Method for treating organic waste water with humus material, light and divalent iron ion
US20100062966A1 (en) * 2008-09-09 2010-03-11 Novipella, Inc. Self-cleaning thin-film forming compositions
JP2011212518A (en) * 2010-03-31 2011-10-27 National Agriculture & Food Research Organization Fenton reaction catalyst using coffee ground or tea dreg as raw material
JP2012239952A (en) * 2011-05-17 2012-12-10 National Agriculture & Food Research Organization Fenton reaction catalyst produced by using reducing organic substance as raw material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156539A (en) * 1982-03-11 1983-09-17 Agency Of Ind Science & Technol Stabilizing method for aqueous solution of iron compound
JPS59207801A (en) * 1983-05-12 1984-11-26 Agency Of Ind Science & Technol Production of hydrogen
JP2008194662A (en) * 2007-02-08 2008-08-28 Tatsuhisa Mitoma Method for treating organic waste water with humus material, light and divalent iron ion
US20100062966A1 (en) * 2008-09-09 2010-03-11 Novipella, Inc. Self-cleaning thin-film forming compositions
JP2011212518A (en) * 2010-03-31 2011-10-27 National Agriculture & Food Research Organization Fenton reaction catalyst using coffee ground or tea dreg as raw material
JP2012239952A (en) * 2011-05-17 2012-12-10 National Agriculture & Food Research Organization Fenton reaction catalyst produced by using reducing organic substance as raw material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020146013A (en) * 2019-03-15 2020-09-17 富士ゼロックス株式会社 Culture medium for hydroponic cultivation, and hydroponic cultivation device
JP2020195416A (en) * 2019-05-30 2020-12-10 永大産業株式会社 Sterilization device, and handrail
JP7290477B2 (en) 2019-05-30 2023-06-13 永大産業株式会社 Sterilization device and handrail
KR102060521B1 (en) 2019-07-31 2019-12-30 주식회사 제이치글로벌 Water proofing material comprising visible light active photocatalyst for air cleaning
JP2022045318A (en) * 2020-09-08 2022-03-18 中国海洋大学 Photodynamic decomposition method for polycyclic aromatic hydrocarbon waste water
JP7224060B2 (en) 2020-09-08 2023-02-17 中国海洋大学 Photodynamic decomposition method for polycyclic aromatic hydrocarbon wastewater
WO2022075450A1 (en) * 2020-10-09 2022-04-14 学校法人昭和大学 Virus inactivation method, virus inactivation device, and blower device provided with virus inactivation device
JP6950067B1 (en) * 2020-10-15 2021-10-13 ユシロ化学工業株式会社 Photocatalyst composition, photocatalyst composition solution, photocatalyst member, method of using photocatalyst composition, and space sterilization method
WO2022080101A1 (en) * 2020-10-15 2022-04-21 ユシロ化学工業株式会社 Photocatalyst composition, photocatalyst composition solution, photocatalyst member, method for using photocatalyst composition, and space sterilization method
JP2022065439A (en) * 2020-10-15 2022-04-27 ユシロ化学工業株式会社 Photocatalyst composition, photocatalyst composition solution, photocatalyst member, method for using photocatalyst composition, and space-disinfecting method
KR20230087558A (en) 2020-10-15 2023-06-16 유시로 가가쿠 고교(주) Photocatalyst composition, photocatalyst composition solution, photocatalyst member, method of using photocatalyst composition, and space disinfection method
CN116832868A (en) * 2023-05-23 2023-10-03 广东省科学院测试分析研究所(中国广州分析测试中心) Preparation method and application of iron nano-enzyme with oxidase-like and peroxidase-like properties

Also Published As

Publication number Publication date
JP6478209B2 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
JP6478209B2 (en) Photocatalyst using reducing organic substances
JP6340657B2 (en) Photocatalyst using reducing organic substances
Nguyen et al. Recent advances on botanical biosynthesis of nanoparticles for catalytic, water treatment and agricultural applications: A review
KR101789359B1 (en) Fenton reaction catalyst produced using reducing organic substance as raw material
JP5733781B2 (en) Fenton reaction catalyst made from coffee cake or tea husk
Nguyen et al. Formation, antimicrobial activity, and biomedical performance of plant-based nanoparticles: a review
Jamshidi et al. Effect of gamma and microwave irradiation on antioxidant and antimicrobial activities of Cinnamomum zeylanicum and Echinacea purpurea.
Suhag et al. Fruit peel bioactives, valorisation into nanoparticles and potential applications: A review
Seddiek et al. Antimicrobial and antioxidant activity of some plant extracts against different food spoilage and pathogenic microbes
Das et al. Comparative assessment of antioxidant, anti-diabetic and cytotoxic effects of three peel/shell food waste extract-mediated silver nanoparticles
JP6057227B2 (en) Fenton reaction catalyst made from reducing organic materials
WO2022172649A1 (en) Polyphenol-iron complex capsule, hydrogen peroxide capsule, fenton reaction kit, and method for breeding fish and shellfish or treating diseases of fish and shellfish
JP6179957B2 (en) Fenton reaction catalyst made from reducing organic materials
WO2022168519A1 (en) Photocatalyst composition, method for producing same, and deodorizing agent
JP6202770B2 (en) Fenton reaction catalyst made from reducing organic materials
WO2022185706A1 (en) Radical-generating composition, sterilizing composition, and organic substance-decomposing composition
WO2022172688A1 (en) Visible-light-responsive porous photocatalyst body, method for producing same, and use of same
Chanda et al. Green synthesized zinc oxide nanoparticles: a review of antimicrobial, antioxidant, cytotoxic and photocatalytic properties
Ali Green synthesis of copper nanoparticles by using fresh aqueous Ananas comosus L.(pineapple) peels extract.
Wira et al. Comparison of the antioxidant potential of some herbal teas produced from ecological and traditional crops
CHIHAI et al. Biosynthesis of Metallic Nanoparticles from Plants: Industrial Applications
JP2017148804A (en) Fenton reaction catalyst using reducing organic substance as raw material
Mutukwa et al. A Review of the Green Synthesis of ZnO Nanoparticles Utilising Southern African Indigenous Medicinal Plants.
Mahmoud et al. PHYTOCHEMICAL SCREENING, TOTAL PHENOLIC, ANTIOXIDANT ACTIVITY, METALS AND MINERAL CONTENTS IN SOME PARTS OF PLANTAGO ALBICANS GROWN IN LIBYA
Mohanraj et al. Antioxidant Activity of the Leaf Extracts of Calotropis Procera

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190128

R150 Certificate of patent or registration of utility model

Ref document number: 6478209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250