WO2022172649A1 - Polyphenol-iron complex capsule, hydrogen peroxide capsule, fenton reaction kit, and method for breeding fish and shellfish or treating diseases of fish and shellfish - Google Patents

Polyphenol-iron complex capsule, hydrogen peroxide capsule, fenton reaction kit, and method for breeding fish and shellfish or treating diseases of fish and shellfish Download PDF

Info

Publication number
WO2022172649A1
WO2022172649A1 PCT/JP2022/000108 JP2022000108W WO2022172649A1 WO 2022172649 A1 WO2022172649 A1 WO 2022172649A1 JP 2022000108 W JP2022000108 W JP 2022000108W WO 2022172649 A1 WO2022172649 A1 WO 2022172649A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyphenol
iron
iron complex
capsule
hydrogen peroxide
Prior art date
Application number
PCT/JP2022/000108
Other languages
French (fr)
Japanese (ja)
Inventor
森川クラウジオ健治
Original Assignee
国立研究開発法人農業・食品産業技術総合研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人農業・食品産業技術総合研究機構 filed Critical 国立研究開発法人農業・食品産業技術総合研究機構
Publication of WO2022172649A1 publication Critical patent/WO2022172649A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/10Culture of aquatic animals of fish
    • A01K61/13Prevention or treatment of fish diseases
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/08Simple coacervation, i.e. addition of highly hydrophilic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30

Definitions

  • the present disclosure includes a polyphenol iron complex capsule in which a polyphenol iron complex is encapsulated in an alginic acid gel, a hydrogen peroxide capsule in which hydrogen peroxide is encapsulated in an alginic acid gel, and the polyphenol iron complex capsule and the hydrogen peroxide capsule.
  • the present invention relates to a Fenton reaction kit and a method for raising fish and shellfish or treating diseases using the capsule.
  • Hydroxy radicals are extremely reactive and can be used for sterilization and decomposition of organic matter.
  • Patent Documents 1 to 5 The inventor of the present application has so far developed a polyphenol iron complex that can maintain iron in the state of divalent iron ions using reducing organic substances, used tea leaves, coffee grounds, etc.
  • This polyphenol iron complex is not only useful as a Fenton reaction catalyst or a divalent iron ion supplier, but also has a function as a photocatalyst that exhibits activity by absorbing light of a wide range of wavelengths including visible light (Patent Document 6). , 7).
  • alginic acid is an intercellular polysaccharide contained in seaweed bodies, and the water-soluble alginate obtained by industrially extracting and refining it is used in a wide range of industries such as food, medicine, and industry.
  • Alginates have the property of reacting with polyvalent metal ions and gelling. An encapsulation technique that utilizes this property is applied to artificial salmon roe, food capsules, and the like (see, for example, Non-Patent Document 1).
  • the polyphenol iron complexes of Patent Documents 1 to 7 have the characteristic of being able to stably maintain divalent iron ions for a long period of time, but the reaction efficiency decreases due to adsorption on the surrounding solids, resulting in the Fenton reaction and photocatalysis. The reaction ends in a short time. Therefore, conventional polyphenol iron complexes have a problem that it is difficult to obtain stable reaction efficiency in an environment having a certain extent of space.
  • an object of the present disclosure is to improve existing polyphenol iron complexes and provide polyphenol iron complexes that provide stable reaction efficiency even when used in an environment with a certain extent of space.
  • an object of the present disclosure is to provide a technique for sustaining the reactivity of hydrogen peroxide for a long period of time.
  • an object of the present disclosure is to provide a technique capable of freely controlling the timing and/or duration of the Fenton reaction or photocatalytic reaction using the polyphenol iron complex.
  • Another object of the present disclosure is to provide a method for raising fish or treating diseases without harming fish and shellfish using a polyphenol iron complex.
  • the inventor of the present application investigated encapsulation of a polyphenol iron complex and hydrogen peroxide.
  • Various polymers were used to encapsulate the polyphenol iron complex and hydrogen peroxide, and as a result of intensive research on combining them, the stability was improved by encapsulating the polyphenol iron complex and hydrogen peroxide in the alginate gel. They have found that capsules can be obtained that are high and controllable in timing and period of reaction.
  • the inventors of the present application have found that by administering these capsules to fish tanks, it is possible to treat diseases of fish and shellfish in a short period of time without harming the fish and shellfish. Based on these findings, the present disclosure was completed.
  • the present disclosure provides a polyphenol-iron complex capsule in which a polyphenol-iron complex is encapsulated in an alginic acid gel.
  • the polyphenol iron complex may further contain water-soluble vitamins and/or trace elements.
  • the polyphenol iron complex capsule may be in the shape of aquatic plants, seaweed, shells, corals or pebbles.
  • the present disclosure also provides a hydrogen peroxide capsule in which hydrogen peroxide is encapsulated in alginic acid gel.
  • the present disclosure provides a Fenton reaction kit containing the polyphenol iron complex capsule and the hydrogen peroxide capsule.
  • the present disclosure provides a method for breeding seafood or treating diseases using the polyphenol iron complex capsule.
  • the polyphenol iron complex capsules may be used in combination with the hydrogen peroxide capsules.
  • one or more of ultraviolet light, visible light, and infrared light can be irradiated.
  • a visible-light-responsive porous photocatalyst formed by solidifying alkaline earth metal peroxides with cement may be used in combination.
  • the polyphenol-iron complex capsule of the present disclosure has a structure in which the polyphenol-iron complex is enclosed in an alginate gel, it is more stable than conventional polyphenol-iron complexes and is less susceptible to environmental temperature and pH. can do. Therefore, stable reaction efficiency can be obtained even when the polyphenol iron complex is used in an environment having a certain extent of space.
  • the polyphenol iron complex can be used for the prevention or treatment of diseases, sterilization, decomposition of harmful substances, etc., without damaging useful organisms such as ornamental fish and cultured fish.
  • the polyphenol-iron complex which is usually liquid or powdery, it is easy to handle and has the effect of preventing accidental ingestion by useful organisms.
  • the hydrogen peroxide capsule of the present disclosure has a structure in which hydrogen peroxide is encapsulated in alginic acid gel, so it is possible to prevent loss of hydrogen peroxide and maintain reactivity for a long period of time. In addition, by encapsulating the toxic hydrogen peroxide, it is easy to handle and has the effect of preventing damage to useful organisms.
  • the Fenton reaction kit of the present disclosure contains the above-described polyphenol iron complex capsules and hydrogen peroxide capsules, so that the Fenton reaction can be performed efficiently and continuously, and the Fenton reaction can be freely controlled. Become.
  • the use of encapsulated polyphenol-iron complex and hydrogen peroxide facilitates handling and has the effect of preventing damage to useful organisms.
  • the fish and shellfish breeding or disease treatment method of the present disclosure by using the above-described polyphenol iron complex capsule, the fish and shellfish are supplied with divalent iron ions to maintain the health of the fish and shellfish, and Disease can be prevented or treated. Furthermore, the action of sterilization by the Fenton reaction or photocatalytic reaction, decomposition of harmful substances, etc., can improve and maintain the water quality environment. Since polyphenol iron complex capsules can maintain these effects for a long period of time, the frequency of administration of capsules can be reduced, facilitating health management of fish and shellfish.
  • FIG. 2 is a photographic image diagram showing the manufacturing process of the polyphenol iron complex capsule of the first embodiment and the manufactured capsule. It is a figure which shows the manufacturing process of the hydrogen peroxide capsule of 2nd embodiment.
  • FIG. 4 is a photographic image diagram showing the manufacturing process of the hydrogen peroxide capsule of the second embodiment and the manufactured capsule.
  • FIG. 10 is a photographic image showing polyphenol iron complex capsules having different sizes produced in Example 7.
  • FIG. Fig. 2 is a photographic image comparing encapsulated polyphenol iron complexes, iron (III) chloride and iron (II) sulfate (Test Example 1).
  • FIG. 10 is a photographic image showing the bactericidal effect of Escherichia coli by combined treatment of polyphenol iron complex capsules and hydrogen peroxide capsules (Test Example 2).
  • (a) shows the control group (no capsule added), and (b) shows the combined treatment group.
  • FIG. 10 is a diagram showing a method for breeding fish and shellfish or treating a disease with light irradiation using a polyphenol iron complex capsule and a hydrogen peroxide capsule.
  • "PP-Fe" indicates a polyphenol iron complex.
  • FIG. 11 is a photographic image showing the therapeutic effect of water mold disease in goldfish by polyphenol iron complex capsules and hydrogen peroxide capsules (Example 11).
  • FIG. 11 is a photographic image showing a method for breeding fish and shellfish or treating a disease using a polyphenol iron complex capsule and a visible-light-responsive porous photocatalyst (Example 12).
  • (a) shows a porous photocatalyst and (b) shows a polyphenol iron complex capsule, respectively.
  • Example 14 (Example 14).
  • Example 15 (Example 15).
  • Example 15 (Example 15).
  • (a) shows the control group (no capsule added), and (b) shows the combined treatment group (with light irradiation), respectively.
  • a polyphenol-iron complex capsule according to the first embodiment is obtained by encapsulating a polyphenol-iron complex in an alginic acid gel.
  • polyphenol iron complex is a reaction product obtained by mixing polyphenols or a feedstock thereof with an iron feedstock in the presence of water, which are described in the above-mentioned Patent Documents 1 to 7. It is formed by divalent iron ions (Fe 2+ ) forming a complex structure with polyphenols.
  • Polyphenols is a generic term for phenolic molecules with multiple hydroxy groups. It is a compound contained in most plants, and various types such as flavonoids and phenolic acids are known.
  • Examples of specific compounds include catechins (epicatechin, epigallocatechin, epicatechin gallate, epigallocatechin gallate, etc.), tannic acid, tannin, chlorogenic acid, caffeic acid, neochlorogenic acid, cyanidin, proanthocyanidins, Thearubigin, rutin, flavonoids (quercitrin, anthocyanin, flavanones, flavanols, flavonols, isoflavones, etc.), flavones, chalcones (naringenin chalcone, etc.), xanthophyll, carnosic acid, eriocitrin, nobiletin, tangeretin, magnolol, honokiol, ellagic acid, Lignans, curcumin, coumarin, catechol, procyanidins, theaflavin, rosmarinic acid, xanthone, quercetin, resver
  • Polyphenols in the first embodiment may be one of the above, or may be a composition consisting of two or more.
  • polyphenol compositions extracted from a certain plant are sometimes called polyphenols with the name of the plant.
  • polyphenols extracted from grapes are called grape polyphenols.
  • a plant body containing polyphenols (hereinafter referred to as “polyphenol-containing plant body”) or a processed product thereof can be used.
  • the “plant body” includes one or more selected from fruit, seed, stem, leaf, outer skin, bud, flower, root, and rhizome of a plant body.
  • polyphenol-containing plants include herbs (lavender, mint, coriander, cumin, sage, lemongrass, mugwort, comfrey, perilla, lemon balm, oregano, catnip, common thyme, dill, dark opal, basil, hyssop, peppermint, lamb's ear, etc.), houttuynia cordata, marigold, grapes, coffee (coffee tree), tea (tea), cacao, acacia, cedar, pine, sugar cane, mango, banana, papaya, avocado, apple, cherry (cherry), Guava, olive, potatoes (sweet potato, purple potato (sweet potato containing a lot of purple pigment), potato, yam, taro (taro, shrimp, etc.), konjac potato, etc.), persimmon, mulberry, blueberry, poplar, ginkgo biloba , Chrysanthemum, Sunflower, Bamboo, Citrus Fruits (Levender, mint
  • grapes coffee (coffee tree), tea (tea), cacao, acacia, cedar, pine, yuzu, lemon, herbs (lavender, mint, coriander, cumin, sage, perilla, lemongrass, mugwort, comfrey, lemon balm , oregano, catnip, common thyme, dill, dark opal, basil, hyssop, peppermint, lamb's ear, etc.), Houttuynia cordata, marigold, sugar cane, mango, banana, papaya, avocado, apple, cherry, guava, olive, potato (sweet potato, purple potato (sweet potato containing a lot of purple pigment), potato, yam, taro (taro, shrimp, etc.), konjac potato, etc.), persimmon (persimmon), mulberry, blueberry, poplar, ginkgo, chrysanthemum, sunflower, bamboo is preferably used.
  • Processed products of polyphenol-containing plant bodies include dried products of polyphenol-containing plant bodies, juices, extracts, and liquid extracts. Further, the squeezed liquid or the extract may be further dried.
  • “Dried matter” is preferably one that has undergone processing such as crushing, pulverization, or powderization.
  • processing such as crushing, pulverization, or powderization.
  • a powder with a small particle size is preferable.
  • Suitable extraction solvents for the "extract” and “extract” are water, hot water, alcohol (especially ethanol), and hydrous alcohol (especially hydrous ethanol).
  • the residue remaining after extracting the polyphenol-containing plant body or its processed product with water or hot water can also be suitably used.
  • extraction residues include coffee grounds and used tea leaves.
  • Coffee grounds refers to the residue after extracting roasted and ground coffee beans with water or hot water. Coffee grounds contain a large amount of polyphenols, and since they are waste products, the raw material cost can be kept low, so they are suitable as raw materials for supplying polyphenols. In addition, components obtained by extracting roasted and ground coffee beans with water or hot water (so-called components of brewed coffee), coffee beans, their roasted products, ground products, etc., also contain large amounts of polyphenols. , can be preferably used.
  • Tea leaves refers to the residue after extracting tea leaves or their pulverized material with water or hot water. Used tea leaves contain an extremely large amount of polyphenols, and since they are waste products, the cost of raw materials can be kept low, so they are suitable as raw materials for supplying polyphenols.
  • any stems and leaves of the tea tree can be used.
  • Specific examples include green tea (sencha, hereha, stem tea, hojicha, etc.), blue tea (oolong tea, etc.), black tea, black tea (pu-erh tea, etc.), and the like.
  • green tea, black tea, and oolong tea are preferable.
  • components obtained by extracting tea leaves or their pulverized products with water or hot water also contain large amounts of polyphenols. It can be suitably used as a feedstock.
  • a dry distillation solution obtained by thermally decomposing a polyphenol-containing plant body or its processed product in a reducing state can also be suitably used as a feedstock for polyphenols. .
  • this plant dry distillate contains many reducing organic molecules such as phenols, organic acids, carbonyls, alcohols, amines, basic components, and other neutral components.
  • reducing organic matter refers to an organic matter that has a strong reducing power and has the action of reducing trivalent iron to divalent iron.
  • the dry distillate of the plant is a sticky liquid with a reddish-brown to dark brown appearance.
  • types such as wood vinegar, bamboo vinegar, rice vinegar, etc., depending on the plant body used as the raw material, and any of them can be suitably used.
  • These vegetable dry distillation solutions can be used as they are, but they can also be used as concentrated solutions, diluted solutions, or dried products thereof.
  • iron feedstock any of a bivalent iron feedstock, a trivalent iron feedstock, or a metallic iron feedstock can be used. Also, a plurality of materials can be mixed and used.
  • the "supply material of divalent iron” iron (II) chloride, iron (II) nitrate, iron (II) sulfate, iron (II) hydroxide, iron (II) oxide, iron (II) acetate ,
  • Water-soluble divalent iron compounds such as iron (II) lactate, sodium iron (II) citrate, iron (II) gluconate; water-insoluble divalent iron compounds such as iron (II) carbonate and iron (II) fumarate compounds can be mentioned.
  • feedstock of trivalent iron water-soluble trivalent iron(III) chloride, iron(III) sulfate, iron(III) citrate, ammonium iron(III) citrate, iron(III) EDTA, etc.
  • Iron compounds water-insoluble trivalent iron compounds such as iron(III) oxide, iron(III) nitrate, iron(III) hydroxide, and iron(III) pyrophosphate.
  • iron materials such as smelted iron and alloys can be mentioned as "supply raw materials of metallic iron”.
  • rust can also be used as an iron feedstock.
  • iron feedstock is water-insoluble, it can be used directly as an iron feedstock because it is water-soluble due to the chelating ability of polyphenols.
  • iron feedstocks it is preferable to use a water-soluble divalent iron or trivalent iron compound in order to efficiently produce a polyphenol iron complex.
  • inexpensive iron chloride, iron sulfate, or the like it is preferable to use inexpensive iron chloride, iron sulfate, or the like.
  • natural soil particularly Akadama soil, Kanuma soil, loam, etc.
  • metallic iron as iron supply raw materials.
  • the polyphenol iron complex is obtained by mixing polyphenols or a feedstock thereof with an iron feedstock in the presence of water.
  • the mixing ratio of these raw materials is such that the iron feedstock is added in an amount of 0.1 part by weight or more, preferably 1 part by weight in terms of the weight of the iron element, with respect to 100 parts by weight of the dry weight of the polyphenols or the feedstock of the polyphenols. parts or more, more preferably 4 parts by weight or more, still more preferably 10 parts by weight or more, particularly preferably 20 parts by weight or more. If the proportion of the iron element is too small (if the proportion of the polyphenols mixed with respect to the iron element is too high), the excess polyphenols function as radical scavenging substances (scavengers), so the Fenton reaction and photocatalyst May inhibit reactions.
  • scavengers radical scavenging substances
  • the upper limit of the mixing ratio of the iron feedstock is 100 parts by weight or less in terms of the weight of the iron element with respect to 100 parts by weight of the dry weight of the polyphenols or the feedstock of the polyphenols. , preferably 80 parts by weight or less, more preferably 60 parts by weight or less. If the ratio of the iron element is too high (if the mixing ratio of the polyphenols is too low relative to the iron element), the iron ions cannot be maintained in a divalent state, and the efficiency of the Fenton reaction or photocatalytic reaction decreases. I don't like it.
  • the dry weight of the polyphenol-containing plant used as the raw material for extraction is referred to as the "dry weight of the raw material for the polyphenols.
  • the above mixing ratio can be calculated by considering the above as "weight”. For example, it is assumed that dry tea leaves are used as the feedstock for the polyphenols, and an extract obtained by hot water extraction of the tea leaves is reacted with the iron feedstock. In this case, the weight of the dried tea leaves is used as the "dry weight of the polyphenol feedstock" to calculate the mixing ratio with the iron feedstock.
  • the dry weight of the polyphenol-containing plant used as the raw material for processing is referred to as the "dry weight of the raw material for the polyphenols".
  • the above mixing ratio can be calculated.
  • the mixing operation of the raw materials is performed in the presence of water.
  • the presence of water may be any condition as long as the polyphenols and iron can react with each other using water as a medium.
  • the reaction is presumed to be a reaction in which the polyphenol reduces iron ions (the state of Fe 2+ , which is a divalent iron ion) to form a complex.
  • the amount of water should be sufficient to allow at least mixing and stirring of the raw materials, and may be an amount sufficient to wet the mixture of raw materials (polyphenols and iron).
  • plant body juice or plant dry distillation liquid when used as a raw material for polyphenols, it can be directly mixed with the iron raw material and reacted without adding a new medium.
  • simple stirring and mixing with a stirrer, etc. can be performed, but it can also be performed with a mixer, large stirring tank, vortex, shaker, etc.
  • the temperature of the water during mixing should be the temperature at which the water is in a liquid state (for example, 1 to 100°C at 1 atm). It is possible to adopt about room temperature (for example, 10 to 35 ° C.) that does not require heating, but when heating, heating at 40 ° C. or higher, preferably 50 ° C. or higher, generates a polyphenol iron complex. is promoted and suitable.
  • the upper limit of the temperature of water during mixing can be 200 ° C. (in the case of pressurized heating), but from the viewpoint of production costs, the boiling point of normal heating under normal pressure conditions is 100 ° C. or less, preferably 90 ° C. °C or below, more preferably 70°C or below.
  • the reaction conditions of 100° C. or higher it is preferable to carry out the reaction in a closed container in order to suppress thermal decomposition of the polyphenols.
  • the mixing time may be about 10 seconds or more until the polyphenols and iron are sufficiently contacted, but in order to improve uniformity, it is preferably 1 minute or more, more preferably 3 minutes or more, and still more preferably Mixing for 5 minutes or more is desirable.
  • the upper limit of the mixing time is 10 days or less, preferably 7 days or less, more preferably 5 days or less, even more preferably 3 days or less, and particularly preferably 1 day, in order to prevent organic matter from spoiling due to propagation of microorganisms. It is desirable to perform within However, there is no particular upper limit when sterilization is involved.
  • the reaction product (reaction product of polyphenols and iron) obtained through the above mixing treatment has excellent divalent iron ion-supplying activity, Fenton reaction catalytic activity, and photocatalytic activity.
  • the polyphenols convert iron into a divalent iron ion (Fe 2+ ) state to form a complex (that is, a polyphenol iron complex).
  • the supernatant obtained after the reaction or the precipitate in a water-containing state can be used as it is as the polyphenol iron complex in the present embodiment.
  • the separated and collected supernatant or precipitate, the dried product obtained by drying (natural drying, roasting, hot air drying, etc.), and the suspension obtained by further dissolving the dried product in water Turbid matter, its supernatant, etc. can also be used as the polyphenol iron complex in the present embodiment.
  • the polyphenol-iron complex capsule according to the first embodiment is a capsule made of alginic acid gel containing the polyphenol-iron complex.
  • alginic acid gel is a gel formed by ionically cross-linking alginic acid molecules with polyvalent cations.
  • the polyphenol-iron complex capsule is a core-shell type capsule in which the inner layer containing the polyphenol-iron complex is covered with the outer layer of the alginate gel, or a matrix-type capsule in which the polyphenol-iron complex is dispersed inside the particles of the alginate gel. Capsules.
  • the shape of the polyphenol iron complex capsule may be spherical or non-spherical. Moreover, it may be a mononuclear structure having only one inner layer, or a multinuclear structure having two or more inner layers. In any of the above forms, the effect of stabilizing the polyphenol-iron complex and achieving sustained release remains the same.
  • Alginic acid is a heteropolysaccharide composed of D-mannuronic acid (M) and L-guluronic acid (G). Since gelation of alginic acid is caused by cross-linking of guluronic acid moieties, the physical properties of the obtained polyphenol iron complex capsules vary depending on the composition ratio of M and G, that is, the M/G ratio. For example, if alginic acid with a large M/G ratio, that is, with a large mannuronic acid content, is used, the capsule will be soft and easily disintegrated, and if alginic acid with a small M/G ratio, that is, with a large guluronic acid content, is used, the capsule will be hard and disintegrate. It becomes a difficult capsule.
  • the M/G ratio of alginic acid may be appropriately set according to the application and usage environment of the polyphenol iron complex capsule so that the capsule has desired physical properties. Specifically, the M/G ratio of alginic acid can usually be about 0.05 to 5.0.
  • the size of the polyphenol-iron complex capsule may be appropriately set according to the application, usage environment, etc.
  • a spherical capsule may have a diameter ranging from 1 nm to 1 m.
  • the size may be set so as to prevent accidental ingestion by the target fish.
  • spherical capsules can have a diameter of about 2 to 10 mm.
  • the diameter can be about 10 to 100 mm, and when targeting large fish, the diameter can be about 10 to 100 cm.
  • the polyphenol iron complex capsule may have a shape that imitates aquatic plants, seaweed, shells, coral, pebbles, etc., so as not to spoil the scenery in a fish tank.
  • the size of the capsule may be appropriately set according to the size of actual aquatic plants, seaweed, shells, corals, pebbles, and the like.
  • the content of the alginic acid gel in the polyphenol iron complex capsule is usually 0.001 to 99% by weight, preferably 0.1 to 10% by weight.
  • the content of the polyphenol iron complex in the polyphenol iron complex capsule is not particularly limited. For example, it can be 0.0001 to 99% by weight, preferably 0.01 to 10% by weight.
  • the polyphenol-iron complex capsule may contain components other than the polyphenol-iron complex as long as the above effects are not hindered.
  • examples of the "other ingredients” include nutrients necessary for the growth and proliferation of useful organisms such as animals and plants such as fish and shellfish, algae, and microorganisms.
  • water-soluble vitamins such as B vitamins and vitamin C or derivatives thereof; trace elements such as copper, zinc, cobalt, manganese, molybdenum, boron and iron, or compounds thereof; The above are mentioned.
  • the trace element may be contained in the form of a polyphenol complex because it can react with an excessive amount of the polyphenols in the capsule to form a complex.
  • the B vitamins include vitamin B1 , vitamin B2, niacin (vitamin B3), pantothenic acid (vitamin B5 ), vitamin B6 , biotin (vitamin B7 ), folic acid (vitamin B9 ), vitamin B 12 or derivatives thereof.
  • Examples of the trace element compounds include copper sulfate, zinc sulfate, cobalt chloride, manganese chloride, manganese sulfate, sodium molybdate, boric acid, iron chloride, and iron sulfate.
  • the total content of the "other ingredients” and the content of each ingredient in the polyphenol iron complex capsule may be appropriately set according to the application of the capsule, and is not particularly limited.
  • the total content is usually 99% by weight or less, preferably 0.0001 to 95% by weight, more preferably 0.5 to 75% by weight, and even more preferably 5 to 60% by weight.
  • composition of the B vitamins and the trace elements contained in the polyphenol iron complex capsule for the purpose of raising seafood or treating diseases is shown below.
  • the following composition may be concentrated or diluted and contained in the polyphenol iron complex capsule.
  • composition of the trace element contained in the polyphenol iron complex capsule for the purpose of plant cultivation is shown below.
  • the following composition may be concentrated or diluted and contained in the polyphenol iron complex capsule.
  • the polyphenol iron complex capsules described above can be produced, for example, as follows.
  • the polyphenol iron complex is prepared by mixing the polyphenols or the feedstock thereof and the iron feedstock in the presence of water by the method described above.
  • alginate may be any soluble salt of alginic acid, and specific examples include sodium alginate, potassium alginate, and ammonium alginate.
  • the M/G ratio of alginic acid may be appropriately set according to the application and usage environment of the polyphenol iron complex capsule so that the capsule has desired physical properties. Specifically, the M/G ratio of alginic acid can usually be about 0.05 to 5.0.
  • the content of the alginate in the alginic acid aqueous solution is usually 0.001 to 99% by weight, preferably 0.1 to 10% by weight.
  • the content of the polyphenol iron complex in the aqueous alginic acid solution is not particularly limited. For example, it can be 0.0001 to 99% by weight, preferably 0.01 to 10% by weight.
  • the aqueous alginic acid solution may contain components other than the polyphenol iron complex as long as the above effects are not hindered.
  • the "other ingredients" are as described above, for example, water-soluble vitamins such as B vitamins and vitamin C or derivatives thereof; trace elements such as copper, zinc, cobalt, manganese, molybdenum, boron, iron, or one or more selected from the group consisting of the compound;
  • the total content of the "other components" and the content of each component in the aqueous alginic acid solution may be appropriately set according to the application of the polyphenol iron complex capsule, and are not particularly limited.
  • the total content is usually 99% by weight or less, preferably 0.0001 to 95% by weight, more preferably 0.5 to 75% by weight, and even more preferably 5 to 60% by weight.
  • composition of the B vitamins and the trace elements in the alginic acid aqueous solution when producing the polyphenol iron complex capsules used for the purpose of breeding seafood or treating diseases is shown below.
  • the following composition can also be concentrated or diluted and blended.
  • composition of the trace elements in the alginic acid aqueous solution when producing the polyphenol iron complex capsules used for plant cultivation is shown below.
  • the following composition can also be concentrated or diluted and blended.
  • the aqueous solution of alginic acid (liquid 1) prepared in (2) above is added dropwise into the solution (liquid 2) in which polyvalent cations are dissolved, thereby turning alginic acid into a gel. to produce the polyphenol iron complex capsule (see FIG. 2).
  • a dropping method a conventionally known method may be used.
  • Polyvalent cations include, for example, calcium salts and iron salts. More specifically, calcium chloride, calcium lactate, ferric sulfate, ferric chloride, etc. are preferred, and calcium chloride is particularly preferred because it accelerates gelation. Although the concentration of the polyvalent cation solution is not particularly limited, it can usually be 0.01 to 60% by weight.
  • matrix-type spherical capsules are obtained in which the ingredients such as the polyphenol iron complex are dispersed inside the alginate gel particles.
  • the polyphenol iron complex is added to the inside of the alginate gel film by dropping the above-described polyphenol iron complex and other components from the inner cylinder of the concentric double nozzle and the alginate aqueous solution from the outer cylinder into the polyvalent cation solution. It is also possible to produce core-shell type spherical capsules in which ingredients such as are encapsulated.
  • alginic acid aqueous solution (alginate concentration: about 0.5 to 10% by weight) added with a component such as the above-mentioned polyphenol iron complex was stirred well to form a gel, which was formed into a block of a desired size.
  • Capsules of the desired size can also be produced by subsequent hardening by dipping in a polyvalent cation solution.
  • the alginic acid aqueous solution gelled as described above is placed in a mold of a desired shape made of silicon or the like and allowed to stand for about 20 minutes to 1 hour. By immersing it in water and hardening it, it is also possible to produce irregular shaped capsules of a desired shape imitating aquatic plants, seaweed, shells, corals, pebbles, and the like.
  • the polyphenol iron complex capsules obtained by any of the above manufacturing methods are included in the polyphenol iron complex capsules according to the first embodiment.
  • the alginate gel having a porous structure gradually releases the polyphenol iron complex into the environment.
  • the action effect can be sustained for a long time.
  • polyphenol iron complex capsule is a highly safe substance for the human body and the environment, it can be used in various fields such as medicine, food, public health, fisheries, agriculture, and industry.
  • the polyphenol iron complex capsule can be used as a Fenton reaction catalyst to sterilize various objects regardless of whether they are liquid or solid by utilizing the property of generating hydroxyl radicals from hydrogen peroxide.
  • objects that can be sterilized include not only bacteria but also eukaryotic microorganisms, algae, archaea, viruses, viroids, and the like.
  • the sterilization target includes water tanks such as homes and aquariums; restaurants, fish farms, fish cages for transportation, etc.; nutrient tanks such as hydroponics; water in pools, ponds, lakes, sewage treatment plants, etc. kitchen utensils such as cutting boards, kitchen knives and tableware; skin of animals, humans, etc.;
  • sterilization can be performed by immersing the sterilization target in a solution to which the polyphenol iron complex capsule is added.
  • the solution may contain other bactericidal components, contaminants, useful organisms, etc., as long as they do not interfere with the above effects.
  • sterilization can be performed by adding the polyphenol iron complex capsules to water or hydrous alcohol and spraying them on the object or space to be sterilized using a sprayer or the like.
  • sterilization can be performed by adding the polyphenol iron complex capsules to the liquid or solution.
  • the sterilization target is the organism itself, or if the liquid sterilization target or the solution in which the sterilization target is dispersed or the solution in which the solid sterilization target is immersed contains the organism, the sterilization target or Since a small amount of biogenic hydrogen peroxide is already generated in the solution, it is possible to perform sterilization using only the polyphenol iron complex capsule.
  • the hydrogen peroxide capsule according to the second embodiment may be used as the hydrogen peroxide.
  • the amount of the polyphenol iron complex capsule added in the sterilization method is not particularly limited, and may be an amount that provides the desired sterilization effect. Specifically, it can be 0.5 g or more, preferably 1 to 30 g, and more preferably 5 to 10 g per liter of water or solution. Also, the amount of hydrogen peroxide to be added may be extremely small, and may be an amount of about 0.1 to 20 mM.
  • the duration of the bactericidal effect of the polyphenol iron complex capsules varies depending on the sustained release and disintegration properties of the alginate gel, the content of the polyphenol iron complex, etc., but may be, for example, several days to several tens of months. can be done.
  • the bactericidal action can be obtained simply by leaving the polyphenol iron complex capsule in the solution in which the solid object to be sterilized is immersed, in the solution in which the object to be sterilized is dispersed, or in the liquid object to be sterilized.
  • the polyphenol iron complex can be distributed throughout the solution or liquid to be sterilized, so that a higher sterilization effect can be obtained.
  • the polyphenol iron complex since the polyphenol iron complex also has photocatalytic activity, a higher bactericidal effect can be obtained by irradiating the polyphenol iron complex capsule with light.
  • the light one or more light selected from sunlight, light in a wide wavelength range of 200 to 1400 nm, ie, ultraviolet light, visible light, and infrared light can be used.
  • “ultraviolet rays” refer to light in the wavelength range of 380 nm or less.
  • “Visible light” refers to light with a wavelength of 380 to 750 nm, which is the wavelength range visible to the human eye.
  • “visible light” includes 380-450 nm (violet light), 450-495 nm (blue light), 495-570 nm (green light), 570-590 nm (yellow light), 590-620 nm (orange light). ), including light in the wavelength range of 620-750 nm (red light).
  • “infrared” refers to light in a wavelength range of 750 nm or more.
  • the polyphenol iron complex capsule exhibits extremely strong photocatalytic activity when irradiated with the ultraviolet rays.
  • the polyphenol iron complex capsule exhibits extremely strong photocatalytic activity when irradiated with the ultraviolet rays.
  • the polyphenol iron complex capsule exhibits much higher photocatalytic activity (bactericidal action) than titanium oxide, which is a conventional photocatalyst.
  • the polyphenol iron complex capsules exhibit strong photocatalytic activity (bactericidal action) even when irradiated with visible light and infrared light, which are wavelength regions in which titanium oxide does not exhibit activity.
  • visible light it shows strong activity in the wavelength range of violet light to blue light (380-495 nm), which has particularly short wavelengths.
  • infrared rays it exhibits strong activity in the near-infrared wavelength range of 750 to 1400 nm (especially around 900 to 1300 nm, more especially around 1100 to 1300 nm).
  • the photocatalytic activity of the polyphenol iron complex capsule is extremely strong, for example, in the case of surface sterilization, sufficient sterilization effect can be obtained by irradiating sunlight for several minutes, preferably 10 minutes or more, more preferably 20 minutes or more. demonstrated. Even when relatively weak light such as LED or fluorescent lamp is applied, a sufficient sterilization effect can be obtained by treatment for 1 hour or longer, preferably 6 hours or longer, and more preferably 12 hours or longer.
  • the polyphenol iron complex capsule can be used to decompose various organic substances due to its Fenton reaction catalytic activity. In particular, since it can be suitably used for decomposing organic pollutants and harmful substances, it is useful in one step of environmental purification.
  • pollutants and harmful substances refer to substances that cause water pollution, soil pollution, and air pollution.
  • organic substances that are harmful to the human body and the environment include domestic wastewater, night soil water, industrial wastewater, polluted river and lake water, landfill soil, industrial waste, agricultural land, and factory sites. can.
  • organic waste such as detergents, food and drink residues, night soil, feces, pesticides, malodorous substances, waste oils, dioxins, PCBs, DNA, RNA, and proteins. can.
  • the specific method for decomposing these organic substances using the polyphenol iron complex capsule is the same as the sterilization method described above.
  • decomposition can be performed by immersing the decomposition target in a solution to which the polyphenol iron complex capsule is added.
  • decomposition can be performed by adding the polyphenol iron complex capsules to water or hydrous alcohol and spraying them onto the decomposition target using a sprayer or the like.
  • decomposition can be performed by adding the polyphenol iron complex capsule to the liquid or solution.
  • the hydrogen peroxide capsule according to the second embodiment may be used as the hydrogen peroxide.
  • the amount of the polyphenol iron complex capsule added in the decomposition method is not particularly limited, and may be an amount that provides the desired decomposition effect. Specifically, the addition amount can be the same as in the case of the sterilization. Also, the amount of hydrogen peroxide to be added may be extremely small, and may be an amount of about 0.1 to 20 mM.
  • the duration of the organic substance decomposition effect of the polyphenol iron complex capsule can be, for example, several days to several tens of months. Further, a higher decomposition effect can be obtained by generating a water flow using an air pump, stirring, or the like in the solution in which the solid decomposition target is immersed, the solution in which the decomposition target is dispersed, or the liquid decomposition target.
  • the sterilization method by irradiating the polyphenol iron complex capsules with light, it is possible to decompose organic substances in a shorter time.
  • the light one or more light selected from sunlight, light in a wide wavelength range of 200 to 1400 nm, ie, ultraviolet light, visible light, and infrared light can be used.
  • the irradiation time can be the same as in the sterilization method described above.
  • the polyphenol iron complex capsule has the property of being able to stably and sustainably release water-soluble ferric ions for a long period of time. Moreover, this ability to supply water-soluble iron is stably exhibited even under alkaline conditions. Therefore, the polyphenol iron complex capsule can be suitably used as an iron supply agent.
  • the target of iron supply is not particularly limited, and can be applied to all organisms such as plants, animals, and microorganisms.
  • the polyphenol iron complex capsules When used to supply iron to plants, the polyphenol iron complex capsules can be used for any normal plant cultivation in agriculture and horticulture. In particular, it is effective for cultivation in alkaline soil where iron deficiency is likely to occur, and for use in hydroponics (hydroponics).
  • alkaline soil refers to alkaline soil with a pH of about 7-10.
  • the polyphenol iron complex capsules can exhibit iron supplying ability even in strongly alkaline soil with a pH of 9 or higher. Not usable at all.
  • the polyphenol iron complex capsules are mixed in the cultivation soil; sprayed on the cultivation soil; Add ferric ions to the water storage space of the pot together with water so that the water containing ferric ions is supplied to the cultivation soil; add to the nutrient solution for hydroponics; can be supplied.
  • the amount of the polyphenol iron complex capsules added in the iron supply method is not particularly limited, and may be an amount that provides the desired effect. Specifically, when it is used by adding to water, it can be 0.5 g or more, preferably 1 to 70 g, per 1 L of water. Moreover, when it is used by adding to the soil, it can be 0.1 to 10% by weight based on the soil.
  • the duration of the iron supply effect of the polyphenol iron complex capsules varies depending on the sustained release and disintegration properties of the alginate gel, the content of the polyphenol iron complex, and the like, but is, for example, several days to several tens of months. be able to.
  • a hydrogen peroxide capsule according to the second embodiment is formed by encapsulating hydrogen peroxide in an alginic acid gel. That is, the capsule is a capsule made of alginic acid gel containing hydrogen peroxide.
  • the hydrogen peroxide capsule is a core-shell type capsule in which an inner layer containing hydrogen peroxide is covered with an outer layer of the alginate gel, or a matrix type capsule in which hydrogen peroxide is dispersed inside the alginate gel particles. , may be either.
  • the shape of the hydrogen peroxide capsule may be spherical or non-spherical. Moreover, it may be a mononuclear structure having only one inner layer, or a multinuclear structure having two or more inner layers. In any of the above forms, the effect of stabilizing hydrogen peroxide and enabling sustained release remains the same.
  • the M/G ratio of alginic acid may be appropriately set according to the application and use environment of the hydrogen peroxide capsule so that the capsule has desired physical properties. Specifically, the M/G ratio of alginic acid can usually be about 0.05 to 5.0.
  • the size of the hydrogen peroxide capsule may be appropriately set according to the application, usage environment, etc.
  • a spherical capsule may have a diameter ranging from 1 nm to 1 m.
  • the size may be set so as to prevent accidental ingestion by the target fish.
  • spherical capsules can have a diameter of about 2 to 10 mm.
  • the diameter can be about 10 to 100 mm, and when targeting large fish, the diameter can be about 10 to 100 cm.
  • the hydrogen peroxide capsule may have a shape that imitates aquatic plants, seaweed, seashells, coral, pebbles, etc., so as not to spoil the scenery in a fish tank.
  • the size of the capsule may be appropriately set according to the size of actual aquatic plants, seaweed, shells, corals, pebbles, and the like.
  • the content of the alginic acid gel in the hydrogen peroxide capsule is usually 0.001 to 99% by weight, preferably 0.1 to 10% by weight.
  • the content of the hydrogen peroxide in the hydrogen peroxide capsule is not particularly limited. For example, it can be 0.0001 to 35% by weight, preferably 0.001 to 6.0% by weight.
  • the hydrogen peroxide capsule may contain ingredients other than the hydrogen peroxide as long as the above effects are not hindered.
  • the hydrogen peroxide capsule described above can be produced, for example, as follows.
  • liquid 1 an alginic acid aqueous solution (liquid 1) containing hydrogen peroxide and alginate is prepared (see FIG. 3).
  • alginate may be any soluble salt of alginic acid, and specific examples include sodium alginate, potassium alginate, and ammonium alginate.
  • the M/G ratio of alginic acid may be appropriately set according to the application and usage environment of the hydrogen peroxide capsule so that the capsule has desired physical properties. Specifically, the M/G ratio of alginic acid can usually be about 0.05 to 5.0.
  • the content of the alginate in the alginic acid aqueous solution is usually 0.001 to 99% by weight, preferably 0.1 to 10% by weight.
  • the content of the hydrogen peroxide in the aqueous alginic acid solution is not particularly limited. For example, it can be 0.0001 to 35% by weight, preferably 0.001 to 6.0% by weight.
  • the alginic acid aqueous solution may contain components other than hydrogen peroxide as long as the above effects are not hindered.
  • the aqueous solution of alginic acid (liquid 1) prepared in (1) above is added dropwise into the solution (liquid 2) in which polyvalent cations are dissolved, thereby dissolving alginic acid. It is allowed to gel to produce the hydrogen peroxide capsules (see FIG. 4).
  • a dropping method a conventionally known method may be used.
  • Polyvalent cations include, for example, calcium salts. More specifically, calcium chloride, calcium lactate, and the like are preferred, and calcium chloride is particularly preferred because it accelerates gelation. Although the concentration of the polyvalent cation solution is not particularly limited, it can usually be 0.01 to 60% by weight.
  • matrix-type spherical capsules are obtained in which hydrogen peroxide is dispersed inside the alginate gel particles.
  • the hydrogen peroxide solution is dropped from the inner cylinder of the concentric double nozzle and the alginate aqueous solution from the outer cylinder into the polyvalent cation solution, respectively, so that hydrogen peroxide is enclosed inside the alginate gel film.
  • core-shell type spherical capsules can also be produced.
  • alginic acid aqueous solution (alginate concentration: about 0.5 to 10% by weight) to which hydrogen peroxide has been added is stirred well to form a gel, and after forming it into a mass of a desired size, a polyvalent Capsules of a desired size can also be produced by immersion in a cationic solution and curing.
  • the alginic acid aqueous solution gelled as described above is placed in a mold of a desired shape made of silicon or the like and allowed to stand for about 20 minutes to 1 hour. By immersing it in water and hardening it, it is also possible to produce irregular shaped capsules in a desired shape imitating aquatic plants, seaweed, shells, corals, pebbles, and the like.
  • the hydrogen peroxide capsules obtained by any of the above manufacturing methods are included in the hydrogen peroxide capsules according to the second embodiment.
  • the alginic acid gel having a porous structure gradually releases the hydrogen peroxide into the environment. Therefore, when used in combination with the polyphenol iron complex capsules of the first embodiment, the Fenton reaction can be maintained with high reaction efficiency for a long period of time.
  • the hydrogen peroxide capsules can be used alone as a bactericidal agent, a purifying agent, a deodorant, an organic matter decomposing agent, and the like.
  • Targets that can be sterilized by the hydrogen peroxide capsule include not only bacteria but also eukaryotic microorganisms, algae, archaea, viruses, viroids, and the like.
  • water tanks such as homes and aquariums; restaurants, fish farms, fish cages for transportation, etc.; nutrient tanks such as hydroponics; pools, ponds, lakes, sewage treatment plants water; kitchen utensils such as cutting boards, kitchen knives, and tableware; skins of animals, humans, etc.;
  • Examples of specific organic substances to be decomposed by the hydrogen peroxide capsule include organic waste such as detergents, food and drink residues, night soil, feces, agricultural chemicals, malodorous substances, waste oil, dioxins, PCBs, DNA, RNA, and proteins. things can be mentioned.
  • the method of using the hydrogen peroxide capsule can be the same as that of the polyphenol iron complex capsule of the first embodiment. Specifically, a method of immersing a solid object in a solution to which the hydrogen peroxide capsule is added; A method of spraying; a method of adding the hydrogen peroxide capsule to a liquid object or a solution in which the object is dispersed; and the like.
  • the duration of the effect by controlling the rate of release of the hydrogen peroxide from the alginate gel or by controlling the disintegration timing of the capsule.
  • the duration of the effect of the hydrogen peroxide capsule can be, for example, several days to several tens of months.
  • the hydrogen peroxide capsules are made from naturally-derived ingredients, and can be used in various fields such as medicine, food, public health, fisheries, agriculture, and industry.
  • a Fenton reaction kit according to the third embodiment contains the polyphenol iron complex capsule of the first embodiment and the hydrogen peroxide capsule of the second embodiment.
  • the kit can be effectively used as a bactericidal agent, water purification agent, deodorant, organic matter decomposing agent, and the like.
  • the method of using the kit is as described for the first embodiment.
  • the kit may contain components other than the polyphenol iron complex capsules and the hydrogen peroxide capsules as long as they do not interfere with the above effects.
  • the kit may also contain a visible light-responsive porous photocatalyst described in a fourth embodiment described later.
  • a method for raising fish or treating diseases according to the fourth embodiment is characterized by using the polyphenol iron complex capsule of the first embodiment.
  • the polyphenol iron complex capsule can be used for breeding fish and shellfish or for treating diseases by utilizing the above-described bactericidal action, water purification (organic substance decomposition) action, and divalent iron ion supply action.
  • fish and shellfish that are the target of breeding and disease treatment are not particularly limited. Specifically, all aquatic products such as fish, shellfish, crustaceans, and mollusks can be mentioned, regardless of whether they are freshwater organisms or seawater organisms.
  • the "disease” to be treated is not particularly limited as long as it is a disease caused by iron deficiency or a disease caused by microbial or viral infection. This is because hydroxyl radicals exhibit strong bactericidal and decomposing actions against all kinds of microorganisms and viruses.
  • the amount of the polyphenol iron complex capsule added can be 0.01 g or more, preferably 0.5 to 50 g, more preferably 1 to 20 g, and particularly preferably 5 to 10 g per 1 L of water in the water tank.
  • the amount of hydrogen peroxide to be added may be extremely small, and may be such that the concentration of hydrogen peroxide in water is about 0.1 to 20 mM.
  • the hydrogen peroxide capsules according to the second embodiment are capable of stabilizing and sustaining release of hydrogen peroxide, and therefore stable Fenton reaction efficiency can be obtained by using them together with the polyphenol iron complex capsules.
  • the replacement timing of the polyphenol iron complex capsules and the hydrogen peroxide capsules varies depending on the sustained release and disintegration properties of the alginic acid gel, the content of the polyphenol iron complex and hydrogen peroxide, etc., but for example, from several days to Dozens of months later. Since the alginic acid gel is composed of food-derived raw materials, there is no problem even if it remains in water even after the expiration date.
  • the above-mentioned effects can be obtained simply by leaving the polyphenol iron complex capsules in the fish and shellfish tank. By allowing the polyphenol iron complex to spread throughout the breeding environment of the fish and shellfishes, a higher effect can be obtained.
  • the polyphenol iron complex capsules by irradiating the polyphenol iron complex capsules with light, photocatalytic activity is also exhibited, so stronger sterilization and water purification effects are exhibited.
  • the light one or more light selected from sunlight, light in a wide wavelength range of 200 to 1400 nm, ie, ultraviolet light, visible light, and infrared light can be used.
  • it exhibits extremely strong photocatalytic activity by irradiating it with ultraviolet light, particularly light with a wavelength of 200 to 380 nm, which is near ultraviolet light.
  • ultraviolet light particularly light with a wavelength of 200 to 380 nm, which is near ultraviolet light.
  • it exhibits strong photocatalytic activity when irradiated with visible light, particularly short wavelength light in the wavelength range of violet to blue light (380 to 495 nm).
  • it exhibits strong activity when irradiated with light in the wavelength range of 750 to 1400 nm (especially near 900 to 1300 nm, more particularly near 1100 to 1300 nm), which is infrared light, preferably near infrared light.
  • a sufficient effect can be exhibited by, for example, irradiating with sunlight for 3 hours or more, preferably 6 hours or more per day. Even when relatively weak light such as an LED or fluorescent lamp is irradiated, a sufficient effect can be exhibited by treatment for 12 hours or more, preferably 20 hours or more per day.
  • a visible-light-responsive porous photocatalyst can be used in combination as a material that supplies oxygen and hydrogen peroxide and at the same time produces sterilization and water purification effects based on visible-light-responsive photocatalytic activity.
  • Porous photocatalyst refers to a porous body formed by solidifying alkaline earth metal peroxide with cement and exhibits visible-light-responsive photocatalytic activity.
  • the shape of the porous photocatalyst is not particularly limited, it is preferable to set the thickness in the range of 0.1 to 10 cm, for example, because light can easily reach the inside.
  • it when used in a fish tank or the like, it may be shaped like a shell, coral, pebble, etc. so as not to spoil the landscape.
  • alkaline earth metal peroxides include calcium peroxide, magnesium peroxide, strontium peroxide, barium peroxide, beryllium peroxide, Radium peroxide may be mentioned, but calcium peroxide and magnesium peroxide are preferred, and calcium peroxide is particularly preferred.
  • the peroxide is known to have the property of reacting with water to generate hydrogen peroxide and generate oxygen.
  • the present inventor surprisingly discovered that the peroxide itself exhibits visible light-responsive photocatalytic activity.
  • cement examples include Portland cement, mixed cement, and ecocement.
  • white cement is preferably used among Portland cements.
  • the porous photocatalyst can be basically produced by mixing the peroxide, the cement, and water, and drying. Since the peroxide reacts with water to generate oxygen, the bubbles form a porous structure.
  • the porous photocatalyst has a large surface area and can achieve high reaction efficiency.
  • the specific gravity is lighter than that of water and that it floats on the water surface.
  • the content weight ratio of the cement in the total solid content of the porous photocatalyst is usually 17 to 80%, preferably 20 to 70%, more preferably 30 to 65%, and particularly preferably 40 to 60%. can be done. If the content weight ratio of the cement is more than the above range, the formation of the porous structure is insufficient, the reaction efficiency is lowered, and the specific gravity of the porous photocatalyst increases and it sinks in water, which is not preferable. On the other hand, if the content weight ratio of the cement is less than the above range, the durability of the porous photocatalyst body is lowered, and it is likely to collapse in water, which is not preferable.
  • the content weight ratio of the cement in the total solid content of the porous photocatalyst is 30 to 60%, only the peroxide and the cement are used as raw materials other than water, and high reaction It is possible to construct the porous photocatalyst having efficiency, floating property on water surface, and durability. These raw materials are particularly safe to the human body and the environment, and are inexpensive. Therefore, the porous photocatalyst composed only of these raw materials has extremely high industrial utility.
  • the content weight ratio of the peroxide in the total solid content of the porous photocatalyst can be usually 20 to 83%, preferably 50 to 75%, more preferably 60 to 70%.
  • the porous photocatalyst may contain other photocatalysts, additives, etc. in addition to the raw materials as long as the above effects are not hindered.
  • optical photocatalysts can be used without limitation as long as they have photocatalytic activity. Specific examples include the polyphenol iron complex of the first embodiment and titanium oxide. These other photocatalysts may be used singly or in combination.
  • additives include foaming agents that contribute to the formation of a porous structure by generating gases such as carbon dioxide, oxygen, and nitrogen by heating or reacting with an alkali. These additives may be used alone or in combination of multiple types.
  • the “foaming agent” for example, one or more selected from sodium hydrogen carbonate, ammonium carbonate, powdered aluminum, and aluminum chloride can be used.
  • the weight ratio of the "other photocatalyst" to the total solid content of the porous photocatalyst can usually be 60% or less.
  • the content weight ratio of the "additive” in the total solid content of the porous photocatalyst can be usually 10% or less.
  • the content weight ratio of the "foaming agent" in the total solid content of the porous photocatalyst can usually be 0.4 to 4.0%.
  • the porous photocatalyst absorbs light in a wide wavelength range, including visible light, and exhibits strong photocatalytic activity. Specifically, by irradiating with sunlight or light in a wide wavelength range of 200 to 1200 nm, that is, one or more light selected from ultraviolet light, visible light, and infrared light, a strong sterilization and water purification action is shown.
  • the porous photocatalyst exhibits strong photocatalytic activity when irradiated with light having a wavelength of 390 to 660 nm among the visible light.
  • it exhibits extremely strong photocatalytic activity (sterilization, water purification action) when irradiated with yellow or green light with a wavelength of 570 to 590 nm.
  • the porous photocatalyst exhibits strong photocatalytic activity even when irradiated with ultraviolet rays and infrared rays.
  • ultraviolet rays it exhibits strong activity, especially when exposed to light with a wavelength of 200-390 nm.
  • infrared rays it shows strong activity especially when exposed to light with a wavelength of 800 to 1200 nm.
  • the polyphenol iron complex capsule and the porous photocatalyst are used together, it is preferable to irradiate light with a wide range of wavelengths, and light with a wavelength of 200 to 1200 nm is particularly preferable.
  • the light irradiation time is the same as in the case of using only the polyphenol iron complex capsules.
  • the peroxide is poorly soluble in water, oxygen and hydrogen peroxide are gradually eluted over a long period of time. Moreover, the photocatalytic activity is stably maintained for a long period of time.
  • the duration of the effect of the porous photocatalyst against the pathogenic microorganisms varies depending on the content of the peroxide, and can be, for example, several months to several years. Since the porous photocatalyst is composed of a material that is highly safe for the human body and the environment, there is no problem even if it remains in the water after the service life has passed.
  • the amount of the porous photocatalyst to be used is not particularly limited, and may be an amount that provides the desired effect.
  • the weight of the porous photocatalyst to 1 L of water can be 10 g or more, preferably 20 to 200 g.
  • strong light can be light of, for example, 100 cd (candela) or more, preferably 150 cd or more.
  • porous photocatalyst described above can be produced, for example, as follows.
  • the alkaline earth metal peroxide and the cement are mixed so as to have the above content weight ratio in the total solid content of the porous photocatalyst.
  • These raw materials are preferably powdery or granular, and particularly preferably have a particle size of 5 mm or less.
  • the water content can be 50 to 80% by weight, preferably 50 to 70% by weight, based on the total solid content of the raw material.
  • the alkaline earth metal peroxide reacts with water to generate oxygen.
  • gas is also generated from the foaming agent. These gases form bubbles and form a porous structure.
  • the mixture obtained in (2) above is molded.
  • the shape is not limited, it is preferable to set the thickness in the range of 0.1 to 10 cm, for example, because the light can easily reach the inside of the porous photocatalyst.
  • the molding means is not particularly limited.
  • the drying method is not particularly limited as long as the porous body is solidified, but examples include hot air or blast drying, heat drying, and the like.
  • the drying conditions are also not particularly limited, but for example, at a temperature of 20 to 98° C., preferably 30 to 80° C., more preferably 40 to 60° C., for 1 to 36 hours, preferably 4 to 24 hours, more preferably 6 hours. can be ⁇ 18 hours.
  • the porous photocatalyst into the water of the fish tank, oxygen is supplied to the fish and shellfish, and hydrogen peroxide is eluted.
  • the hydrogen peroxide is used in the Fenton reaction with the polyphenol iron complex.
  • due to its visible-light-responsive photocatalytic activity it absorbs light of a wide range of wavelengths, and sterilizes and purifies water.
  • Example 1 Production of polyphenol iron complex capsules that can be used for raising fish and shellfish and treating diseases (1) Preparation of liquid 1 (aqueous alginic acid solution) First, 10 g of dried tea leaves as a polyphenol-containing plant were added to 900 mL of distilled water and heated under pressure at 120° C. for 20 minutes. This was filtered with filter paper to obtain a tea leaf extract. 8.71 g of iron (III) chloride (about 3 g as iron element) was added to the tea leaf extract, distilled water was added to make 1000 mL, and the mixture was stirred to obtain a polyphenol iron complex solution.
  • liquid 1 aqueous alginic acid solution
  • the mixing ratio of the polyphenol feedstock (dried tea leaves) and the iron feedstock (iron (III) chloride) here is about 30 parts by weight of the iron feedstock as an iron element with respect to 100 parts by weight of the polyphenol feedstock. part ratio.
  • the polyphenol-iron complex solution contains a polyphenol-iron complex in which iron ions derived from iron (III) chloride are chelated in the form of Fe 2+ by polyphenols extracted from tea leaves.
  • the obtained capsules were spherical with a diameter of about 5.0 mm and had a dark brown color. Dark brown is the color of the tea leaf extract.
  • the capsule contains about 0.04% by weight of polyphenol iron complex in terms of elemental iron.
  • the manufactured capsules were stored in distilled water at 4°C until use.
  • Example 2 Production of polyphenol iron complex capsules that can be used for raising fish and shellfish and treating diseases (1) Preparation of liquid 1 (alginic acid aqueous solution) First, a vitamin mixture and a trace element mixture are prepared according to the following formulations. did.
  • the mixing ratio of the polyphenol feedstock (dried tea leaves) and the iron feedstock (iron (III) chloride) here is about 30 parts by weight of the iron feedstock as an iron element with respect to 100 parts by weight of the polyphenol feedstock. part ratio.
  • the polyphenol-iron complex mixed solution contains a polyphenol-iron complex in which iron ions derived from iron (III) chloride are chelated in the form of Fe 2+ by polyphenols extracted from tea leaves. . Moreover, it is considered that the polyphenol-iron complex mixed solution also contains the trace element in the form of a chelate complex with polyphenols.
  • the obtained capsules were spherical with a diameter of about 5.0 mm and had a dark brown color. Dark brown is the color of the tea leaf extract.
  • the capsule contains about 0.04% by weight of polyphenol iron complex in terms of elemental iron.
  • the manufactured capsules were stored in distilled water at 4°C until use.
  • Example 3 Production of polyphenol iron complex capsules that can be used for raising fish and shellfish and treating diseases (1) Preparation of liquid 1 (aqueous solution of alginic acid) A liquid was prepared. Next, 10 g of dried chrysanthemum flowers as a polyphenol-containing plant body were placed in 900 mL of distilled water and heated at 120° C. for 20 minutes under pressure. This was filtered with filter paper to obtain a chrysanthemum flower extract.
  • liquid 1 aqueous solution of alginic acid
  • the mixing ratio of the polyphenols feedstock (chrysanthemum flower) and the iron feedstock (iron (III) chloride) here is about 30% of the iron feedstock as an iron element with respect to 100 parts by weight of the polyphenols feedstock. It becomes the ratio of parts by weight.
  • the polyphenol-iron complex mixed solution contains a polyphenol-iron complex in which iron ions derived from iron chloride (III) are chelated in the state of Fe 2+ by polyphenols extracted from chrysanthemum flowers. Conceivable. Moreover, it is considered that the polyphenol-iron complex mixed solution also contains the trace element in the form of a chelate complex with polyphenols.
  • the capsules obtained were spherical with a diameter of about 4 mm and had a dark brown color. Dark brown is the color of the chrysanthemum flower extract.
  • the capsule contains about 0.04% by weight of polyphenol iron complex in terms of elemental iron.
  • the manufactured capsules were stored in distilled water at 4°C until use.
  • Example 4 Production of polyphenol iron complex capsules that can be used for cultivating plants (1) Preparation of liquid 1 (alginic acid aqueous solution) First, 10 g of dried tea leaves as a polyphenol-containing plant body were added to 700 mL of distilled water. Heated at 120° C. for 20 minutes under pressure. This supernatant was filtered with filter paper to obtain a tea leaf extract.
  • liquid 1 alginic acid aqueous solution
  • iron (II) sulfate (about 5.5 g as iron element), 3 g of boric acid, 2 g of manganese sulfate, 0.22 g of zinc sulfate, 0.05 g of copper sulfate, and 0.01 g of sodium molybdate , and stirred to obtain a polyphenol iron complex mixed solution.
  • the mixing ratio of the polyphenol feedstock (tea leaves) and the iron feedstock (iron (II) sulfate) here is about 55 parts by weight of the iron feedstock as an iron element with respect to 100 parts by weight of the polyphenol feedstock. ratio.
  • the polyphenol-iron complex mixed solution contains a polyphenol-iron complex in which iron ions derived from iron (II) sulfate are chelated in the form of Fe 2+ by polyphenols extracted from tea leaves. .
  • the obtained capsules were spherical with a diameter of about 4.0 mm and had a dark brown color. Dark brown is the color of the tea leaf extract.
  • the capsule contains about 0.04% by weight of polyphenol iron complex in terms of elemental iron.
  • the manufactured capsules were stored in distilled water at 4°C until use.
  • Example 5 Production of polyphenol iron complex capsules that can be used for cultivating plants (1) Preparation of liquid 1 (alginic acid aqueous solution) First, 10 g of dried coffee grounds as a polyphenol-containing plant body was added to 700 mL of distilled water. , which was heated at 120° C. for 20 minutes under pressure. The supernatant was filtered with filter paper to obtain a coffee grounds extract.
  • liquid 1 alginic acid aqueous solution
  • the mixing ratio of the polyphenols feedstock (coffee grounds) and the iron feedstock (iron (II) sulfate) here is about 55 parts by weight of the iron feedstock as an iron element with respect to 100 parts by weight of the polyphenols feedstock. part ratio.
  • the polyphenol-iron complex mixture contains a polyphenol-iron complex in which iron ions derived from iron sulfate (II) are chelated in the form of Fe 2+ by polyphenols extracted from coffee grounds. be done.
  • the obtained capsules were spherical with a diameter of about 10 mm and had a dark brown color. Dark brown is the color of the coffee grounds extract.
  • the capsule contains about 0.04% by weight of polyphenol iron complex in terms of elemental iron.
  • the manufactured capsules were stored in distilled water at 4°C until use.
  • Example 6 Production of hydrogen peroxide capsules (1) Preparation of liquid 1 (alginic acid aqueous solution) First, 3 mL of 35% hydrogen peroxide solution and 4 g of sodium alginate are added to 300 mL of distilled water and stirred to obtain alginic acid. An aqueous solution (liquid 1) was prepared (see FIG. 3).
  • the capsules obtained were spherical with a diameter of about 10 mm and had a translucent white color.
  • the capsule contains about 0.35% by volume of hydrogen peroxide.
  • the manufactured capsules were stored in distilled water at 4°C until use.
  • Example 7 Production of polyphenol iron complex capsules of different sizes Polyphenol iron complex capsules of different sizes were produced by a method different from the dropping method in the above example.
  • Fig. 5 shows the obtained polyphenol iron complex capsules.
  • the left end shows the polyphenol iron complex capsules produced by the method of Example 1 as a control, and the center and right ends show the polyphenol iron complex capsules of different sizes produced above, respectively.
  • iron (III) chloride solution 100 mL was mixed with 6 g of sodium alginate and stirred until gelation (alginic acid and iron (III) chloride react to gel).
  • iron (III) chloride capsules 100 mL were produced.
  • FIG. 6 shows the appearance of the three types of capsules obtained above about 12 hours after production.
  • the polyphenol iron complex capsules remained dark brown with no change in color
  • the iron (II) sulfate capsules changed color from transparent immediately after production to yellow.
  • the control iron (III) chloride capsule remained yellowish brown and showed no change in color.
  • Test Example 2 Verification of bactericidal effect by combined treatment of polyphenol iron complex capsules and hydrogen peroxide capsules
  • the polyphenol iron complex capsules of Example 1 and the hydrogen peroxide capsules of Example 6 were used in combination to verify the bactericidal effect against Escherichia coli. did.
  • LB medium tryptone 10 g/L, yeast extract 5 g/L, sodium chloride 10 g/L
  • E. coli E. coli
  • FIG. 7(a) shows a control group (no capsule added), and (b) shows a combined treatment group. From FIG. 7, it was found that E. coli survived in (a) the control group, whereas E. coli was completely destroyed in the (b) combined treatment group. From this, it was shown that sterilization is possible in a short time by using polyphenol iron complex capsules and hydrogen peroxide capsules together.
  • Example 8 Breeding of seafood using both polyphenol iron complex capsules and hydrogen peroxide capsules Using both the polyphenol iron complex capsules of Example 1 and the hydrogen peroxide capsules of Example 6, I raised seafood.
  • Example 9 Breeding of seafood and treatment of disease using polyphenol iron complex capsules and hydrogen peroxide capsules together Using the polyphenol iron complex capsules of Example 1 and the hydrogen peroxide capsules of Example 6 together, Seafood was reared and treated as indicated.
  • tail rot disease improved in 3 days without harming seafood. It is thought that pathogenic microorganisms were sterilized without damaging the medaka by the polyphenol iron complex and hydrogen peroxide eluted from the capsule, and the irradiation of the visible light blue LED.
  • Example 10 Breeding of seafood and treatment of disease using polyphenol iron complex capsules and hydrogen peroxide capsules together Using the polyphenol iron complex capsules of Example 2 and the hydrogen peroxide capsules of Example 6 together, Seafood was reared and treated as indicated.
  • the red spot disease improved in 7 days without harming the seafood. It is thought that pathogenic microorganisms were sterilized without harming the iron fish by the polyphenol iron complex and hydrogen peroxide eluted from the capsule and the irradiation of visible light blue LED.
  • Example 11 Breeding of seafood and treatment of disease using polyphenol iron complex capsules and hydrogen peroxide capsules together Using the polyphenol iron complex capsules of Example 3 and the hydrogen peroxide capsules of Example 6 together, Seafood was reared and treated as indicated.
  • FIG. 9 shows the condition before treatment, and (b) shows the condition after treatment.
  • FIG. 10 shows a porous photocatalyst and (b) shows a polyphenol iron complex capsule, respectively.
  • porous photocatalyst was produced as follows. 15 g of calcium peroxide (manufactured by Sigma-Aldrich) and 10 g of white cement (manufactured by Katei Kagaku Kogyo) were mixed, and 20 mL of distilled water was further added and mixed. This mixture was molded into an oval shape having a thickness of about 30 mm and then dried by hot air drying at 50° C. for 12 hours to obtain one porous photocatalyst.
  • calcium peroxide manufactured by Sigma-Aldrich
  • white cement manufactured by Katei Kagaku Kogyo
  • the obtained porous body is white, has a small specific gravity, and floats on the water surface. Two such porous bodies were produced.
  • Polyphenol iron complex capsules were prepared as follows. First, 10 g of dried coffee grounds as a polyphenols feedstock was placed in 900 mL of distilled water and heated under pressure at 120° C. for 20 minutes. This was filtered with filter paper to obtain a coffee grounds extract. 8.71 g of iron (III) chloride (about 3 g as iron element) was added to the coffee grounds extract, distilled water was added to make 1000 mL, and the solution was stirred to obtain a polyphenol iron complex solution.
  • iron (III) chloride about 3 g as iron element
  • the mixing ratio of the polyphenols feedstock (dried coffee grounds) and the iron feedstock (iron (III) chloride) here is about 30% of the iron feedstock as an iron element per 100 parts by weight of the polyphenols feedstock. It becomes the ratio of parts by weight.
  • the polyphenol-iron complex solution contains a polyphenol-iron complex in which iron ions derived from iron chloride (III) are chelated in the form of Fe 2+ by polyphenols extracted from coffee grounds. .
  • the obtained capsules were spherical with a diameter of about 5.0 mm and had a dark brown color. Dark brown is the color of the coffee grounds extract.
  • the capsule contains about 0.04% by weight of polyphenol iron complex in terms of elemental iron.
  • the manufactured capsules were stored in distilled water at 4°C until use.
  • the bacteria density was 5 to 56 cfu/mL in the water tank using both the porous photocatalyst and the capsules, whereas it was 2.7 ⁇ 10 6 cfu/mL or more in the control area.
  • oxygen and hydrogen peroxide are supplied from the porous photocatalyst, and the polyphenol iron complex is eluted from the capsule, thereby supplying Fe 2+ ions to the fish and shellfish, and promoting health and preventing and treating diseases. and the Fenton reaction occurred, resulting in sterilization, algicidal and water purification effects by hydroxyl radicals.
  • Example 13 Bactericidal effect of combined use of polyphenol iron complex capsules and visible light responsive porous photocatalyst Using the porous photocatalyst and polyphenol iron complex capsules produced in the same manner as in Example 12, visible light irradiation A sterilization test was performed.
  • I prepared two water tanks containing 4L of water. Two porous photocatalysts were floated in one of the water tanks, and 8 g of polyphenol iron complex capsules were added thereto, while neither the porous photocatalysts nor the capsules were added to the other water tank (control group). Both water tanks were continuously irradiated with a visible light LED (470-490 nm) for 12 hours every day, and constantly supplied with oxygen by an air pump.
  • a visible light LED 470-490 nm
  • Oxygen and hydrogen peroxide are eluted from the porous photocatalyst, and polyphenol iron complexes (Fe 2+ ions) are eluted from the polyphenol iron complex capsules into water, and these are highly safe for seafood and the environment. It is matter.
  • hydroxy radicals generated by photocatalytic reaction and Fenton reaction disappear immediately, and there is no concern that they will remain in the bodies of fish and shellfish. Therefore, it is considered that the method of breeding or treating diseases of fish and shellfish using a porous photocatalyst and a capsule is an excellent method that does not adversely affect fish and shellfish and the environment compared to conventional methods using chemical solutions. be done.
  • Example 14 Use of polyphenol iron complex capsules as iron supply agent for plant cultivation Using the polyphenol iron complex capsules of Example 4 as a slow-release fertilizer (iron supply agent), as shown in FIG. cultivated.
  • a water storage space is provided at the bottom of the pot, and water in the water storage space is supplied to the pot by capillary action along a water supply sheet provided between the water storage space and the pot.
  • Cyclamen was planted in this pot with a water storage function, 10 g of the polyphenol iron complex capsules of Example 4 and 200 mL of water were placed in the water storage space, and the water in the water storage space was supplied to the soil along the water supply sheet. The cultivation period was 13 weeks.
  • the polyphenol-iron complex capsule of the present embodiment is composed of natural substances such as alginic acid, polyphenol, and iron, and is characterized by less environmental load.
  • Example 15 Use of polyphenol iron complex capsules and hydrogen peroxide capsules as a disinfectant for water for cut flowers As shown in FIG. 12, cut flowers were arranged.
  • capsules containing a polyphenol iron complex using polyphenols extracted from tea leaves or coffee grounds were described, but the capsules are not limited to these, and include grapes, cacao, acacia, cedar, sugarcane, Mango, banana, papaya, avocado, apple, cherry, guava, olive, potatoes, oyster, mulberry, blueberry, poplar, chrysanthemum, sunflower, bamboo, polyphenols, catechin, tannic acid, tannin , chlorogenic acid, caffeic acid, neochlorogenic acid, cyanidin, proanthocyanidin, thearubigin, rutin, flavonoids, flavones, chalcones, xanthophyll, carnosic acid, eriocitrin, nobiletin, tangeretin, magnolol, honokiol, ellagic acid, lignans , curcumin, coumarin, catechol, procyanidins,
  • the polyphenol-iron complex capsules produced by dropping an alginic acid aqueous solution containing a polyphenol-iron complex into a polyvalent cation solution were described, but the present invention is not limited to this.
  • the polyphenol-iron complex capsules produced by dropping a polyvalent cation solution containing a polyphenol-iron complex into an aqueous alginic acid solution can also be included in the present disclosure.

Abstract

Provided is a polyphenol-iron complex by which stable reaction efficiency can be obtained even when an existing polyphenol-iron complex is improved and used in an environment having a certain degree of width. Also provided is a technique in which the time and/or period for causing a Fenton reaction or a photocatalytic reaction can be freely controlled using a polyphenol-iron complex. Further, provided is a method for breeding fish and shellfish or treating diseases of fish and shellfish using a polyphenol-iron complex without damaging fish and shellfish. Provided are: a polyphenol-iron complex capsule obtained by sealing a polyphenol-iron complex in alginic acid gel; a hydrogen peroxide capsule obtained by sealing hydrogen peroxide in alginic acid gel; and a method for breeding fish and shellfish or treating diseases of fish and shellfish using the same.

Description

ポリフェノール鉄錯体カプセル、過酸化水素カプセル、フェントン反応キット及び魚介類の飼育又は病気治療方法Polyphenol iron complex capsule, hydrogen peroxide capsule, Fenton reaction kit, and method for breeding or treating disease of seafood
 本開示は、ポリフェノール鉄錯体がアルギン酸ゲルに封入されてなるポリフェノール鉄錯体カプセル、過酸化水素がアルギン酸ゲルに封入されてなる過酸化水素カプセル、当該ポリフェノール鉄錯体カプセルと過酸化水素カプセルとを含有するフェントン反応キット及び前記カプセルを用いる魚介類の飼育又は病気治療方法に関する。 The present disclosure includes a polyphenol iron complex capsule in which a polyphenol iron complex is encapsulated in an alginic acid gel, a hydrogen peroxide capsule in which hydrogen peroxide is encapsulated in an alginic acid gel, and the polyphenol iron complex capsule and the hydrogen peroxide capsule. The present invention relates to a Fenton reaction kit and a method for raising fish and shellfish or treating diseases using the capsule.
 フェントン反応は、鉄に過酸化水素が作用することでヒドロキシラジカルと呼ばれる強力な活性酸素を発生させるものである。ヒドロキシラジカルは極めて反応性が高く、殺菌や有機物の分解などに利用することができる。 In the Fenton reaction, hydrogen peroxide acts on iron to generate powerful active oxygen called hydroxyl radicals. Hydroxy radicals are extremely reactive and can be used for sterilization and decomposition of organic matter.
 鉄がフェントン反応触媒として効率的に機能するのは二価鉄イオン(Fe2+)の状態に限ることが知られている。しかし、二価鉄イオンは非常に不安定であり、容易に酸化されて三価鉄イオンに変化し、フェントン反応触媒能を失ってしまう。このため、フェントン反応触媒を実用化するには、鉄を二価鉄イオンの状態で安定化させる技術が必要である。 It is known that iron functions efficiently as a Fenton reaction catalyst only in the state of divalent iron ions (Fe 2+ ). However, bivalent iron ions are very unstable and are easily oxidized to change into trivalent iron ions, losing the ability to catalyze the Fenton reaction. Therefore, in order to put the Fenton reaction catalyst into practical use, a technique for stabilizing iron in the state of divalent iron ions is required.
 本願発明者はこれまで、還元性有機物、茶殻やコーヒー粕などを用いて鉄を二価鉄イオンの状態に維持できるポリフェノール鉄錯体を開発した(特許文献1~5参照)。このポリフェノール鉄錯体は、フェントン反応触媒や二価鉄イオン供給剤として有用であるだけでなく、可視光を含む幅広い波長の光を吸収して活性を示す光触媒としての機能をも有する(特許文献6、7参照)。 The inventor of the present application has so far developed a polyphenol iron complex that can maintain iron in the state of divalent iron ions using reducing organic substances, used tea leaves, coffee grounds, etc. (see Patent Documents 1 to 5). This polyphenol iron complex is not only useful as a Fenton reaction catalyst or a divalent iron ion supplier, but also has a function as a photocatalyst that exhibits activity by absorbing light of a wide range of wavelengths including visible light (Patent Document 6). , 7).
 一方、アルギン酸は海藻体に含まれる細胞間多糖で、これを工業的に抽出・精製して得られた水溶性のアルギン酸塩が、食品、医療、工業など幅広い産業で利用されている。アルギン酸塩は多価金属イオンと反応してゲル化する性質がある。この性質を利用したカプセル化技術は、人工イクラや食品用カプセルなどに応用されている(例えば非特許文献1参照)。 On the other hand, alginic acid is an intercellular polysaccharide contained in seaweed bodies, and the water-soluble alginate obtained by industrially extracting and refining it is used in a wide range of industries such as food, medicine, and industry. Alginates have the property of reacting with polyvalent metal ions and gelling. An encapsulation technique that utilizes this property is applied to artificial salmon roe, food capsules, and the like (see, for example, Non-Patent Document 1).
特許第5733781号公報Japanese Patent No. 5733781 特許第5804454号公報Japanese Patent No. 5804454 特許第6057227号公報Japanese Patent No. 6057227 特許第6179957号公報Japanese Patent No. 6179957 特許第6202770号公報Japanese Patent No. 6202770 特許第6340657号公報Japanese Patent No. 6340657 特許第6478209号公報Japanese Patent No. 6478209
 特許文献1~7のポリフェノール鉄錯体は、二価鉄イオンを長期間安定して維持できるという特徴を有しているが、周りの固体に吸着することで反応効率が低下し、フェントン反応や光触媒反応が短時間で終わってしまう。そのため、従来のポリフェノール鉄錯体は、ある程度の広さを有する環境中では安定した反応効率が得られにくいという問題があった。 The polyphenol iron complexes of Patent Documents 1 to 7 have the characteristic of being able to stably maintain divalent iron ions for a long period of time, but the reaction efficiency decreases due to adsorption on the surrounding solids, resulting in the Fenton reaction and photocatalysis. The reaction ends in a short time. Therefore, conventional polyphenol iron complexes have a problem that it is difficult to obtain stable reaction efficiency in an environment having a certain extent of space.
 また、従来のポリフェノール鉄錯体は反応性が高い物質であるため、観賞魚、養殖魚などの有用生物が生育する環境中で使用した場合、これら有用生物にも障害がみられる。さらに、フェントン反応に必要な過酸化水素は非常に反応性が高い物質であり、すぐに消失してしまう。そのため、ポリフェノール鉄錯体や過酸化水素の反応性をコントロールし、フェントン反応や光触媒反応を起こさせる時期や期間を制御する技術の開発が望まれていた。 In addition, conventional polyphenol iron complexes are highly reactive substances, so when used in an environment where useful organisms such as ornamental fish and farmed fish grow, they also cause damage to these useful organisms. Furthermore, the hydrogen peroxide required for the Fenton reaction is a very reactive substance and disappears quickly. Therefore, it has been desired to develop a technique for controlling the reactivity of the polyphenol iron complex and hydrogen peroxide and controlling the timing and duration of the Fenton reaction and photocatalytic reaction.
 したがって、本開示の課題は、既存のポリフェノール鉄錯体を改良し、ある程度の広さを有する環境中で使用する場合でも、安定した反応効率が得られるポリフェノール鉄錯体を提供することである。 Therefore, an object of the present disclosure is to improve existing polyphenol iron complexes and provide polyphenol iron complexes that provide stable reaction efficiency even when used in an environment with a certain extent of space.
 また、本開示の課題は、過酸化水素の反応性を長期間持続させる技術を提供することである。 In addition, an object of the present disclosure is to provide a technique for sustaining the reactivity of hydrogen peroxide for a long period of time.
 さらに、本開示の課題は、ポリフェノール鉄錯体を用いてフェントン反応や光触媒反応を起こさせる時期及び/又は期間を自由自在に制御することができる技術を提供することである。 Furthermore, an object of the present disclosure is to provide a technique capable of freely controlling the timing and/or duration of the Fenton reaction or photocatalytic reaction using the polyphenol iron complex.
 また、本開示の課題は、ポリフェノール鉄錯体を用いて、魚介類に障害を与えることなく、魚介類の飼育又は病気の治療を行う方法を提供することである。 Another object of the present disclosure is to provide a method for raising fish or treating diseases without harming fish and shellfish using a polyphenol iron complex.
 上記課題を解決するため、本願発明者は、ポリフェノール鉄錯体と過酸化水素のカプセル化を検討した。種々のポリマーを用いてポリフェノール鉄錯体と過酸化水素のカプセル化を行い、それらを組み合わせて鋭意検討を重ねた結果、アルギン酸ゲルにポリフェノール鉄錯体と過酸化水素をそれぞれ封入することによって、安定性が高く、反応させる時期や期間を制御可能なカプセルが得られることを見出した。 In order to solve the above problems, the inventor of the present application investigated encapsulation of a polyphenol iron complex and hydrogen peroxide. Various polymers were used to encapsulate the polyphenol iron complex and hydrogen peroxide, and as a result of intensive research on combining them, the stability was improved by encapsulating the polyphenol iron complex and hydrogen peroxide in the alginate gel. They have found that capsules can be obtained that are high and controllable in timing and period of reaction.
 そして本願発明者は、これらのカプセルを魚介類の水槽に投与することによって、魚介類に障害を与えることなく、魚介類の病気を短期間で治療できることを見出した。これらの知見に基づいて、本開示は完成された。 The inventors of the present application have found that by administering these capsules to fish tanks, it is possible to treat diseases of fish and shellfish in a short period of time without harming the fish and shellfish. Based on these findings, the present disclosure was completed.
 すなわち、本開示は、ポリフェノール鉄錯体がアルギン酸ゲルに封入されてなる、ポリフェノール鉄錯体カプセルを提供する。 That is, the present disclosure provides a polyphenol-iron complex capsule in which a polyphenol-iron complex is encapsulated in an alginic acid gel.
 ここで、上記ポリフェノール鉄錯体は、さらに水溶性ビタミン及び/又は微量要素を含有するものであってもよい。上記ポリフェノール鉄錯体カプセルは、水草、海藻、貝殻、サンゴ又は小石の形状を有するものであってもよい。 Here, the polyphenol iron complex may further contain water-soluble vitamins and/or trace elements. The polyphenol iron complex capsule may be in the shape of aquatic plants, seaweed, shells, corals or pebbles.
 また、本開示は、過酸化水素がアルギン酸ゲルに封入されてなる、過酸化水素カプセルを提供する。 The present disclosure also provides a hydrogen peroxide capsule in which hydrogen peroxide is encapsulated in alginic acid gel.
 さらに、本開示は、上記ポリフェノール鉄錯体カプセルと上記過酸化水素カプセルとを含有する、フェントン反応キットを提供する。 Furthermore, the present disclosure provides a Fenton reaction kit containing the polyphenol iron complex capsule and the hydrogen peroxide capsule.
 また、本開示は、上記ポリフェノール鉄錯体カプセルを用いる、魚介類の飼育又は病気治療方法を提供する。 In addition, the present disclosure provides a method for breeding seafood or treating diseases using the polyphenol iron complex capsule.
 ここで、上記ポリフェノール鉄錯体カプセルは、上記過酸化水素カプセルと併用してもよい。また、紫外線、可視光、赤外線のうち1以上の光を照射することもできる。さらに、アルカリ土類金属の過酸化物がセメントにて固結されてなる可視光応答型多孔質光触媒体を併用してもよい。 Here, the polyphenol iron complex capsules may be used in combination with the hydrogen peroxide capsules. Also, one or more of ultraviolet light, visible light, and infrared light can be irradiated. Furthermore, a visible-light-responsive porous photocatalyst formed by solidifying alkaline earth metal peroxides with cement may be used in combination.
 本開示のポリフェノール鉄錯体カプセルでは、ポリフェノール鉄錯体がアルギン酸ゲルに封入されてなる構成となっているため、従来のポリフェノール鉄錯体に比べて安定性が高く、環境の温度やpHの影響を受け難くすることができる。それゆえ、ある程度の広さを有する環境中でポリフェノール鉄錯体を使用する場合でも、安定した反応効率を得ることが可能となる。 Since the polyphenol-iron complex capsule of the present disclosure has a structure in which the polyphenol-iron complex is enclosed in an alginate gel, it is more stable than conventional polyphenol-iron complexes and is less susceptible to environmental temperature and pH. can do. Therefore, stable reaction efficiency can be obtained even when the polyphenol iron complex is used in an environment having a certain extent of space.
 また、ポリフェノール鉄錯体をアルギン酸ゲルに封入することによって、ポリフェノール鉄錯体を長い時間かけて徐々に放出させたり、カプセルの崩壊時期を調節して適時にポリフェノール鉄錯体を放出させるといった反応制御が可能となる。これにより、観賞魚、養殖魚などの有用生物に障害を与えることなく、病気の予防又は治療、殺菌、有害物質の分解などのためにポリフェノール鉄錯体を使用することができる。さらに、通常は液状又は粉末状であるポリフェノール鉄錯体をカプセル化することで、取扱いが容易になるほか、有用生物による誤飲を防ぐ効果もある。 In addition, by encapsulating the polyphenol-iron complex in alginate gel, it is possible to control the reaction, such as gradually releasing the polyphenol-iron complex over a long period of time, or adjusting the timing of capsule disintegration to release the polyphenol-iron complex at the appropriate time. Become. As a result, the polyphenol iron complex can be used for the prevention or treatment of diseases, sterilization, decomposition of harmful substances, etc., without damaging useful organisms such as ornamental fish and cultured fish. Furthermore, by encapsulating the polyphenol-iron complex, which is usually liquid or powdery, it is easy to handle and has the effect of preventing accidental ingestion by useful organisms.
 本開示の過酸化水素カプセルでは、過酸化水素がアルギン酸ゲルに封入されてなる構成となっているため、過酸化水素の消失を防ぎ、反応性を長期間持続させることができる。また、毒性を有する過酸化水素をカプセル化することで、取扱いが容易になるほか、有用生物への障害を防ぐ効果もある。 The hydrogen peroxide capsule of the present disclosure has a structure in which hydrogen peroxide is encapsulated in alginic acid gel, so it is possible to prevent loss of hydrogen peroxide and maintain reactivity for a long period of time. In addition, by encapsulating the toxic hydrogen peroxide, it is easy to handle and has the effect of preventing damage to useful organisms.
 本開示のフェントン反応キットでは、上記のポリフェノール鉄錯体カプセルと過酸化水素カプセルとを含有することによって、フェントン反応を効率よく持続的に行うことや、フェントン反応を自由自在に制御することが可能となる。また、カプセル化したポリフェノール鉄錯体と過酸化水素を用いることによって、取扱いが容易になるほか、有用生物への障害を防ぐ効果もある。 The Fenton reaction kit of the present disclosure contains the above-described polyphenol iron complex capsules and hydrogen peroxide capsules, so that the Fenton reaction can be performed efficiently and continuously, and the Fenton reaction can be freely controlled. Become. In addition, the use of encapsulated polyphenol-iron complex and hydrogen peroxide facilitates handling and has the effect of preventing damage to useful organisms.
 本開示の魚介類の飼育又は病気治療方法では、上記のポリフェノール鉄錯体カプセルを用いることによって、魚介類に障害を与えることなく、二価鉄イオンを供給して魚介類の健康維持を図り、また病気の予防又は治療を行うことができる。さらに、フェントン反応又は光触媒反応による殺菌、有害物質の分解などの作用によって、水質環境の改善・維持が可能となる。ポリフェノール鉄錯体カプセルはこれらの効果を長期間維持できるため、カプセルの投与回数が少なくて済み、魚介類の健康管理が容易となる。 In the fish and shellfish breeding or disease treatment method of the present disclosure, by using the above-described polyphenol iron complex capsule, the fish and shellfish are supplied with divalent iron ions to maintain the health of the fish and shellfish, and Disease can be prevented or treated. Furthermore, the action of sterilization by the Fenton reaction or photocatalytic reaction, decomposition of harmful substances, etc., can improve and maintain the water quality environment. Since polyphenol iron complex capsules can maintain these effects for a long period of time, the frequency of administration of capsules can be reduced, facilitating health management of fish and shellfish.
第一の実施形態のポリフェノール鉄錯体カプセルの製造工程を示す図である。It is a figure which shows the manufacturing process of the polyphenol iron complex capsule of 1st embodiment. 第一の実施形態のポリフェノール鉄錯体カプセルの製造工程と、製造したカプセルを示す写真像図である。FIG. 2 is a photographic image diagram showing the manufacturing process of the polyphenol iron complex capsule of the first embodiment and the manufactured capsule. 第二の実施形態の過酸化水素カプセルの製造工程を示す図である。It is a figure which shows the manufacturing process of the hydrogen peroxide capsule of 2nd embodiment. 第二の実施形態の過酸化水素カプセルの製造工程と、製造したカプセルを示す写真像図である。FIG. 4 is a photographic image diagram showing the manufacturing process of the hydrogen peroxide capsule of the second embodiment and the manufactured capsule. 実施例7で製造したサイズの異なるポリフェノール鉄錯体カプセルを示す写真像図である。FIG. 10 is a photographic image showing polyphenol iron complex capsules having different sizes produced in Example 7. FIG. カプセル化されたポリフェノール鉄錯体、塩化鉄(III)及び硫酸鉄(II)を比較した写真像図である(試験例1)。Fig. 2 is a photographic image comparing encapsulated polyphenol iron complexes, iron (III) chloride and iron (II) sulfate (Test Example 1). ポリフェノール鉄錯体カプセルと過酸化水素カプセルの併用処理による大腸菌の殺菌効果を示す写真像図である(試験例2)。図中、(a)は対照区(カプセル無添加)、(b)は併用処理区を示す。FIG. 10 is a photographic image showing the bactericidal effect of Escherichia coli by combined treatment of polyphenol iron complex capsules and hydrogen peroxide capsules (Test Example 2). In the figure, (a) shows the control group (no capsule added), and (b) shows the combined treatment group. ポリフェノール鉄錯体カプセルと過酸化水素カプセルによる光照射を伴う魚介類の飼育又は病気の治療方法を示す図である。図中、「PP-Fe」はポリフェノール鉄錯体を示す。FIG. 10 is a diagram showing a method for breeding fish and shellfish or treating a disease with light irradiation using a polyphenol iron complex capsule and a hydrogen peroxide capsule. In the figure, "PP-Fe" indicates a polyphenol iron complex. ポリフェノール鉄錯体カプセルと過酸化水素カプセルによる金魚の水カビ病の治療効果を示す写真像図である(実施例11)。図中、(a)は治療前、(b)は治療後、の様子をそれぞれ示す。FIG. 11 is a photographic image showing the therapeutic effect of water mold disease in goldfish by polyphenol iron complex capsules and hydrogen peroxide capsules (Example 11). In the figure, (a) shows the condition before treatment, and (b) shows the condition after treatment. ポリフェノール鉄錯体カプセルと可視光応答型多孔質光触媒体による魚介類の飼育又は病気の治療方法を示す写真像図である(実施例12)。図中、(a)は多孔質光触媒体、(b)はポリフェノール鉄錯体カプセル、をそれぞれ示す。FIG. 11 is a photographic image showing a method for breeding fish and shellfish or treating a disease using a polyphenol iron complex capsule and a visible-light-responsive porous photocatalyst (Example 12). In the figure, (a) shows a porous photocatalyst and (b) shows a polyphenol iron complex capsule, respectively. 鉄供給剤としてのポリフェノール鉄錯体カプセルの利用方法を示す図である(実施例14)。(Example 14) (Example 14). 切り花用水の殺菌剤としてのポリフェノール鉄錯体カプセルと過酸化水素カプセルの利用方法を示す図である(実施例15)。(Example 15) (Example 15). ポリフェノール鉄錯体カプセルと過酸化水素カプセルによる切り花用水の殺菌効果を示す写真像図である(実施例15)。図中、(a)は対照区(カプセル無添加)、(b)は併用処理区(光照射有)、をそれぞれ示す。(Example 15) (Example 15). In the figure, (a) shows the control group (no capsule added), and (b) shows the combined treatment group (with light irradiation), respectively.
[ポリフェノール鉄錯体カプセル]
 以下、第一の実施形態のポリフェノール鉄錯体カプセルについて詳しく説明する。第一の実施形態に係るポリフェノール鉄錯体カプセルは、ポリフェノール鉄錯体がアルギン酸ゲルに封入されてなるものである。
[Polyphenol iron complex capsule]
Hereinafter, the polyphenol iron complex capsule of the first embodiment will be described in detail. A polyphenol-iron complex capsule according to the first embodiment is obtained by encapsulating a polyphenol-iron complex in an alginic acid gel.
 「ポリフェノール鉄錯体」とは、前述の特許文献1~7に記載される、ポリフェノール類又はその供給原料と、鉄供給原料と、を水存在下にて混合することによって得られた反応生成物であって、二価鉄イオン(Fe2+)がポリフェノール類と錯体構造を形成してなるものである。 The "polyphenol iron complex" is a reaction product obtained by mixing polyphenols or a feedstock thereof with an iron feedstock in the presence of water, which are described in the above-mentioned Patent Documents 1 to 7. It is formed by divalent iron ions (Fe 2+ ) forming a complex structure with polyphenols.
 「ポリフェノール類」とは、複数のヒドロキシ基を有するフェノール性分子の総称である。ほとんどの植物に含有される化合物であり、フラボノイドやフェノール酸など様々な種類が知られている。 "Polyphenols" is a generic term for phenolic molecules with multiple hydroxy groups. It is a compound contained in most plants, and various types such as flavonoids and phenolic acids are known.
 具体的な化合物の例としては、カテキン(エピカテキン、エピガロカテキン、エピカテキンガレート、エピガロカテキンガレートなど)、タンニン酸、タンニン、クロロゲン酸、カフェイン酸、ネオクロロゲン酸、シアニジン、プロアントシアニジン、テアルビジン、ルチン、フラボノイド(ケルシトリン、アントシアニン、フラバノン、フラバノール、フラボノール、イソフラボンなど)、フラボン、カルコン類(ナリンゲニンカルコンなど)、キサントフィル、カルノシン酸、エリオシトリン、ノビレチン、タンジェレチン、マグノロール、ホノキオール、エラグ酸、リグナン、クルクミン、クマリン、カテコール、プロシアニジン、テアフラビン、ロズマリン酸、キサントン、ケルセチン、レスベラトロール、没食子酸、フロロタンニン、などが挙げられる。また、分子内にこれらの化合物を1以上有する化合物(例えば、これらの化合物を含む形で結合し高分子化した複合体)も挙げることができる。 Examples of specific compounds include catechins (epicatechin, epigallocatechin, epicatechin gallate, epigallocatechin gallate, etc.), tannic acid, tannin, chlorogenic acid, caffeic acid, neochlorogenic acid, cyanidin, proanthocyanidins, Thearubigin, rutin, flavonoids (quercitrin, anthocyanin, flavanones, flavanols, flavonols, isoflavones, etc.), flavones, chalcones (naringenin chalcone, etc.), xanthophyll, carnosic acid, eriocitrin, nobiletin, tangeretin, magnolol, honokiol, ellagic acid, Lignans, curcumin, coumarin, catechol, procyanidins, theaflavin, rosmarinic acid, xanthone, quercetin, resveratrol, gallic acid, phlorotannin, and the like. Also included are compounds having one or more of these compounds in the molecule (for example, complexes in which these compounds are combined to form a polymer).
 第一の実施形態における「ポリフェノール類」は、上記のうち1種のみであってもよく、2種以上からなる組成物であってもよい。 "Polyphenols" in the first embodiment may be one of the above, or may be a composition consisting of two or more.
 また、ある植物体から抽出したポリフェノール組成物については、その植物体の名称を付したポリフェノールとして呼ぶこともある。例えば、ブドウから抽出したポリフェノール類はブドウポリフェノールと呼ばれる。 In addition, polyphenol compositions extracted from a certain plant are sometimes called polyphenols with the name of the plant. For example, polyphenols extracted from grapes are called grape polyphenols.
 「ポリフェノール類の供給原料」としては、ポリフェノール類を含有する植物体(以下、「ポリフェノール含有植物体」と呼ぶ。)又はその加工品を用いることができる。ここで、「植物体」としては、植物体の果実、種子、茎、葉、外皮、芽、花、根、及び地下茎から選ばれる1以上を挙げることができる。 As the "supply raw material of polyphenols", a plant body containing polyphenols (hereinafter referred to as "polyphenol-containing plant body") or a processed product thereof can be used. Here, the "plant body" includes one or more selected from fruit, seed, stem, leaf, outer skin, bud, flower, root, and rhizome of a plant body.
 「ポリフェノール含有植物体」としては、例えば、ハーブ類(ラベンダー、ミント、コリアンダー、クミン、セージ、レモングラス、ヨモギ、コンフリー、シソ、レモンバーム、オレガノ、キャットニップ、コモンタイム、ディル、ダークオパール、バジル、ヒソップ、ペパーミント、ラムズイヤーなど)、ドクダミ、マリゴールド、ブドウ、コーヒー(コーヒーノキ)、茶(チャノキ)、カカオ、アカシア、スギ、マツ、サトウキビ、マンゴー、バナナ、パパイア、アボカド、リンゴ、サクランボ(桜桃)、グァバ、オリーブ、イモ類(サツマイモ、紫イモ(紫色素を多く含有するサツマイモ)、ジャガイモ、ヤマイモ、タロイモ(サトイモ、エビイモなど)、コンニャクイモなど)、柿(カキノキ)、クワ、ブルーベリー、ポプラ、イチョウ、キク、ヒマワリ、竹、柑橘類(レモン、ライム、オレンジ、グレープフルーツ、ネーブル、ゆず、きんかん、かぼす、夏みかん、はっさく、いよかん、ライム、温州ミカン、シークヮーサー、マンダリンなど)、イチゴ、ブラックベリー、クランベリー、ラズベリー、ビルベリー、ハックルベリー、ウメ、桃、スモモ、ナシ、西洋ナシ、ビワ、キウイフルーツ、マンゴスチン、シシトウ、プルーン、メロン、ドラゴンフルーツ、クコ、カシス、カシュー、ガマズミ、ザクロ、アサイー、アロニア、ナス、トマト、大豆、黒大豆、小豆、サヤインゲン、落花生、黒胡麻、蕎麦、ダッタンソバ、ゴマ、紫キャベツ、ウルシ、ヌルデ、シュンギク、ブロッコリー、ホウレンソウ、コマツナ、ミツバ、オクラ、蕗、タマネギ、モロヘイヤ、シュンギク、ニンニク、紫タマネギ、アスパラガス、パセリ、ユーカリ、ウド、ギムネマ・シルベスタ、センナ、タンポポ、スギナ、シダ(ワラビ、ゼンマイなど)、ナラ、クヌギ、カエデ、セコイヤ、メタセコイヤ、ヒノキ、アカメガシワ、タカノツメ、アマチャ、アケビ、ヤマウコギ、リョウブ、タムシバ、コブシ、サルナシ、シロモジ、クロモジ、コシアブラ、クサギ、ホオノキ、マタタビ、バナバ、ルイボス、ラフマ、クズ、メグスリノキ、ウリン、メルバオ、アオギリ、スオウ、ブラジルボク、メリンジョ、サクラ、モクレン、イェルバ・マテ、メヒルギ、オヒルギ、ヤエヤマヒルギ、ハマザクロ、ニッパヤシ、ヒルギダマシ、ヒルギモドキ、サキシマスオウノキ、ゴボウ、ウコン、レンコン、海藻(海苔、ワカメ、昆布、アオサ、アラメ、サガラメなど)などを挙げることができる。 Examples of "polyphenol-containing plants" include herbs (lavender, mint, coriander, cumin, sage, lemongrass, mugwort, comfrey, perilla, lemon balm, oregano, catnip, common thyme, dill, dark opal, basil, hyssop, peppermint, lamb's ear, etc.), houttuynia cordata, marigold, grapes, coffee (coffee tree), tea (tea), cacao, acacia, cedar, pine, sugar cane, mango, banana, papaya, avocado, apple, cherry (cherry), Guava, olive, potatoes (sweet potato, purple potato (sweet potato containing a lot of purple pigment), potato, yam, taro (taro, shrimp, etc.), konjac potato, etc.), persimmon, mulberry, blueberry, poplar, ginkgo biloba , Chrysanthemum, Sunflower, Bamboo, Citrus Fruits (Lemon, Lime, Orange, Grapefruit, Navel, Yuzu, Kumquat, Kabosu, Natsumikan, Hassaku, Iyokan, Lime, Satsuma Mandarin, Shikuwasa, Mandarin, etc.), Strawberry, Blackberry, Cranberry, Raspberry , bilberry, huckleberry, plum, peach, plum, pear, pear, loquat, kiwi fruit, mangosteen, shishito, prune, melon, dragon fruit, wolfberry, cassis, cashew, viburnum, pomegranate, acai, aronia, eggplant, tomato, Soybeans, black soybeans, adzuki beans, green beans, peanuts, black sesame seeds, buckwheat, tartary buckwheat, sesame seeds, purple cabbage, sumac, nurde, shungiku, broccoli, spinach, komatsuna, mitsuba, okra, butterbur, onions, mulukhiya, shungiku, garlic, purple Onion, asparagus, parsley, eucalyptus, udo, gymnema sylvestre, senna, dandelion, horsetail, fern (bracken, fern, etc.), oak, sawtooth oak, maple, sequoia, metasequoia, cypress, red-crested wrinkle, hawthorn tsume, gynophila, akebi, Japanese sycamore , Ryoubu, Tamushiba, Magnolia magnolia, Arunashi, Shiromoji, Kuromoji, Koshiabura, Kusagi, Magnolia, Actinidia, Banaba, Rooibos, Rafuma, Kudzu, Megusurinoki, Urin, Merbao, Aogiri, Suou, Brazilwood, Melinjo, Sakura, Magnolia, Yerba ・Yerba mate, Mehirgi, Hirugi, Yaeyama Hirugi, Hama pomegranate, Nippa palm, Mangrove mangrove, Mangrove mandarinus, Sakishimasuounoki, burdock, turmeric, lotus root, seaweed (seaweed, wakame seaweed, kelp, sea lettuce, sea lettuce) Lame, Sagarame, etc.) and the like can be mentioned.
 中でも、ブドウ、コーヒー(コーヒーノキ)、茶(チャノキ)、カカオ、アカシア、スギ、マツ、ゆず、レモン、ハーブ類(ラベンダー、ミント、コリアンダー、クミン、セージ、シソ、レモングラス、ヨモギ、コンフリー、レモンバーム、オレガノ、キャットニップ、コモンタイム、ディル、ダークオパール、バジル、ヒソップ、ペパーミント、ラムズイヤーなど)、ドクダミ、マリゴールド、サトウキビ、マンゴー、バナナ、パパイア、アボカド、リンゴ、サクランボ(桜桃)、グァバ、オリーブ、イモ類(サツマイモ、紫イモ(紫色素を多く含有するサツマイモ)、ジャガイモ、ヤマイモ、タロイモ(サトイモ、エビイモなど)、コンニャクイモなど)、柿(カキノキ)、クワ、ブルーベリー、ポプラ、イチョウ、キク、ヒマワリ、竹が好適に用いられる。 Among them, grapes, coffee (coffee tree), tea (tea), cacao, acacia, cedar, pine, yuzu, lemon, herbs (lavender, mint, coriander, cumin, sage, perilla, lemongrass, mugwort, comfrey, lemon balm , oregano, catnip, common thyme, dill, dark opal, basil, hyssop, peppermint, lamb's ear, etc.), Houttuynia cordata, marigold, sugar cane, mango, banana, papaya, avocado, apple, cherry, guava, olive, potato (sweet potato, purple potato (sweet potato containing a lot of purple pigment), potato, yam, taro (taro, shrimp, etc.), konjac potato, etc.), persimmon (persimmon), mulberry, blueberry, poplar, ginkgo, chrysanthemum, sunflower, Bamboo is preferably used.
 ポリフェノール含有植物体の「加工品」としては、ポリフェノール含有植物体の乾燥物、搾汁液、抽出物、抽出液などを挙げることができる。また、搾汁液や抽出液を、さらに乾燥物としたものであってもよい。 "Processed products" of polyphenol-containing plant bodies include dried products of polyphenol-containing plant bodies, juices, extracts, and liquid extracts. Further, the squeezed liquid or the extract may be further dried.
 「乾燥物」としては、破砕、粉砕、粉末化などの処理を行ったものが望ましい。また、鉄との反応効率の観点を考慮すると、粒子径の小さい粉末にしたものが好適である。 "Dried matter" is preferably one that has undergone processing such as crushing, pulverization, or powderization. In addition, considering the reaction efficiency with iron, a powder with a small particle size is preferable.
 「抽出物」及び「抽出液」の抽出溶媒としては、水、熱水、アルコール(特にエタノール)、含水アルコール(特に含水エタノール)が好適である。 Suitable extraction solvents for the "extract" and "extract" are water, hot water, alcohol (especially ethanol), and hydrous alcohol (especially hydrous ethanol).
 ポリフェノール類の供給原料としては、ポリフェノール含有植物体又はその加工品を水もしくは熱水で抽出し、その後に残った残渣についても、好適に用いることができる。このような抽出残渣としては、例えばコーヒー粕、茶殻などを挙げることができる。 As a feedstock for polyphenols, the residue remaining after extracting the polyphenol-containing plant body or its processed product with water or hot water can also be suitably used. Examples of such extraction residues include coffee grounds and used tea leaves.
 「コーヒー粕」とは、コーヒー豆の焙煎粉砕物を水又は熱水で抽出した後の残渣を指す。コーヒー粕は、ポリフェノール類を非常に多く含んでいるうえに、廃棄物であるため原料コストが低く抑えられるので、ポリフェノール類の供給原料として好適である。また、コーヒー豆の焙煎粉砕物を水又は熱水で抽出した成分(いわゆる淹れたコーヒーの成分)や、コーヒー豆、その焙煎物、粉砕物なども、ポリフェノール類を多く含んでいるため、好適に用いることができる。 "Coffee grounds" refers to the residue after extracting roasted and ground coffee beans with water or hot water. Coffee grounds contain a large amount of polyphenols, and since they are waste products, the raw material cost can be kept low, so they are suitable as raw materials for supplying polyphenols. In addition, components obtained by extracting roasted and ground coffee beans with water or hot water (so-called components of brewed coffee), coffee beans, their roasted products, ground products, etc., also contain large amounts of polyphenols. , can be preferably used.
 「茶殻」とは、茶葉又はその粉砕物を水又は熱水で抽出した後の残渣を指す。茶殻は、ポリフェノール類を非常に多く含んでいるうえに、廃棄物であるため原料コストが低く抑えられるので、ポリフェノール類の供給原料として好適である。 "Tea leaves" refers to the residue after extracting tea leaves or their pulverized material with water or hot water. Used tea leaves contain an extremely large amount of polyphenols, and since they are waste products, the cost of raw materials can be kept low, so they are suitable as raw materials for supplying polyphenols.
 茶殻の原料である「茶葉」としては、チャノキの茎葉を摘んだものであれば如何なるものも用いることができる。具体的には、緑茶(煎茶、番茶、茎茶、ほうじ茶など)、青茶(ウーロン茶など)、紅茶、黒茶(プーアル茶など)などを挙げることができる。中でも、緑茶、紅茶、ウーロン茶が好適である。 As for the "tea leaves" that are the raw material for used tea leaves, any stems and leaves of the tea tree can be used. Specific examples include green tea (sencha, bancha, stem tea, hojicha, etc.), blue tea (oolong tea, etc.), black tea, black tea (pu-erh tea, etc.), and the like. Among them, green tea, black tea, and oolong tea are preferable.
 また、茶葉又はその粉砕物を水又は熱水で抽出した成分(いわゆる淹れた茶の成分)や、茶葉、その加工品、粉砕物なども、ポリフェノール類を多く含んでいるため、ポリフェノール類の供給原料として好適に用いることができる。 In addition, components obtained by extracting tea leaves or their pulverized products with water or hot water (so-called components of brewed tea), tea leaves, their processed products, pulverized products, etc., also contain large amounts of polyphenols. It can be suitably used as a feedstock.
 第一の実施形態においては、ポリフェノール含有植物体又はその加工品を、還元状態で熱分解することによって得られる乾留液(植物乾留液)についても、ポリフェノール類の供給原料として好適に用いることができる。 In the first embodiment, a dry distillation solution (plant dry distillation solution) obtained by thermally decomposing a polyphenol-containing plant body or its processed product in a reducing state can also be suitably used as a feedstock for polyphenols. .
 この植物乾留液には、ポリフェノール類が多く含まれることに加えて、フェノール類、有機酸、カルボニル類、アルコール類、アミン類、塩基性成分、その他中性成分などの多くの還元性有機物の分子が含まれると推測される。ここで「還元性有機物」とは、還元力が強く、三価鉄を二価鉄に還元する作用を有する有機物を指す。 In addition to containing a large amount of polyphenols, this plant dry distillate contains many reducing organic molecules such as phenols, organic acids, carbonyls, alcohols, amines, basic components, and other neutral components. is presumed to contain Here, the term "reducing organic matter" refers to an organic matter that has a strong reducing power and has the action of reducing trivalent iron to divalent iron.
 植物乾留液は粘りけのある液体で、外見は赤褐色~暗褐色を呈する。原料とする植物体によって木酢液、竹酢液、籾酢液などの種類があり、いずれも好適に用いることができる。これらの植物乾留液は原液のまま用いることもできるが、濃縮液、希釈液、これらの乾燥物として用いることも可能である。 The dry distillate of the plant is a sticky liquid with a reddish-brown to dark brown appearance. There are types such as wood vinegar, bamboo vinegar, rice vinegar, etc., depending on the plant body used as the raw material, and any of them can be suitably used. These vegetable dry distillation solutions can be used as they are, but they can also be used as concentrated solutions, diluted solutions, or dried products thereof.
 上記のポリフェノール類の供給原料は、1種のみを用いてもよく、2種以上を混合して用いてもよい。 Only one type of the above polyphenols may be used, or two or more types may be mixed and used.
 「鉄供給原料」としては、二価鉄の供給原料、三価鉄の供給原料、又は金属鉄の供給原料のいずれをも用いることができる。また、複数のものを混合して用いることもできる。 As the "iron feedstock", any of a bivalent iron feedstock, a trivalent iron feedstock, or a metallic iron feedstock can be used. Also, a plurality of materials can be mixed and used.
 ここで、「二価鉄の供給原料」としては、塩化鉄(II)、硝酸鉄(II)、硫酸鉄(II)、水酸化鉄(II)、酸化鉄(II)、酢酸鉄(II)、乳酸鉄(II)、クエン酸鉄(II)ナトリウム、グルコン酸鉄(II)など水溶性の二価鉄化合物;炭酸鉄(II)、フマル酸鉄(II)などの水不溶性の二価鉄化合物を挙げることができる。 Here, as the "supply material of divalent iron", iron (II) chloride, iron (II) nitrate, iron (II) sulfate, iron (II) hydroxide, iron (II) oxide, iron (II) acetate , Water-soluble divalent iron compounds such as iron (II) lactate, sodium iron (II) citrate, iron (II) gluconate; water-insoluble divalent iron compounds such as iron (II) carbonate and iron (II) fumarate compounds can be mentioned.
 「三価鉄の供給原料」としては、塩化鉄(III)、硫酸鉄(III)、クエン酸鉄(III)、クエン酸鉄(III)アンモニウム、EDTA鉄(III)などの水溶性の三価鉄化合物;酸化鉄(III)、硝酸鉄(III)、水酸化鉄(III)、ピロリン酸鉄(III)などの水不溶性の三価鉄化合物を挙げることができる。 As a "feedstock of trivalent iron", water-soluble trivalent iron(III) chloride, iron(III) sulfate, iron(III) citrate, ammonium iron(III) citrate, iron(III) EDTA, etc. Iron compounds: water-insoluble trivalent iron compounds such as iron(III) oxide, iron(III) nitrate, iron(III) hydroxide, and iron(III) pyrophosphate.
 また、これらの三価鉄化合物を多く含む天然原料として、赤玉土、鹿沼土、ローム(アロフェン質の鉄分を多く含む土壌)、ラテライト(酸化鉄(III)を多く含む土壌)、ゲータイト(非結晶質の鉱物を含む土壌)などの土壌;黄鉄鉱、白鉄鉱、菱鉄鉱、磁鉄鉱、針鉄鉱など天然の鉄鉱石;前記鉄鉱石が砂塵化した砂鉄;ヘム鉄、貝殻などの生体由来の物質;なども三価鉄の供給原料として用いることができる。 In addition, as natural raw materials containing a large amount of these trivalent iron compounds, Akadama soil, Kanuma soil, loam (soil containing a lot of allophane iron), laterite (soil containing a lot of iron oxide (III)), goethite (amorphous natural iron ores such as pyrite, marcasite, siderite, magnetite, and goethite; iron sand obtained by turning the iron ore into dust; substances derived from living organisms such as heme iron and shells; can also be used as a feedstock for trivalent iron.
 また、「金属鉄の供給原料」としては、製錬鉄や合金などの鉄材を挙げることができる。その他、錆びも鉄供給原料として用いることができる。 In addition, iron materials such as smelted iron and alloys can be mentioned as "supply raw materials of metallic iron". In addition, rust can also be used as an iron feedstock.
 なお、上記の鉄供給原料は、水不溶性のものであっても、ポリフェノール類のキレート能によって水溶化するため、鉄供給原料として直接用いることが可能である。 It should be noted that even if the above-mentioned iron feedstock is water-insoluble, it can be used directly as an iron feedstock because it is water-soluble due to the chelating ability of polyphenols.
 上記の鉄供給原料のうち、ポリフェノール鉄錯体を効率よく製造するためには、水溶性の二価鉄又は三価鉄の化合物を用いることが好適である。特には安価な塩化鉄、硫酸鉄などを用いることが好適である。また、原料コスト及び安定供給の観点からは、天然物である土壌(特に赤玉土、鹿沼土、ロームなど)、金属鉄を鉄供給原料として用いることが好適である。 Among the above iron feedstocks, it is preferable to use a water-soluble divalent iron or trivalent iron compound in order to efficiently produce a polyphenol iron complex. In particular, it is preferable to use inexpensive iron chloride, iron sulfate, or the like. From the viewpoint of raw material cost and stable supply, it is preferable to use natural soil (particularly Akadama soil, Kanuma soil, loam, etc.) and metallic iron as iron supply raw materials.
 第一の実施形態において、ポリフェノール鉄錯体は、ポリフェノール類又はその供給原料と、鉄供給原料と、を水の存在下で混合することによって得られる。 In the first embodiment, the polyphenol iron complex is obtained by mixing polyphenols or a feedstock thereof with an iron feedstock in the presence of water.
 これら原料の混合比率としては、前記ポリフェノール類、又は、ポリフェノール類の供給原料、の乾燥重量100重量部に対して、前記鉄供給原料を鉄元素の重量換算で0.1重量部以上、好ましくは1重量部以上、より好ましくは4重量部以上、さらに好ましくは10重量部以上、特に好ましくは20重量部以上となるように混合すればよい。鉄元素の割合が少なすぎる場合(鉄元素に対して前記ポリフェノール類の混合割合が多すぎる場合)には、過剰に存在するポリフェノール類がラジカル消去物質(スカベンジャー)として機能するため、フェントン反応や光触媒反応を阻害する可能性がある。 The mixing ratio of these raw materials is such that the iron feedstock is added in an amount of 0.1 part by weight or more, preferably 1 part by weight in terms of the weight of the iron element, with respect to 100 parts by weight of the dry weight of the polyphenols or the feedstock of the polyphenols. parts or more, more preferably 4 parts by weight or more, still more preferably 10 parts by weight or more, particularly preferably 20 parts by weight or more. If the proportion of the iron element is too small (if the proportion of the polyphenols mixed with respect to the iron element is too high), the excess polyphenols function as radical scavenging substances (scavengers), so the Fenton reaction and photocatalyst May inhibit reactions.
 また、鉄供給原料の混合比率の上限としては、前記ポリフェノール類、又は、ポリフェノール類の供給原料、の乾燥重量100重量部に対して、前記鉄供給原料を鉄元素の重量換算で100重量部以下、好ましくは80重量部以下、より好ましくは60重量部以下となる比率を挙げることができる。鉄元素の割合が多すぎる場合(鉄元素に対して前記ポリフェノール類の混合割合が少なすぎる場合)には、鉄イオンを二価の状態で維持できなくなりフェントン反応や光触媒反応の効率が低下し、好ましくない。 In addition, the upper limit of the mixing ratio of the iron feedstock is 100 parts by weight or less in terms of the weight of the iron element with respect to 100 parts by weight of the dry weight of the polyphenols or the feedstock of the polyphenols. , preferably 80 parts by weight or less, more preferably 60 parts by weight or less. If the ratio of the iron element is too high (if the mixing ratio of the polyphenols is too low relative to the iron element), the iron ions cannot be maintained in a divalent state, and the efficiency of the Fenton reaction or photocatalytic reaction decreases. I don't like it.
 なお、前記ポリフェノール類の供給原料として、前記ポリフェノール含有植物体の抽出物又は抽出液を用いる場合には、抽出原料として用いた当該ポリフェノール含有植物体の乾燥重量を「前記ポリフェノール類の供給原料の乾燥重量」とみなして、前記混合比率を算出すればよい。例えば、前記ポリフェノール類の供給原料として乾燥茶葉を用い、この茶葉を熱水抽出して得られた抽出液と、鉄供給原料と、を反応させたとする。この場合、当該乾燥茶葉の重量を「前記ポリフェノール類の供給原料の乾燥重量」として用いて、鉄供給原料との混合比率を算出する。 In addition, when the extract or extract of the polyphenol-containing plant is used as the raw material for the polyphenols, the dry weight of the polyphenol-containing plant used as the raw material for extraction is referred to as the "dry weight of the raw material for the polyphenols. The above mixing ratio can be calculated by considering the above as "weight". For example, it is assumed that dry tea leaves are used as the feedstock for the polyphenols, and an extract obtained by hot water extraction of the tea leaves is reacted with the iron feedstock. In this case, the weight of the dried tea leaves is used as the "dry weight of the polyphenol feedstock" to calculate the mixing ratio with the iron feedstock.
 同様に、前記ポリフェノール類の供給原料として、前記ポリフェノール含有植物体の加工品を用いる場合には、加工原料として用いた当該ポリフェノール含有植物体の乾燥重量を「前記ポリフェノール類の供給原料の乾燥重量」とみなして、上記混合比率を算出すればよい。 Similarly, when the processed product of the polyphenol-containing plant body is used as the raw material for the polyphenols, the dry weight of the polyphenol-containing plant used as the raw material for processing is referred to as the "dry weight of the raw material for the polyphenols". , the above mixing ratio can be calculated.
 上記原料の混合操作は、水存在下において行われる。ここで水存在下とは、前記ポリフェノール類と鉄が、水を媒質として反応できる条件であればよい。当該反応とは、具体的には、当該ポリフェノール類が鉄イオンを還元状態(二価鉄イオンであるFe2+の状態)にして、錯体を形成する反応であると推測される。 The mixing operation of the raw materials is performed in the presence of water. Here, the presence of water may be any condition as long as the polyphenols and iron can react with each other using water as a medium. Specifically, the reaction is presumed to be a reaction in which the polyphenol reduces iron ions (the state of Fe 2+ , which is a divalent iron ion) to form a complex.
 水の量としては、少なくとも前記原料の混合や撹拌が可能な液量であれば良く、原料(ポリフェノール類と鉄)の混合物が湿潤する程度の量であってもよい。 The amount of water should be sufficient to allow at least mixing and stirring of the raw materials, and may be an amount sufficient to wet the mixture of raw materials (polyphenols and iron).
 なお、ポリフェノール類の供給原料として、植物体搾汁や植物乾留液などを液体のままを用いる場合は、新たに媒質を添加することなく、直接鉄供給原料と混合して反応させることができる。 In addition, when plant body juice or plant dry distillation liquid is used as a raw material for polyphenols, it can be directly mixed with the iron raw material and reacted without adding a new medium.
 混合操作としては、スターラー等で単純な撹拌混合を行えばよいが、ミキサー、大型撹拌槽、ボルテックス、シェーカーなどによっても行うことができる。 As for the mixing operation, simple stirring and mixing with a stirrer, etc., can be performed, but it can also be performed with a mixer, large stirring tank, vortex, shaker, etc.
 混合時の水の温度としては、水が液体状態である温度(例えば1気圧であれば1~100℃)であればよい。加熱を要さない室温程度(例えば10~35℃)を採用することが可能であるが、加熱する場合、40℃以上、好ましくは50℃以上での加熱を行うことにより、ポリフェノール鉄錯体の生成が促進され好適である。 The temperature of the water during mixing should be the temperature at which the water is in a liquid state (for example, 1 to 100°C at 1 atm). It is possible to adopt about room temperature (for example, 10 to 35 ° C.) that does not require heating, but when heating, heating at 40 ° C. or higher, preferably 50 ° C. or higher, generates a polyphenol iron complex. is promoted and suitable.
 混合時の水の温度の上限としては200℃(加圧加熱の場合)を挙げることができるが、製造コストの観点から、常圧条件における通常加熱での沸点である100℃以下、好ましくは90℃以下、さらに好ましくは70℃以下で行うことが望ましい。なお、100℃以上の反応条件においては、ポリフェノール類の熱分解を抑制するために密閉容器内で行う方が好適である。 The upper limit of the temperature of water during mixing can be 200 ° C. (in the case of pressurized heating), but from the viewpoint of production costs, the boiling point of normal heating under normal pressure conditions is 100 ° C. or less, preferably 90 ° C. °C or below, more preferably 70°C or below. In addition, under the reaction conditions of 100° C. or higher, it is preferable to carry out the reaction in a closed container in order to suppress thermal decomposition of the polyphenols.
 混合時間としては、ポリフェノール類と鉄が十分に接触するまで、おおよそ10秒以上行えばよいが、均一性を向上させるためには、好ましくは1分以上、より好ましくは3分以上、さらに好ましくは5分以上の混合処理を行うことが望ましい。 The mixing time may be about 10 seconds or more until the polyphenols and iron are sufficiently contacted, but in order to improve uniformity, it is preferably 1 minute or more, more preferably 3 minutes or more, and still more preferably Mixing for 5 minutes or more is desirable.
 また、混合時間の上限としては、微生物の繁殖による有機物の腐敗を防止するため、10日以内、好ましくは7日以内、より好ましくは5日以内、さらに好ましくは3日以内、特に好ましくは1日以内で行うことが望ましい。ただし滅菌処理を伴う場合は特に上限はない。 In addition, the upper limit of the mixing time is 10 days or less, preferably 7 days or less, more preferably 5 days or less, even more preferably 3 days or less, and particularly preferably 1 day, in order to prevent organic matter from spoiling due to propagation of microorganisms. It is desirable to perform within However, there is no particular upper limit when sterilization is involved.
 上記混合処理を経て得られる反応生成物(ポリフェノール類と鉄との反応物)は、優れた二価鉄イオン供給活性、フェントン反応触媒活性及び光触媒活性を有する。当該反応生成物では、ポリフェノール類が鉄を二価鉄イオン(Fe2+)の状態にして、錯体(すなわち、ポリフェノール鉄錯体)を形成しているものと推測される。 The reaction product (reaction product of polyphenols and iron) obtained through the above mixing treatment has excellent divalent iron ion-supplying activity, Fenton reaction catalytic activity, and photocatalytic activity. In the reaction product, it is presumed that the polyphenols convert iron into a divalent iron ion (Fe 2+ ) state to form a complex (that is, a polyphenol iron complex).
 上記混合処理により得られる反応生成物は、反応後に得られた上清や含水状態の沈殿物をそのまま、本実施の形態におけるポリフェノール鉄錯体として用いることができる。また、当該上清又は沈殿物をそれぞれ分離回収した物や、それを乾燥処理(自然乾燥、焙煎、熱風乾燥など)して得られた乾燥物や、当該乾燥物をさらに水に溶いた懸濁物やその上清等についても、本実施の形態におけるポリフェノール鉄錯体として用いることが可能である。 As for the reaction product obtained by the above-described mixing treatment, the supernatant obtained after the reaction or the precipitate in a water-containing state can be used as it is as the polyphenol iron complex in the present embodiment. In addition, the separated and collected supernatant or precipitate, the dried product obtained by drying (natural drying, roasting, hot air drying, etc.), and the suspension obtained by further dissolving the dried product in water Turbid matter, its supernatant, etc. can also be used as the polyphenol iron complex in the present embodiment.
 第一の実施形態に係るポリフェノール鉄錯体カプセルは、上記ポリフェノール鉄錯体を含有する、アルギン酸ゲルからなるカプセルである。ここで、「アルギン酸ゲル」とは、アルギン酸分子が多価カチオンによりイオン架橋されることによって形成されるゲルである。 The polyphenol-iron complex capsule according to the first embodiment is a capsule made of alginic acid gel containing the polyphenol-iron complex. Here, "alginic acid gel" is a gel formed by ionically cross-linking alginic acid molecules with polyvalent cations.
 前記ポリフェノール鉄錯体カプセルは、前記ポリフェノール鉄錯体を含む内層が前記アルギン酸ゲルの外層で覆われているコアシェル型のカプセル、又は、前記アルギン酸ゲルの粒子内部にポリフェノール鉄錯体が分散されているマトリックス型のカプセル、のいずれであってもよい。 The polyphenol-iron complex capsule is a core-shell type capsule in which the inner layer containing the polyphenol-iron complex is covered with the outer layer of the alginate gel, or a matrix-type capsule in which the polyphenol-iron complex is dispersed inside the particles of the alginate gel. Capsules.
 また、前記ポリフェノール鉄錯体カプセルの形状は、球形であっても非球形であってもよい。また、前記内層を1つのみ有する単核構造でもよいし、内層を2つ以上有する多核構造であってもよい。上記のいずれの形態であっても、ポリフェノール鉄錯体を安定化し、徐放化できるという効果は変わらない。 Also, the shape of the polyphenol iron complex capsule may be spherical or non-spherical. Moreover, it may be a mononuclear structure having only one inner layer, or a multinuclear structure having two or more inner layers. In any of the above forms, the effect of stabilizing the polyphenol-iron complex and achieving sustained release remains the same.
 アルギン酸はD-マンヌロン酸(M)とL-グルロン酸(G)とで構成されるヘテロ多糖類である。アルギン酸のゲル化は、グルロン酸部分が架橋されることによって生じるため、MとGの構成比、即ちM/G比によって、得られるポリフェノール鉄錯体カプセルの物性が変化する。例えば、M/G比が大きい、すなわちマンヌロン酸含有量の大きいアルギン酸を用いると、柔らかく崩壊しやすいカプセルとなり、M/G比が小さい、すなわちグルロン酸含有量の大きいアルギン酸を用いると、固く崩壊し難いカプセルとなる。 Alginic acid is a heteropolysaccharide composed of D-mannuronic acid (M) and L-guluronic acid (G). Since gelation of alginic acid is caused by cross-linking of guluronic acid moieties, the physical properties of the obtained polyphenol iron complex capsules vary depending on the composition ratio of M and G, that is, the M/G ratio. For example, if alginic acid with a large M/G ratio, that is, with a large mannuronic acid content, is used, the capsule will be soft and easily disintegrated, and if alginic acid with a small M/G ratio, that is, with a large guluronic acid content, is used, the capsule will be hard and disintegrate. It becomes a difficult capsule.
 したがって、前記アルギン酸のM/G比は、前記ポリフェノール鉄錯体カプセルの用途や使用環境に応じて、当該カプセルが所望の物性となるように適宜設定すればよい。具体的には、前記アルギン酸のM/G比は通常0.05~5.0程度とすることができる。 Therefore, the M/G ratio of alginic acid may be appropriately set according to the application and usage environment of the polyphenol iron complex capsule so that the capsule has desired physical properties. Specifically, the M/G ratio of alginic acid can usually be about 0.05 to 5.0.
 前記ポリフェノール鉄錯体カプセルの大きさは、用途や使用環境などに応じて適宜設定すればよく、例えば球形のカプセルであれば直径1nm~1mの範囲とすることができる。例えば魚介類の水槽で使用する場合、対象とする魚介類による誤飲を防止できるように考慮して大きさを設定すればよい。具体的には、家庭の水槽で飼育される小型の観賞魚を対象とする場合は、球形のカプセルであれば当該カプセルの直径は2~10mm程度とすることができる。また、中型の魚を対象とする場合は直径10~100mm程度、大型の魚を対象とする場合は10~100cm程度とすることができる。 The size of the polyphenol-iron complex capsule may be appropriately set according to the application, usage environment, etc. For example, a spherical capsule may have a diameter ranging from 1 nm to 1 m. For example, when it is used in a fish tank, the size may be set so as to prevent accidental ingestion by the target fish. Specifically, in the case of small aquarium fish raised in home aquariums, spherical capsules can have a diameter of about 2 to 10 mm. Also, when targeting medium-sized fish, the diameter can be about 10 to 100 mm, and when targeting large fish, the diameter can be about 10 to 100 cm.
 また、前記ポリフェノール鉄錯体カプセルは、例えば魚介類の水槽内の景観を壊さないように、水草や海藻、貝殻、サンゴ、小石などを模した形状のカプセルとしてもよい。その場合、実際の水草や海藻、貝殻、サンゴ、小石などの大きさに応じて、カプセルの大きさも適宜設定すればよい。 In addition, the polyphenol iron complex capsule may have a shape that imitates aquatic plants, seaweed, shells, coral, pebbles, etc., so as not to spoil the scenery in a fish tank. In that case, the size of the capsule may be appropriately set according to the size of actual aquatic plants, seaweed, shells, corals, pebbles, and the like.
 前記ポリフェノール鉄錯体カプセルにおける前記アルギン酸ゲルの含有量は、通常0.001~99重量%であり、好ましくは0.1~10重量%である。 The content of the alginic acid gel in the polyphenol iron complex capsule is usually 0.001 to 99% by weight, preferably 0.1 to 10% by weight.
 前記ポリフェノール鉄錯体カプセルにおける前記ポリフェノール鉄錯体の含有量は、特に限定されない。例えば、0.0001~99重量%、好ましくは0.01~10重量%とすることができる。 The content of the polyphenol iron complex in the polyphenol iron complex capsule is not particularly limited. For example, it can be 0.0001 to 99% by weight, preferably 0.01 to 10% by weight.
 前記ポリフェノール鉄錯体カプセルは、上記効果を妨げない限りにおいて、前記ポリフェノール鉄錯体以外の他の成分を含有していてもよい。当該「他の成分」としては、例えば、魚介類などの動植物、藻類、微生物といった有用生物の成長や増殖に必要な栄養素などが挙げられる。 The polyphenol-iron complex capsule may contain components other than the polyphenol-iron complex as long as the above effects are not hindered. Examples of the "other ingredients" include nutrients necessary for the growth and proliferation of useful organisms such as animals and plants such as fish and shellfish, algae, and microorganisms.
 具体的には、ビタミンB群、ビタミンCなどの水溶性ビタミン又はその誘導体;銅、亜鉛、コバルト、マンガン、モリブデン、ホウ素、鉄などの微量要素又はその化合物;などからなる群より選ばれた1以上のものが挙げられる。なお、前記微量要素はカプセル中で過剰量の前記ポリフェノール類と反応して錯体を形成し得ることから、ポリフェノール錯体の状態で含有されていてもよい。 Specifically, water-soluble vitamins such as B vitamins and vitamin C or derivatives thereof; trace elements such as copper, zinc, cobalt, manganese, molybdenum, boron and iron, or compounds thereof; The above are mentioned. The trace element may be contained in the form of a polyphenol complex because it can react with an excessive amount of the polyphenols in the capsule to form a complex.
 前記ビタミンB群としては、ビタミンB、ビタミンB、ナイアシン(ビタミンB)、パントテン酸(ビタミンB)、ビタミンB、ビオチン(ビタミンB)、葉酸(ビタミンB)、ビタミンB12又はこれらの誘導体などを挙げることができる。 The B vitamins include vitamin B1 , vitamin B2, niacin (vitamin B3), pantothenic acid (vitamin B5 ), vitamin B6 , biotin (vitamin B7 ), folic acid (vitamin B9 ), vitamin B 12 or derivatives thereof.
 前記微量要素の化合物としては、硫酸銅、硫酸亜鉛、塩化コバルト、塩化マンガン、硫酸マンガン、モリブデン酸ナトリウム、ホウ酸、塩化鉄、硫酸鉄などを挙げることができる。 Examples of the trace element compounds include copper sulfate, zinc sulfate, cobalt chloride, manganese chloride, manganese sulfate, sodium molybdate, boric acid, iron chloride, and iron sulfate.
 前記ポリフェノール鉄錯体カプセルにおける上記「他の成分」の合計含有量や各成分の含有量は、当該カプセルの用途に応じて適宜設定すればよく、特に限定されない。例えば、合計含有量は通常99重量%以下、好ましくは0.0001~95重量%、より好ましくは0.5~75重量%、さらに好ましくは5~60重量%とすることができる。 The total content of the "other ingredients" and the content of each ingredient in the polyphenol iron complex capsule may be appropriately set according to the application of the capsule, and is not particularly limited. For example, the total content is usually 99% by weight or less, preferably 0.0001 to 95% by weight, more preferably 0.5 to 75% by weight, and even more preferably 5 to 60% by weight.
 具体例として、魚介類の飼育又は病気治療の目的で前記ポリフェノール鉄錯体カプセルに含有される、前記ビタミンB群及び前記微量要素の組成の一例を以下に示す。なお、下記の組成を濃縮又は希釈して前記ポリフェノール鉄錯体カプセルに含有させることもできる。 As a specific example, an example of the composition of the B vitamins and the trace elements contained in the polyphenol iron complex capsule for the purpose of raising seafood or treating diseases is shown below. The following composition may be concentrated or diluted and contained in the polyphenol iron complex capsule.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 具体例として、植物栽培の目的で前記ポリフェノール鉄錯体カプセルに含有される、前記微量要素の組成の一例を以下に示す。なお、下記の組成を濃縮又は希釈して前記ポリフェノール鉄錯体カプセルに含有させることもできる。 As a specific example, an example of the composition of the trace element contained in the polyphenol iron complex capsule for the purpose of plant cultivation is shown below. The following composition may be concentrated or diluted and contained in the polyphenol iron complex capsule.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記したポリフェノール鉄錯体カプセルは、例えば下記のようにして製造することができる。 The polyphenol iron complex capsules described above can be produced, for example, as follows.
(1)まず、前述の方法により、前記ポリフェノール類又はその供給原料と、前記鉄供給原料と、を水存在下にて混合することによって、前記ポリフェノール鉄錯体を調製する。 (1) First, the polyphenol iron complex is prepared by mixing the polyphenols or the feedstock thereof and the iron feedstock in the presence of water by the method described above.
(2)次に、得られた前記ポリフェノール鉄錯体と、アルギン酸塩と、を混合してアルギン酸水溶液(液1)を調製する(図1参照)。 (2) Next, the obtained polyphenol iron complex and alginate are mixed to prepare an alginic acid aqueous solution (liquid 1) (see FIG. 1).
 ここで、「アルギン酸塩」としては、アルギン酸の可溶性塩であればよく、具体的には、アルギン酸ナトリウム、アルギン酸カリウム、アルギン酸アンモニウムなどを挙げることができる。 Here, the "alginate" may be any soluble salt of alginic acid, and specific examples include sodium alginate, potassium alginate, and ammonium alginate.
 アルギン酸のM/G比は、ポリフェノール鉄錯体カプセルの用途や使用環境に応じて、当該カプセルが所望の物性となるように適宜設定すればよい。具体的には、上記アルギン酸のM/G比は通常0.05~5.0程度とすることができる。 The M/G ratio of alginic acid may be appropriately set according to the application and usage environment of the polyphenol iron complex capsule so that the capsule has desired physical properties. Specifically, the M/G ratio of alginic acid can usually be about 0.05 to 5.0.
 前記アルギン酸水溶液における前記アルギン酸塩の含有量は、通常0.001~99重量%であり、好ましくは0.1~10重量%である。 The content of the alginate in the alginic acid aqueous solution is usually 0.001 to 99% by weight, preferably 0.1 to 10% by weight.
 前記アルギン酸水溶液における前記ポリフェノール鉄錯体の含有量は、特に限定されない。例えば、0.0001~99重量%、好ましくは0.01~10重量%とすることができる。 The content of the polyphenol iron complex in the aqueous alginic acid solution is not particularly limited. For example, it can be 0.0001 to 99% by weight, preferably 0.01 to 10% by weight.
 前記アルギン酸水溶液には、上記効果を妨げない限りにおいて、ポリフェノール鉄錯体以外の他の成分を含有していてもよい。当該「他の成分」としては、上述の通りであり、例えば、ビタミンB群、ビタミンCなどの水溶性ビタミン又はその誘導体;銅、亜鉛、コバルト、マンガン、モリブデン、ホウ素、鉄などの微量要素又はその化合物;などからなる群より選ばれた1以上のものが挙げられる。 The aqueous alginic acid solution may contain components other than the polyphenol iron complex as long as the above effects are not hindered. The "other ingredients" are as described above, for example, water-soluble vitamins such as B vitamins and vitamin C or derivatives thereof; trace elements such as copper, zinc, cobalt, manganese, molybdenum, boron, iron, or one or more selected from the group consisting of the compound;
 前記アルギン酸水溶液における上記「他の成分」の合計含有量や各成分の含有量は、前記ポリフェノール鉄錯体カプセルの用途に応じて適宜設定すればよく、特に限定されない。例えば、合計含有量は通常99重量%以下、好ましくは0.0001~95重量%、より好ましくは0.5~75重量%、さらに好ましくは5~60重量%とすることができる。 The total content of the "other components" and the content of each component in the aqueous alginic acid solution may be appropriately set according to the application of the polyphenol iron complex capsule, and are not particularly limited. For example, the total content is usually 99% by weight or less, preferably 0.0001 to 95% by weight, more preferably 0.5 to 75% by weight, and even more preferably 5 to 60% by weight.
 具体例として、魚介類の飼育又は病気治療の目的で用いられる前記ポリフェノール鉄錯体カプセルを製造する場合の、前記アルギン酸水溶液における前記ビタミンB群及び前記微量要素の組成の一例を以下に示す。なお、下記の組成を濃縮又は希釈して配合することもできる。 As a specific example, an example of the composition of the B vitamins and the trace elements in the alginic acid aqueous solution when producing the polyphenol iron complex capsules used for the purpose of breeding seafood or treating diseases is shown below. In addition, the following composition can also be concentrated or diluted and blended.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 具体例として、植物栽培の目的で用いられる前記ポリフェノール鉄錯体カプセルを製造する場合の、前記アルギン酸水溶液における前記微量要素の組成の一例を以下に示す。なお、下記の組成を濃縮又は希釈して配合することもできる。 As a specific example, an example of the composition of the trace elements in the alginic acid aqueous solution when producing the polyphenol iron complex capsules used for plant cultivation is shown below. In addition, the following composition can also be concentrated or diluted and blended.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(3)そして、図1に示されるように、多価カチオンを溶解させた溶液(液2)中に、上記(2)で調製したアルギン酸水溶液(液1)を滴下することにより、アルギン酸をゲル化させ、前記ポリフェノール鉄錯体カプセル(図2参照)を製造する。滴下方法としては、従来公知の方法により行えばよい。 (3) Then, as shown in FIG. 1, the aqueous solution of alginic acid (liquid 1) prepared in (2) above is added dropwise into the solution (liquid 2) in which polyvalent cations are dissolved, thereby turning alginic acid into a gel. to produce the polyphenol iron complex capsule (see FIG. 2). As a dropping method, a conventionally known method may be used.
 「多価カチオン」としては、例えば、カルシウム塩、鉄塩などを挙げることができる。より具体的には、塩化カルシウム、乳酸カルシウム、硫酸鉄、塩化鉄などであり、特にはゲル化が速く進むことから塩化カルシウムが好ましい。前記多価カチオン溶液の濃度は特に限定されないが、通常0.01~60重量%とすることができる。 "Polyvalent cations" include, for example, calcium salts and iron salts. More specifically, calcium chloride, calcium lactate, ferric sulfate, ferric chloride, etc. are preferred, and calcium chloride is particularly preferred because it accelerates gelation. Although the concentration of the polyvalent cation solution is not particularly limited, it can usually be 0.01 to 60% by weight.
 上記の方法により、アルギン酸ゲル粒子の内部に、ポリフェノール鉄錯体などの含有成分が分散されてなる、マトリックス型の球形カプセルが得られる。 By the above method, matrix-type spherical capsules are obtained in which the ingredients such as the polyphenol iron complex are dispersed inside the alginate gel particles.
 あるいは、同心二重ノズルの内筒から上記したポリフェノール鉄錯体などの含有成分を、外筒からアルギン酸塩水溶液を、それぞれ多価カチオン溶液中に滴下することにより、アルギン酸ゲル被膜の内側にポリフェノール鉄錯体などの含有成分が封入されてなる、コアシェル型の球形カプセルを製造することもできる。 Alternatively, the polyphenol iron complex is added to the inside of the alginate gel film by dropping the above-described polyphenol iron complex and other components from the inner cylinder of the concentric double nozzle and the alginate aqueous solution from the outer cylinder into the polyvalent cation solution. It is also possible to produce core-shell type spherical capsules in which ingredients such as are encapsulated.
 また、上記したポリフェノール鉄錯体などの含有成分を添加したアルギン酸水溶液(アルギン酸塩濃度:0.5~10重量%程度)をよく撹拌することでゲル状とし、これを所望のサイズの塊状に成形した後に、多価カチオン溶液に浸漬して硬化させることにより、所望のサイズのカプセルを製造することもできる。 In addition, an alginic acid aqueous solution (alginate concentration: about 0.5 to 10% by weight) added with a component such as the above-mentioned polyphenol iron complex was stirred well to form a gel, which was formed into a block of a desired size. Capsules of the desired size can also be produced by subsequent hardening by dipping in a polyvalent cation solution.
 さらには、上記のようにゲル状にしたアルギン酸水溶液を、シリコン等により作製した所望の形状の型に入れて20分~1時間程度静置した後に、当該型に入れた状態で多価カチオン溶液に浸漬して硬化させることにより、水草や海藻、貝殻、サンゴ、小石などを模した所望の形状の異形カプセルを製造することもできる。 Furthermore, the alginic acid aqueous solution gelled as described above is placed in a mold of a desired shape made of silicon or the like and allowed to stand for about 20 minutes to 1 hour. By immersing it in water and hardening it, it is also possible to produce irregular shaped capsules of a desired shape imitating aquatic plants, seaweed, shells, corals, pebbles, and the like.
 上記のうちいずれの製法により得られたポリフェノール鉄錯体カプセルであっても、第一の実施形態に係るポリフェノール鉄錯体カプセルに含まれる。 The polyphenol iron complex capsules obtained by any of the above manufacturing methods are included in the polyphenol iron complex capsules according to the first embodiment.
 次に、上記したポリフェノール鉄錯体カプセルの使用方法及び効果について説明する。 Next, the usage and effects of the polyphenol iron complex capsules described above will be explained.
 第一の実施形態の前記ポリフェノール鉄錯体カプセルは、多孔質構造を有する前記アルギン酸ゲルが前記ポリフェノール鉄錯体を環境中に徐々に放出するため、フェントン反応触媒、二価鉄イオン供給剤又は光触媒としての作用効果を長期間持続させることができる。 In the polyphenol iron complex capsule of the first embodiment, the alginate gel having a porous structure gradually releases the polyphenol iron complex into the environment. The action effect can be sustained for a long time.
 また、前記アルギン酸ゲルからの前記ポリフェノール鉄錯体の放出速度をコントロールしたり、前記カプセルの崩壊時期をコントロールしたりすることによって、前記作用効果を持続させる期間を制御することもできる。 In addition, it is also possible to control the duration of the effect by controlling the release rate of the polyphenol iron complex from the alginate gel or by controlling the disintegration timing of the capsule.
 さらに、前記ポリフェノール鉄錯体カプセルは、人体や環境に対して安全性が高い物質であるので、医薬、食品、公衆衛生、水産業、農業、工業等の様々な分野に用いることができる。 Furthermore, since the polyphenol iron complex capsule is a highly safe substance for the human body and the environment, it can be used in various fields such as medicine, food, public health, fisheries, agriculture, and industry.
・殺菌
 前記ポリフェノール鉄錯体カプセルは、フェントン反応触媒として、過酸化水素からヒドロキシラジカルを発生させる性質を利用して、液体、固体を問わず様々な対象物の殺菌に用いることができる。ここで、殺菌可能な対象としては、バクテリアだけでなく、真核微生物、藻類、古細菌、ウイルス、ウイロイド等を挙げることができる。
- Sterilization The polyphenol iron complex capsule can be used as a Fenton reaction catalyst to sterilize various objects regardless of whether they are liquid or solid by utilizing the property of generating hydroxyl radicals from hydrogen peroxide. Here, examples of objects that can be sterilized include not only bacteria but also eukaryotic microorganisms, algae, archaea, viruses, viroids, and the like.
 当該殺菌対象として、具体的には、家庭や水族館等の水槽;飲食店、養殖場、輸送用等の生簀;水耕栽培等の養液タンク;プール、池、湖、下水処理場等の水;まな板、包丁、食器等の台所用品;動物、ヒト等の皮膚;飲料水、植物、食材、医療器具、衣服、寝具、農機具、土壌などを挙げることができる。 Specifically, the sterilization target includes water tanks such as homes and aquariums; restaurants, fish farms, fish cages for transportation, etc.; nutrient tanks such as hydroponics; water in pools, ponds, lakes, sewage treatment plants, etc. kitchen utensils such as cutting boards, kitchen knives and tableware; skin of animals, humans, etc.;
 前記ポリフェノール鉄錯体カプセルを用いる殺菌方法としては、前記殺菌対象が固体である場合、前記ポリフェノール鉄錯体カプセルを添加した溶液中に、当該殺菌対象を浸漬することによって、殺菌を行うことができる。当該溶液には、前記効果を妨げない限りにおいて、他の殺菌成分や夾雑物、有用生物等が含まれていてもよい。 As a sterilization method using the polyphenol iron complex capsule, when the sterilization target is solid, sterilization can be performed by immersing the sterilization target in a solution to which the polyphenol iron complex capsule is added. The solution may contain other bactericidal components, contaminants, useful organisms, etc., as long as they do not interfere with the above effects.
 あるいは、水又は含水アルコールに前記ポリフェノール鉄錯体カプセルを添加し、これらを噴霧器等を用いて、殺菌対象である物又は空間に噴霧することによって、殺菌を行うことができる。 Alternatively, sterilization can be performed by adding the polyphenol iron complex capsules to water or hydrous alcohol and spraying them on the object or space to be sterilized using a sprayer or the like.
 また、前記殺菌対象が液体であるか、溶液中に分散された状態である場合には、前記ポリフェノール鉄錯体カプセルを、当該液体又は溶液中に添加することによって、殺菌を行うことができる。 Further, when the object to be sterilized is liquid or dispersed in a solution, sterilization can be performed by adding the polyphenol iron complex capsules to the liquid or solution.
 なお、前記殺菌対象が生物そのものである場合、あるいは、前記液体の殺菌対象又は前記殺菌対象が分散された溶液又は前記固体の殺菌対象を浸漬する溶液が、生物を含むものである場合、前記殺菌対象又は前記溶液中には既に生物由来の過酸化水素が微量発生するため、前記ポリフェノール鉄錯体カプセルのみを用いて殺菌を行うことが可能である。 In addition, if the sterilization target is the organism itself, or if the liquid sterilization target or the solution in which the sterilization target is dispersed or the solution in which the solid sterilization target is immersed contains the organism, the sterilization target or Since a small amount of biogenic hydrogen peroxide is already generated in the solution, it is possible to perform sterilization using only the polyphenol iron complex capsule.
 しかし、ポリフェノール鉄錯体カプセルとともに過酸化水素を添加することによって、より高い殺菌効果が得られる。また、前記過酸化水素として、第二の実施形態に係る過酸化水素カプセルを用いてもよい。 However, by adding hydrogen peroxide together with the polyphenol iron complex capsules, a higher bactericidal effect can be obtained. Moreover, the hydrogen peroxide capsule according to the second embodiment may be used as the hydrogen peroxide.
 前記殺菌方法における前記ポリフェノール鉄錯体カプセルの添加量は特に限定されず、所望の殺菌効果が得られる量とすればよい。具体的には、水又は溶液1Lに対し0.5g以上、好ましくは1~30g、より好ましくは5~10gとすることができる。また、前記過酸化水素の添加量としては、極めて微量でよく、0.1~20mM程度となるような量とすればよい。 The amount of the polyphenol iron complex capsule added in the sterilization method is not particularly limited, and may be an amount that provides the desired sterilization effect. Specifically, it can be 0.5 g or more, preferably 1 to 30 g, and more preferably 5 to 10 g per liter of water or solution. Also, the amount of hydrogen peroxide to be added may be extremely small, and may be an amount of about 0.1 to 20 mM.
 前記ポリフェノール鉄錯体カプセルによる殺菌効果の持続期間は、前記アルギン酸ゲルの徐放性や崩壊性、前記ポリフェノール鉄錯体の含有量等に応じて異なるが、例えば、数日間~数十ヶ月間とすることができる。この間、前記固体の殺菌対象を浸漬する溶液中、又は、前記殺菌対象が分散された溶液中、又は、前記液体の殺菌対象中に、前記ポリフェノール鉄錯体カプセルを放置するだけで殺菌作用が得られるが、エアポンプや撹拌等によって水流を発生させることによって、前記溶液又は前記液体の殺菌対象全体にポリフェノール鉄錯体を行き渡らせることができるので、より高い殺菌効果が得られる。 The duration of the bactericidal effect of the polyphenol iron complex capsules varies depending on the sustained release and disintegration properties of the alginate gel, the content of the polyphenol iron complex, etc., but may be, for example, several days to several tens of months. can be done. During this time, the bactericidal action can be obtained simply by leaving the polyphenol iron complex capsule in the solution in which the solid object to be sterilized is immersed, in the solution in which the object to be sterilized is dispersed, or in the liquid object to be sterilized. However, by generating a water flow using an air pump, agitation, or the like, the polyphenol iron complex can be distributed throughout the solution or liquid to be sterilized, so that a higher sterilization effect can be obtained.
 また、前述の通り、前記ポリフェノール鉄錯体は光触媒活性をも有するため、前記ポリフェノール鉄錯体カプセルに光を照射することによって、より高い殺菌効果が得られる。当該光としては、太陽光や、200~1400nmという幅広い波長域の光、すなわち紫外線、可視光、赤外線から選ばれた1以上の光を用いることができる。 In addition, as described above, since the polyphenol iron complex also has photocatalytic activity, a higher bactericidal effect can be obtained by irradiating the polyphenol iron complex capsule with light. As the light, one or more light selected from sunlight, light in a wide wavelength range of 200 to 1400 nm, ie, ultraviolet light, visible light, and infrared light can be used.
 ここで、「紫外線」とは、380nm以下の波長域の光を指す。「可視光」とは、ヒトの目で見える波長域である波長380~750nmの光を指す。具体的には、「可視光」には、380~450nm(紫色光)、450~495nm(青色光)、495~570nm(緑色光)、570~590nm(黄色光)、590~620nm(橙色光)、620~750nm(赤色光)の波長域の光が含まれる。また、「赤外線」とは、750nm以上の波長域の光を指す。 Here, "ultraviolet rays" refer to light in the wavelength range of 380 nm or less. "Visible light" refers to light with a wavelength of 380 to 750 nm, which is the wavelength range visible to the human eye. Specifically, "visible light" includes 380-450 nm (violet light), 450-495 nm (blue light), 495-570 nm (green light), 570-590 nm (yellow light), 590-620 nm (orange light). ), including light in the wavelength range of 620-750 nm (red light). Also, "infrared" refers to light in a wavelength range of 750 nm or more.
 中でも、前記ポリフェノール鉄錯体カプセルは、前記紫外線を照射した時に極めて強い光触媒活性を示す。特に近紫外線である200~380nmの波長の光を照射することによって、従来の光触媒である酸化チタンよりも遥かに大きな光触媒活性(殺菌作用)を示す。 Among them, the polyphenol iron complex capsule exhibits extremely strong photocatalytic activity when irradiated with the ultraviolet rays. In particular, by irradiating light with a wavelength of 200 to 380 nm, which is near-ultraviolet, it exhibits much higher photocatalytic activity (bactericidal action) than titanium oxide, which is a conventional photocatalyst.
 また、前記ポリフェノール鉄錯体カプセルは、酸化チタンでは活性を示さない波長域である可視光及び赤外線を照射した時にも強い光触媒活性(殺菌作用)を示す。可視光では特に波長の短い紫色光~青色光(380~495nm)の波長域で強い活性を示す。赤外線では近赤外線である750~1400nm(特に900~1300nm付近、さらに特には1100~1300nm付近)の波長域で強い活性を示す。 In addition, the polyphenol iron complex capsules exhibit strong photocatalytic activity (bactericidal action) even when irradiated with visible light and infrared light, which are wavelength regions in which titanium oxide does not exhibit activity. In visible light, it shows strong activity in the wavelength range of violet light to blue light (380-495 nm), which has particularly short wavelengths. In infrared rays, it exhibits strong activity in the near-infrared wavelength range of 750 to 1400 nm (especially around 900 to 1300 nm, more especially around 1100 to 1300 nm).
 前記ポリフェノール鉄錯体カプセルの光触媒活性は極めて強力であるため、例えば表面殺菌の場合、太陽光照射を数分程度、好ましくは10分以上、より好ましくは20分以上行うことによって、十分な殺菌効果が発揮される。また、LEDや蛍光灯等の比較的弱い光を照射する場合であっても、1時間以上、好ましくは6時間以上、より好ましくは12時間以上の処理によって十分な殺菌効果が発揮される。 Since the photocatalytic activity of the polyphenol iron complex capsule is extremely strong, for example, in the case of surface sterilization, sufficient sterilization effect can be obtained by irradiating sunlight for several minutes, preferably 10 minutes or more, more preferably 20 minutes or more. demonstrated. Even when relatively weak light such as LED or fluorescent lamp is applied, a sufficient sterilization effect can be obtained by treatment for 1 hour or longer, preferably 6 hours or longer, and more preferably 12 hours or longer.
・有機物質の分解
 また、前記ポリフェノール鉄錯体カプセルは、そのフェントン反応触媒活性により、様々な有機物質の分解に用いることができる。特に、有機系の汚染物質や有害物質の分解に好適に用いることができるため、環境浄化の一工程において有用である。
•Decomposition of Organic Substances The polyphenol iron complex capsule can be used to decompose various organic substances due to its Fenton reaction catalytic activity. In particular, since it can be suitably used for decomposing organic pollutants and harmful substances, it is useful in one step of environmental purification.
 ここで、汚染物質や有害物質としては、水質汚染、土壌汚濁、大気汚染を引き起こす物質をいう。例えば、生活排水、し尿水、工場排水、汚染された河川や湖沼水、ゴミ廃棄場の土壌、産業廃棄物、農地、工場跡地などに含まれる人体や環境に有害な有機系物質を挙げることができる。 Here, pollutants and harmful substances refer to substances that cause water pollution, soil pollution, and air pollution. Examples of organic substances that are harmful to the human body and the environment include domestic wastewater, night soil water, industrial wastewater, polluted river and lake water, landfill soil, industrial waste, agricultural land, and factory sites. can.
 分解対象となる具体的な有機物質としては、例えば、洗剤、飲食品残渣、し尿、糞便、農薬、悪臭物質、廃油、ダイオキシン、PCB、DNA、RNA、タンパク質など有機性廃棄物などを挙げることができる。 Examples of specific organic substances to be decomposed include organic waste such as detergents, food and drink residues, night soil, feces, pesticides, malodorous substances, waste oils, dioxins, PCBs, DNA, RNA, and proteins. can.
 前記ポリフェノール鉄錯体カプセルを用いたこれら有機物質の具体的な分解方法につい
ては、前述の殺菌方法と同様である。
The specific method for decomposing these organic substances using the polyphenol iron complex capsule is the same as the sterilization method described above.
 すなわち、前記分解対象が固体である場合、前記ポリフェノール鉄錯体カプセルを添加した溶液中に、当該分解対象を浸漬することによって、分解を行うことができる。 That is, when the decomposition target is solid, decomposition can be performed by immersing the decomposition target in a solution to which the polyphenol iron complex capsule is added.
 あるいは、水又は含水アルコールに前記ポリフェノール鉄錯体カプセルを添加し、これらを噴霧器等を用いて、分解対象物に噴霧することによって、分解を行うことができる。 Alternatively, decomposition can be performed by adding the polyphenol iron complex capsules to water or hydrous alcohol and spraying them onto the decomposition target using a sprayer or the like.
 また、前記分解対象が液体であるか、溶液中に分散された状態である場合には、前記ポリフェノール鉄錯体カプセルを、当該液体又は溶液中に添加することによって、分解を行うことができる。 Further, when the decomposition target is liquid or dispersed in a solution, decomposition can be performed by adding the polyphenol iron complex capsule to the liquid or solution.
 なお、前記液体の分解対象又は前記分解対象が分散された溶液又は前記固体の分解対象を浸漬する溶液中に、既に生物由来の過酸化水素が含まれる場合は、前記ポリフェノール鉄錯体カプセルのみを用いて分解を行うことが可能である。 When the liquid decomposition target, the solution in which the decomposition target is dispersed, or the solution in which the solid decomposition target is immersed already contains biologically derived hydrogen peroxide, only the polyphenol iron complex capsule is used. It is possible to perform decomposition by
 しかし、ポリフェノール鉄錯体カプセルとともに過酸化水素を添加することによって、より高い殺菌効果が得られる。また、前記過酸化水素として、第二の実施形態に係る過酸化水素カプセルを用いてもよい。 However, by adding hydrogen peroxide together with the polyphenol iron complex capsules, a higher bactericidal effect can be obtained. Moreover, the hydrogen peroxide capsule according to the second embodiment may be used as the hydrogen peroxide.
 前記分解方法における前記ポリフェノール鉄錯体カプセルの添加量は特に限定されず、所望の分解効果が得られる量とすればよい。具体的には、前記殺菌の場合と同様の添加量とすることができる。また、前記過酸化水素の添加量としては、極めて微量でよく、0.1~20mM程度となるような量とすればよい。 The amount of the polyphenol iron complex capsule added in the decomposition method is not particularly limited, and may be an amount that provides the desired decomposition effect. Specifically, the addition amount can be the same as in the case of the sterilization. Also, the amount of hydrogen peroxide to be added may be extremely small, and may be an amount of about 0.1 to 20 mM.
 前記ポリフェノール鉄錯体カプセルによる有機物質の分解効果の持続期間は、例えば、数日間~数十ヶ月間とすることができる。また、前記固体の分解対象を浸漬する溶液又は前記分解対象が分散された溶液又は前記液体の分解対象において、エアポンプや撹拌等によって水流を発生させることによって、より高い分解効果が得られる。 The duration of the organic substance decomposition effect of the polyphenol iron complex capsule can be, for example, several days to several tens of months. Further, a higher decomposition effect can be obtained by generating a water flow using an air pump, stirring, or the like in the solution in which the solid decomposition target is immersed, the solution in which the decomposition target is dispersed, or the liquid decomposition target.
 また、前記殺菌方法と同様に、前記ポリフェノール鉄錯体カプセルに光を照射することによって、より短時間での有機物質の分解が可能となる。当該光としては、太陽光や、200~1400nmという幅広い波長域の光、すなわち紫外線、可視光、赤外線から選ばれた1以上の光を用いることができる。照射時間については、前記した殺菌方法と同様とすることができる。 In addition, similarly to the sterilization method, by irradiating the polyphenol iron complex capsules with light, it is possible to decompose organic substances in a shorter time. As the light, one or more light selected from sunlight, light in a wide wavelength range of 200 to 1400 nm, ie, ultraviolet light, visible light, and infrared light can be used. The irradiation time can be the same as in the sterilization method described above.
・鉄供給
 前記ポリフェノール鉄錯体カプセルは、水溶性の二価鉄イオンを長期間安定して徐放できる性質を有している。また、この水溶性鉄供給能は、アルカリ条件下においても安定して発揮される。したがって、前記ポリフェノール鉄錯体カプセルは、鉄供給剤として好適に用いることができる。
- Supply of iron The polyphenol iron complex capsule has the property of being able to stably and sustainably release water-soluble ferric ions for a long period of time. Moreover, this ability to supply water-soluble iron is stably exhibited even under alkaline conditions. Therefore, the polyphenol iron complex capsule can be suitably used as an iron supply agent.
 ここで、鉄供給の対象としては特に限定されず、植物、動物、微生物など生物全般に適用することができる。 Here, the target of iron supply is not particularly limited, and can be applied to all organisms such as plants, animals, and microorganisms.
 植物を対象とする鉄供給用途に用いる場合、前記ポリフェノール鉄錯体カプセルは、農業、園芸における通常のいかなる植物栽培にも用いることができる。特には、鉄欠乏の起こりやすいアルカリ土壌での栽培や、水耕栽培(養液栽培)における利用が有効である。 When used to supply iron to plants, the polyphenol iron complex capsules can be used for any normal plant cultivation in agriculture and horticulture. In particular, it is effective for cultivation in alkaline soil where iron deficiency is likely to occur, and for use in hydroponics (hydroponics).
 ここで、アルカリ土壌としては、pH7~10程度のアルカリ性の土壌を指す。前記ポリフェノール鉄錯体カプセルは、pH9以上の強いアルカリ性土壌においても鉄供給能を発揮できるが、このような強いアルカリ性条件下では、EDTAやクエン酸などの一般的なキレート剤を用いた鉄供給剤は全く使用できない。 Here, alkaline soil refers to alkaline soil with a pH of about 7-10. The polyphenol iron complex capsules can exhibit iron supplying ability even in strongly alkaline soil with a pH of 9 or higher. Not usable at all.
 前記ポリフェノール鉄錯体カプセルからなる、植物栽培用鉄供給剤の使用方法としては、植物を対象とする場合、前記ポリフェノール鉄錯体カプセルを、栽培土壌中に混合する;栽培土壌に散布する;貯水機能付きポットの貯水スペースに水とともに添加して、二価鉄イオンを含む水が栽培土壌に給水されるようにする;水耕栽培の養液に添加する;などの方法によって、植物に二価鉄イオンを供給することができる。 As a method for using the iron supply agent for plant cultivation, which consists of the polyphenol iron complex capsules, when the target is a plant, the polyphenol iron complex capsules are mixed in the cultivation soil; sprayed on the cultivation soil; Add ferric ions to the water storage space of the pot together with water so that the water containing ferric ions is supplied to the cultivation soil; add to the nutrient solution for hydroponics; can be supplied.
 前記鉄供給方法における前記ポリフェノール鉄錯体カプセルの添加量は特に限定されず、所望の効果が得られる量とすればよい。具体的には、水に添加して用いる場合は、水1Lに対し0.5g以上、好ましくは1~70g、とすることができる。また、土壌に添加して用いる場合は、土壌に対して0.1~10重量%とすることができる。 The amount of the polyphenol iron complex capsules added in the iron supply method is not particularly limited, and may be an amount that provides the desired effect. Specifically, when it is used by adding to water, it can be 0.5 g or more, preferably 1 to 70 g, per 1 L of water. Moreover, when it is used by adding to the soil, it can be 0.1 to 10% by weight based on the soil.
 前記ポリフェノール鉄錯体カプセルによる鉄供給効果の持続期間は、前記アルギン酸ゲルの徐放性や崩壊性、前記ポリフェノール鉄錯体の含有量等に応じて異なるが、例えば、数日間~数十ヶ月間とすることができる。 The duration of the iron supply effect of the polyphenol iron complex capsules varies depending on the sustained release and disintegration properties of the alginate gel, the content of the polyphenol iron complex, and the like, but is, for example, several days to several tens of months. be able to.
[過酸化水素カプセル]
 以下、第二の実施形態の過酸化水素カプセルについて詳しく説明する。
[Hydrogen peroxide capsule]
The hydrogen peroxide capsule of the second embodiment will be described in detail below.
 第二の実施形態に係る過酸化水素カプセルは、過酸化水素がアルギン酸ゲルに封入されてなるものである。すなわち、当該カプセルは、過酸化水素を含有する、アルギン酸ゲルからなるカプセルである。 A hydrogen peroxide capsule according to the second embodiment is formed by encapsulating hydrogen peroxide in an alginic acid gel. That is, the capsule is a capsule made of alginic acid gel containing hydrogen peroxide.
 前記過酸化水素カプセルは、過酸化水素を含む内層が前記アルギン酸ゲルの外層で覆われているコアシェル型のカプセル、又は、前記アルギン酸ゲルの粒子内部に過酸化水素が分散されているマトリックス型のカプセル、のいずれであってもよい。 The hydrogen peroxide capsule is a core-shell type capsule in which an inner layer containing hydrogen peroxide is covered with an outer layer of the alginate gel, or a matrix type capsule in which hydrogen peroxide is dispersed inside the alginate gel particles. , may be either.
 また、前記過酸化水素カプセルの形状は、球形であっても非球形であってもよい。また、前記内層を1つのみ有する単核構造でもよいし、内層を2つ以上有する多核構造であってもよい。上記のいずれの形態であっても、過酸化水素を安定化し、徐放化できるという効果は変わらない。 Also, the shape of the hydrogen peroxide capsule may be spherical or non-spherical. Moreover, it may be a mononuclear structure having only one inner layer, or a multinuclear structure having two or more inner layers. In any of the above forms, the effect of stabilizing hydrogen peroxide and enabling sustained release remains the same.
 前記アルギン酸のM/G比は、前記過酸化水素カプセルの用途や使用環境に応じて、当該カプセルが所望の物性となるように適宜設定すればよい。具体的には、前記アルギン酸のM/G比は通常0.05~5.0程度とすることができる。 The M/G ratio of alginic acid may be appropriately set according to the application and use environment of the hydrogen peroxide capsule so that the capsule has desired physical properties. Specifically, the M/G ratio of alginic acid can usually be about 0.05 to 5.0.
 前記過酸化水素カプセルの大きさは、用途や使用環境などに応じて適宜設定すればよく、例えば球形のカプセルであれば直径1nm~1mの範囲とすることができる。例えば魚介類の水槽で使用する場合、対象とする魚介類による誤飲を防止できるように考慮して大きさを設定すればよい。具体的には、家庭の水槽で飼育される小型の観賞魚を対象とする場合は、球形のカプセルであれば当該カプセルの直径は2~10mm程度とすることができる。また、中型の魚を対象とする場合は直径10~100mm程度、大型の魚を対象とする場合は10~100cm程度とすることができる。 The size of the hydrogen peroxide capsule may be appropriately set according to the application, usage environment, etc. For example, a spherical capsule may have a diameter ranging from 1 nm to 1 m. For example, when it is used in a fish tank, the size may be set so as to prevent accidental ingestion by the target fish. Specifically, in the case of small aquarium fish raised in home aquariums, spherical capsules can have a diameter of about 2 to 10 mm. Also, when targeting medium-sized fish, the diameter can be about 10 to 100 mm, and when targeting large fish, the diameter can be about 10 to 100 cm.
 また、前記過酸化水素カプセルは、例えば魚介類の水槽内の景観を壊さないように、水草や海藻、貝殻、サンゴ、小石などを模した形状のカプセルとしてもよい。その場合、実際の水草や海藻、貝殻、サンゴ、小石などの大きさに応じて、カプセルの大きさも適宜設定すればよい。 In addition, the hydrogen peroxide capsule may have a shape that imitates aquatic plants, seaweed, seashells, coral, pebbles, etc., so as not to spoil the scenery in a fish tank. In that case, the size of the capsule may be appropriately set according to the size of actual aquatic plants, seaweed, shells, corals, pebbles, and the like.
 前記過酸化水素カプセルにおける前記アルギン酸ゲルの含有量は、通常0.001~99重量%であり、好ましくは0.1~10重量%である。 The content of the alginic acid gel in the hydrogen peroxide capsule is usually 0.001 to 99% by weight, preferably 0.1 to 10% by weight.
 前記過酸化水素カプセルにおける前記過酸化水素の含有量は、特に限定されない。例えば、0.0001~35重量%、好ましくは0.001~6.0重量%とすることができる。 The content of the hydrogen peroxide in the hydrogen peroxide capsule is not particularly limited. For example, it can be 0.0001 to 35% by weight, preferably 0.001 to 6.0% by weight.
 前記過酸化水素カプセルは、上記効果を妨げない限りにおいて、前記過酸化水素以外の他の成分を含有していてもよい。 The hydrogen peroxide capsule may contain ingredients other than the hydrogen peroxide as long as the above effects are not hindered.
 上記した過酸化水素カプセルは、例えば下記のようにして製造することができる。 The hydrogen peroxide capsule described above can be produced, for example, as follows.
(1)まず、過酸化水素と、アルギン酸塩と、を含有するアルギン酸水溶液(液1)を調製する(図3参照)。 (1) First, an alginic acid aqueous solution (liquid 1) containing hydrogen peroxide and alginate is prepared (see FIG. 3).
 ここで、「アルギン酸塩」としては、アルギン酸の可溶性塩であればよく、具体的には、アルギン酸ナトリウム、アルギン酸カリウム、アルギン酸アンモニウムなどを挙げることができる。 Here, the "alginate" may be any soluble salt of alginic acid, and specific examples include sodium alginate, potassium alginate, and ammonium alginate.
 アルギン酸のM/G比は、過酸化水素カプセルの用途や使用環境に応じて、当該カプセルが所望の物性となるように適宜設定すればよい。具体的には、上記アルギン酸のM/G比は通常0.05~5.0程度とすることができる。 The M/G ratio of alginic acid may be appropriately set according to the application and usage environment of the hydrogen peroxide capsule so that the capsule has desired physical properties. Specifically, the M/G ratio of alginic acid can usually be about 0.05 to 5.0.
 前記アルギン酸水溶液における前記アルギン酸塩の含有量は、通常0.001~99重量%であり、好ましくは0.1~10重量%である。 The content of the alginate in the alginic acid aqueous solution is usually 0.001 to 99% by weight, preferably 0.1 to 10% by weight.
 前記アルギン酸水溶液における前記過酸化水素の含有量は、特に限定されない。例えば、0.0001~35重量%、好ましくは0.001~6.0重量%とすることができる。 The content of the hydrogen peroxide in the aqueous alginic acid solution is not particularly limited. For example, it can be 0.0001 to 35% by weight, preferably 0.001 to 6.0% by weight.
 前記アルギン酸水溶液には、上記効果を妨げない限りにおいて、過酸化水素以外の他の成分を含有していてもよい。 The alginic acid aqueous solution may contain components other than hydrogen peroxide as long as the above effects are not hindered.
(2)次に、図3に示されるように、多価カチオンを溶解させた溶液(液2)中に、上記(1)で調製したアルギン酸水溶液(液1)を滴下することにより、アルギン酸をゲル化させ、前記過酸化水素カプセル(図4参照)を製造する。滴下方法としては、従来公知の方法により行えばよい。 (2) Next, as shown in FIG. 3, the aqueous solution of alginic acid (liquid 1) prepared in (1) above is added dropwise into the solution (liquid 2) in which polyvalent cations are dissolved, thereby dissolving alginic acid. It is allowed to gel to produce the hydrogen peroxide capsules (see FIG. 4). As a dropping method, a conventionally known method may be used.
 「多価カチオン」としては、例えば、カルシウム塩などを挙げることができる。より具体的には、塩化カルシウム、乳酸カルシウムなどであり、特にはゲル化が速く進むことから塩化カルシウムが好ましい。前記多価カチオン溶液の濃度は特に限定されないが、通常0.01~60重量%とすることができる。 "Polyvalent cations" include, for example, calcium salts. More specifically, calcium chloride, calcium lactate, and the like are preferred, and calcium chloride is particularly preferred because it accelerates gelation. Although the concentration of the polyvalent cation solution is not particularly limited, it can usually be 0.01 to 60% by weight.
 上記の方法により、アルギン酸ゲル粒子の内部に、過酸化水素が分散されてなる、マトリックス型の球形カプセルが得られる。 By the above method, matrix-type spherical capsules are obtained in which hydrogen peroxide is dispersed inside the alginate gel particles.
 あるいは、同心二重ノズルの内筒から過酸化水素水を、外筒からアルギン酸塩水溶液を、それぞれ多価カチオン溶液中に滴下することにより、アルギン酸ゲル被膜の内側に過酸化水素が封入されてなる、コアシェル型の球形カプセルを製造することもできる。 Alternatively, the hydrogen peroxide solution is dropped from the inner cylinder of the concentric double nozzle and the alginate aqueous solution from the outer cylinder into the polyvalent cation solution, respectively, so that hydrogen peroxide is enclosed inside the alginate gel film. , core-shell type spherical capsules can also be produced.
 また、上記した過酸化水素を添加したアルギン酸水溶液(アルギン酸塩濃度:0.5~10重量%程度)をよく撹拌することでゲル状とし、これを所望のサイズの塊状に成形した後に、多価カチオン溶液に浸漬して硬化させることにより、所望のサイズのカプセルを製造することもできる。 In addition, the above-described alginic acid aqueous solution (alginate concentration: about 0.5 to 10% by weight) to which hydrogen peroxide has been added is stirred well to form a gel, and after forming it into a mass of a desired size, a polyvalent Capsules of a desired size can also be produced by immersion in a cationic solution and curing.
 さらには、上記のようにゲル状にしたアルギン酸水溶液を、シリコン等により作製した所望の形状の型に入れて20分~1時間程度静置した後に、当該型に入れた状態で多価カチオン溶液に浸漬して硬化させることにより、水草や海藻、貝殻、サンゴ、小石などを模した所望の形状の異形カプセルを製造することもできる。 Furthermore, the alginic acid aqueous solution gelled as described above is placed in a mold of a desired shape made of silicon or the like and allowed to stand for about 20 minutes to 1 hour. By immersing it in water and hardening it, it is also possible to produce irregular shaped capsules in a desired shape imitating aquatic plants, seaweed, shells, corals, pebbles, and the like.
 上記のうちいずれの製法により得られた過酸化水素カプセルであっても、第二の実施形態に係る過酸化水素カプセルに含まれる。 The hydrogen peroxide capsules obtained by any of the above manufacturing methods are included in the hydrogen peroxide capsules according to the second embodiment.
 次に、上記した過酸化水素カプセルの使用方法及び効果について説明する。 Next, we will explain how to use the above hydrogen peroxide capsules and their effects.
 第二の実施形態の前記過酸化水素カプセルは、多孔質構造を有する前記アルギン酸ゲルが前記過酸化水素を環境中に徐々に放出する。したがって、第一の実施形態の前記ポリフェノール鉄錯体カプセルと併用した場合には、フェントン反応を高い反応効率で長期間持続させることができる。 In the hydrogen peroxide capsule of the second embodiment, the alginic acid gel having a porous structure gradually releases the hydrogen peroxide into the environment. Therefore, when used in combination with the polyphenol iron complex capsules of the first embodiment, the Fenton reaction can be maintained with high reaction efficiency for a long period of time.
 また、過酸化水素は単独でも殺菌作用及び有機物分解作用を示すことから、前記過酸化水素カプセルは単独でも殺菌剤、浄化剤、消臭剤、有機物分解剤などとして用いることができる。 In addition, since hydrogen peroxide alone exhibits a bactericidal action and an organic matter decomposing action, the hydrogen peroxide capsules can be used alone as a bactericidal agent, a purifying agent, a deodorant, an organic matter decomposing agent, and the like.
 前記過酸化水素カプセルにより殺菌可能な対象としては、バクテリアだけでなく、真核微生物、藻類、古細菌、ウイルス、ウイロイド等を挙げることができる。また、殺菌対象として、具体的には、家庭や水族館等の水槽;飲食店、養殖場、輸送用等の生簀;水耕栽培等の養液タンク;プール、池、湖、下水処理場等の水;まな板、包丁、食器等の台所用品;動物、ヒト等の皮膚;飲料水、植物、食材、医療器具、衣服、寝具、農機具、土壌などを挙げることができる。 Targets that can be sterilized by the hydrogen peroxide capsule include not only bacteria but also eukaryotic microorganisms, algae, archaea, viruses, viroids, and the like. In addition, as sterilization targets, specifically, water tanks such as homes and aquariums; restaurants, fish farms, fish cages for transportation, etc.; nutrient tanks such as hydroponics; pools, ponds, lakes, sewage treatment plants water; kitchen utensils such as cutting boards, kitchen knives, and tableware; skins of animals, humans, etc.;
 前記過酸化水素カプセルによる分解対象となる具体的な有機物質としては、例えば、洗剤、飲食品残渣、し尿、糞便、農薬、悪臭物質、廃油、ダイオキシン、PCB、DNA、RNA、タンパク質など有機性廃棄物などを挙げることができる。 Examples of specific organic substances to be decomposed by the hydrogen peroxide capsule include organic waste such as detergents, food and drink residues, night soil, feces, agricultural chemicals, malodorous substances, waste oil, dioxins, PCBs, DNA, RNA, and proteins. things can be mentioned.
 前記過酸化水素カプセルの使用方法としては、第一の実施形態の前記ポリフェノール鉄錯体カプセルと同様とすることができる。具体的には、前記過酸化水素カプセルを添加した溶液中に、固体である対象物を浸漬する方法;水又は含水アルコールに前記過酸化水素カプセルを添加し、これらを対象である物又は空間に噴霧する方法;液体である対象物又は対象物が分散された溶液中に、前記過酸化水素カプセルを添加する方法;などが挙げられる。 The method of using the hydrogen peroxide capsule can be the same as that of the polyphenol iron complex capsule of the first embodiment. Specifically, a method of immersing a solid object in a solution to which the hydrogen peroxide capsule is added; A method of spraying; a method of adding the hydrogen peroxide capsule to a liquid object or a solution in which the object is dispersed; and the like.
 また、前記アルギン酸ゲルからの前記過酸化水素の放出速度をコントロールしたり、前記カプセルの崩壊時期をコントロールしたりすることによって、前記作用効果を持続させる期間を制御することもできる。前記過酸化水素カプセルによる前記効果の持続期間は、例えば、数日間~数十ヶ月間とすることができる。 In addition, it is also possible to control the duration of the effect by controlling the rate of release of the hydrogen peroxide from the alginate gel or by controlling the disintegration timing of the capsule. The duration of the effect of the hydrogen peroxide capsule can be, for example, several days to several tens of months.
 さらに、前記過酸化水素カプセルは、天然由来成分を原料としており、医薬、食品、公衆衛生、水産業、農業、工業等の様々な分野に用いることができる。 Furthermore, the hydrogen peroxide capsules are made from naturally-derived ingredients, and can be used in various fields such as medicine, food, public health, fisheries, agriculture, and industry.
[フェントン反応キット]
 以下、第三の実施形態のフェントン反応キットについて詳しく説明する。第三の実施形態に係るフェントン反応キットは、第一の実施形態のポリフェノール鉄錯体カプセルと、第二の実施形態の過酸化水素カプセルとを含有する。
[Fenton reaction kit]
The Fenton reaction kit of the third embodiment will be described in detail below. A Fenton reaction kit according to the third embodiment contains the polyphenol iron complex capsule of the first embodiment and the hydrogen peroxide capsule of the second embodiment.
 このキットに含まれる前記ポリフェノール鉄錯体カプセルと前記過酸化水素カプセルとを、溶液中に有効量添加するだけで、ポリフェノール鉄錯体と過酸化水素とを当該溶液中に徐放させ、過酸化水素からヒドロキシラジカルを発生させるフェントン反応を、高い反応効率で持続的に行わせることができる。 Only by adding effective amounts of the polyphenol iron complex capsules and the hydrogen peroxide capsules contained in this kit to a solution, the polyphenol iron complex and hydrogen peroxide are gradually released into the solution, and the hydrogen peroxide is released. The Fenton reaction that generates hydroxyl radicals can be sustained with high reaction efficiency.
 ヒドロキシラジカルは極めて強力な殺菌作用、有機物分解作用を示すことから、前記キットは殺菌剤、水質浄化剤、消臭剤、有機物分解剤などとして有効に用いられる。前記キットの使用方法は、第一の実施形態について記載した通りである。 Since hydroxy radicals exhibit extremely strong bactericidal action and organic substance decomposing action, the kit can be effectively used as a bactericidal agent, water purification agent, deodorant, organic matter decomposing agent, and the like. The method of using the kit is as described for the first embodiment.
 前記キットは、上記効果を妨げない限りにおいて、前記ポリフェノール鉄錯体カプセル及び前記過酸化水素カプセル以外の他の成分を含有していてもよい。また、前記キットは後述する第四の実施形態に記載される可視光応答型多孔質光触媒体を含んでいてもよい。 The kit may contain components other than the polyphenol iron complex capsules and the hydrogen peroxide capsules as long as they do not interfere with the above effects. The kit may also contain a visible light-responsive porous photocatalyst described in a fourth embodiment described later.
[魚介類の飼育又は病気治療方法]
 以下、第四の実施形態の魚介類の飼育又は病気治療方法について詳しく説明する。
[Method for Raising Seafood or Treating Disease]
Hereinafter, the method for raising fish and shellfish or treating diseases according to the fourth embodiment will be described in detail.
 第四の実施形態に係る魚介類の飼育又は病気治療方法は、第一の実施形態のポリフェノール鉄錯体カプセルを用いることを特徴とする。 A method for raising fish or treating diseases according to the fourth embodiment is characterized by using the polyphenol iron complex capsule of the first embodiment.
 前記ポリフェノール鉄錯体カプセルは、上記した殺菌作用、水質浄化(有機物質分解)作用及び二価鉄イオン供給作用を利用して、魚介類の飼育又は病気の治療のために用いることができる。 The polyphenol iron complex capsule can be used for breeding fish and shellfish or for treating diseases by utilizing the above-described bactericidal action, water purification (organic substance decomposition) action, and divalent iron ion supply action.
 すなわち、魚介類の飼育環境中に前記ポリフェノール鉄錯体カプセルを投入することによって、魚介類に障害を与えることなく、魚介類に鉄を供給し、水中に存在する病原微生物を死滅させ、有機系の汚染物質を分解するといった効果が持続的に発揮される。 That is, by introducing the polyphenol iron complex capsule into the breeding environment of fish and shellfish, iron is supplied to the fish and shellfish, pathogenic microorganisms present in the water are killed, and the organic system is improved. The effect of decomposing pollutants is continuously exhibited.
 これにより、病原微生物に感染した個体の治療が可能となるとともに、他の健康な個体が感染するのを予防することができるうえに、ヒドロキシラジカルは短時間で分解するため、個体中に残留することもない。また、同時に水質浄化も可能となるため、水換えや清掃の手間も大幅に削減することができる。 This makes it possible to treat individuals infected with pathogenic microorganisms and prevent other healthy individuals from being infected. Moreover, hydroxyl radicals decompose in a short time and remain in individuals. Not at all. At the same time, it is possible to purify the water quality, so it is possible to greatly reduce the time and effort required for water changes and cleaning.
 ここで、飼育及び病気治療の対象となる「魚介類」は特に限定されない。具体的には、淡水生物、海水生物の別を問わず、魚類、貝類、甲殻類、軟体動物などの全ての水産物を挙げることができる。 Here, the "fish and shellfish" that are the target of breeding and disease treatment are not particularly limited. Specifically, all aquatic products such as fish, shellfish, crustaceans, and mollusks can be mentioned, regardless of whether they are freshwater organisms or seawater organisms.
 治療の対象となる「病気」としては、鉄欠乏に起因する病気、又は微生物もしくはウイルスの感染に起因する病気、であれば特に限定されない。ヒドロキシラジカルは、あらゆる種類の微生物やウイルスに対して強力な殺菌作用、分解作用を示すためである。 The "disease" to be treated is not particularly limited as long as it is a disease caused by iron deficiency or a disease caused by microbial or viral infection. This is because hydroxyl radicals exhibit strong bactericidal and decomposing actions against all kinds of microorganisms and viruses.
 前記ポリフェノール鉄錯体カプセルを用いる魚介類の飼育又は病気治療方法としては、有効量の前記ポリフェノール鉄錯体カプセルを前記魚介類の水槽中に添加することによって、飼育又は病気治療を行うことができる。当該水槽の水には、生物由来の過酸化水素が既に含まれていると考えられるため、前記ポリフェノール鉄錯体カプセルのみの添加により、前述の効果が奏される。 As a method for breeding or treating diseases of fish and shellfish using the polyphenol iron complex capsules, it is possible to breed or treat diseases by adding an effective amount of the polyphenol iron complex capsules to an aquarium of the fish and shellfish. Since the water in the aquarium is considered to already contain biogenic hydrogen peroxide, the addition of only the polyphenol iron complex capsules produces the above effects.
 また、前記ポリフェノール鉄錯体カプセルと共に、過酸化水素を添加した場合には、より強力な殺菌及び水質浄化効果が奏される。そのため、魚介類の病気の治療を目的とする場合は、前記ポリフェノール鉄錯体カプセルだけでなく、過酸化水素を併用することが好ましい。 In addition, when hydrogen peroxide is added together with the polyphenol iron complex capsules, stronger sterilization and water purification effects are exhibited. Therefore, for the purpose of treating diseases of fish and shellfish, it is preferable to use not only the polyphenol iron complex capsules but also hydrogen peroxide.
 前記ポリフェノール鉄錯体カプセルの添加量としては、水槽中の水1L当たり、0.01g以上、好ましくは0.5~50g、より好ましくは1~20g、特に好ましくは5~10gとすることができる。また、前記過酸化水素の添加量としては、極めて微量でよく、水中での過酸化水素濃度が0.1~20mM程度となるような量とすればよい。 The amount of the polyphenol iron complex capsule added can be 0.01 g or more, preferably 0.5 to 50 g, more preferably 1 to 20 g, and particularly preferably 5 to 10 g per 1 L of water in the water tank. The amount of hydrogen peroxide to be added may be extremely small, and may be such that the concentration of hydrogen peroxide in water is about 0.1 to 20 mM.
 なお、前記過酸化水素として、第二の実施形態に係る過酸化水素カプセルを用いることが好ましい。当該過酸化水素カプセルは、過酸化水素の安定化と徐放化が可能であるため、前記ポリフェノール鉄錯体カプセルと併用することにより、安定したフェントン反応効率が得られるためである。 It is preferable to use the hydrogen peroxide capsules according to the second embodiment as the hydrogen peroxide. This is because the hydrogen peroxide capsules are capable of stabilizing and sustaining release of hydrogen peroxide, and therefore stable Fenton reaction efficiency can be obtained by using them together with the polyphenol iron complex capsules.
 前記ポリフェノール鉄錯体カプセル及び前記過酸化水素カプセルの交換時期は、前記アルギン酸ゲルの徐放性や崩壊性、前記ポリフェノール鉄錯体及び過酸化水素の含有量等に応じて異なるが、例えば、数日~数十ヶ月後とすることができる。なお、前記アルギン酸ゲルは、食品由来原料により構成されているため、有効期間が過ぎた後も水中に残存していても問題はない。 The replacement timing of the polyphenol iron complex capsules and the hydrogen peroxide capsules varies depending on the sustained release and disintegration properties of the alginic acid gel, the content of the polyphenol iron complex and hydrogen peroxide, etc., but for example, from several days to Dozens of months later. Since the alginic acid gel is composed of food-derived raw materials, there is no problem even if it remains in water even after the expiration date.
 前記魚介類の飼育又は病気治療方法においては、前記魚介類の水槽中に、前記ポリフェノール鉄錯体カプセルを放置するだけで前述の効果が奏されるが、水槽中でエアポンプや撹拌等によって水流を発生させることによって、前記魚介類の飼育環境全体にポリフェノール鉄錯体を行き渡らせることができるので、より高い効果が得られる。 In the method for breeding or treating diseases of fish and shellfish, the above-mentioned effects can be obtained simply by leaving the polyphenol iron complex capsules in the fish and shellfish tank. By allowing the polyphenol iron complex to spread throughout the breeding environment of the fish and shellfishes, a higher effect can be obtained.
 また、前記ポリフェノール鉄錯体カプセルに光を照射することによって、光触媒活性も発揮されるため、より強力な殺菌及び水質浄化作用が示される。当該光としては、太陽光や、200~1400nmという幅広い波長域の光、すなわち紫外線、可視光、赤外線から選ばれた1以上の光を用いることができる。 In addition, by irradiating the polyphenol iron complex capsules with light, photocatalytic activity is also exhibited, so stronger sterilization and water purification effects are exhibited. As the light, one or more light selected from sunlight, light in a wide wavelength range of 200 to 1400 nm, ie, ultraviolet light, visible light, and infrared light can be used.
 好ましくは、紫外線、特には近紫外線である200~380nmの波長の光を照射することにより、極めて強い光触媒活性を示す。また、可視光、特には波長の短い紫色光~青色光(380~495nm)の波長域の光を照射することにより、強い光触媒活性を示す。また、赤外線、好ましくは近赤外線である750~1400nm(特に900~1300nm付近、さらに特には1100~1300nm付近)の波長域の光を照射した時に強い活性を示す。 Preferably, it exhibits extremely strong photocatalytic activity by irradiating it with ultraviolet light, particularly light with a wavelength of 200 to 380 nm, which is near ultraviolet light. In addition, it exhibits strong photocatalytic activity when irradiated with visible light, particularly short wavelength light in the wavelength range of violet to blue light (380 to 495 nm). In addition, it exhibits strong activity when irradiated with light in the wavelength range of 750 to 1400 nm (especially near 900 to 1300 nm, more particularly near 1100 to 1300 nm), which is infrared light, preferably near infrared light.
 前記光照射時間としては、例えば太陽光照射を1日当たり3時間以上、好ましくは6時間以上行うことによって、十分な効果が発揮される。また、LEDや蛍光灯等の比較的弱い光を照射する場合であっても、例えば1日当たり12時間以上、好ましくは20時間以上の処理によって十分な効果が発揮される。 As for the light irradiation time, a sufficient effect can be exhibited by, for example, irradiating with sunlight for 3 hours or more, preferably 6 hours or more per day. Even when relatively weak light such as an LED or fluorescent lamp is irradiated, a sufficient effect can be exhibited by treatment for 12 hours or more, preferably 20 hours or more per day.
 第四の実施形態では、酸素及び過酸化水素を供給すると同時に、可視光応答型光触媒活性に基づく殺菌及び水質浄化作用を奏する資材として、可視光応答型多孔質光触媒体を併用することができる。 In the fourth embodiment, a visible-light-responsive porous photocatalyst can be used in combination as a material that supplies oxygen and hydrogen peroxide and at the same time produces sterilization and water purification effects based on visible-light-responsive photocatalytic activity.
 「可視光応答型多孔質光触媒体」(以下、「多孔質光触媒体」と省略することがある。)とは、アルカリ土類金属の過酸化物がセメントにて固結されてなる多孔質体であって、可視光応答型光触媒活性を示すものである。 "Visible light responsive porous photocatalyst" (hereinafter sometimes abbreviated as "porous photocatalyst") refers to a porous body formed by solidifying alkaline earth metal peroxide with cement and exhibits visible-light-responsive photocatalytic activity.
 この多孔質光触媒体の形状に特に制限はないが、例えば厚さは0.1~10cmの範囲とすることにより、内部まで光が届きやすくなるので好ましい。また、特に魚介類の水槽等で使用する場合は、景観を壊さないように、貝殻、サンゴ、小石などを模した形状としてもよい。 Although the shape of the porous photocatalyst is not particularly limited, it is preferable to set the thickness in the range of 0.1 to 10 cm, for example, because light can easily reach the inside. In particular, when used in a fish tank or the like, it may be shaped like a shell, coral, pebble, etc. so as not to spoil the landscape.
 「アルカリ土類金属の過酸化物」(以下、「過酸化物」と省略することがある。)としては、例えば過酸化カルシウム、過酸化マグネシウム、過酸化ストロンチウム、過酸化バリウム、過酸化ベリリウム、過酸化ラジウムが挙げられるが、過酸化カルシウム、過酸化マグネシウムが好ましく、特には過酸化カルシウムが好ましい。 Examples of "alkaline earth metal peroxides" (hereinafter sometimes abbreviated as "peroxides") include calcium peroxide, magnesium peroxide, strontium peroxide, barium peroxide, beryllium peroxide, Radium peroxide may be mentioned, but calcium peroxide and magnesium peroxide are preferred, and calcium peroxide is particularly preferred.
 前記過酸化物は、水と反応して過酸化水素を生成し、酸素を発生する性質が知られている。しかしながら本発明者は、驚くべきことに、前記過酸化物そのものが、可視光応答型光触媒活性を示すことを発見した。 The peroxide is known to have the property of reacting with water to generate hydrogen peroxide and generate oxygen. However, the present inventor surprisingly discovered that the peroxide itself exhibits visible light-responsive photocatalytic activity.
 「セメント」としては、例えば、ポルトランドセメント、混合セメント、エコセメントなどを挙げることができる。特に、光透過性の観点から、ポルトランドセメントの中でもホワイトセメントが好適に用いられる。また、ホワイトセメントを主成分として、他の種類のセメントやバインダを混合して使用してもよい。 Examples of "cement" include Portland cement, mixed cement, and ecocement. In particular, from the viewpoint of light transmission, white cement is preferably used among Portland cements. Moreover, you may use white cement as a main component, and other types of cements and binders may be mixed and used.
 前記多孔質光触媒体は、基本的に、前記過酸化物と、前記セメントと、水と、を混合し、乾燥することにより製造することができる。前記過酸化物が水と反応することで酸素が発生するため、その気泡により多孔質構造体として形成される。 The porous photocatalyst can be basically produced by mixing the peroxide, the cement, and water, and drying. Since the peroxide reacts with water to generate oxygen, the bubbles form a porous structure.
 このように多孔質構造を有することにより、前記多孔質光触媒体は、表面積が大きくなり高い反応効率を実現できる。特には、比重が水より軽く、水面に浮上する性質を有することが望ましい。 By having such a porous structure, the porous photocatalyst has a large surface area and can achieve high reaction efficiency. In particular, it is desirable that the specific gravity is lighter than that of water and that it floats on the water surface.
 前記多孔質光触媒体の全固形分における、前記セメントの含有重量比は、通常17~80%、好ましくは20~70%、より好ましくは30~65%、特に好ましくは40~60%とすることができる。前記セメントの含有重量比が上記範囲より多いと、多孔質構造の形成が不十分となり反応効率が低下するうえに、前記多孔質光触媒体の比重が大きくなって水中に沈んでしまうため好ましくない。また、前記セメントの含有重量比が上記範囲より少ないと、前記多孔質光触媒体の耐久性が低下し、水中で崩壊し易くなるため好ましくない。 The content weight ratio of the cement in the total solid content of the porous photocatalyst is usually 17 to 80%, preferably 20 to 70%, more preferably 30 to 65%, and particularly preferably 40 to 60%. can be done. If the content weight ratio of the cement is more than the above range, the formation of the porous structure is insufficient, the reaction efficiency is lowered, and the specific gravity of the porous photocatalyst increases and it sinks in water, which is not preferable. On the other hand, if the content weight ratio of the cement is less than the above range, the durability of the porous photocatalyst body is lowered, and it is likely to collapse in water, which is not preferable.
 なお、前記多孔質光触媒体の全固形分における、前記セメントの含有重量比が、30~60%である場合には、水以外の原料として前記過酸化物と前記セメントのみを用いて、高い反応効率と水面浮上性、耐久性とを兼ね備えた前記多孔質光触媒体を構成することができる。これらの原料は、特に人体及び環境に対する安全性が高く、かつ安価であることから、当該原料のみからなる前記多孔質光触媒体は、産業上の実用性が極めて高いものである。 In addition, when the content weight ratio of the cement in the total solid content of the porous photocatalyst is 30 to 60%, only the peroxide and the cement are used as raw materials other than water, and high reaction It is possible to construct the porous photocatalyst having efficiency, floating property on water surface, and durability. These raw materials are particularly safe to the human body and the environment, and are inexpensive. Therefore, the porous photocatalyst composed only of these raw materials has extremely high industrial utility.
 一方、前記多孔質光触媒体の全固形分における、前記過酸化物の含有重量比は、通常20~83%、好ましくは50~75%、より好ましくは60~70%とすることができる。 On the other hand, the content weight ratio of the peroxide in the total solid content of the porous photocatalyst can be usually 20 to 83%, preferably 50 to 75%, more preferably 60 to 70%.
 前記多孔質光触媒体には、上記効果を妨げない限りにおいて、上記原料以外に、他の光触媒、添加剤などが含有されていてもよい。 The porous photocatalyst may contain other photocatalysts, additives, etc. in addition to the raw materials as long as the above effects are not hindered.
 「他の光触媒」としては、光触媒活性を有する物質であれば制限なく用いることができる。具体的には、第一の実施形態のポリフェノール鉄錯体や、酸化チタンなどを挙げることができる。これらの他の光触媒は、単独で用いても、複数種を混合して用いてもよい。 "Other photocatalysts" can be used without limitation as long as they have photocatalytic activity. Specific examples include the polyphenol iron complex of the first embodiment and titanium oxide. These other photocatalysts may be used singly or in combination.
 「添加剤」としては、例えば、加熱又はアルカリとの反応により、二酸化炭素、酸素、窒素などのガスを発生させて、多孔質構造の形成に寄与する発泡剤などを挙げることができる。これらの添加剤は、単独で用いても、複数種を混合して用いてもよい。 Examples of "additives" include foaming agents that contribute to the formation of a porous structure by generating gases such as carbon dioxide, oxygen, and nitrogen by heating or reacting with an alkali. These additives may be used alone or in combination of multiple types.
 「発泡剤」としては、例えば、炭酸水素ナトリウム、炭酸アンモニウム、粉末アルミニウム、塩化アルミニウムより選ばれた1以上のものを用いることができる。 As the "foaming agent", for example, one or more selected from sodium hydrogen carbonate, ammonium carbonate, powdered aluminum, and aluminum chloride can be used.
 前記多孔質光触媒体の全固形分における、前記「他の光触媒」の含有重量比は、通常60%以下とすることができる。また、前記多孔質光触媒体の全固形分における、前記「添加剤」の含有重量比は、通常10%以下とすることができる。前記多孔質光触媒体の全固形分における、前記「発泡剤」の含有重量比は、通常0.4~4.0%とすることができる。 The weight ratio of the "other photocatalyst" to the total solid content of the porous photocatalyst can usually be 60% or less. In addition, the content weight ratio of the "additive" in the total solid content of the porous photocatalyst can be usually 10% or less. The content weight ratio of the "foaming agent" in the total solid content of the porous photocatalyst can usually be 0.4 to 4.0%.
 前記多孔質光触媒体は、可視光を含む幅広い波長域の光を吸収して、強力な光触媒活性を発揮する。具体的には、太陽光や、200~1200nmという幅広い波長域の光、すなわち、紫外線、可視光、赤外線から選ばれた1以上の光を照射することにより、強力な殺菌及び水質浄化作用が示される。 The porous photocatalyst absorbs light in a wide wavelength range, including visible light, and exhibits strong photocatalytic activity. Specifically, by irradiating with sunlight or light in a wide wavelength range of 200 to 1200 nm, that is, one or more light selected from ultraviolet light, visible light, and infrared light, a strong sterilization and water purification action is shown. be
 中でも、前記多孔質光触媒体は、前記可視光のうち390~660nmの波長の光を照射した時に強い光触媒活性を示す。特に570~590nmの波長の黄色乃至緑色光を照射することによって、極めて強い光触媒活性(殺菌、水質浄化作用)を示す。 Above all, the porous photocatalyst exhibits strong photocatalytic activity when irradiated with light having a wavelength of 390 to 660 nm among the visible light. In particular, it exhibits extremely strong photocatalytic activity (sterilization, water purification action) when irradiated with yellow or green light with a wavelength of 570 to 590 nm.
 また、前記多孔質光触媒体は、紫外線及び赤外線を照射した時にも強い光触媒活性を示す。紫外線では、特に200~390nmの波長の光を照射することにより、強い活性を示す。赤外線では特に800~1200nmの波長の光を照射することにより、強い活性を示す。 In addition, the porous photocatalyst exhibits strong photocatalytic activity even when irradiated with ultraviolet rays and infrared rays. In the case of ultraviolet rays, it exhibits strong activity, especially when exposed to light with a wavelength of 200-390 nm. In the case of infrared rays, it shows strong activity especially when exposed to light with a wavelength of 800 to 1200 nm.
 したがって、前記ポリフェノール鉄錯体カプセルと前記多孔質光触媒体とを併用する場合には、幅広い波長の光を照射するのが好ましく、特には200~1200nmの波長の光が好ましい。なお、前記光照射時間としては、前記ポリフェノール鉄錯体カプセルのみを用いる場合と同様である。 Therefore, when the polyphenol iron complex capsule and the porous photocatalyst are used together, it is preferable to irradiate light with a wide range of wavelengths, and light with a wavelength of 200 to 1200 nm is particularly preferable. The light irradiation time is the same as in the case of using only the polyphenol iron complex capsules.
 前記多孔質光触媒体を水に投入し、前記光を照射すると、前記過酸化物と水との反応によって過酸化水素及び酸素が水中に溶出されるとともに、光触媒活性によりヒドロキシラジカルも生成される。 When the porous photocatalyst is put into water and the light is irradiated, hydrogen peroxide and oxygen are eluted into the water due to the reaction between the peroxide and water, and hydroxyl radicals are also generated by photocatalytic activity.
 前記過酸化物は水に溶けにくいため、酸素及び過酸化水素は長期間にわたり徐々に溶出される。また、光触媒活性も長期間安定に維持される。  Because the peroxide is poorly soluble in water, oxygen and hydrogen peroxide are gradually eluted over a long period of time. Moreover, the photocatalytic activity is stably maintained for a long period of time.
 前記多孔質光触媒体の前記病原微生物に対する効果の持続期間は、前記過酸化物の含有量等に応じて異なるが、例えば、数カ月間~数年間とすることができる。なお、前記多孔質光触媒体は、人体や環境に対し安全性が高い物質により構成されているため、前記耐用期間が過ぎた後も水中に残存していても問題はない。 The duration of the effect of the porous photocatalyst against the pathogenic microorganisms varies depending on the content of the peroxide, and can be, for example, several months to several years. Since the porous photocatalyst is composed of a material that is highly safe for the human body and the environment, there is no problem even if it remains in the water after the service life has passed.
 前記多孔質光触媒体の使用量は特に限定されず、所望の効果が得られる量とすればよい。具体的には、水1Lに対する前記多孔質光触媒体の重量として、10g以上、好ましくは20~200gとすることができる。 The amount of the porous photocatalyst to be used is not particularly limited, and may be an amount that provides the desired effect. Specifically, the weight of the porous photocatalyst to 1 L of water can be 10 g or more, preferably 20 to 200 g.
 前記多孔質光触媒体の表面に汚れや藻類などが付着すると、光触媒活性が低下するが、強い光(紫外線、可視光、赤外線から選ばれた1以上の光、特に紫外線が好ましい)を照射することによりセルフクリーニングが可能であるため、光触媒活性を回復させることができる。ここで、「強い光」とは、例えば100cd(カンデラ)以上、好ましくは150cd以上の光とすることができる。 When dirt, algae, etc. adhere to the surface of the porous photocatalyst, the photocatalytic activity is reduced. Since self-cleaning is possible by , the photocatalytic activity can be recovered. Here, "strong light" can be light of, for example, 100 cd (candela) or more, preferably 150 cd or more.
 上記した多孔質光触媒体は、例えば下記のようにして製造することができる。 The porous photocatalyst described above can be produced, for example, as follows.
(1)まず、前記アルカリ土類金属の過酸化物及び前記セメントを、それぞれ多孔質光触媒体の全固形分における上記の含有重量比となるように混合する。これらの原料は、いずれも粉末状又は粒状のものが好ましく、特には粒径5mm以下のものが好適に用いられる。 (1) First, the alkaline earth metal peroxide and the cement are mixed so as to have the above content weight ratio in the total solid content of the porous photocatalyst. These raw materials are preferably powdery or granular, and particularly preferably have a particle size of 5 mm or less.
 また、上記原料以外の原料(水を除く)を用いる場合は、この段階で混合する。 Also, when using raw materials other than the above raw materials (excluding water), they are mixed at this stage.
(2)次に、上記(1)で混合した前記原料に水を加え、混合する。加水率としては、前記原料の全固形分に対して50~80重量%、好ましくは50~70重量%とすることができる。 (2) Next, water is added to and mixed with the raw materials mixed in (1) above. The water content can be 50 to 80% by weight, preferably 50 to 70% by weight, based on the total solid content of the raw material.
 このとき、前記アルカリ土類金属の過酸化物が水と反応することで酸素が発生する。また、前記発泡剤を含有させる場合は、当該発泡剤からもガスが発生する。これらのガスが気泡となり、多孔質構造を形成させる。 At this time, the alkaline earth metal peroxide reacts with water to generate oxygen. Moreover, when the foaming agent is contained, gas is also generated from the foaming agent. These gases form bubbles and form a porous structure.
(3)そして、上記(2)で得られた混合物を成形する。形状に制限はないが、例えば厚さは0.1~10cmの範囲とすることにより、前記多孔質光触媒体の内部まで光が届きやすくなるので好ましい。 (3) Then, the mixture obtained in (2) above is molded. Although the shape is not limited, it is preferable to set the thickness in the range of 0.1 to 10 cm, for example, because the light can easily reach the inside of the porous photocatalyst.
 特に魚介類の水槽等で使用する場合は、景観を壊さないように、貝殻、サンゴ、小石などを模した形状に成形してもよい。この場合、多孔質光触媒体が浮上しないよう、重りを付けることが好ましい。また、成形手段にも特に制限はない。 Especially when used in a fish tank, etc., it may be molded into a shape that imitates shells, corals, pebbles, etc., so as not to disturb the scenery. In this case, it is preferable to attach a weight so that the porous photocatalyst does not float. Also, the molding means is not particularly limited.
(4)さらに、上記(3)で得られた成形物を乾燥させ、固化させる。 (4) Further, the molding obtained in (3) above is dried and solidified.
 乾燥方法としては多孔質体が固化すればよく、特に限定されないが、例えば熱風又は送風乾燥、加熱乾燥などが挙げられる。また、乾燥条件も特に限定されないが、例えば20~98℃、好ましくは30~80℃、より好ましくは40~60℃の温度で、1~36時間、好ましくは4~24時間、より好ましくは6~18時間とすることができる。 The drying method is not particularly limited as long as the porous body is solidified, but examples include hot air or blast drying, heat drying, and the like. The drying conditions are also not particularly limited, but for example, at a temperature of 20 to 98° C., preferably 30 to 80° C., more preferably 40 to 60° C., for 1 to 36 hours, preferably 4 to 24 hours, more preferably 6 hours. can be ~18 hours.
 このような多孔質光触媒体は、前記ポリフェノール鉄錯体カプセルと併用することによって、魚介類の飼育又は病気治療の用途において非常に高い効果を発揮する。 By using such a porous photocatalyst in combination with the polyphenol iron complex capsule, it exhibits a very high effect in raising fish and shellfish or treating diseases.
 具体的には、前記多孔質光触媒体を、前記魚介類の水槽の水に投入することにより、前記魚介類に酸素が供給されるとともに、過酸化水素が溶出される。当該過酸化水素は、前記ポリフェノール鉄錯体によるフェントン反応に用いられる。さらに、可視光応答型光触媒活性により、幅広い波長の光を吸収して殺菌・水質浄化作用が奏される。これらの作用効果は長期間持続されるうえに、セルフクリーニングも可能であるため、管理コストを極めて少なくすることができる。 Specifically, by putting the porous photocatalyst into the water of the fish tank, oxygen is supplied to the fish and shellfish, and hydrogen peroxide is eluted. The hydrogen peroxide is used in the Fenton reaction with the polyphenol iron complex. Furthermore, due to its visible-light-responsive photocatalytic activity, it absorbs light of a wide range of wavelengths, and sterilizes and purifies water. These actions and effects are sustained for a long period of time, and self-cleaning is also possible, so that management costs can be greatly reduced.
 以下、実施例により本実施の形態を詳しく説明する。 The present embodiment will be described in detail below with reference to examples.
(実施例1)魚介類の飼育及び病気の治療に利用できるポリフェノール鉄錯体カプセルの製造
(1)液1(アルギン酸水溶液)の調製
 まず、ポリフェノール含有植物体としての乾燥茶葉10gを、900mLの蒸留水に入れ、これを加圧下で120℃、20分間加熱した。これを濾紙で濾過し、茶葉抽出液とした。当該茶葉抽出液に、塩化鉄(III)8.71g(鉄元素として約3g)を添加し、これに蒸留水を加えて1000mLとし、撹拌することによりポリフェノール鉄錯体溶液を得た。
(Example 1) Production of polyphenol iron complex capsules that can be used for raising fish and shellfish and treating diseases (1) Preparation of liquid 1 (aqueous alginic acid solution) First, 10 g of dried tea leaves as a polyphenol-containing plant were added to 900 mL of distilled water and heated under pressure at 120° C. for 20 minutes. This was filtered with filter paper to obtain a tea leaf extract. 8.71 g of iron (III) chloride (about 3 g as iron element) was added to the tea leaf extract, distilled water was added to make 1000 mL, and the mixture was stirred to obtain a polyphenol iron complex solution.
 次に、上記ポリフェノール鉄錯体溶液3mLと、アルギン酸ナトリウム4gと、を300mLの蒸留水に加えて撹拌し、アルギン酸水溶液を調製した。 Next, 3 mL of the polyphenol iron complex solution and 4 g of sodium alginate were added to 300 mL of distilled water and stirred to prepare an aqueous alginic acid solution.
 なお、ここでのポリフェノール類供給原料(乾燥茶葉)と鉄供給原料(塩化鉄(III))との混合比率は、ポリフェノール類供給原料100重量部に対して鉄供給原料が鉄元素として約30重量部の比率となる。 The mixing ratio of the polyphenol feedstock (dried tea leaves) and the iron feedstock (iron (III) chloride) here is about 30 parts by weight of the iron feedstock as an iron element with respect to 100 parts by weight of the polyphenol feedstock. part ratio.
 上記ポリフェノール鉄錯体溶液中には、茶葉から抽出されたポリフェノール類によって、塩化鉄(III)由来の鉄イオンがFe2+の状態でキレート化されてなるポリフェノール鉄錯体が含まれていると考えられる。 It is thought that the polyphenol-iron complex solution contains a polyphenol-iron complex in which iron ions derived from iron (III) chloride are chelated in the form of Fe 2+ by polyphenols extracted from tea leaves.
 上記ポリフェノール鉄錯体混合液3mLと、アルギン酸ナトリウム4gと、を300mLの蒸留水に加えて撹拌し、アルギン酸水溶液(液1)を調製した(図1参照)。  3 mL of the polyphenol iron complex mixture and 4 g of sodium alginate were added to 300 mL of distilled water and stirred to prepare an alginic acid aqueous solution (liquid 1) (see Fig. 1).
(2)カプセルの作製
 30gの硫酸カルシウムを300mLの蒸留水に溶解させて、硫酸カルシウム水溶液(液2)を調製した。これをスターラーで撹拌しながら、図1のようにして上記のアルギン酸水溶液(液1)を液2に滴下することにより、200gのポリフェノール鉄錯体カプセル(図2参照)を製造した。
(2) Preparation of Capsules 30 g of calcium sulfate was dissolved in 300 mL of distilled water to prepare an aqueous calcium sulfate solution (liquid 2). 200 g of polyphenol iron complex capsules (see FIG. 2) were produced by dropping the above alginic acid aqueous solution (liquid 1) into liquid 2 as shown in FIG. 1 while stirring this with a stirrer.
 得られたカプセルは、直径約5.0mmの球形で、黒褐色を呈していた。黒褐色は茶葉抽出液の色である。当該カプセルには、鉄元素換算で約0.04重量%のポリフェノール鉄錯体が含まれている。製造後のカプセルは、使用時まで蒸留水中で4℃にて保管した。 The obtained capsules were spherical with a diameter of about 5.0 mm and had a dark brown color. Dark brown is the color of the tea leaf extract. The capsule contains about 0.04% by weight of polyphenol iron complex in terms of elemental iron. The manufactured capsules were stored in distilled water at 4°C until use.
(実施例2)魚介類の飼育及び病気の治療に利用できるポリフェノール鉄錯体カプセルの製造
(1)液1(アルギン酸水溶液)の調製
 まず、下記の処方により、ビタミン混合液及び微量要素混合液を調製した。
(Example 2) Production of polyphenol iron complex capsules that can be used for raising fish and shellfish and treating diseases (1) Preparation of liquid 1 (alginic acid aqueous solution) First, a vitamin mixture and a trace element mixture are prepared according to the following formulations. did.
(ビタミン混合液の処方例)
 下記表5のビタミンに蒸留水を添加して合計1000mLとした。
Figure JPOXMLDOC01-appb-T000005
(Prescription example of vitamin mixture)
Distilled water was added to the vitamins in Table 5 below to make a total of 1000 mL.
Figure JPOXMLDOC01-appb-T000005
(微量要素混合液の処方例)
 下記表6の微量要素に蒸留水を添加して合計100mLとした。
Figure JPOXMLDOC01-appb-T000006
(Prescription example of trace element mixture)
Distilled water was added to the trace elements in Table 6 below to make a total of 100 mL.
Figure JPOXMLDOC01-appb-T000006
 次に、ポリフェノール含有植物体としての乾燥茶葉10gを、900mLの蒸留水に入れ、これを加圧下で120℃、20分間加熱した。これを濾紙で濾過し、茶葉抽出液とした。 Next, 10 g of dried tea leaves as a polyphenol-containing plant were placed in 900 mL of distilled water and heated under pressure at 120°C for 20 minutes. This was filtered with filter paper to obtain a tea leaf extract.
 当該茶葉抽出液に、塩化鉄(III)8.71g(鉄元素として約3g)、上記ビタミン混合液及び上記微量要素混合液を1mLずつ添加し、これに蒸留水を加えて1000mLとし、撹拌することによりポリフェノール鉄錯体混合液を得た。 To the tea leaf extract, add 8.71 g of iron (III) chloride (about 3 g as iron element), 1 mL each of the above vitamin mixture and the above trace element mixture, add distilled water to make 1000 mL, and stir. Thus, a polyphenol iron complex mixed solution was obtained.
 なお、ここでのポリフェノール類供給原料(乾燥茶葉)と鉄供給原料(塩化鉄(III))との混合比率は、ポリフェノール類供給原料100重量部に対して鉄供給原料が鉄元素として約30重量部の比率となる。 The mixing ratio of the polyphenol feedstock (dried tea leaves) and the iron feedstock (iron (III) chloride) here is about 30 parts by weight of the iron feedstock as an iron element with respect to 100 parts by weight of the polyphenol feedstock. part ratio.
 上記ポリフェノール鉄錯体混合液中には、茶葉から抽出されたポリフェノール類によって、塩化鉄(III)由来の鉄イオンがFe2+の状態でキレート化されてなるポリフェノール鉄錯体が含まれていると考えられる。また、上記ポリフェノール鉄錯体混合液中には、上記微量要素も、ポリフェノール類とのキレート錯体の状態で含有されていると考えられる。 It is believed that the polyphenol-iron complex mixed solution contains a polyphenol-iron complex in which iron ions derived from iron (III) chloride are chelated in the form of Fe 2+ by polyphenols extracted from tea leaves. . Moreover, it is considered that the polyphenol-iron complex mixed solution also contains the trace element in the form of a chelate complex with polyphenols.
 上記ポリフェノール鉄錯体混合液3mLと、アルギン酸ナトリウム4gと、を300mLの蒸留水に加えて撹拌し、アルギン酸水溶液(液1)を調製した(図1参照)。  3 mL of the polyphenol iron complex mixture and 4 g of sodium alginate were added to 300 mL of distilled water and stirred to prepare an alginic acid aqueous solution (liquid 1) (see Fig. 1).
(2)カプセルの作製
 30gの硫酸カルシウムを300mLの蒸留水に溶解させて、硫酸カルシウム水溶液(液2)を調製した。これをスターラーで撹拌しながら、図1のようにして上記のアルギン酸水溶液(液1)を液2に滴下することにより、200gのポリフェノール鉄錯体カプセルを製造した。
(2) Preparation of Capsules 30 g of calcium sulfate was dissolved in 300 mL of distilled water to prepare an aqueous calcium sulfate solution (Liquid 2). 200 g of polyphenol iron complex capsules were produced by dropping the above alginic acid aqueous solution (liquid 1) into liquid 2 as shown in FIG. 1 while stirring this with a stirrer.
 得られたカプセルは、直径約5.0mmの球形で、黒褐色を呈していた。黒褐色は茶葉抽出液の色である。当該カプセルには、鉄元素換算で約0.04重量%のポリフェノール鉄錯体が含まれている。製造後のカプセルは、使用時まで蒸留水中で4℃にて保管した。 The obtained capsules were spherical with a diameter of about 5.0 mm and had a dark brown color. Dark brown is the color of the tea leaf extract. The capsule contains about 0.04% by weight of polyphenol iron complex in terms of elemental iron. The manufactured capsules were stored in distilled water at 4°C until use.
(実施例3)魚介類の飼育及び病気の治療に利用できるポリフェノール鉄錯体カプセルの製造
(1)液1(アルギン酸水溶液)の調製
 まず、実施例2記載の処方により、ビタミン混合液及び微量要素混合液を調製した。次に、ポリフェノール含有植物体としての乾燥させたキクの花10gを、900mLの蒸留水に入れ、これを加圧下で120℃、20分間加熱した。これを濾紙で濾過し、キクの花抽出液とした。
(Example 3) Production of polyphenol iron complex capsules that can be used for raising fish and shellfish and treating diseases (1) Preparation of liquid 1 (aqueous solution of alginic acid) A liquid was prepared. Next, 10 g of dried chrysanthemum flowers as a polyphenol-containing plant body were placed in 900 mL of distilled water and heated at 120° C. for 20 minutes under pressure. This was filtered with filter paper to obtain a chrysanthemum flower extract.
 当該キクの花抽出液に、塩化鉄(III)8.71g(鉄元素として約3g)、上記ビタミン混合液及び上記微量要素混合液を1mLずつ添加し、これに蒸留水を加えて1000mLとし、撹拌することによりポリフェノール鉄錯体混合液を得た。 To the chrysanthemum flower extract, 8.71 g of iron (III) chloride (about 3 g as iron element), 1 mL each of the above vitamin mixture and the above trace element mixture are added, and distilled water is added to make 1000 mL, A polyphenol iron complex mixed solution was obtained by stirring.
 なお、ここでのポリフェノール類供給原料(キクの花)と鉄供給原料(塩化鉄(III))との混合比率は、ポリフェノール類供給原料100重量部に対して鉄供給原料が鉄元素として約30重量部の比率となる。 The mixing ratio of the polyphenols feedstock (chrysanthemum flower) and the iron feedstock (iron (III) chloride) here is about 30% of the iron feedstock as an iron element with respect to 100 parts by weight of the polyphenols feedstock. It becomes the ratio of parts by weight.
 上記ポリフェノール鉄錯体混合液中には、キクの花から抽出されたポリフェノール類によって、塩化鉄(III)由来の鉄イオンがFe2+の状態でキレート化されてなるポリフェノール鉄錯体が含まれていると考えられる。また、上記ポリフェノール鉄錯体混合液中には、上記微量要素も、ポリフェノール類とのキレート錯体の状態で含有されていると考えられる。 The polyphenol-iron complex mixed solution contains a polyphenol-iron complex in which iron ions derived from iron chloride (III) are chelated in the state of Fe 2+ by polyphenols extracted from chrysanthemum flowers. Conceivable. Moreover, it is considered that the polyphenol-iron complex mixed solution also contains the trace element in the form of a chelate complex with polyphenols.
 上記ポリフェノール鉄錯体混合液3mLと、アルギン酸ナトリウム4gと、を300mLの蒸留水に加えて撹拌し、アルギン酸水溶液(液1)を調製した(図1参照)。  3 mL of the polyphenol iron complex mixture and 4 g of sodium alginate were added to 300 mL of distilled water and stirred to prepare an alginic acid aqueous solution (liquid 1) (see Fig. 1).
(2)カプセルの作製
 30gの硫酸カルシウムを300mLの蒸留水に溶解させて、硫酸カルシウム水溶液(液2)を調製した。これをスターラーで撹拌しながら、図1のようにして上記のアルギン酸水溶液(液1)を液2に滴下することにより、200gのポリフェノール鉄錯体カプセルを製造した。
(2) Preparation of Capsules 30 g of calcium sulfate was dissolved in 300 mL of distilled water to prepare an aqueous calcium sulfate solution (Liquid 2). 200 g of polyphenol iron complex capsules were produced by dropping the above alginic acid aqueous solution (liquid 1) into liquid 2 as shown in FIG. 1 while stirring this with a stirrer.
 得られたカプセルは、直径約4mmの球形で、黒褐色を呈していた。黒褐色はキクの花抽出液の色である。当該カプセルには、鉄元素換算で約0.04重量%のポリフェノール鉄錯体が含まれている。製造後のカプセルは、使用時まで蒸留水中で4℃にて保管した。 The capsules obtained were spherical with a diameter of about 4 mm and had a dark brown color. Dark brown is the color of the chrysanthemum flower extract. The capsule contains about 0.04% by weight of polyphenol iron complex in terms of elemental iron. The manufactured capsules were stored in distilled water at 4°C until use.
(実施例4)植物の栽培に利用できるポリフェノール鉄錯体カプセルの製造
(1)液1(アルギン酸水溶液)の調製
 まず、ポリフェノール含有植物体としての乾燥茶葉10gを、700mLの蒸留水に入れ、これを加圧下で120℃、20分間加熱した。この上澄みを濾紙で濾過し、茶葉抽出液とした。
(Example 4) Production of polyphenol iron complex capsules that can be used for cultivating plants (1) Preparation of liquid 1 (alginic acid aqueous solution) First, 10 g of dried tea leaves as a polyphenol-containing plant body were added to 700 mL of distilled water. Heated at 120° C. for 20 minutes under pressure. This supernatant was filtered with filter paper to obtain a tea leaf extract.
 当該茶葉抽出液700mLに、硫酸鉄(II)15g(鉄元素として約5.5g)と、ホウ酸3g、硫酸マンガン2g、硫酸亜鉛0.22g、硫酸銅0.05g、モリブデン酸ナトリウム0.01g、を添加し、撹拌することによりポリフェノール鉄錯体混合液を得た。 To 700 mL of the tea leaf extract, 15 g of iron (II) sulfate (about 5.5 g as iron element), 3 g of boric acid, 2 g of manganese sulfate, 0.22 g of zinc sulfate, 0.05 g of copper sulfate, and 0.01 g of sodium molybdate , and stirred to obtain a polyphenol iron complex mixed solution.
 なお、ここでのポリフェノール類供給原料(茶葉)と鉄供給原料(硫酸鉄(II))との混合比率は、ポリフェノール類供給原料100重量部に対して鉄供給原料が鉄元素として約55重量部の比率となる。 In addition, the mixing ratio of the polyphenol feedstock (tea leaves) and the iron feedstock (iron (II) sulfate) here is about 55 parts by weight of the iron feedstock as an iron element with respect to 100 parts by weight of the polyphenol feedstock. ratio.
 上記ポリフェノール鉄錯体混合液中には、茶葉から抽出されたポリフェノール類によって、硫酸鉄(II)由来の鉄イオンがFe2+の状態でキレート化されてなるポリフェノール鉄錯体が含まれていると考えられる。 It is believed that the polyphenol-iron complex mixed solution contains a polyphenol-iron complex in which iron ions derived from iron (II) sulfate are chelated in the form of Fe 2+ by polyphenols extracted from tea leaves. .
 上記ポリフェノール鉄錯体混合液3mLと、アルギン酸ナトリウム4gと、を300mLの蒸留水に加えて撹拌し、アルギン酸水溶液(液1)を調製した(図1参照)。  3 mL of the polyphenol iron complex mixture and 4 g of sodium alginate were added to 300 mL of distilled water and stirred to prepare an alginic acid aqueous solution (liquid 1) (see Fig. 1).
(2)カプセルの作製
 30gの硫酸カルシウムを300mLの蒸留水に溶解させて、硫酸カルシウム水溶液(液2)を調製した。これをスターラーで撹拌しながら、図1のようにして上記のアルギン酸水溶液(液1)を液2に滴下することにより、200gのポリフェノール鉄錯体カプセルを製造した。
(2) Preparation of Capsules 30 g of calcium sulfate was dissolved in 300 mL of distilled water to prepare an aqueous calcium sulfate solution (liquid 2). 200 g of polyphenol iron complex capsules were produced by dropping the above alginic acid aqueous solution (liquid 1) into liquid 2 as shown in FIG. 1 while stirring this with a stirrer.
 得られたカプセルは、直径約4.0mmの球形で、黒褐色を呈していた。黒褐色は茶葉抽出液の色である。当該カプセルには、鉄元素換算で約0.04重量%のポリフェノール鉄錯体が含まれている。製造後のカプセルは、使用時まで蒸留水中で4℃にて保管した。 The obtained capsules were spherical with a diameter of about 4.0 mm and had a dark brown color. Dark brown is the color of the tea leaf extract. The capsule contains about 0.04% by weight of polyphenol iron complex in terms of elemental iron. The manufactured capsules were stored in distilled water at 4°C until use.
(実施例5)植物の栽培に利用できるポリフェノール鉄錯体カプセルの製造
(1)液1(アルギン酸水溶液)の調製
 まず、ポリフェノール含有植物体としての乾燥させたコーヒー粕10gを、700mLの蒸留水に入れ、これを加圧下で120℃、20分間加熱した。この上澄みを濾紙で濾過し、コーヒー粕抽出液とした。
(Example 5) Production of polyphenol iron complex capsules that can be used for cultivating plants (1) Preparation of liquid 1 (alginic acid aqueous solution) First, 10 g of dried coffee grounds as a polyphenol-containing plant body was added to 700 mL of distilled water. , which was heated at 120° C. for 20 minutes under pressure. The supernatant was filtered with filter paper to obtain a coffee grounds extract.
 当該コーヒー粕抽出液700mLに、硫酸鉄(II)15g(鉄元素として約5.5g)と、ホウ酸3g、硫酸マンガン2g、硫酸亜鉛0.22g、硫酸銅0.05g、モリブデン酸ナトリウム0.01g、を添加し、撹拌することによりポリフェノール鉄錯体混合液を得た。 To 700 mL of the coffee grounds extract, 15 g of iron (II) sulfate (about 5.5 g as iron element), 3 g of boric acid, 2 g of manganese sulfate, 0.22 g of zinc sulfate, 0.05 g of copper sulfate, and 0.2 g of sodium molybdate were added. 01 g, and stirred to obtain a polyphenol iron complex mixed solution.
 なお、ここでのポリフェノール類供給原料(コーヒー粕)と鉄供給原料(硫酸鉄(II))との混合比率は、ポリフェノール類供給原料100重量部に対して鉄供給原料が鉄元素として約55重量部の比率となる。 The mixing ratio of the polyphenols feedstock (coffee grounds) and the iron feedstock (iron (II) sulfate) here is about 55 parts by weight of the iron feedstock as an iron element with respect to 100 parts by weight of the polyphenols feedstock. part ratio.
 上記ポリフェノール鉄錯体混合液中には、コーヒー粕から抽出されたポリフェノール類によって、硫酸鉄(II)由来の鉄イオンがFe2+の状態でキレート化されてなるポリフェノール鉄錯体が含まれていると考えられる。 It is believed that the polyphenol-iron complex mixture contains a polyphenol-iron complex in which iron ions derived from iron sulfate (II) are chelated in the form of Fe 2+ by polyphenols extracted from coffee grounds. be done.
 上記ポリフェノール鉄錯体混合液3mLと、アルギン酸ナトリウム4gと、を300mLの蒸留水に加えて撹拌し、アルギン酸水溶液(液1)を調製した(図1参照)。  3 mL of the polyphenol iron complex mixture and 4 g of sodium alginate were added to 300 mL of distilled water and stirred to prepare an alginic acid aqueous solution (liquid 1) (see Fig. 1).
(2)カプセルの作製
 30gの硫酸カルシウムを300mLの蒸留水に溶解させて、硫酸カルシウム水溶液(液2)を調製した。これをスターラーで撹拌しながら、図1のようにして上記のアルギン酸水溶液(液1)を液2に滴下することにより、200gのポリフェノール鉄錯体カプセルを製造した。
(2) Preparation of Capsules 30 g of calcium sulfate was dissolved in 300 mL of distilled water to prepare an aqueous calcium sulfate solution (Liquid 2). 200 g of polyphenol iron complex capsules were produced by dropping the above alginic acid aqueous solution (liquid 1) into liquid 2 as shown in FIG. 1 while stirring this with a stirrer.
 得られたカプセルは、直径約10mmの球形で、黒褐色を呈していた。黒褐色はコーヒー粕抽出液の色である。当該カプセルには、鉄元素換算で約0.04重量%のポリフェノール鉄錯体が含まれている。製造後のカプセルは、使用時まで蒸留水中で4℃にて保管した。 The obtained capsules were spherical with a diameter of about 10 mm and had a dark brown color. Dark brown is the color of the coffee grounds extract. The capsule contains about 0.04% by weight of polyphenol iron complex in terms of elemental iron. The manufactured capsules were stored in distilled water at 4°C until use.
(実施例6)過酸化水素カプセルの製造
(1)液1(アルギン酸水溶液)の調製
 まず、35%過酸化水素水3mLと、アルギン酸ナトリウム4gと、を300mLの蒸留水に加えて撹拌し、アルギン酸水溶液(液1)を調製した(図3参照)。
(Example 6) Production of hydrogen peroxide capsules (1) Preparation of liquid 1 (alginic acid aqueous solution) First, 3 mL of 35% hydrogen peroxide solution and 4 g of sodium alginate are added to 300 mL of distilled water and stirred to obtain alginic acid. An aqueous solution (liquid 1) was prepared (see FIG. 3).
(2)カプセルの作製
 30gの塩化カルシウムを300mLの蒸留水に溶解させて、塩化カルシウム水溶液(液2)を調製した。これをスターラーで撹拌しながら、図3のようにして上記のアルギン酸水溶液(液1)を液2に滴下することにより、200gの過酸化水素カプセル(図4参照)を製造した。
(2) Production of Capsules 30 g of calcium chloride was dissolved in 300 mL of distilled water to prepare an aqueous calcium chloride solution (Liquid 2). 200 g of hydrogen peroxide capsules (see FIG. 4) were produced by dropping the above alginic acid aqueous solution (liquid 1) into liquid 2 as shown in FIG. 3 while stirring this with a stirrer.
 得られたカプセルは、直径約10mmの球形で、半透明の白色を呈していた。当該カプセルには、約0.35容量%の過酸化水素が含まれている。製造後のカプセルは、使用時まで蒸留水中で4℃にて保管した。 The capsules obtained were spherical with a diameter of about 10 mm and had a translucent white color. The capsule contains about 0.35% by volume of hydrogen peroxide. The manufactured capsules were stored in distilled water at 4°C until use.
(実施例7)サイズの異なるポリフェノール鉄錯体カプセルの製造
 上記実施例における滴下法とは異なる方法で、サイズの異なるポリフェノール鉄錯体カプセルを製造した。
(Example 7) Production of polyphenol iron complex capsules of different sizes Polyphenol iron complex capsules of different sizes were produced by a method different from the dropping method in the above example.
 まず、ポリフェノール含有植物体としての乾燥茶葉10gを、900mLの蒸留水に入れ、これを加圧下で120℃、20分間加熱した。これを濾紙で濾過し、茶葉抽出液とした。当該茶葉抽出液に、塩化鉄(III)8.71g(鉄元素として約3g)を添加し、これに蒸留水を加えて1000mLとし、撹拌することによりポリフェノール鉄錯体溶液を得た。 First, 10 g of dry tea leaves as a polyphenol-containing plant were placed in 900 mL of distilled water and heated under pressure at 120°C for 20 minutes. This was filtered with filter paper to obtain a tea leaf extract. 8.71 g of iron (III) chloride (about 3 g as iron element) was added to the tea leaf extract, distilled water was added to make 1000 mL, and the mixture was stirred to obtain a polyphenol iron complex solution.
 次に、上記ポリフェノール鉄錯体溶液100mLに、アルギン酸ナトリウム6gを混合し、ゲル化するまで撹拌した(アルギン酸とポリフェノール鉄錯体(Fe2+)が反応してゲル化する)。当該混合物がゲル状に固まったら、直径1~2cm又は4~5cmの球状に成形し、10(w/v)%塩化カルシウム水溶液に5分間浸漬することにより、ポリフェノール鉄錯体カプセル(図5参照)を製造した。 Next, 100 mL of the polyphenol iron complex solution was mixed with 6 g of sodium alginate and stirred until gelation (alginic acid reacts with the polyphenol iron complex (Fe 2+ ) to gel). When the mixture solidifies into a gel, it is formed into a spherical shape with a diameter of 1 to 2 cm or 4 to 5 cm, and immersed in a 10 (w/v)% calcium chloride aqueous solution for 5 minutes to form a polyphenol iron complex capsule (see FIG. 5). manufactured.
 得られたポリフェノール鉄錯体カプセルを図5に示す。図5において、左端は、対照である実施例1の方法で製造したポリフェノール鉄錯体カプセル、中央と右端は、上記で製造したサイズの異なるポリフェノール鉄錯体カプセル、をそれぞれ示す。 Fig. 5 shows the obtained polyphenol iron complex capsules. In FIG. 5, the left end shows the polyphenol iron complex capsules produced by the method of Example 1 as a control, and the center and right ends show the polyphenol iron complex capsules of different sizes produced above, respectively.
(試験例1)ポリフェノール鉄錯体の安定性の検討
 実施例7と同様の方法にてポリフェノール鉄錯体及び硫酸鉄(II)のカプセルを製造し、二価鉄の安定性を比較した。対照として塩化鉄(III)を用いて同様のカプセルを製造した。
(Test Example 1) Examination of stability of polyphenol iron complex Capsules of polyphenol iron complex and iron (II) sulfate were produced in the same manner as in Example 7, and the stability of divalent iron was compared. Similar capsules were prepared using iron(III) chloride as a control.
(1)ポリフェノール鉄錯体カプセルの作製
 まず、ポリフェノール含有植物体としての乾燥茶葉10gを、900mLの蒸留水に入れ、これを加圧下で120℃、20分間加熱した。これを濾紙で濾過し、茶葉抽出液とした。当該茶葉抽出液に、塩化鉄(III)8.71g(鉄元素として約3g)を添加し、これに蒸留水を加えて1000mLとし、撹拌することによりポリフェノール鉄錯体溶液を得た。
(1) Production of Polyphenol-Iron Complex Capsules First, 10 g of dried tea leaves as a polyphenol-containing plant were placed in 900 mL of distilled water and heated under pressure at 120° C. for 20 minutes. This was filtered with filter paper to obtain a tea leaf extract. 8.71 g of iron (III) chloride (about 3 g as iron element) was added to the tea leaf extract, distilled water was added to make 1000 mL, and the mixture was stirred to obtain a polyphenol iron complex solution.
 次に、上記ポリフェノール鉄錯体溶液100mLに、アルギン酸ナトリウム6gを混合し、ゲル化するまで撹拌した。当該混合物がゲル状に固まったら、直径1~2cmの球状に成形し、10(w/v)%塩化カルシウム水溶液に5分間浸漬することにより、ポリフェノール鉄錯体カプセル(図6左参照)を製造した。 Next, 100 mL of the polyphenol iron complex solution was mixed with 6 g of sodium alginate and stirred until gelation. When the mixture solidified into a gel, it was formed into a sphere with a diameter of 1 to 2 cm and immersed in a 10 (w/v)% calcium chloride aqueous solution for 5 minutes to produce a polyphenol iron complex capsule (see left in FIG. 6). .
(2)硫酸鉄(II)カプセルの作製
 まず、900mLの蒸留水を加圧下で120℃、20分間加熱した。これに硫酸鉄(II)15g(鉄元素として約5.5g)を添加し、さらに蒸留水を加えて1000mLとし、硫酸鉄(II)溶液を得た。
(2) Production of Iron (II) Sulfate Capsules First, 900 mL of distilled water was heated at 120° C. for 20 minutes under pressure. To this, 15 g of iron (II) sulfate (about 5.5 g as iron element) was added, and distilled water was added to make 1000 mL to obtain an iron (II) sulfate solution.
 次に、上記硫酸鉄(II)溶液100mLに、アルギン酸ナトリウム6gを混合し、ゲル化するまで撹拌した(アルギン酸と硫酸鉄(II)が反応してゲル化する)。これを、10(w/v)%塩化カルシウム水溶液に5分間時間浸漬することにより、硫酸鉄(II)カプセル(図6右参照)を製造した。 Next, 100 mL of the above iron (II) sulfate solution was mixed with 6 g of sodium alginate and stirred until gelation (alginic acid and iron (II) sulfate react to gel). By immersing this in a 10 (w/v) % calcium chloride aqueous solution for 5 minutes, an iron (II) sulfate capsule (see the right side of FIG. 6) was produced.
(3)塩化鉄(III)カプセル(対照)の作製
 まず、900mLの蒸留水を加圧下で120℃、20分間加熱した。これに塩化鉄(III)8.71g(鉄元素として約3g)を添加し、さらに蒸留水を加えて1000mLとし、塩化鉄(III)溶液を得た。
(3) Preparation of iron (III) chloride capsule (control) First, 900 mL of distilled water was heated at 120°C for 20 minutes under pressure. 8.71 g of iron (III) chloride (about 3 g as elemental iron) was added to the solution, and distilled water was added to bring the total volume to 1000 mL, thereby obtaining an iron (III) chloride solution.
 次に、上記塩化鉄(III)溶液100mLに、アルギン酸ナトリウム6gを混合し、ゲル化するまで撹拌した(アルギン酸と塩化鉄(III)が反応してゲル化する)。これを、10(w/v)%塩化カルシウム水溶液に5分間浸漬することにより、塩化鉄(III)カプセル(図6中央参照)を製造した。 Next, 100 mL of the iron (III) chloride solution was mixed with 6 g of sodium alginate and stirred until gelation (alginic acid and iron (III) chloride react to gel). By immersing this in a 10 (w/v) % calcium chloride aqueous solution for 5 minutes, iron (III) chloride capsules (see the center of FIG. 6) were produced.
(4)結果と考察
 上記で得られた3種類のカプセルの製造後約12時間後の様子を図6に示す。図6から、ポリフェノール鉄錯体カプセルは黒褐色のままで色の変化が見られなかったのに対し、硫酸鉄(II)カプセルは製造直後の透明色から黄色に変色した。なお、対照である塩化鉄(III)カプセルは、黄褐色のまま色の変化は見られなかった。
(4) Results and discussion Fig. 6 shows the appearance of the three types of capsules obtained above about 12 hours after production. As can be seen from FIG. 6, the polyphenol iron complex capsules remained dark brown with no change in color, whereas the iron (II) sulfate capsules changed color from transparent immediately after production to yellow. The control iron (III) chloride capsule remained yellowish brown and showed no change in color.
 黄色又は黄褐色は鉄が三価鉄イオンであることを示している。硫酸鉄(II)カプセルが黄色に変色したことから、二価鉄イオンが酸化されて三価鉄イオンとなったことが分かる。これらの結果から、ポリフェノール類によりキレート化されていない二価鉄イオンは、アルギン酸ゲルによりカプセル化されても、二価鉄イオンとして安定化されず、フェントン反応触媒能が弱まることが示された。  Yellow or yellowish brown indicates that iron is trivalent iron ion. The iron (II) sulfate capsule turned yellow, indicating that ferric ions were oxidized to ferric ions. These results indicate that ferric ions that are not chelated by polyphenols are not stabilized as ferrous ions even when encapsulated in alginate gel, and their catalytic ability for the Fenton reaction is weakened.
(試験例2)ポリフェノール鉄錯体カプセルと過酸化水素カプセルの併用処理による殺菌効果の検証
 実施例1のポリフェノール鉄錯体カプセル及び実施例6の過酸化水素カプセルを併用して、大腸菌に対する殺菌効果を検証した。
(Test Example 2) Verification of bactericidal effect by combined treatment of polyphenol iron complex capsules and hydrogen peroxide capsules The polyphenol iron complex capsules of Example 1 and the hydrogen peroxide capsules of Example 6 were used in combination to verify the bactericidal effect against Escherichia coli. did.
 まず、100mLビーカーに、1.2×10cfuの大腸菌(ATCC43888)を含むLB培地(トリプトン10g/L、酵母エキス5g/L、塩化ナトリウム10g/L)50mLを入れた。このビーカーに、実施例1のポリフェノール鉄錯体カプセル及び実施例6の過酸化水素カプセル、それぞれ1gを添加して撹拌し、30分間静置した。対照として、カプセル無添加の上記LB培地を用いた。 First, 50 mL of LB medium (tryptone 10 g/L, yeast extract 5 g/L, sodium chloride 10 g/L) containing 1.2×10 5 cfu of E. coli (ATCC43888) was placed in a 100 mL beaker. To this beaker, 1 g each of the polyphenol iron complex capsules of Example 1 and the hydrogen peroxide capsules of Example 6 were added, stirred, and allowed to stand for 30 minutes. As a control, the above LB medium without capsules was used.
 30分静置後に、100μLの上記LB培地を採取し、大腸菌検出用プレートに塗布した。37℃で24時間培養後に、大腸菌の生死を観察した。 After standing still for 30 minutes, 100 μL of the LB medium was collected and applied to an E. coli detection plate. After culturing at 37° C. for 24 hours, survival of E. coli was observed.
 結果を図7に示す。図7の(a)は対照区(カプセル無添加)、(b)は併用処理区を示す。図7から、(a)対照区では大腸菌が生存していたのに対し、(b)併用処理区では大腸菌が全滅したことが分かった。このことから、ポリフェノール鉄錯体カプセルと過酸化水素カプセルとを併用することにより、短時間で殺菌可能であることが示された。 The results are shown in Figure 7. FIG. 7(a) shows a control group (no capsule added), and (b) shows a combined treatment group. From FIG. 7, it was found that E. coli survived in (a) the control group, whereas E. coli was completely destroyed in the (b) combined treatment group. From this, it was shown that sterilization is possible in a short time by using polyphenol iron complex capsules and hydrogen peroxide capsules together.
(実施例8)ポリフェノール鉄錯体カプセルと過酸化水素カプセルを併用した魚介類の飼育
 実施例1のポリフェノール鉄錯体カプセル及び実施例6の過酸化水素カプセルを併用して、図8に示すように、魚介類の飼育を行った。
(Example 8) Breeding of seafood using both polyphenol iron complex capsules and hydrogen peroxide capsules Using both the polyphenol iron complex capsules of Example 1 and the hydrogen peroxide capsules of Example 6, I raised seafood.
 30Lの水が入った水槽に魚介類(金魚、2匹)を飼育した。1週間の間隔で、実施例1のポリフェノール鉄錯体カプセル及び実施例6の過酸化水素カプセルを、それぞれ0.5g/Lずつ添加して、通常の飼育を行った。可視光LED(380~660nm)の連続照射を毎日12時間行った。エアポンプにて常時酸素を供給した。飼育期間は6ヶ月間とした。 Seafood (2 goldfish) were bred in a tank containing 30L of water. 0.5 g/L each of the polyphenol iron complex capsules of Example 1 and the hydrogen peroxide capsules of Example 6 were added at intervals of one week, and normal rearing was carried out. Continuous irradiation with a visible light LED (380-660 nm) was performed for 12 hours every day. Oxygen was constantly supplied by an air pump. The breeding period was 6 months.
 ポリフェノール鉄錯体カプセルと過酸化水素カプセルを添加するだけで、魚介類に障害を与えず、飼育を行うことができた。飼育期間中に、魚介類にポリフェノール鉄錯体による障害は見られず、病気の発生もなかった。また、水槽水が汚れにくくなった。 By simply adding polyphenol iron complex capsules and hydrogen peroxide capsules, it was possible to raise fish and shellfish without harming them. During the breeding period, no damage caused by the polyphenol iron complex was observed in the fish and shellfish, and no disease occurred. Also, the water in the tank is less likely to become dirty.
 これらの結果から、カプセルからポリフェノール鉄錯体と過酸化水素が長期的に水槽水に溶出されることで、鉄供給、殺菌及び水質浄化効果が持続したと考えられる。また、可視光LEDを照射することで、光触媒活性が発揮され、水槽水の病原菌密度をさらに低下することができたものと考えられる。 From these results, it is thought that the long-term elution of the polyphenol iron complex and hydrogen peroxide from the capsule into the aquarium water sustained the iron supply, sterilization, and water purification effects. In addition, it is considered that the photocatalytic activity was exerted by irradiating the visible light LED, and the density of pathogenic bacteria in the aquarium water could be further reduced.
(実施例9)ポリフェノール鉄錯体カプセルと過酸化水素カプセルを併用した魚介類の飼育及び病気の治療
 実施例1のポリフェノール鉄錯体カプセル及び実施例6の過酸化水素カプセルを併用して、図8に示すように、魚介類の飼育及び治療を行った。
(Example 9) Breeding of seafood and treatment of disease using polyphenol iron complex capsules and hydrogen peroxide capsules together Using the polyphenol iron complex capsules of Example 1 and the hydrogen peroxide capsules of Example 6 together, Seafood was reared and treated as indicated.
 2Lの水が入った水槽に、尾腐れ病に罹患した魚介類(メダカ)6匹を入れた。実施例1のポリフェノール鉄錯体カプセル及び実施例6の過酸化水素カプセルを、それぞれ10gずつ添加して、毎日、水槽水と上記カプセルを新しいものに交換した。可視光青色LED(380~500nm)の連続照射を毎日24時間行った。上記以外は通常の方法で、3日間飼育を行った。  In a tank containing 2L of water, 6 fish and shellfish (medaka) affected by tail rot were placed. 10 g each of the polyphenol iron complex capsules of Example 1 and the hydrogen peroxide capsules of Example 6 were added, and the aquarium water and the capsules were replaced with new ones every day. Continuous irradiation with a visible light blue LED (380-500 nm) was performed for 24 hours every day. Except for the above, the animals were bred for 3 days in a normal manner.
 ポリフェノール鉄錯体カプセルと過酸化水素カプセルを添加するだけで、魚介類に障害を与えず、3日間で尾腐れ病が改善した。カプセルから溶出されたポリフェノール鉄錯体と過酸化水素、並びに可視光青色LEDの照射によって、メダカに障害を与えることなく、病原微生物の殺菌が行われたと考えられる。 By simply adding polyphenol iron complex capsules and hydrogen peroxide capsules, tail rot disease improved in 3 days without harming seafood. It is thought that pathogenic microorganisms were sterilized without damaging the medaka by the polyphenol iron complex and hydrogen peroxide eluted from the capsule, and the irradiation of the visible light blue LED.
(実施例10)ポリフェノール鉄錯体カプセルと過酸化水素カプセルを併用した魚介類の飼育及び病気の治療
 実施例2のポリフェノール鉄錯体カプセル及び実施例6の過酸化水素カプセルを併用して、図8に示すように、魚介類の飼育及び治療を行った。
(Example 10) Breeding of seafood and treatment of disease using polyphenol iron complex capsules and hydrogen peroxide capsules together Using the polyphenol iron complex capsules of Example 2 and the hydrogen peroxide capsules of Example 6 together, Seafood was reared and treated as indicated.
 4Lの水が入った水槽に、赤斑病に罹患した魚介類(鉄魚)1匹を入れた。実施例2のポリフェノール鉄錯体カプセル及び実施例6の過酸化水素カプセルを、それぞれ5g/Lずつ添加して、毎日、水槽水と上記カプセルを新しいものに交換した。可視光青色LED(380~500nm)の連続照射を毎日20時間行った。上記以外は通常の方法で、7日間飼育を行った。  In a tank containing 4L of water, one fish (iron fish) with red spot disease was placed. 5 g/L each of the polyphenol iron complex capsules of Example 2 and the hydrogen peroxide capsules of Example 6 were added, and the aquarium water and the capsules were replaced with new ones every day. Continuous irradiation with a visible light blue LED (380-500 nm) was performed for 20 hours every day. Except for the above, the animals were bred for 7 days in a normal manner.
 ポリフェノール鉄錯体カプセルと過酸化水素カプセルを添加するだけで、魚介類に障害を与えず、7日間で赤斑病が改善した。カプセルから溶出されたポリフェノール鉄錯体と過酸化水素、並びに可視光青色LEDの照射によって、鉄魚に障害を与えることなく、病原微生物の殺菌が行われたと考えられる。 By simply adding polyphenol iron complex capsules and hydrogen peroxide capsules, the red spot disease improved in 7 days without harming the seafood. It is thought that pathogenic microorganisms were sterilized without harming the iron fish by the polyphenol iron complex and hydrogen peroxide eluted from the capsule and the irradiation of visible light blue LED.
(実施例11)ポリフェノール鉄錯体カプセルと過酸化水素カプセルを併用した魚介類の飼育及び病気の治療
 実施例3のポリフェノール鉄錯体カプセル及び実施例6の過酸化水素カプセルを併用して、図8に示すように、魚介類の飼育及び治療を行った。
(Example 11) Breeding of seafood and treatment of disease using polyphenol iron complex capsules and hydrogen peroxide capsules together Using the polyphenol iron complex capsules of Example 3 and the hydrogen peroxide capsules of Example 6 together, Seafood was reared and treated as indicated.
 2Lの水が入った水槽に、水カビ病に罹患した魚介類(金魚)1匹を入れた。実施例3のポリフェノール鉄錯体カプセル及び実施例6の過酸化水素カプセルを、それぞれ5g/Lずつ添加して、毎日、水槽水と上記カプセルを新しいものに交換した。可視光青色LED(380~500nm)の連続照射を毎日20時間行った。上記以外は通常の方法で、7日間飼育を行った。  One fish (goldfish) with water mold disease was placed in a tank containing 2L of water. 5 g/L each of the polyphenol iron complex capsules of Example 3 and the hydrogen peroxide capsules of Example 6 were added, and the aquarium water and the capsules were replaced with new ones every day. Continuous irradiation with a visible light blue LED (380-500 nm) was performed for 20 hours every day. Except for the above, the animals were bred for 7 days in a normal manner.
 図9に示すように、ポリフェノール鉄錯体カプセルと過酸化水素カプセルを添加するだけで、魚介類に障害を与えず、7日間で水カビ病が改善した。図9中、(a)は治療前、(b)は治療後、の様子をそれぞれ示す。 As shown in Fig. 9, simply adding the polyphenol iron complex capsules and the hydrogen peroxide capsules did not harm the fish and shellfish, and the water mold disease was improved in 7 days. In FIG. 9, (a) shows the condition before treatment, and (b) shows the condition after treatment.
 これらの結果から、カプセルから溶出されたポリフェノール鉄錯体と過酸化水素、並びに可視光青色LEDの照射によって、金魚に障害を与えることなく、病原微生物の殺菌が行われたと考えられる。 From these results, it is believed that the polyphenol iron complex and hydrogen peroxide eluted from the capsule, as well as the irradiation of the visible light blue LED, sterilized pathogenic microorganisms without harming the goldfish.
(実施例12)ポリフェノール鉄錯体カプセルと可視光応答型多孔質光触媒体を併用した魚介類の飼育 (Example 12) Breeding of fish and shellfish using both polyphenol iron complex capsules and visible-light-responsive porous photocatalysts
 ポリフェノール鉄錯体カプセル及び前記可視光応答型多孔質光触媒体を併用して、図10に示すように、魚介類の飼育を行った。図10中、(a)は多孔質光触媒体、(b)はポリフェノール鉄錯体カプセル、をそれぞれ示す。 Using both the polyphenol iron complex capsule and the visible light-responsive porous photocatalyst, fish and shellfish were bred as shown in FIG. In FIG. 10, (a) shows a porous photocatalyst and (b) shows a polyphenol iron complex capsule, respectively.
(1)多孔質光触媒体の作製
 まず、次のようにして多孔質光触媒体を作製した。過酸化カルシウム(シグマ アルドリッチ社製)15gとホワイトセメント(家庭化学工業社製)10gを混合し、さらに蒸留水20mLを添加して混合した。この混合物を、厚さ30mm程度の小判形に成形した後、50℃で12時間熱風乾燥により乾燥させ、1個の多孔質光触媒体を得た。
(1) Production of porous photocatalyst First, a porous photocatalyst was produced as follows. 15 g of calcium peroxide (manufactured by Sigma-Aldrich) and 10 g of white cement (manufactured by Katei Kagaku Kogyo) were mixed, and 20 mL of distilled water was further added and mixed. This mixture was molded into an oval shape having a thickness of about 30 mm and then dried by hot air drying at 50° C. for 12 hours to obtain one porous photocatalyst.
 得られた多孔質体は、白色で比重が小さく、水面に浮上する。この多孔質体を2個作製
した。
The obtained porous body is white, has a small specific gravity, and floats on the water surface. Two such porous bodies were produced.
(2)ポリフェノール鉄錯体カプセルの作製
 また、次のようにしてポリフェノール鉄錯体カプセルを作製した。まず、ポリフェノール類供給原料としての乾燥させたコーヒー粕10gを、900mLの蒸留水に入れ、これを加圧下で120℃、20分間加熱した。これを濾紙で濾過し、コーヒー粕抽出液とした。当該コーヒー粕抽出液に、塩化鉄(III)8.71g(鉄元素として約3g)を添加し、これに蒸留水を加えて1000mLとし、撹拌することによりポリフェノール鉄錯体溶液を得た。
(2) Preparation of polyphenol iron complex capsules Polyphenol iron complex capsules were prepared as follows. First, 10 g of dried coffee grounds as a polyphenols feedstock was placed in 900 mL of distilled water and heated under pressure at 120° C. for 20 minutes. This was filtered with filter paper to obtain a coffee grounds extract. 8.71 g of iron (III) chloride (about 3 g as iron element) was added to the coffee grounds extract, distilled water was added to make 1000 mL, and the solution was stirred to obtain a polyphenol iron complex solution.
 なお、ここでのポリフェノール類供給原料(乾燥コーヒー粕)と鉄供給原料(塩化鉄(III))との混合比率は、ポリフェノール類供給原料100重量部に対して鉄供給原料が鉄元素として約30重量部の比率となる。 The mixing ratio of the polyphenols feedstock (dried coffee grounds) and the iron feedstock (iron (III) chloride) here is about 30% of the iron feedstock as an iron element per 100 parts by weight of the polyphenols feedstock. It becomes the ratio of parts by weight.
 上記ポリフェノール鉄錯体溶液中には、コーヒー粕から抽出されたポリフェノール類によって、塩化鉄(III)由来の鉄イオンがFe2+の状態でキレート化されてなるポリフェノール鉄錯体が含まれていると考えられる。 It is believed that the polyphenol-iron complex solution contains a polyphenol-iron complex in which iron ions derived from iron chloride (III) are chelated in the form of Fe 2+ by polyphenols extracted from coffee grounds. .
 次に、上記ポリフェノール鉄錯体溶液3mLと、アルギン酸ナトリウム4gと、を300mLの蒸留水に加えて撹拌し、アルギン酸水溶液(液1)を調製した(図5参照)。このアルギン酸水溶液(液1)を、10重量%硫酸カルシウム水溶液(液2)中に、スターラーで撹拌しながら滴下することにより、200gのポリフェノール鉄錯体カプセル(図6参照)を製造した。 Next, 3 mL of the polyphenol iron complex solution and 4 g of sodium alginate were added to 300 mL of distilled water and stirred to prepare an alginic acid aqueous solution (liquid 1) (see FIG. 5). This alginic acid aqueous solution (liquid 1) was dropped into a 10% by weight calcium sulfate aqueous solution (liquid 2) while stirring with a stirrer to produce 200 g of polyphenol iron complex capsules (see FIG. 6).
 得られたカプセルは、直径約5.0mmの球形で、黒褐色を呈していた。黒褐色はコーヒー粕抽出液の色である。当該カプセルには、鉄元素換算で約0.04重量%のポリフェノール鉄錯体が含まれている。製造後のカプセルは、使用時まで蒸留水中で4℃にて保管した。 The obtained capsules were spherical with a diameter of about 5.0 mm and had a dark brown color. Dark brown is the color of the coffee grounds extract. The capsule contains about 0.04% by weight of polyphenol iron complex in terms of elemental iron. The manufactured capsules were stored in distilled water at 4°C until use.
(3)魚介類の飼育試験
 4Lの水が入った水槽を2つ用意し、それぞれの水槽にグッピーを10匹ずつ入れて飼育した。一方の水槽には、上記で作製した多孔質光触媒体2個を浮かべ、上記で作製したポリフェノール鉄錯体カプセルを8g添加したが、もう一方の水槽には多孔質光触媒体とカプセルを添加しなかった(対照区)。どちらの水槽も、可視光LED(470~490nm)の連続照射を毎日8時間行うとともに、エアポンプにて常時酸素を供給した。飼育期間は7日間とした。
(3) Fish and shellfish breeding test Two water tanks containing 4 L of water were prepared, and 10 guppies were put in each tank and bred. In one water tank, two porous photocatalysts prepared above were floated, and 8 g of the polyphenol iron complex capsules prepared above were added, but in the other water tank, neither the porous photocatalyst nor the capsules were added. (Control group). Both water tanks were continuously irradiated with a visible light LED (470 to 490 nm) for 8 hours every day, and constantly supplied with oxygen by an air pump. The breeding period was 7 days.
 飼育期間終了後に、それぞれの水槽から100μLの水を採取し、細菌検出用プレートに塗布して培養し、水槽水中の生菌数を求めた。その結果、多孔質光触媒体とカプセルを併用した水槽では、菌密度が5~56cfu/mLであったのに対し、対照区では2.7×10cfu/mL以上であった。 After the end of the breeding period, 100 μL of water was sampled from each water tank, applied to a bacteria detection plate and cultured, and the number of viable bacteria in the water tank was determined. As a result, the bacteria density was 5 to 56 cfu/mL in the water tank using both the porous photocatalyst and the capsules, whereas it was 2.7×10 6 cfu/mL or more in the control area.
 このことから、多孔質光触媒体とカプセルを添加し、可視光を照射しながら飼育することで、水槽中の雑菌の増殖を抑制できることが示された。したがって、上記の方法により、魚介類の病気の治療及び予防も可能であることが示された。 From this, it was shown that by adding a porous photocatalyst and capsules and breeding while irradiating visible light, the growth of various bacteria in the aquarium can be suppressed. Therefore, it was shown that the above method can also treat and prevent diseases in fish and shellfish.
 また、多孔質光触媒体とポリフェノール鉄錯体カプセルを添加するだけで、魚介類に障害を与えず、飼育を行うことができた。飼育期間中に、魚介類にポリフェノール鉄錯体による障害は見られず、病気の発生もなかった。また、水槽水が汚れにくくなった。 In addition, by simply adding a porous photocatalyst and polyphenol iron complex capsules, it was possible to breed fish and shellfish without causing any damage. During the breeding period, no damage caused by the polyphenol iron complex was observed in the fish and shellfish, and no disease occurred. Also, the water in the tank is less likely to become dirty.
 これらの結果から、多孔質光触媒体から酸素と過酸化水素が供給され、カプセルからポリフェノール鉄錯体が溶出されることで、魚介類にFe2+イオンが供給され、健康増進及び病気の予防及び治療効果が奏されるとともに、フェントン反応が起こってヒドロキシラジカルによる殺菌、殺藻及び水質浄化効果が奏されたものと考えられる。 From these results, oxygen and hydrogen peroxide are supplied from the porous photocatalyst, and the polyphenol iron complex is eluted from the capsule, thereby supplying Fe 2+ ions to the fish and shellfish, and promoting health and preventing and treating diseases. and the Fenton reaction occurred, resulting in sterilization, algicidal and water purification effects by hydroxyl radicals.
 また、可視光LEDを照射することにより、多孔質光触媒体とポリフェノール鉄錯体双方の光触媒活性が発揮され、水槽水の病原微生物を含む菌密度をさらに低下することができたものと考えられる。 In addition, by irradiating the visible light LED, it is believed that the photocatalytic activity of both the porous photocatalyst and the polyphenol iron complex was exhibited, and the density of bacteria including pathogenic microorganisms in the water tank was able to be further reduced.
(実施例13)ポリフェノール鉄錯体カプセルと可視光応答型多孔質光触媒体の併用による殺菌効果
 実施例12と同様にして製造した多孔質光触媒体及びポリフェノール鉄錯体カプセルを併用して、可視光照射による殺菌試験を行った。
(Example 13) Bactericidal effect of combined use of polyphenol iron complex capsules and visible light responsive porous photocatalyst Using the porous photocatalyst and polyphenol iron complex capsules produced in the same manner as in Example 12, visible light irradiation A sterilization test was performed.
 まず、4Lの水が入った水槽を2つ用意した。一方の水槽には、多孔質光触媒体2個を浮かべ、ポリフェノール鉄錯体カプセルを8g添加したが、もう一方の水槽には多孔質光触媒体とカプセルを添加しなかった(対照区)。どちらの水槽も、可視光LED(470~490nm)の連続照射を毎日12時間行うとともに、エアポンプにて常時酸素を供給した。 First, I prepared two water tanks containing 4L of water. Two porous photocatalysts were floated in one of the water tanks, and 8 g of polyphenol iron complex capsules were added thereto, while neither the porous photocatalysts nor the capsules were added to the other water tank (control group). Both water tanks were continuously irradiated with a visible light LED (470-490 nm) for 12 hours every day, and constantly supplied with oxygen by an air pump.
 試験開始から5日後に、それぞれの水槽から100μLの水を採取し、細菌検出用プレートに塗布して培養し、水槽水中の生菌数を求めた。その結果、対照区の水槽には2.2×10cfuの細菌が増殖していたのに対し、多孔質光触媒体とカプセルを併用した水槽では5×10cfu以下であった。このことから、多孔質光触媒体とポリフェノール鉄錯体カプセルを添加し、可視光を照射するだけで、水槽中の病原微生物を含む雑菌の増殖を抑制できることが示された。 Five days after the start of the test, 100 μL of water was sampled from each water tank, applied to a bacteria detection plate and cultured to determine the number of viable bacteria in the water tank. As a result, 2.2×10 5 cfu of bacteria proliferated in the control tank, whereas the number in the tank using both the porous photocatalyst and the capsule was 5×10 2 cfu or less. From this, it was shown that the growth of various bacteria including pathogenic microorganisms in the water tank can be suppressed simply by adding the porous photocatalyst and the polyphenol iron complex capsule and irradiating with visible light.
 多孔質光触媒体からは酸素及び過酸化水素が、ポリフェノール鉄錯体カプセルからはポリフェノール鉄錯体(Fe2+イオン)が、それぞれ水中に溶出されるが、これらは魚介類や環境に対して安全性が高い物質である。また、光触媒反応やフェントン反応により発生するヒドロキシラジカルもすぐに消失し、魚介類の体内に残存する心配はない。したがって、多孔質光触媒体とカプセルを用いた魚介類の飼育又は病気治療方法は、薬液を用いた従来の方法に比べて、魚介類や環境に悪影響を与える心配がない優れた方法であると考えられる。 Oxygen and hydrogen peroxide are eluted from the porous photocatalyst, and polyphenol iron complexes (Fe 2+ ions) are eluted from the polyphenol iron complex capsules into water, and these are highly safe for seafood and the environment. It is matter. In addition, hydroxy radicals generated by photocatalytic reaction and Fenton reaction disappear immediately, and there is no concern that they will remain in the bodies of fish and shellfish. Therefore, it is considered that the method of breeding or treating diseases of fish and shellfish using a porous photocatalyst and a capsule is an excellent method that does not adversely affect fish and shellfish and the environment compared to conventional methods using chemical solutions. be done.
(実施例14)ポリフェノール鉄錯体カプセルの植物栽培用鉄供給剤としての利用
 実施例4のポリフェノール鉄錯体カプセルを緩効性肥料(鉄供給剤)として用いて、図11に示すように、植物の栽培を行った。
(Example 14) Use of polyphenol iron complex capsules as iron supply agent for plant cultivation Using the polyphenol iron complex capsules of Example 4 as a slow-release fertilizer (iron supply agent), as shown in FIG. cultivated.
 ポットの下部に貯水スペースが設けられ、当該貯水スペースとポットとの間に備えられた給水シートを伝って、貯水スペースの水が毛細管現象によりポットに給水されるように構成されている、貯水機能付きポットを用意した。 A water storage space is provided at the bottom of the pot, and water in the water storage space is supplied to the pot by capillary action along a water supply sheet provided between the water storage space and the pot. Prepared a pot with
 この貯水機能付きポットにシクラメンを植え、実施例4のポリフェノール鉄錯体カプセル10gと水200mLを前記貯水スペースに入れて、給水シートを伝って貯水スペースの水が土壌に給水されるようにした。栽培期間は13週間とした。 Cyclamen was planted in this pot with a water storage function, 10 g of the polyphenol iron complex capsules of Example 4 and 200 mL of water were placed in the water storage space, and the water in the water storage space was supplied to the soil along the water supply sheet. The cultivation period was 13 weeks.
 ポリフェノール鉄錯体カプセルを貯水スペースの水に添加するだけで、植物への二価鉄イオン及び微量要素の供給が可能となった。栽培期間中に、鉄欠乏による葉の黄変症状は見られなかった。カプセルからポリフェノール鉄錯体及び微量要素が徐々に溶出されることによって、植物の生育に合わせた施肥が可能となった。 By simply adding polyphenol iron complex capsules to the water in the water storage space, it is possible to supply divalent iron ions and trace elements to plants. No leaf yellowing symptoms due to iron deficiency were observed during the cultivation period. The gradual elution of the polyphenol iron complex and trace elements from the capsules enabled fertilization in accordance with plant growth.
 従来の緩効性肥料には、化成肥料を人工樹脂でコーティングした製品が用いられている。これは肥料成分が徐々に土壌に溶け出すため、効果がゆっくりと数カ月間の長期にわたって持続する。しかし、人工樹脂は分解しにくいため、土壌中に残存し、環境への影響が指摘されている。これに比べて、本実施の形態のポリフェノール鉄錯体カプセルは、天然物質であるアルギン酸、ポリフェノール及び鉄で構成されているため、環境負荷が少ないのが特徴である。 Conventional slow-release fertilizers use chemical fertilizers coated with artificial resin. Since the fertilizer component gradually dissolves into the soil, the effect is slow and lasts for several months. However, since artificial resin is difficult to decompose, it remains in the soil, and it has been pointed out that it affects the environment. In contrast, the polyphenol-iron complex capsule of the present embodiment is composed of natural substances such as alginic acid, polyphenol, and iron, and is characterized by less environmental load.
(実施例15)ポリフェノール鉄錯体カプセルと過酸化水素カプセルの切り花用水の殺菌剤としての利用
 実施例5のポリフェノール鉄錯体カプセル及び実施例6の過酸化水素カプセルを切り花用水の殺菌剤(切り花の鮮度保持剤)として用いて、図12に示すように、切り花を生けた。
(Example 15) Use of polyphenol iron complex capsules and hydrogen peroxide capsules as a disinfectant for water for cut flowers As shown in FIG. 12, cut flowers were arranged.
 2つの透明な花瓶に、それぞれ蒸留水100mL、実施例5のポリフェノール鉄錯体カプセル1g、実施例6の過酸化水素カプセル1gを添加した。それぞれの花瓶に切り花(バラ)を2輪ずつ生けて、一方には花瓶の底から可視光白色LED(380~660nm)の連続照射を毎日12時間行った。花の鮮度を11日間観察した。 100 mL of distilled water, 1 g of polyphenol iron complex capsules of Example 5, and 1 g of hydrogen peroxide capsules of Example 6 were added to two transparent vases, respectively. Two cut flowers (roses) were arranged in each vase, and one of them was continuously irradiated with a visible light white LED (380 to 660 nm) from the bottom of the vase for 12 hours every day. Flower freshness was observed for 11 days.
 さらに、11日後の花瓶の水を100μL採取して、細菌検出用プレートに塗布した。48時間培養後に、細菌の生死を観察した。 Furthermore, 100 μL of the water in the vase after 11 days was collected and applied to the bacteria detection plate. After culturing for 48 hours, the viability of the bacteria was observed.
 その結果、ポリフェノール鉄錯体カプセルと過酸化水素カプセルを水に添加するだけで、切り花の鮮度保持が可能となった。カプセル無添加の対照区では、7日間しか花の鮮度が持たなかった(萎れてしまった)のに対して、ポリフェノール鉄錯体カプセルと過酸化水素カプセルの併用処理区では、LED照射の有無にかかわらず、11日後まで花の鮮度保持が可能であった。 As a result, it was possible to maintain the freshness of cut flowers simply by adding polyphenol iron complex capsules and hydrogen peroxide capsules to water. In the control group without capsules, the freshness of the flowers lasted only 7 days (withered), whereas in the group treated with the polyphenol iron complex capsules and hydrogen peroxide capsules, regardless of the presence or absence of LED irradiation, It was possible to maintain the freshness of the flowers until 11 days later.
 また、図13に示されるように、併用処理区(光照射有)では、11日後の花瓶の水から細菌が検出されなかったのに対して、対照区(カプセル無添加)では細菌が検出された。併用処理区では11日後も殺菌効果が持続していることが示された。図13中、(a)は対照区(カプセル無添加)、(b)は併用処理区(光照射有)、をそれぞれ示す。 In addition, as shown in FIG. 13, in the combined treatment group (with light irradiation), no bacteria were detected from the water in the vase after 11 days, whereas bacteria were detected in the control group (no capsule added). rice field. In the combined treatment group, it was shown that the bactericidal effect persisted even after 11 days. In FIG. 13, (a) shows the control group (no capsule added), and (b) shows the combined treatment group (with light irradiation).
 以上、図面を参照して、本開示の実施の形態及び実施例について詳述してきたが、具体的な構成は、これらに限らず、本開示の要旨を逸脱しない程度の設計的変更は、本開示に含まれる。 The embodiments and examples of the present disclosure have been described in detail above with reference to the drawings. Included in disclosure.
 例えば、前記実施例では、茶葉又はコーヒー粕から抽出したポリフェノール類を用いたポリフェノール鉄錯体を含有するカプセルについて説明したが、これに限定されるものではなく、ブドウ、カカオ、アカシア、杉、サトウキビ、マンゴー、バナナ、パパイア、アボカド、リンゴ、サクランボ、グァバ、オリーブ、イモ類、カキ、桑、ブルーベリー、ポプラ、キク、ヒマワリ、竹といったあらゆる種類の植物体由来のポリフェノール類や、カテキン、タンニン酸、タンニン、クロロゲン酸、カフェイン酸、ネオクロロゲン酸、シアニジン、プロアントシアニジン、テアルビジン、ルチン、フラボノイド、フラボン、カルコン類、キサントフィル、カルノシン酸、エリオシトリン、ノビレチン、タンジェレチン、マグノロール、ホノキオール、エラグ酸、リグナン、クルクミン、クマリン、カテコール、プロシアニジン、テアフラビン、ロズマリン酸、キサントン、ケルセチン、レスベラトロール、没食子酸、フロロタンニンといった化合物としてのポリフェノール類も、本開示のポリフェノール類又はその供給原料として用いることができる。 For example, in the above examples, capsules containing a polyphenol iron complex using polyphenols extracted from tea leaves or coffee grounds were described, but the capsules are not limited to these, and include grapes, cacao, acacia, cedar, sugarcane, Mango, banana, papaya, avocado, apple, cherry, guava, olive, potatoes, oyster, mulberry, blueberry, poplar, chrysanthemum, sunflower, bamboo, polyphenols, catechin, tannic acid, tannin , chlorogenic acid, caffeic acid, neochlorogenic acid, cyanidin, proanthocyanidin, thearubigin, rutin, flavonoids, flavones, chalcones, xanthophyll, carnosic acid, eriocitrin, nobiletin, tangeretin, magnolol, honokiol, ellagic acid, lignans , curcumin, coumarin, catechol, procyanidins, theaflavins, rosmarinic acid, xanthones, quercetin, resveratrol, gallic acid, phlorotannins can also be used as polyphenols of the present disclosure or as a source thereof.
 また、例えば、前記実施例では、多価カチオン溶液中に、ポリフェノール鉄錯体を含有するアルギン酸水溶液を滴下することにより製造された、前記ポリフェノール鉄錯体カプセルについて説明したが、これに限定されるものではなく、ポリフェノール鉄錯体を含有する多価カチオン溶液を、アルギン酸水溶液中に滴下することにより製造された、前記ポリフェノール鉄錯体カプセルについても、本開示に含めることができる。 Further, for example, in the above examples, the polyphenol-iron complex capsules produced by dropping an alginic acid aqueous solution containing a polyphenol-iron complex into a polyvalent cation solution were described, but the present invention is not limited to this. The polyphenol-iron complex capsules produced by dropping a polyvalent cation solution containing a polyphenol-iron complex into an aqueous alginic acid solution can also be included in the present disclosure.
関連出願の相互参照Cross-reference to related applications
 本出願は、2021年2月9日に日本国特許庁に出願された特願2021-019327に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。 This application claims priority based on Japanese Patent Application No. 2021-019327 filed with the Japan Patent Office on February 9, 2021, the entire disclosure of which is fully incorporated herein by reference.

Claims (10)

  1.  ポリフェノール鉄錯体がアルギン酸ゲルに封入されてなる、ポリフェノール鉄錯体カプセル。 A polyphenol iron complex capsule in which a polyphenol iron complex is encapsulated in an alginic acid gel.
  2.  さらに水溶性ビタミン及び/又は微量要素を含有する、請求項1記載のポリフェノール鉄錯体カプセル。 The polyphenol iron complex capsule according to claim 1, further containing water-soluble vitamins and/or trace elements.
  3.  前記ポリフェノール鉄錯体が、ポリフェノール類又はその供給原料と、鉄供給原料と、を、水存在下にて混合することによって得られた反応生成物であって、
     前記ポリフェノール類の供給原料は、ブドウ、コーヒーノキ、チャノキ、カカオ、アカシア、スギ、マツ、シソ、ゆず、レモン、ハーブ類、ドクダミ、マリゴールド、サトウキビ、マンゴー、バナナ、パパイア、アボカド、リンゴ、桜桃、グァバ、オリーブ、イモ類、カキノキ、クワ、ブルーベリー、ポプラ、イチョウ、キク、ヒマワリ、竹からなる群より選ばれた1以上の植物の葉、茎、根、果実のうち1以上の部分であり、
     前記鉄供給原料は、二価鉄化合物、三価鉄化合物、土壌、鉄鉱石、金属鉄からなる群より選ばれた1以上のものであり、
     前記ポリフェノール類又はその供給原料と前記鉄供給原料との混合比率は、前記ポリフェノール類又はその供給原料の乾燥重量100重量部に対して、前記鉄供給原料を、鉄元素の重量換算で0.1重量部以上、100重量部以下となるように混合する比率である、請求項1又は2記載のポリフェノール鉄錯体カプセル。
    The polyphenol iron complex is a reaction product obtained by mixing polyphenols or a feedstock thereof and an iron feedstock in the presence of water,
    Sources of said polyphenols include grapes, coffee trees, tea trees, cacao, acacia, cedar, pine, perilla, yuzu, lemons, herbs, Houttuynia cordata, marigolds, sugarcane, mangoes, bananas, papaya, avocados, apples, cherries, One or more parts of leaves, stems, roots and fruits of one or more plants selected from the group consisting of guava, olive, tubers, persimmon, mulberry, blueberry, poplar, ginkgo biloba, chrysanthemum, sunflower and bamboo,
    The iron feedstock is one or more selected from the group consisting of divalent iron compounds, trivalent iron compounds, soil, iron ore, and metallic iron,
    The mixing ratio of the polyphenols or the feedstock thereof and the iron feedstock is 0.1 in terms of the weight of the iron element per 100 parts by weight of the dry weight of the polyphenols or the feedstock thereof. 3. The polyphenol iron complex capsule according to claim 1 or 2, wherein the mixing ratio is from 100 parts by weight to 100 parts by weight.
  4.  水草、海藻、貝殻、サンゴ又は小石の形状を有する、請求項1~3のいずれか1項記載のポリフェノール鉄錯体カプセル。 The polyphenol iron complex capsule according to any one of claims 1 to 3, which has the shape of aquatic plants, seaweed, shells, corals or pebbles.
  5.  過酸化水素がアルギン酸ゲルに封入されてなる、過酸化水素カプセル。 A hydrogen peroxide capsule in which hydrogen peroxide is encapsulated in alginic acid gel.
  6.  請求項1~4のいずれか1項記載のポリフェノール鉄錯体カプセルと請求項5記載の過酸化水素カプセルとを含有する、フェントン反応キット。 A Fenton reaction kit containing the polyphenol iron complex capsule according to any one of claims 1 to 4 and the hydrogen peroxide capsule according to claim 5.
  7.  請求項1~4のいずれか1項記載のポリフェノール鉄錯体カプセルを用いる、魚介類の飼育又は病気治療方法。 A method for raising fish or shellfish or treating a disease using the polyphenol iron complex capsule according to any one of claims 1 to 4.
  8.  請求項5記載の過酸化水素カプセルを併用する、請求項7記載の魚介類の飼育又は病気治療方法。 The method for breeding or treating diseases of seafood according to claim 7, wherein the hydrogen peroxide capsule according to claim 5 is used in combination.
  9.  紫外線、可視光、赤外線のうち1以上の光を照射する、請求項7又は8記載の魚介類の飼育又は病気治療方法。 The method for rearing or treating diseases of fish and shellfish according to claim 7 or 8, wherein one or more of ultraviolet light, visible light, and infrared light is irradiated.
  10.  アルカリ土類金属の過酸化物がセメントにて固結されてなる可視光応答型多孔質光触媒体を併用する、請求項7~9のいずれか1項記載の魚介類の飼育又は病気治療方法。
     
    10. The method for rearing or treating diseases of fishes and shellfishes according to any one of claims 7 to 9, wherein a visible-light-responsive porous photocatalyst formed by solidifying alkaline earth metal peroxides with cement is also used.
PCT/JP2022/000108 2021-02-09 2022-01-05 Polyphenol-iron complex capsule, hydrogen peroxide capsule, fenton reaction kit, and method for breeding fish and shellfish or treating diseases of fish and shellfish WO2022172649A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021019327A JP2022122169A (en) 2021-02-09 2021-02-09 Polyphenol iron complex capsule, hydrogen peroxide capsule, fenton reaction kit and breeding or disease curing method for seafood
JP2021-019327 2021-02-09

Publications (1)

Publication Number Publication Date
WO2022172649A1 true WO2022172649A1 (en) 2022-08-18

Family

ID=82837645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000108 WO2022172649A1 (en) 2021-02-09 2022-01-05 Polyphenol-iron complex capsule, hydrogen peroxide capsule, fenton reaction kit, and method for breeding fish and shellfish or treating diseases of fish and shellfish

Country Status (2)

Country Link
JP (1) JP2022122169A (en)
WO (1) WO2022172649A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116272993A (en) * 2022-09-09 2023-06-23 南京理工大学 Method for preparing composite multivalent Fenton catalyst by hydrothermal synthesis method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162621A (en) * 2011-02-04 2012-08-30 Osaka Univ Composition for hydrogel and manufacturing method thereof
CN106431704A (en) * 2016-11-01 2017-02-22 马鞍山科邦生态肥有限公司 Efficient lemon fruit fertilizer with addition of tea polyphenol carbon aerogel and preparation method of efficient lemon fruit fertilizer
CN109796252A (en) * 2017-11-16 2019-05-24 丹阳市珥陵镇小潘园土地股份专业合作社 A kind of pea special culture solution
CN111100857A (en) * 2019-12-30 2020-05-05 武汉大学 Quantum dot and enzyme-embedded sodium alginate gel microsphere, preparation method thereof and application thereof in biochemical detection
CN112755963A (en) * 2020-12-15 2021-05-07 生态环境部华南环境科学研究所 Green synthetic magnetic composite nano material, preparation method and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162621A (en) * 2011-02-04 2012-08-30 Osaka Univ Composition for hydrogel and manufacturing method thereof
CN106431704A (en) * 2016-11-01 2017-02-22 马鞍山科邦生态肥有限公司 Efficient lemon fruit fertilizer with addition of tea polyphenol carbon aerogel and preparation method of efficient lemon fruit fertilizer
CN109796252A (en) * 2017-11-16 2019-05-24 丹阳市珥陵镇小潘园土地股份专业合作社 A kind of pea special culture solution
CN111100857A (en) * 2019-12-30 2020-05-05 武汉大学 Quantum dot and enzyme-embedded sodium alginate gel microsphere, preparation method thereof and application thereof in biochemical detection
CN112755963A (en) * 2020-12-15 2021-05-07 生态环境部华南环境科学研究所 Green synthetic magnetic composite nano material, preparation method and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"NMCC Joint Use Research Report Collection", 1 January 2009, NMCC , JP, article SATOSHI HARADA, SHIGERU EHARA, KOICHIRO SERA, KEIZO ISHII, YOSHIHIRO SAITO: "Acceleration of microcapsule rupture by radiation using hydrogen peroxide solution and enhancement of antitumor effect by oxygen effect", pages: 231 - 236, XP009538977 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116272993A (en) * 2022-09-09 2023-06-23 南京理工大学 Method for preparing composite multivalent Fenton catalyst by hydrothermal synthesis method

Also Published As

Publication number Publication date
JP2022122169A (en) 2022-08-22

Similar Documents

Publication Publication Date Title
KR101789359B1 (en) Fenton reaction catalyst produced using reducing organic substance as raw material
CN102858451B (en) Fenton reaction catalyst using coffee grounds or tea dregs as raw material
Arif et al. A review on recent developments in the biosynthesis of silver nanoparticles and its biomedical applications
JP6478209B2 (en) Photocatalyst using reducing organic substances
JP6340657B2 (en) Photocatalyst using reducing organic substances
JP6931752B2 (en) Environmental purification tools and applications using tennis balls
CN104311335B (en) Have soil-repairing agent and the preparation technology of process heavy metal contamination and getting fat effect concurrently
CN104365696A (en) Chinese herbal medicinal disinfectant for breeding industry
CN104472603A (en) Natural water body bactericide and preparation method thereof
JP2017225964A5 (en)
CN102726613B (en) Electriferous nutrient solution and application method thereof, and preparation containing nutrient solution
WO2022172649A1 (en) Polyphenol-iron complex capsule, hydrogen peroxide capsule, fenton reaction kit, and method for breeding fish and shellfish or treating diseases of fish and shellfish
CN106219705B (en) A kind of pure natural flocculant and preparation method thereof changed for aquaculture pond bottom
KR20110114269A (en) Coating paper fertilizer
JP2004049148A (en) Treating agent for food or the like
JP7465388B2 (en) How to make natural hot spring concentrate
JP6057227B2 (en) Fenton reaction catalyst made from reducing organic materials
WO2022172688A1 (en) Visible-light-responsive porous photocatalyst body, method for producing same, and use of same
KR101006699B1 (en) The manufacture method of the none toxic fungicide of natural material add to photocatalyst
JP6179957B2 (en) Fenton reaction catalyst made from reducing organic materials
WO2022185706A1 (en) Radical-generating composition, sterilizing composition, and organic substance-decomposing composition
WO2023127055A1 (en) Concentrated natural hot spring water and method for producing same
KR102497005B1 (en) Mineral nano liquid fertilizer for growing sprout crops and manufacturing method thereof
JP2017080741A (en) Fenton reaction catalyst using reducing organic matter as raw material
WO2022168519A1 (en) Photocatalyst composition, method for producing same, and deodorizing agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752482

Country of ref document: EP

Kind code of ref document: A1