WO2022168519A1 - Photocatalyst composition, method for producing same, and deodorizing agent - Google Patents

Photocatalyst composition, method for producing same, and deodorizing agent Download PDF

Info

Publication number
WO2022168519A1
WO2022168519A1 PCT/JP2022/000093 JP2022000093W WO2022168519A1 WO 2022168519 A1 WO2022168519 A1 WO 2022168519A1 JP 2022000093 W JP2022000093 W JP 2022000093W WO 2022168519 A1 WO2022168519 A1 WO 2022168519A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
photocatalyst composition
feedstock
weight
photocatalyst
Prior art date
Application number
PCT/JP2022/000093
Other languages
French (fr)
Japanese (ja)
Inventor
森川クラウジオ健治
Original Assignee
国立研究開発法人農業・食品産業技術総合研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人農業・食品産業技術総合研究機構 filed Critical 国立研究開発法人農業・食品産業技術総合研究機構
Priority to JP2022579395A priority Critical patent/JPWO2022168519A1/ja
Publication of WO2022168519A1 publication Critical patent/WO2022168519A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/26Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by irradiation without heating

Definitions

  • the present disclosure relates to a photocatalyst composition exhibiting photocatalytic activity with respect to visible light, a method for producing the same, and a deodorant.
  • tungsten and indium exhibit photocatalytic activity.
  • vanadium, silver, molybdenum, zinc, gallium phosphide, gallium, arsenic and other metal compounds are known.
  • most of these metal compounds are very expensive and highly toxic, so they have not been put to practical use, and at the present stage, only titanium oxide is put into practical use as a photocatalyst.
  • these metal compounds are substances that exhibit photocatalytic activity only at ultraviolet wavelengths of 400 nm or less, they can be used for sterilization and decomposition in living spaces where only visible light such as fluorescent lights can be used. are not suitable and have limited use.
  • Patent Document 1 Japanese Patent No. 6340657
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2011-241138
  • Patent Document 3 Japanese Unexamined Patent Application Publication No. 2015-16 7871 Gazette Overview of the invention
  • the present invention solves the above problems, can be used for organic matter decomposition or sterilization, is not limited to usage scenes, can suppress the effects on the human body and the environment, and has a wide range of wavelengths including visible light.
  • An object of the present invention is to inexpensively provide a photocatalyst composition exhibiting excellent photocatalytic activity to light. Means to solve problems
  • the polyphenol-iron complex obtained by mixing in the presence of water exhibits photocatalytic activity against not only ultraviolet light but also visible light and infrared light.
  • the inventors thought that by bonding carbon and divalent iron in the polyphenol-iron complex, the stability of the polyphenol-iron complex could be enhanced and a stable photocatalyst could be obtained.
  • a glass was produced using polyphenols and an iron supply source, it was found that excellent photocatalytic activity could be maintained and stability as a photocatalyst could be enhanced.
  • the photocatalyst composition according to the present disclosure is a photocatalyst composition that exhibits catalytic activity with visible light, and includes a reducing organic substance that has the action of reducing trivalent iron to divalent iron, an iron supply raw material, and a glass material.
  • the reducing organic matter contains at least one of polyphenols and ascorbic acid; and the iron feedstock contains at least one of divalent iron compound and trivalent iron compound.
  • the deodorant according to the present disclosure contains the photocatalyst composition that exhibits catalytic activity with visible light as described above.
  • a method for producing a photocatalyst composition according to the present disclosure is a method for producing a photocatalyst composition that exhibits catalytic activity with visible light as described above, and has an action of reducing trivalent iron to divalent iron.
  • the photocatalyst composition of the present disclosure has the property of exhibiting activity when irradiated with not only ultraviolet light but also visible light and infrared light, so it can be used in ordinary indoor spaces.
  • polyphenols and ascorbic acid are used as iron-reducing organic substances as raw materials, so it can suppress the effects on the human body and the environment.
  • the photocatalyst composition of the present disclosure can be used in various applications in which conventional titanium oxide was difficult to use.
  • a photocatalyst composition that can be used for decomposition or sterilization of organic matter, is not limited to usage situations, can suppress the effects on the human body and the environment, and exhibits excellent photocatalytic activity with respect to a wide range of wavelengths including visible light. can be provided at low cost.
  • FIG. 1 A flow chart showing an example of a process for producing a photocatalyst composition according to the present embodiment.
  • FIG. 2 A photographic image diagram for explaining the photocatalyst composition of Example 1, (a) showing a photographic image diagram of the photocatalyst composition (plate glass) of Example 1 before pulverization, (b) powder 1 shows a photographic image of the photocatalyst composition (powder glass) of Example 1 after pulverization, and (C) is a photographic image of the photocatalyst composition of Example 1 after pulverization of (b) dyed with dipyridyl. indicates
  • FIG. 3 Spectrum distribution of white LED light used in the experimental example.
  • Fig. 4 is a diagram for explaining the effect of decomposing harmful substances by a photocatalyst composition when irradiated with white LED light, (a) showing a graph showing the results of a verification experiment of the decomposition effect, (b) (c) shows a photographic image of the solution of the control group using titanium oxide, and (c) shows a photographic image of the solution of the photocatalyst composition of Example 1 irradiated with white LED light.
  • FIG. 5 A photographic image for explaining the effect of decomposing harmful substances by a photocatalyst composition when irradiated with ultraviolet rays.
  • 1 shows a photographic image of the solution in the ultraviolet irradiation section using the photocatalyst composition of Example 1
  • (c) shows a photographic image of the solution in the titanium oxide section using titanium oxide.
  • FIG. 6 A photographic image for explaining the effect of decomposing harmful substances by a photocatalyst composition when irradiated with ultraviolet rays.
  • b) shows a photographic image of the solution in the titanium oxide section using titanium oxide, and
  • ⁇ ) shows a photographic image of the solution in the near-infrared irradiation section using the photocatalyst composition of Example 1.
  • Fig. 7 is a photographic image for explaining the effect of sterilizing E. coli by the photocatalyst composition of Example 1, (a) showing a photographic image of the control group "light irradiation only treatment group”, ( b) shows a photographic image of the “dark condition section” using the photocatalyst composition, which is the control section, and ( ⁇ ) shows a photographic image of the “white LED light irradiation section” using the photocatalyst composition.
  • FIG. 8 A diagram for explaining the bactericidal effect of E. coli by the photocatalyst composition of Example 1.
  • (a) shows the survival of E. coli in the "dark condition section" using the photocatalyst composition, which is a control group. The determination results are shown, and
  • (b) shows the determination results of life and death of E. coli in the "white LED light irradiation area" using the photocatalyst composition.
  • FIG. 9 A diagram for explaining the bactericidal effect of the photocatalyst composition of Example 1 against bacterial wilt disease.
  • (b) shows the results of determining whether bacteria are alive or dead, and
  • (b) shows a “white LED light irradiation using a photocatalyst composition. The results of life-and-death determination of bacterial wilt fungus in the ward are shown.
  • Fig. 10 is a diagram showing the results of a radical species identification experiment by luminol reaction of the photocatalyst composition of Example 1.
  • FIG. 11 is a diagram showing the results of a superoxide radical identification experiment using the MPEC reagent of the photocatalyst composition of Example 1.
  • Fig. 12 is a diagram showing the measurement results of the ESR spectrum obtained by irradiating the photocatalyst composition of Example 1 with ultraviolet LED light.
  • Fig. 13 is a diagram showing the results of ESR analysis by irradiating the photocatalyst composition of Example 1 with white LED light (visible light irradiation).
  • Fig. 14 is a photographic image for explaining the effect of preserving the freshness of cut flowers (camellia) by the photocatalyst composition of Example 2, where (a) is a photographic image showing the state of irradiation with white LED light. , and (b) shows a photographic image of the light irradiation section 10 days after the start of the experiment,
  • (O) shows a photographic image of the control group 10 days after the start of the experiment.
  • Fig. 15 is a photographic image for explaining the effect of preserving the freshness of other different cut flowers (Saponaria baccaria) by the photocatalyst composition of Example 2.
  • (a) is the area irradiated with white LED light at the start of the experiment. and
  • (b) are photographic images of the control plot, and
  • (b) is a photographic image of the white LED light irradiation plot and the control plot three days after the start of the experiment.
  • Fig. 16 is a photographic image diagram for explaining the seed sterilization effect of the photocatalyst composition of Example 2, (a) showing a photographic image diagram of the control group 7 days after the start of the experiment, and (b) showing a photographic image diagram. A photographic image of the light-irradiated section 7 days after the start of the experiment is shown.
  • Fig. 17 is a photographic image for explaining the seed sterilization effect (bacteria sterilization effect) of the photocatalyst composition of Example 2, where (a) is a photograph of the growth state of chickpeas in the control plot. (b) shows a photographic image of the breeding state of various bacteria in chickpeas irradiated with ultraviolet LED light.
  • FIG. 18 A diagram showing the extraction process of silica from diatoms in Examples 5 and 6.
  • Fig. 19 is a diagram for explaining the effect of decomposing harmful substances by the photocatalyst composition of Example 5, (a) showing a graph showing the results of a verification experiment of the decomposition effect, (b) shows photographic images of the solutions in the LED light irradiation area and the control area 4 hours after the start of the experiment.
  • 20 is a diagram for explaining the effect of decomposing harmful substances by the photocatalyst composition of Example 6, (a) showing a graph showing the results of an experiment to prove the decomposition effect, and (b) from the start of the experiment. Shown are photographic images of the solutions in the LED light irradiation area and the control area after 4 hours.
  • the photocatalyst composition according to the present embodiment is a photocatalyst composition that exhibits catalytic activity under visible light, and comprises a reducing organic substance that has the action of reducing trivalent iron to divalent iron, and an iron supply raw material. and containing a glass material.
  • the photocatalytic composition of the present embodiment is preferably photocatalytic glass or photocatalytic glass-ceramics.
  • the iron feedstock contains at least one of a divalent iron compound and a trivalent iron compound
  • the reducing organic substance is at least one of polyphenols and ascorbic acid.
  • the photocatalyst composition of the present embodiment uses "a reducing organic substance having an action of reducing trivalent iron to divalent iron” as a raw material for supplying carbon.
  • this "reducing organic substance having the action of reducing trivalent iron to divalent iron” may be referred to as “reducing organic substance having iron-reducing ability” or simply "reducing organic substance”.
  • the reducing organic substance include ascorbic acid and polyphenols.
  • the plant body or its processed product may contain a large amount of reducing organic matter having iron-reducing ability, and can be suitably used as the reducing organic matter.
  • ascorbic acid not only free acid of ascorbic acid but also ascorbic acid compounds (potassium ascorbate, sodium ascorbate, etc.) can be used.
  • Polyphenols is a general term for phenolic molecules having multiple hydroxy groups. “Polyphenols” are compounds contained in most plants. It is a substance, and various types such as flavonoids and phenolic acids are known. Specific examples of polyphenol compounds include catechin (epicatechin, epigallocatechin, epicatechin gallate, epigallocatechin gallate, etc.), tannic acid, tannin, chlorogenic acid, caffeic acid, neochlorogenic acid, cyanidin, Proanthocyanidins, thearubigins, rutin, flavonoids (quercitrin, anthocyanins, flavanones, flavanols, flavonols, isoflavones, etc.), flavones, chalcones (naringenin chalcone, etc.), xanthophylls, carnosic acid, eriocitrin, nobiletin, Tangeretin, magnolol,
  • a polyphenol composition extracted from a certain fruit is sometimes called a polyphenol with the name of the fruit.
  • polyphenol compositions extracted from grape berries are referred to as grape polyphenols.
  • Feedstock of reducing organic matter a plant containing at least one of polyphenols and ascorbic acid or a processed product thereof can be used as a feedstock of reducing organic matter.
  • the plant body include those derived from one or more selected from fruits, seeds, foliage, buds, flowers, roots, and rhizomes.
  • Plant materials containing a large amount of ascorbic acid include, for example, tomatoes, green peppers, red peppers, winter melons, bitter melons, zucchini, cucumbers, green peas, pumpkins, eggplants, green peas, broad beans, green soybeans, okra, acerola, and citrus fruits.
  • Plant raw materials containing a large amount of polyphenols include, for example, herbs (lavender, mint, coriander, cumin, sage, lemongrass, mugwort, comfrey, perilla, lemon balm, oregano, coconut nip, common thyme , dill, dark opal, basil, hyssop, peppermint, lamb's ear, etc.), houttuynia cordata, marigold, grape, coffee (coffee tree), tea (tea tree), cacao, acacia, cedar, mat, sugarcane, mango, banana, papaya, avocados, apples, cherries (cherry peaches), guavas, olives, potatoes (sweet potatoes, purple potatoes (sweet potatoes containing a lot of purple pigment), potatoes, yams, taro (taro, shrimp, etc.), konjac potatoes, etc.), persimmons (persimmon), mulberry, blueberry, poplar,
  • Yerba mate manhirugi, hirugi, Yaeyama hirugi, pomegranate, nipa palm, mangrove mangrove, mandarin orange, sakishimasu, burdock, turmeric, lotus root, seaweed (seaweed, wakame seaweed, kelp, sea lettuce, arame, sargassum, etc.).
  • grapes coffee (coffee tree), tea (tea), cacao, acacia, cedar, mat, yuzu, lemon, herbs (lavender, mint, coriander, cumin, sage, perilla, lemongrass, Mugwort, Comfrey, Lemon Balm, Oregano, Cat Tonip, Common Thyme, Dill
  • Houttuynia cordata marigolds, sugar cane, mangoes, bananas, papaya, avocados, apples, cherries (cherries), guava, olives, potatoes (sweet potatoes, purple potatoes (sweet potatoes containing a lot of purple pigment), potatoes, yams
  • Taro Taro (taro, shrimp, etc.), konjac, etc.), persimmon, mulberry, blueberry, poplar, ginkgo, chrysanthemum, sunflower, and bamboo are preferably used.
  • Processed products include dried plants, juices, extracts, extracts and the like containing polyphenols and ascorbic acid. In addition, the squeezed juice or the extract may be further dried.
  • water is suitable for ascorbic acid, and water, hot water, alcohol (especially ethanol), hydrous alcohol (especially hydrous alcohol) is suitable for polyphenols. ethanol) is preferred.
  • the residue remaining after extracting the plant body or its processed product with water or hot water can also be suitably used.
  • a dry distillation solution obtained by thermally decomposing a plant or its processed product in a reducing state can also be preferably used.
  • (a) Fruit Squeezed Liquid As the raw material for supplying the reducing organic matter, it is preferable to use a "fruit squeezed liquid". As the type of fruit used for squeezing the fruit juice, the above-mentioned fruit can be preferably used. In particular, those having a large total polyphenol content are preferable in terms of their potency. In addition, from the viewpoint of raw material costs, it is preferable to use squeezed juices of grapes, bananas, apples, persimmons, tomatoes, citrus fruits, and the like.
  • (b) Squeezed juice of stems and leaves It is preferable to use "squeezed juice of stems and leaves" as the feedstock of the reducing organic matter.
  • the foliage of the plant body described above can be preferably used. In particular, those with a large amount of total polyphenols are preferred in terms of potency. suitable.
  • Plant Dry Distillate [0030] As the feedstock for the reducing organic matter, it is preferable to use a "plant dry distillation solution". In addition to containing a large amount of polyphenols, the raw material contains many molecules of reducing organic substances such as phenols, organic acids, carbonyls, alcohols, amines, basic components, and other neutral components. Presumed to be included.
  • the plant dry distillation solution refers to a dry distillation solution (sticky brown liquid) obtained by thermally decomposing a reduced plant body. Appearance is reddish brown to dark brown.
  • the undiluted solution can be used as it is, but it can also be used as a concentrated solution, a diluted solution, or a dried product thereof.
  • Specific examples of the dry distillation of the plant include wood vinegar, bamboo vinegar, rice vinegar, and the like. These can be preferably used from the viewpoint of raw material cost.
  • roasted coffee beans It is preferable to use raw materials derived from "roasted coffee beans" as the feedstock for the reducing organic matter.
  • This raw material contains a very large amount of polyphenols.
  • the roasted coffee beans can be used as they are or after being pulverized.
  • a component obtained by extracting the pulverized product with water or hot water can be used.
  • the residue after extraction with water or hot water can be used.
  • the roasted coffee beans include any roasted coffee beans according to a normal method.
  • the state of so-called ground (crushed) coffee beans is also included here.
  • coffee beans include Coffea arab i ca (Arabica), C. canephora (Robusta), C. L i ber i ca (Libera).
  • Velica species seeds can be used.
  • fresh coffee beans may be used, dried and preserved coffee beans that are commonly used are preferred.
  • the roasting can be any method commonly used, for example, direct fire roasting, hot air roasting, far infrared ray roasting, microwave roasting, heated steam roasting, low temperature roasting, etc. can be mentioned.
  • pulverization is, for example, a state in which normal coffee beans are ground by a coffee mill, a grinder, a millstone, etc., and includes a wide range of grounds from coarse ground to powdered. Considering the efficiency of reaction with iron, it is preferable to have a state with a large surface area, so it is preferable to crush, pulverize, powderize, or the like.
  • tea leaves As the feedstock for the reducing organic matter, it is preferable to use a material derived from "tea leaves". This raw material contains a very large amount of polyphenols.
  • the tea leaves can be used as they are or after being pulverized.
  • a component obtained by extracting the pulverized product with water or hot water can be used.
  • the residue after extraction with water or hot water can be used.
  • any leaf can be used as long as it is obtained by picking the stems and leaves of Camellia sinensis, which is a tea tree. Any picking method may be used, but mechanical picking is particularly preferable from the viewpoint of cost.
  • tea leaves at any stage of fermentation can be used, although plucked tea leaves are mixed with cell contents and oxidized and fermented.
  • green tea that has been heated to suppress oxidative fermentation (sencha, sayha, stem tea, hojicha, etc.), green tea that has been fermented to some extent (oolong tea, etc.), black tea that has been fermented completely, and koji mold fermentation after oxidative fermentation.
  • Black tea (such as pu-erh tea), etc.
  • Green tea, black tea, and oolong tea are preferred.
  • the raw material Industrially it is preferable to use non-standard tea leaves from the standpoint of the strike.
  • it is preferable to have a large surface area so it is preferable to use it after crushing, pulverizing, pulverizing, or the like.
  • a reducing gas can be used as a raw material for supplying carbon.
  • the reducing gas include carbon monoxide (Co), hydrocarbon gases (hydrogen (H2), methane (CHQ, propane ( C3HQ , butane ( C4H10 ), etc.), and the like.
  • CO carbon monoxide
  • H2 hydrocarbon gases
  • CHQ methane
  • propane propane
  • C3HQ propane
  • butane C4H10
  • the photocatalyst composition of the present embodiment contains at least one of a divalent iron feedstock and a trivalent iron feedstock as a feedstock for supplying elemental iron.
  • a raw material for supplying the iron element a raw material for supplying metallic iron can also be used.
  • a plurality of substances can be mixed and used.
  • the "ferric compound (supply material of divalent iron)” includes iron chloride (IDs iron nitrate (II), iron sulfate (IDs iron hydroxide (II), iron oxide (II), iron (II) acetate, iron lactate (IDs iron chloride (IDs iron nitrate (II), iron sulfate (IDs iron hydroxide (II), iron oxide (II), iron (II) acetate, iron lactate (IDs iron chloride (IDs iron nitrate (II), iron sulfate (IDs iron hydroxide (II), iron oxide (II), iron (II) acetate, iron lactate (IDs iron chloride (IDs iron nitrate (II), iron sulfate (IDs iron hydroxide (II), iron oxide (II), iron (II) acetate, iron lactate (IDs iron chloride (IDs iron nitrate (II), iron sulfate (IDs iron hydro
  • water-soluble iron compounds such as sodium iron (II) citrate and iron (II) gluconate
  • insoluble divalent iron compounds such as iron (II) carbonate and iron (II) fumarate.
  • water-soluble trivalent iron compounds such as ammonium iron (III) citrate, iron (III) EDTA; iron oxide (Ill)s iron nitrate (Ill)s iron hydroxide (Ill)s iron pyrophosphate
  • Insoluble trivalent iron compounds such as (III) can be mentioned.
  • Natural raw materials containing a large amount of these trivalent iron compounds include Akadama soil, Kanuma soil, loam (soil containing a lot of allophane iron), laterite (iron oxide (II).
  • the "supply material of metallic iron” includes iron materials such as smelted iron and alloys.
  • gold rust can also be used as a “supply material for metallic iron”.
  • iron feedstock a reaction product obtained by mixing a reducing organic substance having iron-reducing ability or a feedstock thereof with an iron feedstock in the presence of water is used.
  • an "iron feedstock” a polyphenol or its feedstock and an iron feedstock are mixed in the presence of water, and the resulting polyphenol iron complex (ferric ion ( Fe 2+) forming a complex structure with polyphenols) is preferably mentioned.
  • iron feedstock Even if the above iron feedstock is water-insoluble, it can be used directly as an iron feedstock because it is water-soluble due to the chelating ability of the reducing organic matter. Also, an aqueous solution containing divalent iron ions and/or trivalent iron ions in which the iron compound is dissolved in water can be used.
  • iron feedstocks it is preferable to use a water-soluble divalent iron compound or trivalent iron compound in order to efficiently produce a photocatalyst composition.
  • a water-soluble divalent iron compound or trivalent iron compound it is preferable to use inexpensive iron chloride, iron sulfate, or the like.
  • inexpensive iron chloride, iron sulfate, or the like it is preferable to use natural soil (especially Akadama soil, Kanuma soil, loam, etc.) and metallic iron as iron supply raw materials. .
  • the photocatalyst composition of the present embodiment contains a raw material for supplying silicon (silicon feed raw material) as a glass material.
  • a raw material for supplying silicon silicon feed raw material
  • the glass material it is possible to use known glass materials that are commonly used in the production of glass and ceramics.
  • materials commonly used for manufacturing silicate glass silicate glass (soda lime glass, borosilicate glass, quartz glass, lead glass, etc.) can be used.
  • silicate glass silicate glass
  • quartz glass quartz glass, lead glass, etc.
  • the "silicon feedstock” includes plants selected from grasses, ferns, and algae, and processed products of such plants.
  • the gramineous plants include rice, rush, sugar cane, rush, bamboo, wheat, barley, corn, oat, turfgrass, sorghum, rye, foxtail millet, elephant grass, pampas grass, bamboo grass, and the like.
  • Examples of fern plants include horsetail and horsetail.
  • Examples of algae include diatoms (especially Chaetoceros).
  • Processesed products include dried products of the above-described silicon-containing plant bodies, juices, extracts, extracts, dried products of squeezed juices and extracts, and the like.
  • the dried matter, juice, extract, and liquid extract can be obtained by the same treatments as those of the above-described reducing organic matter.
  • silicate, silicon, silicon dioxide (silica), silicon chloride, silica sand, glass (recycled glass), etc. can be used as "silicon feedstock”. can. It is also preferable to use a combination of these silicon feedstocks.
  • Glass materials other than silicon feedstocks include, for example, boron, boron oxide, sodium borate (particularly sodium tetraborate), soda ash, anhydrous sodium carbonate, limestone, calcium carbonate, potassium carbonate, and the like.
  • soda ash anhydrous sodium carbonate
  • limestone limestone
  • calcium carbonate calcium carbonate
  • potassium carbonate and the like.
  • stabilizers and coloring materials for enhancing decorativeness and the like can be added to these glass materials.
  • the mixing ratio of the reducing organic matter and the iron feedstock is as follows: 0.1 part by weight of the iron feedstock in terms of the weight of the iron element per 100 parts by weight of the dry weight of the reducing organic matter or the feedstock of the reducing organic matter. Above, preferably 0.5 parts by weight or more, more preferably 1 part by weight or more, still more preferably 2 parts by weight It may be blended so as to contain at least 3 parts by weight, particularly preferably at least 3 parts by weight, and more preferably at least 4 parts by weight. If the ratio of iron element is too low (the mixing ratio of reducing organic matter to iron element is too high), the excess reducing organic matter functions as a radical scavenging substance (scavenger), resulting in photocatalytic activity. ⁇
  • the upper limit of the amount of iron element is 10 parts by weight or less, preferably 8 parts by weight or less, and more preferably 6 parts by weight or less in terms of the weight of iron element. If the ratio of the iron element is too high (the mixing ratio of the reducing organic substance is too low relative to the iron element), the iron ions cannot be maintained in a bivalent state, resulting in a decrease in photocatalytic activity, which is not preferable.
  • the silicon feedstock in terms of the weight of the element per 100 parts by weight in total of the feedstock of the reducible organic matter (dry weight) and the iron feedstock. is 50 parts by weight or more, more preferably 60 parts by weight or more, and particularly preferably 90 parts by weight or more. If the ratio of the silicon element is too low (the mixing ratio of the reducing organic substance is too high with respect to the silicon element), glass-ceramics will not be formed, which is not desirable.
  • the upper limit of the amount of silicon element is 99 parts by weight or less, preferably 60 parts by weight or less, and more preferably 30 parts by weight or less in terms of the weight of silicon element. If the proportion of the silicon element is too high (the mixing proportion of the reducing organic substance is too low relative to the silicon element), glass-ceramics will not be formed, which is not preferable.
  • the silicon feedstock (dry weight) is preferably 100 parts by weight or more with respect to a total of 100 parts by weight of the reducing organic substance or the feedstock of the reducing organic substance (dry weight) and the iron feedstock. , more preferably 200 parts by weight or more, more preferably about 300 parts by weight.
  • dry tea leaves are used as a feedstock of reducing organic matter, and an extract obtained by hot water extraction of the tea leaves is reacted with an iron feedstock.
  • the weight of the dry tea leaves is used as the "dry weight of the reducing organic feedstock" to calculate the mixing ratio with the iron feedstock.
  • the inventors mixed a reducing organic substance as a photocatalyst with an iron feedstock in the presence of water, and obtained a reaction product, more specifically, polyphenols and , developed a polyphenol iron complex obtained by mixing with an iron feedstock in the presence of water.
  • this polyphenol iron complex exhibits a photocatalytic effect against visible light, its stability (sustainability) is a problem.
  • the inventors considered that the carbon in the polyphenol iron complex receives electrons from the light and transfers them to the divalent iron, thereby stabilizing the divalent iron in that state.
  • a reducing organic substance having an action of reducing trivalent iron to divalent iron, an iron feedstock, and a glass material are used.
  • a step (heating step) of heat-treating the mixed mixture in a reducing atmosphere at a heating temperature of 900° C. or higher for a heating time of 12 minutes or longer is included. This heating process (more specifically, the reduction firing process
  • the heating temperature may be 90°C or higher, but 120°C or higher. A temperature of 0°C or less is more preferable.
  • the heating time may be 12 minutes or longer, more preferably 12 minutes or longer and 12 hours or shorter, and even more preferably 12 minutes or longer and 3 hours or shorter. The heating temperature should be about 20 minutes (0.33 hours) in consideration of the molten state and work efficiency.
  • the raw material is melted more appropriately, crystallization is promoted, and the quality as glass is improved, and the bonding between carbon and ferrous iron is improved. As a result, a photocatalyst composition having more stable photocatalytic activity can be obtained.
  • the heating step can be performed in a reducing atmosphere to enhance the effect of reducing trivalent iron, which is a reducible organic substance, to divalent iron.
  • reducing trivalent iron which is a reducible organic substance
  • the reducing organic matter is carbonized to generate carbon dioxide, and the heating process can be performed in a reducing atmosphere. The action can be made more appropriate.
  • the mixing step is a step of charging a glass material containing a predetermined mixing ratio of a reducible organic substance, an iron feedstock, and a silicon feedstock into a container such as a crucible and mixing them.
  • the cooling step is a step of appropriately cooling and vitrifying the melt obtained in the heating step. This cooling step vitrifies the melt to produce a photocatalyst composition composed of glass or glass-ceramics. Through this cooling step, plate-like or block-like glass or glass-ceramics (hereinafter referred to as "plate glass” or "glass block”) are obtained.
  • This plate glass or glass lump can be used as a photocatalyst composition as it is, or can be divided into appropriate sizes and used as a photocatalyst composition.
  • a bond (reaction product) of carbon and ferrous iron having photocatalytic activity is scattered inside and on the surface, and a photocatalytic reaction is caused by the reaction product on the surface of the photocatalyst composition. occurs.
  • a photocatalytic reaction occurs due to the reaction products present on the newly exposed surface, so excellent photocatalytic activity can be maintained.
  • a pulverized product obtained by pulverizing a plate glass or a glass lump by a pulverizing process can also be used as a photocatalyst composition.
  • a plate glass or a lump of glass is manually pulverized using a hammer, mortar, or the like, or by using a device such as a pulverizer or a bead mill to obtain a pulverized product.
  • Examples of the form of the pulverized product include beads, granules, and powder.
  • the photocatalyst composition pulverized in this way the increased surface area increases the contact with organic substances to be decomposed and microorganisms to be sterilized, and the photocatalytic activity can be further improved.
  • FIG. 1 is a flow chart showing a preferred example of the process for producing the photocatalyst composition of the present embodiment.
  • the photocatalyst composition of the present embodiment includes a mixing step, a heating step, a cooling step, and a pulverizing step, but may include other steps necessary for glass production.
  • the form of the photocatalyst composition of the present embodiment may be plate glass, glass lumps, beads, granules, or pulverized powder. can do. Also, multiple forms of the photocatalyst composition can be used in combination.
  • the shape of the photocatalyst composition of the present embodiment is preferably a quadrangle, but may include a triangle, a polygon with pentagons or more, a circle, an oval, a star, and a heart. , and other shapes that enhance decorativeness and taste.
  • the size (outer diameter) is preferably 1 mm or more and 50 mm or less.
  • spherical, spheroidal, columnar, prismatic, conical, and pyramidal shapes may be mentioned, but irregular shapes may also be used.
  • the size is preferably 1 mm or more and 50 mm or less.
  • the shape is not particularly limited, and the size (particle diameter) is preferably an average particle diameter of 0.1 mm or more and 5 mm or less.
  • average particle size refers to the particle size at an integrated value of 50% in the particle size distribution obtained by the laser diffraction/scattering method.
  • the photocatalytic composition of the present embodiment produced by the above production method has excellent photocatalytic activity and excellent stability capable of maintaining this excellent photocatalytic activity for a long period of time.
  • this photocatalyst composition it is presumed that the carbon derived from the reducing organic substance makes the iron ion into a divalent state (Fe2+ state) to form a complex. again, It is speculated that silicon in the silicon feedstock enhances the bonding between carbon and iron and increases the stability as a photocatalyst.
  • the photocatalyst composition of the present embodiment absorbs sunlight and light in a wide wavelength range of 200 to 1400 nm, that is, when irradiated with not only ultraviolet light but also visible light and infrared light. It has the property of exhibiting excellent photocatalytic activity.
  • visible light J refers to light with a wavelength of 380 to 750 nm, which is the wavelength range visible to the human eye.
  • visible light includes 380 nm to 450 nm (violet light), blue light), 495 nm to 570 nm (green light), 570 nm to 590 nm (yellow light), 590 nm to 620 nm (orange light), and 620 nm to 750 nm (red light).
  • infrared refers to light in a wavelength range of 750 nm or more.
  • this photocatalytic composition exhibits extremely strong photocatalytic activity (bactericidal action) when irradiated with ultraviolet rays.
  • the strength of its activity in light with a wavelength of 200 nm to 380 nm, which is near-ultraviolet shows far greater photocatalytic activity than that of titanium oxide.
  • the photocatalytic composition of the present embodiment exhibits strong photocatalytic activity even when irradiated with visible light and infrared light, which are wavelength regions in which titanium oxide does not exhibit activity.
  • This photocatalyst composition exhibits strong activity in the wavelength region of violet light to blue light (380 to 495 nm), which has a particularly short wavelength, in visible light.
  • This photocatalyst composition exhibits strong activity in the near-infrared wavelength range of 750 to 1400 nm (particularly around 900 to 1300 nm, more particularly around 1100 to 1300 nm), which is near infrared rays.
  • the light with which the photocatalyst composition of the present embodiment is irradiated includes natural light (sunlight) including visible light, ultraviolet rays, infrared rays, and the like, and illumination light that irradiates light of a predetermined wavelength.
  • natural light unsunlight
  • illumination light that irradiates light of a predetermined wavelength.
  • the illumination light white LED light from a white LED light source is preferable, and is suitable for indoor use. It is possible to further enhance the organic substance decomposition effect and the sterilization effect.
  • the photocatalyst composition of the present embodiment absorbs irradiated light energy, shows activity to decompose organic substances.
  • the activity is presumed to be a phenomenon brought about by radicals generated by a photocatalyst excited by light energy.
  • the photocatalyst composition of the present embodiment has a property of continuously exhibiting photocatalytic activity during continuous irradiation with light. In addition, even when light irradiation is interrupted once, this photocatalyst composition exhibits photocatalytic activity upon re-irradiation. That is, this photocatalyst composition is a material that can be used repeatedly as a photocatalyst. This is because the resonance structure in the molecule of the reaction product (the Fe2 + complex of the reducing organic substance) transmits light energy to Fe2 + to efficiently generate radicals, and the molecules themselves are not attacked by the radicals.
  • the photocatalyst composition of the present embodiment does not use titanium or the like and has less impact on the human body and the environment. be able to. That is, ascorbic acid and polyphenols are used as reducing organic substances, and since these are substances derived from food-derived feedstocks, they are expected to be used particularly in the food field. Ascorbic acid is particularly suitable because it is colorless and transparent. In addition, when a plant dry distillation solution is used as a reducing organic substance feedstock, the component contains a substance having a slight odor. However, since the raw material is very inexpensive, it is expected to be used in fields such as agriculture, medicine, and public health.
  • the glass material contains a silicon feedstock consisting of a plant body selected from gramineous plants, fern plants, and algae, or a processed product of the plant body. do.
  • the photocatalyst composition of the present embodiment can be used in various applications such as medicine, food, public health, agriculture, industry, etc., and the bonding between carbon and divalent iron is enhanced by silicon. It is possible to provide an enhanced and stable photocatalyst composition.
  • a silicon feedstock it contains a large amount of silicic acid. It is expected to lead to research exploring these new possibilities, as plants of the grass family, ferns, algae, etc. are used.
  • the effects on the human body and the environment can be suppressed, raw materials are inexpensive, waste can be reduced, and photocatalyst compositions with high added value can be provided.
  • the photocatalyst composition of the present embodiment has the property of exhibiting activity when irradiated with not only ultraviolet light but also visible light and infrared light.
  • the photocatalyst composition of the present embodiment is expected to be used in various applications in which conventional titanium oxide was difficult to use. For example, it can be used in a normal indoor space or in a liquid placed in a room (such as water in a container such as a vase or aquarium).
  • the photocatalyst composition of the present embodiment has excellent photocatalytic activity and excellent stability, and therefore can be used as an organic matter decomposing agent, bactericidal agent, and deodorant. It can be suitably used as an agent. Each is described below.
  • the organic matter decomposing agent of the present embodiment contains the photocatalyst composition exhibiting catalytic activity under visible light. Therefore, the organic substance decomposing agent of the present embodiment has excellent photocatalytic activity with respect to light of a wide range of wavelengths including visible light, and has excellent stability, and can be used for decomposing various organic substances. .
  • this photocatalyst composition can be suitably used for decomposing organic pollutants and harmful substances, and is therefore useful in the process of environmental purification.
  • pollutants and harmful substances refer to substances that cause water pollution, soil pollution, and air pollution.
  • examples include organic substances that affect the human body and the environment contained in domestic wastewater, night soil water, industrial wastewater, polluted river and lake water, soil of garbage disposal sites, industrial waste, agricultural land, and abandoned factory sites. be done.
  • Specific organic substances to be decomposed include, for example, detergents, food and drink residues, night soil, feces, pesticides, malodorous substances, waste oils, dioxins, PCBs, DNA, RNA, proteins, and other organic wastes. etc.
  • the organic substance decomposing agent of the present embodiment has an extremely strong decomposing effect, It can efficiently decompose soluble organic substances (eg, basic fuchsin). For example, when irradiating with light of 100 W/m 2 , it is possible to decompose organic matter at least 2.5 mg/L or more per day, and at most 35 mg/L or more.
  • soluble organic substances eg, basic fuchsin
  • the bactericidal agent of the present embodiment contains the above-described photocatalyst composition that exhibits catalytic activity under visible light. Therefore, the sterilizing agent of the present embodiment has excellent photocatalytic activity with respect to light of a wide range of wavelengths including visible light, and has excellent stability, and can be used for sterilizing various things.
  • the objects to be sterilized include medical instruments, hospital room walls, affected areas of patients, clothes, bedding, etc., lines of food manufacturing equipment, foodstuffs, cutting boards, kitchen utensils such as kitchen knives, tableware, toilet seats, handrails, etc. Agricultural equipment, equipment for hydroponics, and hydroponics.
  • the sterilizing agent of the present embodiment can be used for irradiation with visible light and infrared rays, unlike the normal sterilizing method using titanium oxide, so that the usage and usage situations are greatly improved.
  • the disinfectant of the present embodiment can disinfect not only bacteria but also eukaryotic microorganisms, algae, archaebacteria, viruses, viroids, and the like.
  • the bactericidal agent of the present embodiment has an extremely strong bactericidal effect, for example, in the case of surface sterilization, it is treated with sunlight irradiation for several minutes, preferably 10 minutes or more, more preferably 20 minutes or more. , + minute sterilization effect is obtained.
  • relatively weak light such as LED or fluorescent lamp is irradiated, a sufficient sterilization effect can be obtained by treatment for 1 hour or more, preferably 6 hours or more, more preferably 12 hours or more.
  • the deodorant of the present embodiment contains the above-described photocatalyst composition exhibiting catalytic activity under visible light.
  • the photocatalyst composition of the present embodiment has excellent organic substance decomposition effect and bactericidal effect, so that it is possible to suppress the generation of organic substance odors and odors caused by microbial decomposition of organic substances.
  • the deodorant of the present embodiment can be used to deodorize various odors.
  • it can exert an excellent deodorizing action against the odors generated by organic substances as mentioned in the explanation of the organic substance decomposing agent.
  • the disinfectant it is possible to satisfactorily suppress the generation of odors due to the decomposition of organic matter by microorganisms such as [0087I
  • examples thereof include plate glass and glass lumps. , beads, granules, and pulverized powders.
  • the organic substance decomposing agent, sterilizing agent, or deodorant in such a form is placed in a gas or liquid to be decomposed, sterilized, or deodorized as it is or stored in a container, and exposed to light. By irradiating, organic matter decomposition, sterilization, and deodorant effects are exhibited. It can also be used as a coating agent containing a photocatalyst composition in the form of pulverized particles such as beads, granules, or powder.
  • the photocatalyst composition of the present embodiment has excellent photocatalytic activity and excellent stability, and thus can be suitably used in a hydrogen production method. Due to the strong photocatalytic activity of the photocatalytic composition, water can be oxidatively decomposed into oxygen and hydrogen. That is, according to the present disclosure, there is provided a method for producing hydrogen, which includes the step of oxidatively decomposing water to generate hydrogen using the photocatalyst composition.
  • the forms thereof include, for example, plate glass and glass lumps, and further include bead-like, granular, and powdery pulverized products.
  • Hydrogen can be generated by irradiating the photocatalyst composition in such a form as it is or in a container or the like, placing it in water, and irradiating it with light.
  • Example 1 Production example of the photocatalyst composition of Example 1
  • the raw material was heated in a reducing atmosphere until it melted to produce a photocatalyst composition made of plate glass.
  • the heating time was about 20 minutes.
  • Tea leaves reducing organic matter feedstock
  • tea lees refsidue of tea leaves extracted with boiling water
  • iron salt iron feedstock
  • ferric chloride (III) FeCL 3
  • the mixing ratio of the tea leaves and the iron salt is 100 parts by weight of the tea leaves (converted to dry weight) to 100 parts by weight of iron salt in terms of iron element.
  • Rice husk was used as silicon feedstock.
  • the mixing ratio of tea leaves + iron and rice husks was 100 parts by weight of rice husks (30 parts by weight or more in terms of silicon element) per 100 parts by weight of tea leaves + iron salt (converted to dry weight).
  • FIG. 2(a) shows a photographic image of the photocatalyst composition (plate glass) before pulverization
  • FIG. 2(b) shows a photographic image of the photocatalyst composition (powder glass) of Example 1 after pulverization.
  • Example 2 Glass beads were produced according to the mixing ratio of the raw materials and the production method as described in Example 1 above, and the bead-like photocatalyst composition of Example 2 was obtained.
  • the mixing ratio of the raw materials of the photocatalyst composition may be within the range shown in Table 2 below.
  • a mixing ratio as in Example 2 is most preferable, and a photocatalyst composition having excellent quality as glass and excellent photocatalytic activity can be obtained.
  • Example 3 A photocatalyst composition of Example 3 was produced using sugarcane leaf ash as a silicon feedstock. The raw materials are shown in Table 3 below. The manufacturing process of the photocatalyst composition of Example 3 is the same as the manufacturing process in Example 1.
  • Example 4 A photocatalyst composition of Example 4 was produced using ascorbic acid as a reducing organic feedstock. The raw materials are shown in Table 4 below. Ascorbic acid and iron salt were mixed at a ratio of 1:1 (1 g of ascorbic acid + 1 g of iron salt). The manufacturing process of the photocatalyst composition of Example 4 is the same as the manufacturing process of Example 1.
  • FIG. 3 shows the optical spectrum distribution of the white LED light source used in each experiment. According to FIG. 3, it can be seen that the white LED light contains visible light of 380 to 750 nm.
  • an aqueous solution containing used tea leaves and iron (III) chloride (the mixing ratio is the same as in Example 1) was prepared, allowed to stand at room temperature for several minutes, and polyphenolic iron derived from used tea leaves A complex was obtained.
  • an aqueous solution containing coffee grounds and iron (III) chloride (the mixing ratio is the same as in Example 1) was prepared and allowed to stand at room temperature for several minutes to produce a polyphenol iron complex derived from coffee grounds. Obtained.
  • ICP emission spectroscopy dipyridyl reaction analysis, oxygen circulation combustion method, X-ray photoelectric spectroscopy (XPS: X-ray Photoe Lectron Spectroscopy or ESCA: Electron Spectroscopy for Chemical Analysis )
  • Example 1 Verification Experiment of Iron-Reducing Ability
  • the powdery photocatalyst composition of Example 1 was subjected to an iron-reducing ability verification experiment by dipyridyl reaction analysis. Specifically, dipyridyl and acetic acid were added and mixed to the photocatalyst composition so that dipyridyl was 2 g/L and acetic acid was 100 g/L, and the presence or absence of color reaction was examined.
  • dipyridyl is a substance that does not react with trivalent iron and remains colorless, but turns red when it reacts with divalent iron. Used for detection of divalent iron *
  • the solution containing the powdered photocatalyst composition of Example 1 exhibited a red color. That is, the trivalent iron added as a raw material of the photocatalyst composition is It was shown that it was reduced to divalent iron by heating in air (reduction firing). It was also shown that the ferrous iron reduced here is stably maintained in the state of ferric iron.
  • FIG. 2(c) shows a photographic image of the powdery photocatalyst composition of Example 1 dyed with dipyridyl to give a red color.
  • Example 2 Effect of decomposing harmful substances of photocatalyst composition by irradiation with white LED light
  • visible light was used.
  • a decomposition experiment of methylene blue was performed using white LED light.
  • FIG. 4(a) graphically shows the experimental results.
  • the arrows in the graph of FIG. 4(a) indicate that 10 ML of methylene blue solution was additionally added.
  • FIG. 4(b) shows a photographic image of the solution in the control section after the experiment
  • FIG. 4(c) shows a photograph of the solution in the light-irradiated section of the photocatalyst composition of Example 1 after the experiment. An image diagram is shown.
  • FIG. 5 shows a photographic image of the experimental results.
  • (a) is a photographic image of the solution in the control section (no photocatalyst)
  • (b) is a photographic image of the solution in the ultraviolet irradiation section using the photocatalyst composition of Example 1.
  • (c) is a photographic image of a solution of a titanium oxide group using titanium oxide. As shown in these figures, in the control group (a), the solution remained blue and methylene blue was not decomposed.
  • the ultraviolet irradiation section using the photocatalyst composition of Example 1 and (c) the titanium oxide section decomposition of methylene blue was observed. Therefore, it was found that the photocatalyst composition of Example 1 exhibits a strong photocatalytic reaction to ultraviolet rays and is excellent in decomposing harmful substances such as methylene blue.
  • FIG. 6 shows a photographic image of the experimental results.
  • (a) is a photographic image of the control solution
  • (b) is a photographic image of the control solution using titanium oxide
  • (c) is the photocatalyst composition of Example 1.
  • FIG. 4 is a photographic image of a solution in a near-infrared irradiation section using a material.
  • the solution in the control group (a) and the titanium oxide group (b), the solution remained blue and methylene blue was not decomposed.
  • decomposition of methylene blue was observed in the near-infrared irradiation section using the photocatalyst composition of Example 1 (c). Therefore, it was found that the photocatalyst composition of Example 1 exhibits a strong photocatalytic reaction to near-infrared rays and is excellent in decomposing harmful substances such as methylene blue.
  • the photocatalyst composition of Example 1 exhibits excellent photocatalytic activity against light in a wide wavelength range including ultraviolet light, visible light, and infrared light. It was confirmed that it has the property to exhibit. On the other hand, when titanium oxide was used, it was confirmed that photocatalytic activity was not exhibited with respect to visible light and near-infrared rays. Similar experiments were also conducted on the photocatalyst compositions of Examples 3 and 4, and it was found that they exhibit excellent photocatalytic activity with respect to light in a wide wavelength range including ultraviolet light, visible light, and infrared light. confirmed.
  • a "only zone” and a “dark condition zone” in which the photocatalyst composition was added but placed under dark conditions without irradiation with white LED light were provided.
  • flow cytometry was used to measure the viability of each pathogen in each treatment plot.
  • FIG. 7 shows a photographic image of each treated plot after treatment with E. coli.
  • FIG. 7(a) shows the control group, ⁇ light irradiation only treatment group''
  • FIG. 7(b) shows the ⁇ dark condition group'' using the photocatalyst composition, which is the control group
  • FIG. 7(c) indicates the “light irradiation section” using the photocatalyst composition.
  • Fig. 8 shows the results of determination of survival of E. coli by flow cytometry.
  • Figure 8 (a) shows the result of determining whether E. coli is alive or dead in the "dark condition section" using the photocatalyst composition, which is the control group, and
  • Figure 8 (b) shows the "light irradiation section” using the photocatalyst composition.
  • Fig. 9 shows the results of determination of life and death of R. wilt by flow cytometry.
  • FIG. 9(a) shows the result of judging the survival of bacterial wilt bacteria in the "dark condition section" using the photocatalyst composition, which is the control group
  • Fig. 9(b) shows the "photocatalyst composition” using the photocatalyst composition. Shown are the results of life-and-death determination of the bacterial wilt in the irradiated section.
  • Example 7 Identification experiment of superoxide radicals ( ⁇ ) using MPEC reagent
  • superoxide radicals ( ⁇ ) were identified using MPEC reagents. identification experiments were carried out.
  • the MPEC reagent is a luminescence reagent that specifically reacts with superoxide ( ⁇ 2-). We measured and confirmed the presence or absence of superoxide ( ⁇ 2”).
  • FIG. 11 shows the results of the identification experiment. As shown in FIG. 11, generation of superoxide ( ⁇ 2-) was observed by irradiating the photocatalyst composition of Example 1 with white LED light. It was found that the number of photons (number of photons) decreased by adding a superoxide radical scavenger to this reaction solution.
  • Example 8 Hydroxyl Radical Identification Experiment by ESR Method Using Spin Trap
  • a hydroxyl radical identification experiment was performed by an ESR method using a spin trap.
  • 960 uL of distilled water was placed in an Eppendorf tube, and 20 mg of the photocatalyst composition of Example 1 was added.
  • 180 mM spin trapping agent DMPO was added at 40/pound and irradiated with ultraviolet LED light (UV light) for 30 seconds, 60 seconds, and 30 minutes with an ESR device (Electron Spin Resonance). ESR spectra were measured.
  • ESR analysis was performed on the reaction between the photocatalyst composition and white LED light (visible light).
  • FIG. 12 shows the results of the hydroxyl radical identification experiment by the ESR method using spin trap, showing the measurement results of the ESR spectrum by ultraviolet LED light irradiation
  • Fig. 13 shows white LED light irradiation ( The results of ESR analysis by visible light irradiation) are shown. Referenced (control group) in FIG. 13 is the ESR analysis result when the photocatalyst composition was not added. As shown in FIG. No generation was observed.On the other hand, the generation of hydroxyl radicals (-0H) was observed with ultraviolet irradiation for 30 minutes.In addition, as shown in FIG. ESR analysis of the reaction confirmed the detection of a hydroxyl radical ( • 0H).
  • Example 2 •Experimental method: 100 ml of distilled water and 4 g of the bead-like photocatalyst composition of Example 2 were placed in a 200 ml beaker, and camellia flowers were made to float. This was continuously irradiated with white LED light (see the photographic image of FIG. 14(a)), and the state after 10 days was observed. The white LED light was applied from 8:00 to 18:00, and turned off from 18:00 to 8:00 the next morning. As a control plot, a dark plot without light irradiation was used.
  • FIG. 14 shows photographic images of the light-irradiated group and the control group 10 days after the start of the experiment.
  • (b) is a photographic image of the light irradiation section after 10 days
  • (c) is a photographic image of the control section after 10 days.
  • FIG. 14(c) in the control section (dark condition section), camellia flowers rotted and the distilled water turned yellow.
  • FIG. 14(b) in the light-irradiated section in which the photocatalyst composition of Example 2 was used to irradiate white LED light, no rotting of the camellia was observed, and distilled water was used. remained transparent. From this, it was confirmed that the photocatalyst composition of Example 2 can be used to keep cut flowers fresh.
  • Example 8 Effect of Preserving Freshness of Cut Flowers (Saponaria Baccaria)] [0126] An experiment was conducted to prove the effect of the photocatalyst composition of Example 2 on preserving the freshness of other different cut flowers.
  • Example 2 •Experimental method: 50 ml of distilled water and 4 g of the beaded photocatalyst composition of Example 2 were placed in a 100 ml plant box, and cut flowers of Saponaria baccaria were arranged as test flowers. This was continuously irradiated with white LED light, and the state after 3 days was observed. The white LED light was applied from 8:00 to 18:00, and turned off from 18:00 to 8:00 the next morning. As a control section, a dark section without light irradiation was used.
  • FIG. 15(a) shows photographic images of the white LED light irradiation area at the start of the experiment and the control area.
  • FIG. 15(b) shows a photographic image of the white LED light irradiation section and the control section 3 days after the start of the experiment.
  • the distilled water in the control section (dark condition section) 3 days after the start of the test turned white and turbid due to the proliferation of microorganisms.
  • the light irradiation section irradiated with white LED light using the photocatalyst composition of Example 2 no decomposition of the distilled water was observed even after 3 days from the start of the test, and the distilled water remained transparent. .
  • This experimental result also confirmed that the photocatalyst composition of Example 2 can be used to maintain the freshness of cut flowers.
  • FIG. 16(a) shows a photographic image of the control group 7 days after the start of the experiment.
  • FIG. 16(b) shows a photographic image of the section irradiated with ultraviolet LED light 7 days after the start of the experiment.
  • Figure 1 shows a photographic image of the control group 7 days after the start of the experiment.
  • FIG. 17(b) shows a photographic image of the breeding state of various bacteria in chickpeas in the ultraviolet LED light irradiation area.
  • the white portion in the photograph in FIG. 17 indicates the portion where bacteria are present, and the colorless portion indicates the portion where bacteria are not present.
  • Example 5 A photocatalyst composition of Example 5 was produced using silica derived from diatom (Chaetoceros gracilis) as a silicon feedstock. The raw materials are shown in Table 7 below. The manufacturing process of the photocatalyst composition of Example 5 is the same as the manufacturing process of Example 1.
  • Fig. 18 shows a process of extracting silica from diatom.
  • Diatom Choetoceros gracilis
  • Yanmar Co., Ltd. Put 500 ml of 1 x 108 ceLL/ml algae liquid in an alumina container, heat and dry at 120°C for 24 hours, and then heat at 300°C for 2 hours and then at 600°C in the air.
  • 10 g of diatom-derived silica was obtained by sintering under the conditions of 5 hours at 300°C and 2 hours at 300°C.
  • Example 6 The photocatalyst composition of Example 5 was produced using ascorbic acid as a reducing organic feedstock. The raw materials are shown in Table 8 below. Ascorbic acid and iron salt were mixed at a ratio of 1:1 (1 g of ascorbic acid + 1 g of iron salt). The manufacturing process of the photocatalyst composition of Example 6 is the same as the manufacturing process of Example 1.
  • Example 5 or 6 •Experimental method: 50 mg of the photocatalyst composition of Example 5 or 6 in powder form was added to 10 ml of methylene blue solution (5000 ppm methylene blue solution diluted 1000 times with water to 5 ppm), and LED light was emitted continuously. (10,000 lux) was irradiated for 4 hours, and the decomposition rate of methylene blue was measured. In addition, a dark condition plot without light irradiation was used as a control plot.
  • methylene blue solution 5000 ppm methylene blue solution diluted 1000 times with water to 5 ppm
  • Fig. 19 and Fig. 20 show the experimental results of each photocatalyst composition of Examples 5 and 6.
  • Fig. 19(a) and Fig. 20(a) graphically show the experimental results of each photocatalyst composition.
  • 19(b) and 20(b) show photographic images of the solution of each photocatalyst composition in the LED-irradiated area and the control area after the end of the experiment (4 hours after the start of the experiment).
  • the photocatalyst compositions of Examples 5 and 6 exhibited a strong photocatalytic reaction against violet to blue LED light (visible light), and were found to be excellent in decomposing harmful substances such as methylene blue. rice field.
  • the photocatalyst compositions of Examples 5 and 6 are made from algae that can be mass-produced. These algae are known to absorb a lot of carbon dioxide (C02). Therefore, in addition to this, we can expect business possibilities for various industrial applications of the functions and active ingredients of algae. A new industry using algae can be expected. Algae are expected to contribute to achieving carbon neutrality through photosynthesis and to SDGs r GOAL 13: Take concrete action against climate change. Industrial applicability
  • the photocatalyst of the present disclosure is expected to be widely used for sterilization and decomposition of organic matter in a wide range of fields such as food, medicine, public health, agriculture, and environmental purification. Cross-reference to related applications

Abstract

Provided is an inexpensive photocatalyst composition which can be used for the decomposition or sterilization of an organic substance, which is not limited in terms of uses, which allows impacts on the human body and the environment to be suppressed, and which exhibits excellent photocatalytic activity in a wide range of wavelengths including that of visible light. This photocatalyst composition exhibits catalytic activity with visible light and contains a glass material, an iron-supplying raw material, and a reducing organic substance that has the effect of reducing trivalent iron to bivalent iron. The reducing organic substance contains a polyphenol and/or ascorbic acid, and the iron-supplying raw material contains a bivalent iron compound and/or a trivalent iron compound.

Description

明 細 書 発明 の名称 : 光触媒組成物及 びその製 造方法、 並びに消臭剤 技術分 野 Description Title of invention: Photocatalyst composition, method for producing the same, and deodorant Technical field
[0001 I 本開示は、 可視光に対して光触媒活性を示す光触媒組成物及びその製造方 法、 並びに消臭剤に関するものである。 背景技 術 [0001] The present disclosure relates to a photocatalyst composition exhibiting photocatalytic activity with respect to visible light, a method for producing the same, and a deodorant. Background technology
[0002] 近年、 世界中でウィルス (新型コロナウィルス、 鳥インフルエンザウィル ス、 豚熱ウィルス等) や病原性大腸菌 (0-157等) のような有害微生物が引き 起こす汚染が社会問題になっている。 このような有害微生物に対する殺菌技 術の一っとして、 光触媒が注目されている。 光触媒は光を当てるだけで有機 系の有害物質の分解や殺菌などに利用できることから、 手軽で汎用性が高い 技術として社会的ニーズが高まっている。 [0002] In recent years, contamination caused by harmful microorganisms such as viruses (new coronavirus, avian influenza virus, swine fever virus, etc.) and pathogenic E. coli (0-157, etc.) has become a social problem all over the world. . Photocatalysts are attracting attention as one of the sterilization technologies for such harmful microorganisms. Since photocatalysts can be used to decompose harmful organic substances and sterilize them simply by exposing them to light, social needs are increasing as a simple and highly versatile technology.
[0003] 光触媒活性を示すものとして酸化チタンの他、 タングステン、 インジウム[0003] In addition to titanium oxide, tungsten and indium exhibit photocatalytic activity.
、 バナジウム、 銀、 モリブデン、 亜鉛、 ガリウムリン、 ガリウム、 ヒ素など の金属化合物が知られている。 しかしながら、 これらの金属化合物のほとん どのものは、 非常に高価で毒性が強いため、 実用化が進んでおらず、 現段階 で光触媒として実用化されているのは酸化チタンだけである。 さらに、 これ らの金属化合物は、 いずれも 400nm以下の紫外波長でのみ光触媒活性を示す物 質であるため、 蛍光灯などの可視光しか使用できない居住空間での殺菌・分 解などへの利用には適しておらず、 利用場面が限られている。 , vanadium, silver, molybdenum, zinc, gallium phosphide, gallium, arsenic and other metal compounds are known. However, most of these metal compounds are very expensive and highly toxic, so they have not been put to practical use, and at the present stage, only titanium oxide is put into practical use as a photocatalyst. Furthermore, since these metal compounds are substances that exhibit photocatalytic activity only at ultraviolet wavelengths of 400 nm or less, they can be used for sterilization and decomposition in living spaces where only visible light such as fluorescent lights can be used. are not suitable and have limited use.
[0004] また、 可視光での光触媒活性を実現するために不純物を混入させる技術 ( ドーピング) が試みられているが、 加工技術が難しく製品が非常に高価にな るとともに、 可視光に対する +分な光触媒活性が得られず、 実用化に至って いるものは存在しない状況である。 [0004] Also, in order to achieve photocatalytic activity with visible light, a technique of mixing impurities (doping) has been attempted. No photocatalytic activity has been obtained and there are no products that have been put to practical use.
[0005] 一方、 ポリフェノール鉄錯体を中心とした光触媒の開発も行われている ( 例えば、 特許文献 1参照) 。 この特許文献 1 に記載の光触媒は、 可視光を含 む幅広い波長の光を吸収して活性を示すことから、 利用場面の拡大が可能と なる。 また、 レアメタルを使用せず、 植物体又はその加工品を原料として用 いるため、 人体や環境への影響が少なく、 光触媒を安価に提供可能である。 また、 光触媒の耐久性の向上や安定した光触媒活性を可能とすべく、 鉄成分 を含有する光触媒ガラスの発明も開示されている (特許文献 2、 3参照) 。 [0005] On the other hand, photocatalysts centering on polyphenol iron complexes have also been developed (see, for example, Patent Document 1). Since the photocatalyst described in this patent document 1 absorbs light of a wide range of wavelengths including visible light and shows activity, it is possible to expand the usage scene. Become. In addition, since plant bodies or their processed products are used as raw materials without using rare metals, there is little impact on the human body and the environment, and photocatalysts can be provided at low cost. In addition, an invention of a photocatalytic glass containing an iron component has been disclosed in order to improve the durability of the photocatalyst and enable stable photocatalytic activity (see Patent Documents 2 and 3).
[0006I 以上の状況から、 利用場面の限定を受けず、 人体や環境への影響が抑制で き、 可視光で優れた光触媒活性を示す安価な光触媒の開発が期待されていた[0006I] From the above situation, it was expected to develop an inexpensive photocatalyst that can suppress the impact on the human body and the environment without being limited to the usage scene, and that exhibits excellent photocatalytic activity in visible light.
〇 先行技 術文献 特許文 献 〇 Prior art documents Patent documents
[0007] 特許文献 1 :特許第 6 3 4 0 6 5 7号公報 特許文献 2:特開 2 0 1 1 - 2 4 1 1 3 8号公報 特許文献 3:特開 2 0 1 5 - 1 6 7 8 7 1号公報 発明 の概要 発明 が解決 しようと する課題 [0007] Patent Document 1: Japanese Patent No. 6340657 Patent Document 2: Japanese Unexamined Patent Application Publication No. 2011-241138 Patent Document 3: Japanese Unexamined Patent Application Publication No. 2015-16 7871 Gazette Overview of the invention Problems to be solved by the invention
[0008] 本発明は、 上記課題を解決し、 有機物分解又は殺菌に利用可能であって、 利用場面の限定を受けず、 人体や環境への影響が抑制でき、 可視光を含む幅 広い波長の光に対する優れた光触媒活性を示す光触媒組成物を、 安価に提供 することを目的とする。 課題 を解決す るため の手段 [0008] The present invention solves the above problems, can be used for organic matter decomposition or sterilization, is not limited to usage scenes, can suppress the effects on the human body and the environment, and has a wide range of wavelengths including visible light. An object of the present invention is to inexpensively provide a photocatalyst composition exhibiting excellent photocatalytic activity to light. Means to solve problems
[0009] 本発明者らは鋭意研究を重ねたところ、 ポリフェノール類と鉄供給源とを[0009] As a result of extensive research, the present inventors discovered that polyphenols and an iron source
、 水存在下で混合して得られたポリフェノール鉄錯体が、 紫外線だけでなく 可視光や赤外線に対して光触媒活性を発揮することを見出した。 また、 発明 者らはポリフェノール鉄錯体中の炭素と二価鉄を結合させることでポリフエ ノール鉄錯体の安定性を高め、 安定な光触媒を得られると考え、 様々な条件 で反応を検討した結果、 ポリフェノール類と鉄供給源とを用いてガラスを製 造したところ優れた光触媒活性を維持することができ、 光触媒としての安定 性を高められることを見出した。 [0010I 本開示はこれらの知見に基づいてなされたものである。 即ち、 本開示に係る光触媒組成物は、 可視光で触媒活性を示す光触媒組成 物であって、 三価鉄を二価鉄に還元する作用を有する還元性有機物、 鉄供給 原料、 及び、 ガラス材料を含有し、 前記還元性有機物が、 ポリフェノール類 及びアスコルビン酸の少なくとも何れかを含有し、 前記鉄供給原料が、 二価 鉄化合物及び三価鉄化合物の少なくとも何れかを含有する。 また、 本開示に係る消臭剤は、 上述のような可視光で触媒活性を示す光触 媒組成物を含有する。 また、 本開示に係る光触媒組成物の製造方法は、 上述のような可視光で触 媒活性を示す光触媒組成物の製造方法であって、 三価鉄を二価鉄に還元する 作用を有する前記還元性有機物、 前記鉄供給原料、 及び、 前記ガラス材料を 、 還元雰囲気下、 加熱温度 9〇〇0 C以上、 加熱時間 12分以上で加熱処理する 工程を含む。 発明 の効果 , found that the polyphenol-iron complex obtained by mixing in the presence of water exhibits photocatalytic activity against not only ultraviolet light but also visible light and infrared light. In addition, the inventors thought that by bonding carbon and divalent iron in the polyphenol-iron complex, the stability of the polyphenol-iron complex could be enhanced and a stable photocatalyst could be obtained. When a glass was produced using polyphenols and an iron supply source, it was found that excellent photocatalytic activity could be maintained and stability as a photocatalyst could be enhanced. [0010I The present disclosure has been made based on these findings. That is, the photocatalyst composition according to the present disclosure is a photocatalyst composition that exhibits catalytic activity with visible light, and includes a reducing organic substance that has the action of reducing trivalent iron to divalent iron, an iron supply raw material, and a glass material. wherein the reducing organic matter contains at least one of polyphenols and ascorbic acid; and the iron feedstock contains at least one of divalent iron compound and trivalent iron compound. Moreover, the deodorant according to the present disclosure contains the photocatalyst composition that exhibits catalytic activity with visible light as described above. Further, a method for producing a photocatalyst composition according to the present disclosure is a method for producing a photocatalyst composition that exhibits catalytic activity with visible light as described above, and has an action of reducing trivalent iron to divalent iron. A step of heat-treating the reducing organic substance, the iron feedstock, and the glass material in a reducing atmosphere at a heating temperature of 9000 C or higher for a heating time of 12 minutes or longer. Effect of the invention
[001 1 ] 本開示の光触媒組成物は、 紫外線だけでなく可視光や赤外線を照射した場 合にも活性を発揮する性質を有するたため、 通常の室内空間等での利用が可 能となる。 また、 原料である鉄還元性有機物としてポリフェノール類やアス コルビン酸を用いるものであるため、 本開示の光触媒は、 人体や環境に対す る影響を抑制できる。 これにより本開示の光触媒組成物は、 従来技術の酸化 チタンでは利用が困難であった様々な用途での使用が可能となる。 [001 1] The photocatalyst composition of the present disclosure has the property of exhibiting activity when irradiated with not only ultraviolet light but also visible light and infrared light, so it can be used in ordinary indoor spaces. In addition, since polyphenols and ascorbic acid are used as iron-reducing organic substances as raw materials, the photocatalyst of the present disclosure can suppress the effects on the human body and the environment. As a result, the photocatalyst composition of the present disclosure can be used in various applications in which conventional titanium oxide was difficult to use.
[0012] したがって、 有機物分解又は殺菌に利用可能であって、 利用場面の限定を 受けず、 人体や環境への影響が抑制でき、 可視光を含む幅広い波長に対する 優れた光触媒活性を示す光触媒組成物を、 安価に提供できる。 図面 の簡単な 説明 [0012] Therefore, a photocatalyst composition that can be used for decomposition or sterilization of organic matter, is not limited to usage situations, can suppress the effects on the human body and the environment, and exhibits excellent photocatalytic activity with respect to a wide range of wavelengths including visible light. can be provided at low cost. A brief description of the drawing
[0013] [図 1]本実施の形態の光触媒組成物の製造工程の一例を示すフローチャートで ある。 [0013] [Fig. 1] A flow chart showing an example of a process for producing a photocatalyst composition according to the present embodiment.
[図 2]実施例 1の光触媒組成物を説明するための写真像図であり、 ( a ) は粉 砕前の実施例 1の光触媒組成物 (板ガラス) の写真像図を示し、 ( b ) は粉 砕後の実施例 1の光触媒組成物 (粉末ガラス) の写真像図を示し、 (C) は (b) の粉砕後の実施例 1の光触媒組成物をジピリジルで染色した状態の写 真像図を示す。 [Fig. 2] A photographic image diagram for explaining the photocatalyst composition of Example 1, (a) showing a photographic image diagram of the photocatalyst composition (plate glass) of Example 1 before pulverization, (b) powder 1 shows a photographic image of the photocatalyst composition (powder glass) of Example 1 after pulverization, and (C) is a photographic image of the photocatalyst composition of Example 1 after pulverization of (b) dyed with dipyridyl. indicates
[図 3]実験例で用いる白色 LED光のスペクトル分布である。 [Fig. 3] Spectrum distribution of white LED light used in the experimental example.
[図 4]白色 LED光を照射したときの光触媒組成物による有害物質の分解効果を 説明するための図であり、 (a) は分解効果の立証実験の結果を表すグラフ を示し、 (b) は酸化チタンを用いた対照区の溶液の写真像図を示し、 (c ) は実施例 1の光触媒組成物の白色 LED光照射区の溶液の写真像図を示す。[Fig. 4] Fig. 4 is a diagram for explaining the effect of decomposing harmful substances by a photocatalyst composition when irradiated with white LED light, (a) showing a graph showing the results of a verification experiment of the decomposition effect, (b) (c) shows a photographic image of the solution of the control group using titanium oxide, and (c) shows a photographic image of the solution of the photocatalyst composition of Example 1 irradiated with white LED light.
[図 5]紫外線を照射したときの光触媒組成物による有害物質の分解効果を説明 するための写真像図であり、 (a) は対照区の溶液の写真像図を示し、 (b ) は実施例 1の光触媒組成物を用いた紫外線照射区の溶液の写真像図を示し 、 (c) は酸化チタンを用いた酸化チタン区の溶液の写真像図を示す。[Fig. 5] A photographic image for explaining the effect of decomposing harmful substances by a photocatalyst composition when irradiated with ultraviolet rays. 1 shows a photographic image of the solution in the ultraviolet irradiation section using the photocatalyst composition of Example 1, and (c) shows a photographic image of the solution in the titanium oxide section using titanium oxide.
[図 6]紫外線を照射したときの光触媒組成物による有害物質の分解効果を説明 するための写真像図であり、 (a) は対照区 (光触媒なし) の溶液の写真像 図を示し、 ( b ) は酸化チタンを用いた酸化チタン区の溶液の写真像図を示 し、 (〇) は実施例 1の光触媒組成物を用いた近赤外線照射区の溶液の写真 像図を示す。 [Fig. 6] A photographic image for explaining the effect of decomposing harmful substances by a photocatalyst composition when irradiated with ultraviolet rays. b) shows a photographic image of the solution in the titanium oxide section using titanium oxide, and (○) shows a photographic image of the solution in the near-infrared irradiation section using the photocatalyst composition of Example 1.
[図 7]実施例 1の光触媒組成物による大腸菌の殺菌効果を説明するための写真 像図であり、 (a) は対照区である 「光照射のみ処理区」 の写真像図を示し 、 (b) は対照区である光触媒組成物を用いた 「暗条件区」 の写真像図を示 し、 (〇) は光触媒組成物を用いた 「白色 LED光照射区」 の写真像図を示す。[Fig. 7] Fig. 7 is a photographic image for explaining the effect of sterilizing E. coli by the photocatalyst composition of Example 1, (a) showing a photographic image of the control group "light irradiation only treatment group", ( b) shows a photographic image of the “dark condition section” using the photocatalyst composition, which is the control section, and (○) shows a photographic image of the “white LED light irradiation section” using the photocatalyst composition.
[図 8]実施例 1の光触媒組成物による大腸菌の殺菌効果を説明するため図であ り、 (a) は対照区である光触媒組成物を用いた 「暗条件区」 での大腸菌の 生死の判定結果を示し、 (b) は光触媒組成物を用いた 「白色 LED光照射区」 での大腸菌の生死の判定結果をホす。 [Fig. 8] A diagram for explaining the bactericidal effect of E. coli by the photocatalyst composition of Example 1. (a) shows the survival of E. coli in the "dark condition section" using the photocatalyst composition, which is a control group. The determination results are shown, and (b) shows the determination results of life and death of E. coli in the "white LED light irradiation area" using the photocatalyst composition.
[図 9]実施例 1の光触媒組成物による青枯病菌の殺菌効果を説明するため図で あり、 (a) は対照区である光触媒組成物を用いた 「暗条件区」 での青枯病 菌の生死の判定結果を示し、 (b) は光触媒組成物を用いた 「白色 LED光照射 区」 での青枯病菌の生死の判定結果を示す。 [Fig. 9] A diagram for explaining the bactericidal effect of the photocatalyst composition of Example 1 against bacterial wilt disease. (b) shows the results of determining whether bacteria are alive or dead, and (b) shows a “white LED light irradiation using a photocatalyst composition. The results of life-and-death determination of bacterial wilt fungus in the ward are shown.
[図 10]実施例 1の光触媒組成物のルミノール反応によるラジカル種の同定実 験の結果を示す図である。 [Fig. 10] Fig. 10 is a diagram showing the results of a radical species identification experiment by luminol reaction of the photocatalyst composition of Example 1. [Fig.
[図 11]実施例 1の光触媒組成物の MPEC試薬を用いたスーパーオキシドラジカ ルの同定実験の結果を示す図である。 [Fig. 11] Fig. 11 is a diagram showing the results of a superoxide radical identification experiment using the MPEC reagent of the photocatalyst composition of Example 1. [Fig.
[図 12]実施例 1の光触媒組成物への紫外線 LED光照射による ESRスペクトルの 測定結果を示す図である。 [Fig. 12] Fig. 12 is a diagram showing the measurement results of the ESR spectrum obtained by irradiating the photocatalyst composition of Example 1 with ultraviolet LED light.
[図 13]実施例 1の光触媒組成物への白色 LED光照射 (可視光照射) による ESR 解析結果を示す図である。 [Fig. 13] Fig. 13 is a diagram showing the results of ESR analysis by irradiating the photocatalyst composition of Example 1 with white LED light (visible light irradiation).
[図 14]実施例 2の光触媒組成物による切花 (ツバキ) の鮮度保持効果を説明 するための写真像図であり、 (a) は白色 LED光を照射している様子を示す写 真像図を示し、 (b) は実験開始から 10日後の光照射区の写真像図を示し、[Fig. 14] Fig. 14 is a photographic image for explaining the effect of preserving the freshness of cut flowers (camellia) by the photocatalyst composition of Example 2, where (a) is a photographic image showing the state of irradiation with white LED light. , and (b) shows a photographic image of the light irradiation section 10 days after the start of the experiment,
(〇 ) は実験開始から 10日後の対照区の写真像図を示す。 (O) shows a photographic image of the control group 10 days after the start of the experiment.
[図 15]実施例 2の光触媒組成物による他の異なる切花 (サポナリア・バッカ リア) の鮮度保持効果を説明するための写真像図であり、 (a) は実験開始 時の白色 LED光照射区と、 対照区の写真像図であり、 (b) は、 実験開始から 3日後の白色 LED光照射区と、 対照区の写真像図である。 [Fig. 15] Fig. 15 is a photographic image for explaining the effect of preserving the freshness of other different cut flowers (Saponaria baccaria) by the photocatalyst composition of Example 2. (a) is the area irradiated with white LED light at the start of the experiment. and (b) are photographic images of the control plot, and (b) is a photographic image of the white LED light irradiation plot and the control plot three days after the start of the experiment.
[図 16]実施例 2の光触媒組成物による種子の殺菌効果を説明するための写真 像図であり、 (a) は実験開始から 7日後の対照区の写真像図を示し、 (b) は実験開始から 7日後の光照射区の写真像図を示す。 [Fig. 16] Fig. 16 is a photographic image diagram for explaining the seed sterilization effect of the photocatalyst composition of Example 2, (a) showing a photographic image diagram of the control group 7 days after the start of the experiment, and (b) showing a photographic image diagram. A photographic image of the light-irradiated section 7 days after the start of the experiment is shown.
[図 17]実施例 2の光触媒組成物による種子の殺菌効果 (雑菌の殺菌効果) を 説明するための写真像図であり、 (a) は対照区のヒョコ豆の雑菌の繁殖状 態の写真像図を示し、 (b) は紫外線 LED光照射区のヒョコ豆の雑菌の繁殖状 態の写真像図を示す。 [Fig. 17] Fig. 17 is a photographic image for explaining the seed sterilization effect (bacteria sterilization effect) of the photocatalyst composition of Example 2, where (a) is a photograph of the growth state of chickpeas in the control plot. (b) shows a photographic image of the breeding state of various bacteria in chickpeas irradiated with ultraviolet LED light.
[図 18]実施例 5及び 6における珪藻からのシリカの抽出工程を示す図である [Fig. 18] A diagram showing the extraction process of silica from diatoms in Examples 5 and 6.
[図 19]実施例 5の光触媒組成物による有害物質の分解効果を説明するための 図であり、 (a) は分解効果の立証実験の結果を表すグラフを示し、 (b) は実験開始から 4時間後の LED光照射区と、 対照区の溶液の写真像図を示す。 [図 20]実施例 6の光触媒組成物による有害物質の分解効果を説明するための 図であり、 ( a ) は分解効果の立証実験の結果を表すグラフを示し、 ( b ) は実験開始から 4時間後の LED光照射区と、 対照区の溶液の写真像図を示す。 発明 を実施す るため の形態 [Fig. 19] Fig. 19 is a diagram for explaining the effect of decomposing harmful substances by the photocatalyst composition of Example 5, (a) showing a graph showing the results of a verification experiment of the decomposition effect, (b) shows photographic images of the solutions in the LED light irradiation area and the control area 4 hours after the start of the experiment. 20 is a diagram for explaining the effect of decomposing harmful substances by the photocatalyst composition of Example 6, (a) showing a graph showing the results of an experiment to prove the decomposition effect, and (b) from the start of the experiment. Shown are photographic images of the solutions in the LED light irradiation area and the control area after 4 hours. MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、 本開示の実施の形態について詳細に説明する。 [0014] Hereinafter, embodiments of the present disclosure will be described in detail.
(光触媒組成物) 本実施の形態に係る光触媒組成物は、 可視光で触媒活性を示す光触媒組成 物であって、 三価鉄を二価鉄に還元する作用を有する還元性有機物、 鉄供給 原料、 及び、 ガラス材料を含有してなる。 本実施の形態の光触媒組成物は、 好ましくは光触媒ガラス又は光触媒ガラスセラミックスである。 また、 鉄供 給原料が、 二価鉄化合物及び三価鉄化合物の少なくとも何れかを含有し、 還 元性有機物が、 ポリフェノール類及びアスコルビン酸の少なくとも何れかで ある。 (Photocatalyst Composition) The photocatalyst composition according to the present embodiment is a photocatalyst composition that exhibits catalytic activity under visible light, and comprises a reducing organic substance that has the action of reducing trivalent iron to divalent iron, and an iron supply raw material. and containing a glass material. The photocatalytic composition of the present embodiment is preferably photocatalytic glass or photocatalytic glass-ceramics. In addition, the iron feedstock contains at least one of a divalent iron compound and a trivalent iron compound, and the reducing organic substance is at least one of polyphenols and ascorbic acid.
[0015] [還元性有機物] 本実施の形態の光触媒組成物は、 炭素を供給する原料として、 「三価鉄を 二価鉄に還元する作用を有する還元性有機物」 を用いる。 以下、 この 「三価 鉄を二価鉄に還元する作用を有する還元性有機物」 を、 「鉄還元能を有する 還元性有機物」 、 又は単に 「還元性有機物」 ということがある。 [Reducing organic substance] [0015] The photocatalyst composition of the present embodiment uses "a reducing organic substance having an action of reducing trivalent iron to divalent iron" as a raw material for supplying carbon. Hereinafter, this "reducing organic substance having the action of reducing trivalent iron to divalent iron" may be referred to as "reducing organic substance having iron-reducing ability" or simply "reducing organic substance".
[0016] 当該還元性有機物として具体的には、 アスコルビン酸、 ポリフェノール類 等が挙げられる。 また、 これらの化合物以外にも、 植物体又はその加工品に は鉄還元能を有する還元性有機物が多く含まれる場合があり、 還元性有機物 として好適に用いることができる。 [0016] Specific examples of the reducing organic substance include ascorbic acid and polyphenols. In addition to these compounds, the plant body or its processed product may contain a large amount of reducing organic matter having iron-reducing ability, and can be suitably used as the reducing organic matter.
[0017] ここで、 「アスコルビン酸」 としては、 アスコルビン酸の f ree ac i dだけで なく、 アスコルビン酸化合物 (アスコルビン酸カリウム、 アスコルビン酸ナ トリウムなど) を用いることもできる。 [0017] Here, as "ascorbic acid", not only free acid of ascorbic acid but also ascorbic acid compounds (potassium ascorbate, sodium ascorbate, etc.) can be used.
[0018] 「ポリフェノール類」 は、 複数のヒドロキシ基を有するフェノール性分子 の総称である。 「ポリフェノール類」 は、 ほとんどの植物に含有される化合 物であり、 フラボノイ ドやフェノール酸など様々の種類が知られている。 ポリフェノール類の具体的な化合物の例としては、 カテキン (エピカテキ ン、 エピガロカテキン、 エピカテキンガレート、 エピガロカテキンガレート など) 、 タンニン酸、 タンニン、 クロロゲン酸、 カフェイン酸、 ネオクロロ ゲン酸、 シアニジン、 プロアントシア二ジン、 テアルビジン、 ルチン、 フラ ボノイ ド (ケルシトリン、 アントシアニン、 フラバノン、 フラバノール、 フ ラボノール、 イソフラボンなど) 、 フラボン、 カルコン類 (ナリンゲニンカ ルコンなど) 、 キサントフィル、 カルノシン酸、 エリオシトリン、 ノビレチ ン、 タンジェレチン、 マグノロール、 ホノキオール、 エラグ酸、 リグナン、 クルクミン、 クマリン、 カテコール、 プロシアニジン、 テアフラビン、 □ズ マリン酸、 キサントン、 ケルセチン、 レスベラトロール、 没食子酸、 フロロ タンニン、 などが挙げられる。 また、 分子内にこれらの化合物を 1以上有する 化合物 (例えば、 これらの化合物を含む形で結合し高分子化した複合体) も 挙げられる。 [0018] "Polyphenols" is a general term for phenolic molecules having multiple hydroxy groups. “Polyphenols” are compounds contained in most plants. It is a substance, and various types such as flavonoids and phenolic acids are known. Specific examples of polyphenol compounds include catechin (epicatechin, epigallocatechin, epicatechin gallate, epigallocatechin gallate, etc.), tannic acid, tannin, chlorogenic acid, caffeic acid, neochlorogenic acid, cyanidin, Proanthocyanidins, thearubigins, rutin, flavonoids (quercitrin, anthocyanins, flavanones, flavanols, flavonols, isoflavones, etc.), flavones, chalcones (naringenin chalcone, etc.), xanthophylls, carnosic acid, eriocitrin, nobiletin, Tangeretin, magnolol, honokiol, ellagic acid, lignans, curcumin, coumarin, catechol, procyanidins, theaflavin, zumaric acid, xanthones, quercetin, resveratrol, gallic acid, phlorotannins, and the like. Also included are compounds having one or more of these compounds in the molecule (for example, complexes in which these compounds are combined and polymerized).
[0019I また、 ある果実から抽出したポリフェノール組成物については、 その果実 の名称を付したポリフェノールとして呼ぶこともある。 例えば、 ブドウの果 実から抽出したポリフェノール組成物はブドウポリフェノールと呼ばれる。 また、 本実施の形態では、 還元性有機物の原料として上記のような化合物の 精製品を用いた場合、 光触媒の活性が高くなり好適である。 [0019I In addition, a polyphenol composition extracted from a certain fruit is sometimes called a polyphenol with the name of the fruit. For example, polyphenol compositions extracted from grape berries are referred to as grape polyphenols. In addition, in the present embodiment, it is preferable to use a refined product of the compound as described above as a raw material of the reducing organic substance because the activity of the photocatalyst is increased.
[0020] •還元性有機物の供給原料 本実施の形態では、 還元性有機物の供給原料として、 ポリフェノール類及 びアスコルビン酸の少なくとも何れかを含有する植物体又はその加工品を用 いることができる。 ここで植物体としては、 果実、 種子、 茎葉、 芽、 花、 根 、 及び地下茎から選ばれる 1以上に由来するものが挙げられる。 • Feedstock of reducing organic matter In the present embodiment, a plant containing at least one of polyphenols and ascorbic acid or a processed product thereof can be used as a feedstock of reducing organic matter. Examples of the plant body include those derived from one or more selected from fruits, seeds, foliage, buds, flowers, roots, and rhizomes.
[0021 I アスコルビン酸を多く含む植物体原料としては、 例えば、 トマト、 ピーマ ン、 唐辛子、 冬瓜、 ニガウリ、 ズッキーニ、 キュウリ、 さやえんどう、 かぼ ちや、 なす、 グリンピース、 そらまめ、 えだまめ、 オクラ、 アセロラ、 柑橘 類 (レモン、 ライム、 オレンジ、 グレープフルーツ、 ネーブル、 ゆず、 きん かん、 かぼす、 夏みかん、 はっさく、 いよかん、 ライ厶、 温州ミカン、 シー クワーサー、 マンドリンなど) 、 柿 (カキノキ) 、 キウィフルーツ、 パパイ ア、 ブラックベリー、 ブルーベリー、 クランベリー、 ラズベリー、 ビルベリ ー、 ハックルベリー、 イチゴ、 メロン、 リンゴ、 なし、 西洋なし、 いちじく 、 桃、 スモモ、 グアバ、 ブドウ、 プルーン、 あけび、 ドリアン、 パイナップ ル、 マンゴー、 バナナ、 サクランボ (桜桃) 、 ザクロ、 スイカ、 グミ、 ビワ 、 カシス、 栗、 ライチ、 ぎんなん、 オリーブ、 アボガド、 茶、 レタス、 キャ ベツ、 ケール、 カラシナ、 水菜、 コマツナ、 大根、 かぶ、 菜の花、 白菜、 チ ンゲンサイ、 高菜、 野沢菜、 モロヘイヤ、 ねぎ、 野蒜、 ニンニク、 わけぎ、 ニラ、 タマネギ、 エシャロッ ト、 しそ、 あしたば、 ツルムラサキ、 クレソン 、 アスパラガス、 バジル、 セリ、 セロリ、 パセリ、 ホウレン草、 シュンギク 、 たけのこ、 ブロッコリー、 カリフラワー、 サツマイモ、 ジャガイモ、 やま のいも、 れんこん、 かぶ、 大根、 芽キャベツ、 海藻 (海苔、 ワカメ、 昆布、 アオサなど) などが挙げられる。 [0021] Plant materials containing a large amount of ascorbic acid include, for example, tomatoes, green peppers, red peppers, winter melons, bitter melons, zucchini, cucumbers, green peas, pumpkins, eggplants, green peas, broad beans, green soybeans, okra, acerola, and citrus fruits. (lemon, lime, orange, grapefruit, navel, yuzu, kin Kan, Kabosu, Natsumikan, Hassaku, Iyokan, Rye, Satsuma Mandarin, Shikuwasa, Mandolin, etc.), Persimmon, Kiwifruit, Papaya, Blackberry, Blueberry, Cranberry, Raspberry, Bilberry, Huckleberry, Strawberry, Melon, apple, pear, pear, fig, peach, plum, guava, grape, prune, akebi, durian, pineapple, mango, banana, cherry, pomegranate, watermelon, gummy, loquat, cassis, chestnut, lychee, Ginkgo nut, Olive, Avocado, Tea, Lettuce, Cabbage, Kale, Mustard mustard, Mizuna, Komatsuna, Daikon radish, Turnip, Rapeseed, Chinese cabbage, Bok choy, Takana mustard, Nozawana, Moroheiya, Green onion, Garlic, Garlic, Spring onion, Chive, Onion , shallots, shiso, ashitaba, tsurumurasaki, watercress, asparagus, basil, parsley, celery, parsley, spinach, chrysanthemum, bamboo shoots, broccoli, cauliflower, sweet potato, potato, yam, lotus root, turnip, radish, Brussels sprouts, seaweed (seaweed, wakame seaweed, kelp, sea lettuce, etc.)
[0022I また、 ポリフェノール類を多く含む植物体原料としては、 例えば、 ハーブ 類 (ラベンダー、 ミント、 コリアンダー、 クミン、 セージ、 レモングラス、 ヨモギ、 コンフリー、 シソ、 レモンバー厶、 オレガノ、 キヤツ トニップ、 コ モンタイム、 ディル、 ダークオパール、 バジル、 ヒソツプ、 ペパーミント、 ラムズイヤーなど) 、 ドクダミ、 マリゴールド、 ブドウ、 コーヒー (コーヒ ーノキ) 、 茶 (チャノキ) 、 カカオ、 アカシア、 スギ、 マッ、 サトウキビ、 マンゴー、 バナナ、 パパイア、 アボカド、 リンゴ、 サクランボ (桜桃) 、 グ アバ、 オリーブ、 イモ類 (サツマイモ、 紫イモ (紫色素を多く含有するサッ マイモ) 、 ジャガイモ、 ヤマイモ、 タロイモ (サトイモ、 エビイモなど) 、 コンニャクイモなど) 、 柿 (カキノキ) 、 クワ、 ブルーベリー、 ポプラ、 イ チョウ、 キク、 ヒマワリ、 竹、 柑橘類 (レモン、 ライム、 オレンジ、 グレー プフルーツ、 ネーブル、 ゆず、 きんかん、 かぼす、 夏みかん、 はっさく、 い よかん、 ライム、 温州ミカン、 シークワーサー、 マンダリンなど) 、 イチゴ 、 ブラックベリー、 クランベリー、 ラズベリー、 ビルベリー、 ハックルベリ ー、 ウメ、 桃、 スモモ、 ナシ、 西洋ナシ、 ビワ、 キウィフルーツ、 マンゴス チン、 シシトウ、 プルーン、 メロン、 ドラゴンフルーツ、 クコ、 カシス、 カ シュー、 ガマズミ、 ザクロ、 アサイー、 アロニア、 ナス、 トマト、 大豆、 黒 大豆、 小豆、 サヤインゲン、 落花生、 黒胡麻、 蕎麦、 ダッタンソバ、 ゴマ、 紫キャベツ、 ウルシ、 ヌルデ、 シュンギク、 ブロッコリー、 ホウレンソウ、 コマツナ、 ミツバ、 オクラ、 蕊、 タマネギ、 モロヘイヤ、 シュンギク、 ニン ニク、 紫タマネギ、 アスパラガス、 パセリ、 ユーカリ、 ウド、 ギムネマ・シ ルベスタ、 センナ、 タンポポ、 スギナ、 シダ (ワラビ、 ゼンマイなど) 、 ナ ラ、 クヌギ、 カエデ、 セコイヤ、 メタセコイヤ、 ヒノキ、 アカメガシワ、 タ カノツメ、 アマチャ、 アケビ、 ヤマウコギ、 リョウブ、 タムシバ、 コブシ、 サルナシ、 シロモジ、 クロモジ、 コシアブラ、 クサギ、 ホオノキ、 マタタビ[0022I] Plant raw materials containing a large amount of polyphenols include, for example, herbs (lavender, mint, coriander, cumin, sage, lemongrass, mugwort, comfrey, perilla, lemon balm, oregano, coconut nip, common thyme , dill, dark opal, basil, hyssop, peppermint, lamb's ear, etc.), houttuynia cordata, marigold, grape, coffee (coffee tree), tea (tea tree), cacao, acacia, cedar, mat, sugarcane, mango, banana, papaya, Avocados, apples, cherries (cherry peaches), guavas, olives, potatoes (sweet potatoes, purple potatoes (sweet potatoes containing a lot of purple pigment), potatoes, yams, taro (taro, shrimp, etc.), konjac potatoes, etc.), persimmons (persimmon), mulberry, blueberry, poplar, ginkgo biloba, chrysanthemum, sunflower, bamboo, citrus fruits (lemon, lime, orange, grapefruit, navel, yuzu, kumquat, kabosu, summer orange, hassaku, iyokan, lime, unshu mandarin) , Shikwasa, Mandarin, etc.) , Strawberry, Blackberry, Cranberry, Raspberry, Bilberry, Huckleberry Plum, Peach, Prunus, Pear, Pear, Loquat, Kiwifruit, Mangosteen, Shishito, Prunes, Melon, Dragonfruit, Wolfberry, Cassis, Cashew, Viburnum, Pomegranate, Acai, Aronia, Eggplant, Tomato, Soybean , black soybeans, adzuki beans, green beans, peanuts, black sesame, buckwheat, tartary buckwheat, sesame seeds, purple cabbage, sumac, nurde, shungiku, broccoli, spinach, komatsuna, mitsuba, okra, stamens, onions, molokhiya, chrysanthemum, garlic, purple Onions, asparagus, parsley, eucalyptus, udo, Gymnema sylvestre, senna, dandelion, horsetail, fern (bracken, fern, etc.), oak, sawtooth oak, maple, sequoia, metasequoia, cypress, red-crested wrinkle, takanotsume, amacha, Akebia, Japanese berry, Ryuba, Tamushiba, Kobushi, Japanese argillacea, Shiromoji, Kuromoji, Koshiabura, Kusagi, Magnolia, Actinidia
、 バナバ、 ルイボス、 ラフマ、 クズ、 メグスリノキ、 ウリン、 メルバオ、 ア ォギリ、 スオウ、 ブラジルボク、 メリンジョ、 サクラ、 モクレン、 イエルバ, Banaba, Rooibos, Rafuma, Kudzu, Megusurinoki, Urin, Merbao, Aogiri, Suou, Brazilwood, Melinjo, Sakura, Magnolia, Yerba
•マテ、 メヒルギ、 オヒルギ、 ヤエヤマヒルギ、 ハマザクロ、 ニッパヤシ、 ヒルギダマシ、 ヒルギモドキ、 サキシマスオウノキ、 ゴボウ、 ウコン、 レン コン、 海藻 (海苔、 ワカメ、 昆布、 アオサ、 アラメ、 サガラメなど) などが 挙げられる。 Yerba mate, manhirugi, hirugi, Yaeyama hirugi, pomegranate, nipa palm, mangrove mangrove, mandarin orange, sakishimasu, burdock, turmeric, lotus root, seaweed (seaweed, wakame seaweed, kelp, sea lettuce, arame, sargassum, etc.).
[0023] これらの中でも、 ブドウ、 コーヒー (コーヒーノキ) 、 茶 (チャノキ) 、 カカオ、 アカシア、 スギ、 マッ、 ゆず、 レモン、 ハーブ類 (ラベンダー、 ミ ント、 コリアンダー、 クミン、 セージ、 シソ、 レモングラス、 ヨモギ、 コン フリー、 レモンバーム、 オレガノ、 キヤツ トニップ、 コモンタイム、 ディル[0023] Among these, grapes, coffee (coffee tree), tea (tea), cacao, acacia, cedar, mat, yuzu, lemon, herbs (lavender, mint, coriander, cumin, sage, perilla, lemongrass, Mugwort, Comfrey, Lemon Balm, Oregano, Cat Tonip, Common Thyme, Dill
、 ダークオパール、 バジル、 ヒソツプ、 ペパーミント、 ラムズイヤーなど), dark opal, basil, hyssop, peppermint, lamb's ear, etc.)
、 ドクダミ、 マリゴールド、 サトウキビ、 マンゴー、 バナナ、 パパイア、 ア ボカド、 リンゴ、 サクランボ (桜桃) 、 グアバ、 オリーブ、 イモ類 (サツマ イモ、 紫イモ (紫色素を多く含有するサツマイモ) 、 ジャガイモ、 ヤマイモ, Houttuynia cordata, marigolds, sugar cane, mangoes, bananas, papaya, avocados, apples, cherries (cherries), guava, olives, potatoes (sweet potatoes, purple potatoes (sweet potatoes containing a lot of purple pigment), potatoes, yams
、 タロイモ (サトイモ、 エビイモなど) 、 コンニャクイモなど) 、 柿 (カキ ノキ) 、 クワ、 ブルーベリー、 ポプラ、 イチョウ、 キク、 ヒマワリ、 竹が好 適に用いられる。 [0024I 「加工品」 としては、 ポリフェノール類やアスコルビン酸を含有する植物 体の乾燥物、 搾汁液、 抽出物、 抽出液などが挙げられる。 また、 搾汁液や抽 出液を、 さらに乾燥物としたものであってもよい。 Taro (taro, shrimp, etc.), konjac, etc.), persimmon, mulberry, blueberry, poplar, ginkgo, chrysanthemum, sunflower, and bamboo are preferably used. [0024I"Processed products" include dried plants, juices, extracts, extracts and the like containing polyphenols and ascorbic acid. In addition, the squeezed juice or the extract may be further dried.
[0025] 「乾燥物」 としては、 破砕、 粉砕、 粉末化などの処理を行ったものが望ま しい。 また、 鉄との反応効率の観点を考慮すると、 粒子径の小さい粉末にし たものが好適である。 [0025] As the "dry matter", it is desirable to subject it to crushing, pulverization, pulverization, or other processing. In addition, considering the efficiency of reaction with iron, it is preferable to use a powder with a small particle size.
「抽出物」 及び 「抽出液」 の抽出溶媒としては、 アスコルビン酸であれば 、 水が好適であり、 ポリフェノール類であれば、 水、 熱水、 アルコール (特 にエタノール) 、 含水アルコール (特に含水エタノール) が好適である。 As the extraction solvent for the "extract" and "extract", water is suitable for ascorbic acid, and water, hot water, alcohol (especially ethanol), hydrous alcohol (especially hydrous alcohol) is suitable for polyphenols. ethanol) is preferred.
[0026] 還元性有機物の供給原料としては、 植物体又はその加工品を水若しくは熱 水で抽出し、 その後に残った残渣についても好適に用いることができる。 ま た、 植物体又はその加工品を還元状態で熱分解して得られる乾留液 (植物乾 留液) も、 好適に用いることができる。 [0026] As a feedstock for the reducing organic matter, the residue remaining after extracting the plant body or its processed product with water or hot water can also be suitably used. A dry distillation solution obtained by thermally decomposing a plant or its processed product in a reducing state (plant dry distillation solution) can also be preferably used.
[0027] •原料コストが有利な植物体由来原料 本実施の形態では、 還元性有機物の供給原料として果実搾汁液、 茎葉搾汁 液、 植物乾留液、 コーヒー豆焙煎物、 茶葉を原料として用いることにより、 さらに低コストで光触媒を製造することが可能となり、 経済的に有利な効果 を期待することができる。 [0027] Plant-derived raw materials with advantageous raw material costs In the present embodiment, fruit juice, stem and leaf juice, plant dry distillation, roasted coffee beans, and tea leaves are used as raw materials for supplying reducing organic matter. As a result, it becomes possible to manufacture the photocatalyst at a lower cost, and an economically advantageous effect can be expected.
[0028] (a)果実搾汁液 還元性有機物の供給原料としては、 「果実搾汁液」 を用いることが好適で ある。 果実搾汁に用いる果実の種類としては、 上述した果実を好適に用いる ことができる。 特に、 総ポリフェノール量の多いものがカ価の点で好適であ る。 また、 原料コストの観点を踏まえると、 ブドウ、 バナナ、 リンゴ、 カキ 、 トマト、 柑橘類などの搾汁液を用いることが好適である。 (a) Fruit Squeezed Liquid [0028] As the raw material for supplying the reducing organic matter, it is preferable to use a "fruit squeezed liquid". As the type of fruit used for squeezing the fruit juice, the above-mentioned fruit can be preferably used. In particular, those having a large total polyphenol content are preferable in terms of their potency. In addition, from the viewpoint of raw material costs, it is preferable to use squeezed juices of grapes, bananas, apples, persimmons, tomatoes, citrus fruits, and the like.
[0029] (b)茎葉搾汁液 還元性有機物の供給原料としては、 「茎葉搾汁液」 を用いることが好適で ある。 茎葉搾汁に用いる植物の種類としては、 上述した植物体茎葉を好適に 用いることができる。 特に、 総ポリフェノール量の多いものがカ価の点で好 適である。 また、 原料コストの観点を踏まえると、 スギナ、 ヒノキ、 マッ、 スギなどの搾汁液を用いることが好適である。 (b) Squeezed juice of stems and leaves It is preferable to use "squeezed juice of stems and leaves" as the feedstock of the reducing organic matter. As the type of plant used for the foliage squeezing, the foliage of the plant body described above can be preferably used. In particular, those with a large amount of total polyphenols are preferred in terms of potency. suitable. In addition, from the viewpoint of raw material costs, it is preferable to use juices from horsetail, cypress, mac, cedar, and the like.
[0030] (c)植物乾留液 当該還元性有機物の供給原料としては、 「植物乾留液」 を用いることが好 適である。 当該原料には、 ポリフェノール類が多く含まれることに加えて、 フェノール類、 有機酸、 カルボニル類、 アルコール類、 アミン類、 塩基性成 分、 その他中性成分などの多くの還元性有機物の分子が含まれると推測され る。 (c) Plant Dry Distillate [0030] As the feedstock for the reducing organic matter, it is preferable to use a "plant dry distillation solution". In addition to containing a large amount of polyphenols, the raw material contains many molecules of reducing organic substances such as phenols, organic acids, carbonyls, alcohols, amines, basic components, and other neutral components. Presumed to be included.
[0031 ] ここで植物乾留液とは、 還元状態の植物体を熱分解することによって得ら れる乾留液 (粘りけのある褐色を呈する液体) を指す。 外見は赤褐色〜暗褐 色を呈する。 原液のまま用いることもできるが、 濃縮液、 希釈液、 これらの 乾燥物として用いることも可能である。 植物乾留液として具体的には、 木酢 液、 竹酢液、 籾酢液などを挙げることができる。 原料コストの観点からもこ れらを好適に用いることができる。 [0031] Here, the plant dry distillation solution refers to a dry distillation solution (sticky brown liquid) obtained by thermally decomposing a reduced plant body. Appearance is reddish brown to dark brown. The undiluted solution can be used as it is, but it can also be used as a concentrated solution, a diluted solution, or a dried product thereof. Specific examples of the dry distillation of the plant include wood vinegar, bamboo vinegar, rice vinegar, and the like. These can be preferably used from the viewpoint of raw material cost.
[0032] (d)コーヒー豆焙煎物 還元性有機物の供給原料としては、 「コーヒー豆焙煎物」 に由来する原料 を用いることが好適である。 この原料には、 ポリフェノール類が非常に多く 含まれる。 本実施の形態では、 コーヒー豆焙煎物をそのままの状態で又は粉 砕状態にして用いることができる。 また、 粉砕物を水又は熱水で抽出した成 分 (いわゆる淹れたコーヒーの成分) を用いることができる。 また、 水又は 熱水で抽出した後の残渣 (いわゆるコーヒー粕) を用いることができる。 特 には、 原料コストの観点を踏まえると、 コーヒー成分抽出後に大量に廃棄さ れる 「コーヒー粕」 を用いることが最も好適である。 (d) Roasted coffee beans [0032] It is preferable to use raw materials derived from "roasted coffee beans" as the feedstock for the reducing organic matter. This raw material contains a very large amount of polyphenols. In this embodiment, the roasted coffee beans can be used as they are or after being pulverized. Also, a component obtained by extracting the pulverized product with water or hot water (so-called brewed coffee component) can be used. Also, the residue after extraction with water or hot water (so-called coffee grounds) can be used. In particular, from the viewpoint of raw material cost, it is most suitable to use "coffee grounds", which are discarded in large quantities after the extraction of coffee components.
[0033] ここで、 コーヒー豆焙煎物とは、 通常の方法に従ってコーヒー豆を焙煎し たものであれば如何なるものも含まれる。 いわゆる挽いた (粉砕した) コー ヒー豆の状態もここに含まれる。 また、 コーヒー豆を粉砕したものを焙煎し たものであってもよい。 ここでコーヒー豆としては、 コーヒーノキである Cof fea arab i ca (アラビカ種) 、 C. canephora (ロブスタ種) 、 C. L i ber i ca (リ ベリカ種) の種子であれば如何なるものを用いることができる。 なお、 生の コーヒー豆であってもよいが、 通常用いられるように乾燥保存されたものが 好適である。 原料コストの観点を踏まえると、 工業的には、 規格外のコーヒ ー豆を用いることが好ましい。 ここで焙煎としては、 通常行われる如何なる 方法を挙げることができ、 例えば、 直火焙煎、 熱風焙煎、 遠赤外線焙煎、 マ イクロ波焙煎、 加熱水蒸気焙煎、 低温焙煎などを挙げることができる。 [0033] Here, the roasted coffee beans include any roasted coffee beans according to a normal method. The state of so-called ground (crushed) coffee beans is also included here. Moreover, it may be one obtained by roasting ground coffee beans. Here, coffee beans include Coffea arab i ca (Arabica), C. canephora (Robusta), C. L i ber i ca (Libera). Velica species) seeds can be used. Although fresh coffee beans may be used, dried and preserved coffee beans that are commonly used are preferred. Industrially, it is preferable to use non-standard coffee beans from the viewpoint of raw material costs. Here, the roasting can be any method commonly used, for example, direct fire roasting, hot air roasting, far infrared ray roasting, microwave roasting, heated steam roasting, low temperature roasting, etc. can be mentioned.
[0034I また、 粉砕とは、 例えば、 コーヒーミル、 グラインダー、 石臼などによっ て通常のコーヒー豆が挽かれた状態のことであり、 粗挽きから粉末化状態の ものまで幅広く含むものである。 鉄との反応効率の観点を考慮すると、 表面 積の大きい状態にした方が好適であるので、 破砕、 粉砕、 粉末化等すること が好適である。 [0034I In addition, pulverization is, for example, a state in which normal coffee beans are ground by a coffee mill, a grinder, a millstone, etc., and includes a wide range of grounds from coarse ground to powdered. Considering the efficiency of reaction with iron, it is preferable to have a state with a large surface area, so it is preferable to crush, pulverize, powderize, or the like.
[0035] (d)茶葉 還元性有機物の供給原料としては、 「茶葉」 に由来する原料を用いること が好適である。 この原料には、 ポリフェノール類が非常に多く含まれる。 本 実施の形態では、 茶葉をそのままの状態で又は粉砕状態にして用いることが できる。 また、 粉砕物を水又は熱水で抽出した成分 (いわゆる淹れた茶の成 分) を用いることができる。 また、 水又は熱水で抽出した後の残渣 (いわゆ る茶殻) を用いることができる。 特に、 原料コストの観点を踏まえると、 茶 成分抽出後に大量に廃棄される 「茶殻」 を用いることが最も好適である。 (d) Tea leaves [0035] As the feedstock for the reducing organic matter, it is preferable to use a material derived from "tea leaves". This raw material contains a very large amount of polyphenols. In this embodiment, the tea leaves can be used as they are or after being pulverized. Also, a component obtained by extracting the pulverized product with water or hot water (so-called brewed tea component) can be used. Moreover, the residue after extraction with water or hot water (so-called used tea leaves) can be used. In particular, from the viewpoint of raw material costs, it is most suitable to use "used tea leaves" that are discarded in large quantities after the extraction of tea components.
[0036] ここで、 茶葉とは、 チャノキである Came l l i a s i nens i sの茎葉を摘んだもの であれば如何なるものも用いることができる。 また摘み方は如何なる方法で もよいが、 コストの観点を踏まえると、 特に機械摘みが好適である。 なお、 摘んだ茶葉は細胞の内容物が混ざり合って酸化発酵が起こるが、 本発明では 如何なる発酵段階の茶葉であっても用いることができる。 例えば、 加熱して 酸化発酵を抑えた緑茶 (煎茶、 番茶、 茎茶、 ほうじ茶など) 、 ある程度発酵 させた青茶 (ウーロン茶など) 、 完全に発酵させた紅茶、 ;酸化発酵後にさ らに麹菌発酵させた黒茶 (プーアル茶など) 、 などを用いることができる。 好ましくは、 緑茶、 紅茶、 ウーロン茶を挙げることができる。 なお、 原料コ ストの観点を踏まえると、 工業的には、 規格外の茶葉を用いることが好まし い。 また、 鉄との反応効率の観点を考慮すると、 表面積の大きい状態にした 方が好適であるので、 破砕、 粉砕、 粉末化等して用いることが好適である。 [0036] Here, as the tea leaves, any leaf can be used as long as it is obtained by picking the stems and leaves of Camellia sinensis, which is a tea tree. Any picking method may be used, but mechanical picking is particularly preferable from the viewpoint of cost. In the present invention, tea leaves at any stage of fermentation can be used, although plucked tea leaves are mixed with cell contents and oxidized and fermented. For example, green tea that has been heated to suppress oxidative fermentation (sencha, bancha, stem tea, hojicha, etc.), green tea that has been fermented to some extent (oolong tea, etc.), black tea that has been fermented completely, and koji mold fermentation after oxidative fermentation. Black tea (such as pu-erh tea), etc. can be used. Green tea, black tea, and oolong tea are preferred. In addition, the raw material Industrially, it is preferable to use non-standard tea leaves from the standpoint of the strike. In addition, considering the reaction efficiency with iron, it is preferable to have a large surface area, so it is preferable to use it after crushing, pulverizing, pulverizing, or the like.
[0037I 上記の還元性有機物の供給原料は、 1種のみを用いることもできるし、 2 種以上を混合して用いることもできる。 [0037I] Only one type of the above-mentioned reducing organic feedstock can be used, or two or more types can be used in combination.
[0038] また、 炭素を供給する原料として、 還元性ガスを用いることができる。 こ の還元性ガスとしては、 例えば、 一酸化炭素 (Co) 、 炭化水素ガス (水素 (H 2) 、 メタン (CHQ 、 プロパン (C3HQ 、 ブタン (C4H10) など) 、 などが挙げ られる。 また、 このような還元性ガスを用いることで、 後述の光触媒組成物 の製造方法において、 適切な還元雰囲気下での光触媒組成物の製造が可能と なる。 [0038] Further, a reducing gas can be used as a raw material for supplying carbon. Examples of the reducing gas include carbon monoxide (Co), hydrocarbon gases (hydrogen (H2), methane (CHQ, propane ( C3HQ , butane ( C4H10 ), etc.), and the like. In addition, by using such a reducing gas, it becomes possible to manufacture a photocatalyst composition under an appropriate reducing atmosphere in the method for manufacturing a photocatalyst composition described below.
[0039] [鉄供給原料] 本実施の形態の光触媒組成物は、 鉄元素を供給する原料として、 二価鉄の 供給原料及び三価鉄の供給原料の少なくとも何れかを含有する。 また、 鉄元 素を供給する原料として、 金属鉄の供給原料を用いることもできる。 また、 複数のものを混合して用いることもできる。 [Iron feedstock] [0039] The photocatalyst composition of the present embodiment contains at least one of a divalent iron feedstock and a trivalent iron feedstock as a feedstock for supplying elemental iron. In addition, as a raw material for supplying the iron element, a raw material for supplying metallic iron can also be used. Moreover, a plurality of substances can be mixed and used.
[0040] ここで、 「二価鉄化合物 (二価鉄の供給原料) 」 としては、 塩化鉄 (IDs 硝酸鉄 (II)、 硫酸鉄 (IDs 水酸化鉄 (II)、 酸化鉄 (II)、 酢酸鉄 (II)、 乳酸鉄 ([0040] Here, the "ferric compound (supply material of divalent iron)" includes iron chloride (IDs iron nitrate (II), iron sulfate (IDs iron hydroxide (II), iron oxide (II), iron (II) acetate, iron lactate (
II)、 クエン酸鉄 (II)ナトリウム、 グルコン酸鉄 (II)など水溶性の鉄化合物、 ; 炭酸鉄 (II)、 フマル酸鉄 (II)などの不溶性の二価鉄化合物が挙げられる。 II), water-soluble iron compounds such as sodium iron (II) citrate and iron (II) gluconate; and insoluble divalent iron compounds such as iron (II) carbonate and iron (II) fumarate.
[0041 ] 「三価鉄の供給原料」 としては、 塩化鉄 (Ill)s 硫酸鉄 (Ill)s クエン酸鉄 ([0041] As the "ferric feedstock", iron chloride (Ill)s iron sulfate (Ill)s iron citrate (
III)、 クエン酸鉄 (III)アンモニウム、 EDTA鉄 (III)などの水溶性の三価鉄化 合物 ;酸化鉄 (Ill)s 硝酸鉄 (Ill)s 水酸化鉄 (Ill)s ピロリン酸鉄 (III)など の不溶性の三価鉄化合物が挙げられる。 III), water-soluble trivalent iron compounds such as ammonium iron (III) citrate, iron (III) EDTA; iron oxide (Ill)s iron nitrate (Ill)s iron hydroxide (Ill)s iron pyrophosphate Insoluble trivalent iron compounds such as (III) can be mentioned.
[0042] また、 これらの三価鉄化合物を多く含む天然原料としては、 赤玉土、 鹿沼 土、 ローム (アロフェン質の鉄分を多く含む土壌) 、 ラテライト (酸化鉄 (II[0042] Natural raw materials containing a large amount of these trivalent iron compounds include Akadama soil, Kanuma soil, loam (soil containing a lot of allophane iron), laterite (iron oxide (II
I)を多く含む土壌) 、 ゲータイト (非結晶質の鉱物を含む土壌) などの土壌 、 ;黄鉄鉱、 白鉄鉱、 菱鉄鉱、 磁鉄鉱、 針鉄鉱など天然の鉄鉱石、 ; これら の鉄鉱石が砂塵化した砂鉄、 ;ヘム鉄、 貝殻などの生体由来の物質 ;などが 挙げられる。 I) rich soils), goethites (soils containing amorphous minerals); natural iron ores such as pyrite, marcasite, siderite, magnetite, goethite; iron sand, which is sanded iron ore; heme iron, bio-derived substances such as shells; and the like.
[0043I また、 「金属鉄の供給原料」 としては、 製錬鉄や合金などの鉄材が挙げら れる。 その他にも、 「金属鉄の供給原料」 として、 金靑び (サビ) も用いるこ とができる。 [0043I In addition, the "supply material of metallic iron" includes iron materials such as smelted iron and alloys. In addition, gold rust can also be used as a “supply material for metallic iron”.
[0044] さらには、 「鉄供給原料」 として、 鉄還元能を有する還元性有機物又はそ の供給原料と、 鉄供給原料を、 水存在下にて混合し、 得られた反応生成物を 用いることもできる。 より具体的には、 例えば、 「鉄供給原料」 として、 ポ リフェノール類又はその供給原料と、 鉄供給原料とを水の存在下で混合し、 得られたポリフェノール鉄錯体 (二価鉄イオン ( F e 2+) がポリフェノール類 と錯体構造を形成してなるもの) が好適に挙げられる。 [0044] Furthermore, as the "iron feedstock", a reaction product obtained by mixing a reducing organic substance having iron-reducing ability or a feedstock thereof with an iron feedstock in the presence of water is used. can also More specifically, for example, as an "iron feedstock", a polyphenol or its feedstock and an iron feedstock are mixed in the presence of water, and the resulting polyphenol iron complex (ferric ion ( Fe 2+) forming a complex structure with polyphenols) is preferably mentioned.
[0045] なお、 上記の鉄供給原料は、 水不溶性のものであっても、 上記還元性有機 物のキレート能によって水溶化するため、 鉄供給原料として直接用いること が可能である。 また、 上記鉄化合物が水に溶解した二価鉄イオン及び/又は 三価鉄イオンを含む水溶液を用いることもできる。 [0045] Even if the above iron feedstock is water-insoluble, it can be used directly as an iron feedstock because it is water-soluble due to the chelating ability of the reducing organic matter. Also, an aqueous solution containing divalent iron ions and/or trivalent iron ions in which the iron compound is dissolved in water can be used.
[0046] 上記鉄供給原料のうち、 光触媒組成物を効率よく製造するためには、 水溶 性の二価鉄化合物又は三価鉄化合物を用いることが好適である。 特に、 安価 な塩化鉄、 硫酸鉄などを用いることが好適である。 また、 原料コスト及び安 定供給の観点を踏まえて製造するためには、 天然物である土壌 (特に赤玉土 、 鹿沼土、 ロームなど) 、 金属鉄を鉄供給原料として用いることが好適であ る。 [0046] Of the above iron feedstocks, it is preferable to use a water-soluble divalent iron compound or trivalent iron compound in order to efficiently produce a photocatalyst composition. In particular, it is preferable to use inexpensive iron chloride, iron sulfate, or the like. In addition, in order to produce iron from the viewpoint of raw material cost and stable supply, it is preferable to use natural soil (especially Akadama soil, Kanuma soil, loam, etc.) and metallic iron as iron supply raw materials. .
[0047] [ガラス材料] 本実施の形態の光触媒組成物は、 ガラス材料として、 ケイ素を供給する原 料 (ケイ素供給原料) を含有する。 この他にも、 ガラス材料として、 ガラス やセラミックスの製造に通常用いられる、 公知のガラス材料を用いることが できる。 例えば、 ガラス材料として、 珪酸塩ガラス (ソーダ石灰ガラス、 ホ ウケイ酸ガラス、 石英ガラス、 鉛ガラスなど) の製造に通常用いられる材料 を用いることができる。 [0048I 「ケイ素供給原料」 としては、 イネ科植物、 シダ植物、 及び藻類から選ば れる植物体、 並びにこのような植物体の加工品が挙げられる。 イネ科植物と しては、 イネ、 トウグサ、 サトウキビ、 イグサ、 タケ、 コムギ、 オオムギ、 トウモロコシ、 エンバク、 シバ、 ソルガム、 ライムギ、 アワ、 エレファント グラス、 ススキ、 ササなどが挙げられる。 シダ植物としては、 トクサ、 スギ ナなどが挙げられる。 藻類としては、 珪藻 (特にキートセロス) などが挙げ られる。 [Glass material] [0047] The photocatalyst composition of the present embodiment contains a raw material for supplying silicon (silicon feed raw material) as a glass material. In addition, as the glass material, it is possible to use known glass materials that are commonly used in the production of glass and ceramics. For example, as the glass material, materials commonly used for manufacturing silicate glass (soda lime glass, borosilicate glass, quartz glass, lead glass, etc.) can be used. [0048I The "silicon feedstock" includes plants selected from grasses, ferns, and algae, and processed products of such plants. The gramineous plants include rice, rush, sugar cane, rush, bamboo, wheat, barley, corn, oat, turfgrass, sorghum, rye, foxtail millet, elephant grass, pampas grass, bamboo grass, and the like. Examples of fern plants include horsetail and horsetail. Examples of algae include diatoms (especially Chaetoceros).
[0049I この中でも、 イネ、 サトウキビを用いることが好適であり、 さらに農産業 で副産物として多く発生する籾殻、 イネ葉、 サトウキビ葉を用いることが最 も好適である。 このような副産物を利用することで、 低コストで光触媒を製 造することが可能で、 経済的に有利な効果を期待することができる。 [0049I] Among these, it is preferable to use rice and sugarcane, and it is most preferable to use rice husks, rice leaves, and sugarcane leaves, which are often produced as by-products in the agricultural industry. By using such a by-product, it is possible to produce a photocatalyst at low cost, and an economically advantageous effect can be expected.
[0050I 「加工品」 としては、 ケイ素を含有する上記した植物体の乾燥物、 搾汁液 、 抽出物、 抽出液、 搾汁液や抽出液の乾燥物などが挙げられる。 乾燥物、 搾 汁液、 抽出物、 抽出液は、 前述の還元性有機物におけるこれらと同様の処理 によって得ることができる。 [0050I"Processed products" include dried products of the above-described silicon-containing plant bodies, juices, extracts, extracts, dried products of squeezed juices and extracts, and the like. The dried matter, juice, extract, and liquid extract can be obtained by the same treatments as those of the above-described reducing organic matter.
[0051 ] また、 上記植物体又は加工品以外にも、 「ケイ素供給原料」 として、 ケイ 酸塩、 ケイ素、 二酸化ケイ素 (シリカ) 、 塩化ケイ素、 珪砂、 ガラス (リサ イクルガラス) などを用いることができる。 また、 これらのケイ素供給原料 を複数組み合わせて用いることも好適である。 [0051] In addition to the above plant body or processed product, silicate, silicon, silicon dioxide (silica), silicon chloride, silica sand, glass (recycled glass), etc. can be used as "silicon feedstock". can. It is also preferable to use a combination of these silicon feedstocks.
[0052] ケイ素供給原料以外のガラス材料としては、 例えば、 ホウ素、 酸化ホウ素 、 ホウ酸ナトリウム (特に四ホウ酸ナトリウム) 、 ソーダ灰、 無水炭酸ナト リウム、 石灰石、 炭酸カルシウム、 炭酸カリウム、 などが挙げられるが、 こ れらに限定されない。 また、 これらのガラス材料に、 安定剤、 装飾性等を高 めるための色材などを添加することもできる。 [0052] Glass materials other than silicon feedstocks include, for example, boron, boron oxide, sodium borate (particularly sodium tetraborate), soda ash, anhydrous sodium carbonate, limestone, calcium carbonate, potassium carbonate, and the like. include, but are not limited to: In addition, stabilizers and coloring materials for enhancing decorativeness and the like can be added to these glass materials.
[0053] 上記原料の好ましい混合比率について説明する。 還元性有機物と鉄供給原 料の混合比率としては、 還元性有機物、 又は還元性有機物の供給原料の乾燥 重量 100重量部に対して、 鉄供給原料を鉄元素の重量換算で 0. 1重量部以上、 好ましくは 0. 5重量部以上、 より好ましくは 1重量部以上、 さらに好ましくは 2 重量部以上、 特に好ましくは 3重量部以上、 一層好ましくは 4重量部以上を含 有するように配合すればよい。 鉄元素の割合が少なすぎる場合 (鉄元素に対 して還元性有機物の混合割合が多すぎる場合) には、 過剰に存在する還元性 有機物がラジカル消去物質 (スカベンジャー) として機能するため、 光触媒 活性を阻害する可能性がある〇 [0053] A preferred mixing ratio of the raw materials will be described. The mixing ratio of the reducing organic matter and the iron feedstock is as follows: 0.1 part by weight of the iron feedstock in terms of the weight of the iron element per 100 parts by weight of the dry weight of the reducing organic matter or the feedstock of the reducing organic matter. Above, preferably 0.5 parts by weight or more, more preferably 1 part by weight or more, still more preferably 2 parts by weight It may be blended so as to contain at least 3 parts by weight, particularly preferably at least 3 parts by weight, and more preferably at least 4 parts by weight. If the ratio of iron element is too low (the mixing ratio of reducing organic matter to iron element is too high), the excess reducing organic matter functions as a radical scavenging substance (scavenger), resulting in photocatalytic activity. ○
[0054J また、 鉄元素量の上限としては、 鉄元素の重量換算で 10重量部以下、 好ま しくは 8重量部以下、 より好ましくは 6重量部以下を挙げることができる。 鉄 元素の割合が多すぎる場合 (鉄元素に対して還元性有機物の混合割合が少な すぎる場合) には、 鉄イオンを二価の状態で維持できなくなり光触媒活性が 低下し、 好ましくない。 [0054J In addition, the upper limit of the amount of iron element is 10 parts by weight or less, preferably 8 parts by weight or less, and more preferably 6 parts by weight or less in terms of the weight of iron element. If the ratio of the iron element is too high (the mixing ratio of the reducing organic substance is too low relative to the iron element), the iron ions cannot be maintained in a bivalent state, resulting in a decrease in photocatalytic activity, which is not preferable.
[0055] 一方、 還元性有機物とケイ素供給原料の混合比率としては、 還元性有機物[0055] On the other hand, the mixing ratio of the reducing organic substance and the silicon feedstock is
、 又は還元性有機物の供給原料 (乾燥重量) と、 鉄供給原料との合計 100重量 部に対して、 ケイ素供給原料を元素の重量換算で 5重量部以上、 好ましくは 10 重量部以上、 より好ましくは 50重量部以上、 さらに好ましくは 60重量部以上 、 特に好ましくは 90重量部以上を含有するように配合すればよい。 ケイ素元 素の割合が少なすぎる場合 (ケイ素元素に対して還元性有機物の混合割合が 多すぎる場合) には、 ガラスセラミックスが形成されないため好ましくないor 5 parts by weight or more, preferably 10 parts by weight or more, more preferably 10 parts by weight or more of the silicon feedstock in terms of the weight of the element, per 100 parts by weight in total of the feedstock of the reducible organic matter (dry weight) and the iron feedstock. is 50 parts by weight or more, more preferably 60 parts by weight or more, and particularly preferably 90 parts by weight or more. If the ratio of the silicon element is too low (the mixing ratio of the reducing organic substance is too high with respect to the silicon element), glass-ceramics will not be formed, which is not desirable.
[0056] また、 ケイ素元素量の上限としては、 ケイ素元素の重量換算で 99重量部以 下、 好ましくは 60重量部以下、 より好ましくは 30重量部以下を挙げることが できる。 ケイ素元素の割合が多すぎる場合 (ケイ素元素に対して還元性有機 物の混合割合が少なすぎる場合) には、 ガラスセラミックスが形成されない ため好ましくない。 なお、 還元性有機物、 又は還元性有機物の供給原料 (乾燥重量) と、 鉄供 給原料との合計 100重量部に対して、 ケイ素供給原料 (乾燥重量) を、 好まし くは 100重量部以上、 より好ましくは 200重量部以上、 さらに好ましくは 300重 量部程度を含有するように配合すればよい。 [0056] The upper limit of the amount of silicon element is 99 parts by weight or less, preferably 60 parts by weight or less, and more preferably 30 parts by weight or less in terms of the weight of silicon element. If the proportion of the silicon element is too high (the mixing proportion of the reducing organic substance is too low relative to the silicon element), glass-ceramics will not be formed, which is not preferable. The silicon feedstock (dry weight) is preferably 100 parts by weight or more with respect to a total of 100 parts by weight of the reducing organic substance or the feedstock of the reducing organic substance (dry weight) and the iron feedstock. , more preferably 200 parts by weight or more, more preferably about 300 parts by weight.
[0057] なお、 還元性有機物供給原料やケイ素供給原料として、 植物体の抽出物又 は抽出液を用いる場合には、 抽出原料として用いた当該植物体の乾燥重量を 「還元性有機物の供給原料の乾燥重量」 とみなして、 混合比率を算出すれば よい。 例えば、 還元性有機物の供給原料として乾燥茶葉を用い、 この茶葉を 熱水抽出して得られた抽出液と、 鉄供給原料と、 を反応させたとする。 この 場合、 当該乾燥茶葉の重量を 「還元性有機物の供給原料の乾燥重量」 として 用いて、 鉄供給原料との混合比率を算出する。 [0057] A plant extract or In the case of using an extract, the dry weight of the plant body used as the raw material for extraction should be regarded as the "dry weight of the raw material for reducing organic matter" to calculate the mixing ratio. For example, it is assumed that dry tea leaves are used as a feedstock of reducing organic matter, and an extract obtained by hot water extraction of the tea leaves is reacted with an iron feedstock. In this case, the weight of the dry tea leaves is used as the "dry weight of the reducing organic feedstock" to calculate the mixing ratio with the iron feedstock.
[0058I ところで、 発明者らは、 前述したように光触媒として、 還元性有機物と、 鉄供給原料を、 水存在下にて混合し、 得られた反応生成物、 より具体的には 、 ポリフェノール類と、 鉄供給原料とを水の存在下で混合し、 得られたポリ フェノール鉄錯体を開発している。 このポリフェノール鉄錯体は、 可視光に 対する光触媒効果を示すものの、 その安定性 (持続性) が問題であった。 こ の問題を解決するに際して、 発明者らは、 ポリフェノール鉄錯体中の炭素が 光から電子を受け取って二価鉄に引き渡すことで二価鉄がその状態で安定し ていると考えた。 そこで、 ポリフェノール鉄錯体の安定性を高めるには炭素 と二価鉄を結合させれば安定な光触媒を得ることができると考えた。 しかし 、 二価鉄と炭素を結合することが困難であり、 様々の条件で反応を検討した 結果、 ポリフェノール類と鉄供給源とを用いてガラスを製造したところ、 炭 素と鉄を結合させることができた。 さらに、 ガラス材料に含まれるケイ素に よって、 光触媒としての安定性が高くなることを見出した。 以下、 本実施の 形態の光触媒組成物の製造方法について説明する。 [0058I] By the way, as described above, the inventors mixed a reducing organic substance as a photocatalyst with an iron feedstock in the presence of water, and obtained a reaction product, more specifically, polyphenols and , developed a polyphenol iron complex obtained by mixing with an iron feedstock in the presence of water. Although this polyphenol iron complex exhibits a photocatalytic effect against visible light, its stability (sustainability) is a problem. In solving this problem, the inventors considered that the carbon in the polyphenol iron complex receives electrons from the light and transfers them to the divalent iron, thereby stabilizing the divalent iron in that state. Therefore, we thought that a stable photocatalyst could be obtained by combining carbon and divalent iron to increase the stability of the polyphenol iron complex. However, it is difficult to bond divalent iron and carbon, and as a result of examining the reaction under various conditions, when glass was produced using polyphenols and an iron supply source, it was found that carbon and iron could be bonded. was made. Furthermore, they found that the silicon contained in the glass material enhances the stability as a photocatalyst. A method for producing the photocatalyst composition of the present embodiment will be described below.
[0059] (光触媒組成物の製造方法) 本実施の形態の光触媒組成物の製造方法では、 三価鉄を二価鉄に還元する 作用を有する還元性有機物、 鉄供給原料、 及び、 ガラス材料を混合した混合 物を、 還元雰囲気下、 加熱温度 9 0 0 °C以上、 加熱時間 12分以上で加熱処理 する工程 (加熱工程) を含む。 この加熱工程 (より詳細には、 還元焼成工程(Method for Producing Photocatalyst Composition) [0059] In the method for producing a photocatalyst composition of the present embodiment, a reducing organic substance having an action of reducing trivalent iron to divalent iron, an iron feedstock, and a glass material are used. A step (heating step) of heat-treating the mixed mixture in a reducing atmosphere at a heating temperature of 900° C. or higher for a heating time of 12 minutes or longer is included. This heating process (more specifically, the reduction firing process
) で光触媒組成物を製造することで、 原料を適切に溶融して、 ガラスとして の品質を向上できるとともに、 炭素と二価鉄の結合性を高めることができ、 安定した光触媒活性を有する光触媒組成物が得られる。 [0060I 加熱温度としては、 9 0 O °C以上であればよいが、 1 2 0 O °C以上、 1 3 。 0 °C以下とすることがより好適である。 また、 加熱時間としては、 12分以 上であればよく、 12分以上、 12時間以下がより好適であり、 12分以上、 3時間 以下がさらに好適である。 なお、 溶融状態や作業効率などを考慮して、 加熱 温度を 20分 (0. 33時間) 程度とすればよい。 このような温度や時間で加熱エ 程を行うことで、 原料をより適切に溶融し、 結晶化も促進されて、 ガラスと しての品質により優れるとともに、 炭素と二価鉄の結合性もより咼まり、 よ り安定した光触媒活性を有する光触媒組成物が得られる。 ), the raw material can be melted appropriately to improve the quality of the glass, and the bonding between carbon and ferrous iron can be improved, resulting in a photocatalyst composition having stable photocatalytic activity. you get something. [0060I The heating temperature may be 90°C or higher, but 120°C or higher. A temperature of 0°C or less is more preferable. The heating time may be 12 minutes or longer, more preferably 12 minutes or longer and 12 hours or shorter, and even more preferably 12 minutes or longer and 3 hours or shorter. The heating temperature should be about 20 minutes (0.33 hours) in consideration of the molten state and work efficiency. By performing the heating process at such a temperature and time, the raw material is melted more appropriately, crystallization is promoted, and the quality as glass is improved, and the bonding between carbon and ferrous iron is improved. As a result, a photocatalyst composition having more stable photocatalytic activity can be obtained.
[0061 ] また、 加熱工程は、 還元雰囲気下で行うことで、 還元性有機物の三価鉄を 二価鉄に還元する作用を高めることができる。 なお、 加熱によって還元性有 機物が炭素化し、 二酸化炭素を発生し、 還元雰囲気下での加熱工程が可能と なるが、 加熱工程において、 前述したような還元性ガスを供給することで、 還元作用をより適切なものとすることができる。 [0061] In addition, the heating step can be performed in a reducing atmosphere to enhance the effect of reducing trivalent iron, which is a reducible organic substance, to divalent iron. By heating, the reducing organic matter is carbonized to generate carbon dioxide, and the heating process can be performed in a reducing atmosphere. The action can be made more appropriate.
[0062] また、 上記加熱工程の他にも、 混合工程、 冷却工程、 粉砕工程、 などを含 む。 混合工程は、 所定の混合比率の還元性有機物、 鉄供給原料、 ケイ素供給 原料を含むガラス材料を、 るつぼなどの容器に投入して混合する工程である 。 冷却工程は、 上記加熱工程で得られた溶融物を適宜冷却してガラス化する 工程である。 この冷却工程により、 溶融物がガラス化し、 ガラス又はガラス セラミックスからなる光触媒組成物が生成される。 この冷却工程により、 板 状、 塊状のガラス又はガラスセラミックス (以下、 「板ガラス」 、 「ガラス 塊」 という。 ) が得られる。 この板ガラスやガラス塊をそのまま光触媒組成 物としたり、 適宜の大きさに分割して光触媒組成物としたりすることができ る。 このような光触媒組成物では、 その内部及び表面に、 光触媒活性を有す る炭素と二価鉄の結合物 (反応生成物) が散在し、 光触媒組成物の表面の反 応生成物によって光触媒反応が発生する。 また、 光触媒組成物の表面が削れ た場合でも、 新たに露出した表面に存在する反応生成物によって光触媒反応 が発生することから、 優れた光触媒活性を維持できる。 [0062] In addition to the heating step, a mixing step, a cooling step, a pulverizing step, and the like are included. The mixing step is a step of charging a glass material containing a predetermined mixing ratio of a reducible organic substance, an iron feedstock, and a silicon feedstock into a container such as a crucible and mixing them. The cooling step is a step of appropriately cooling and vitrifying the melt obtained in the heating step. This cooling step vitrifies the melt to produce a photocatalyst composition composed of glass or glass-ceramics. Through this cooling step, plate-like or block-like glass or glass-ceramics (hereinafter referred to as "plate glass" or "glass block") are obtained. This plate glass or glass lump can be used as a photocatalyst composition as it is, or can be divided into appropriate sizes and used as a photocatalyst composition. In such a photocatalyst composition, a bond (reaction product) of carbon and ferrous iron having photocatalytic activity is scattered inside and on the surface, and a photocatalytic reaction is caused by the reaction product on the surface of the photocatalyst composition. occurs. In addition, even when the surface of the photocatalytic composition is scraped off, a photocatalytic reaction occurs due to the reaction products present on the newly exposed surface, so excellent photocatalytic activity can be maintained.
[0063] また、 板ガラスやガラス塊を、 粉砕工程によって粉砕し、 得られた粉砕物 を光触媒組成物とすることもできる。 この粉砕工程では、 板ガラスやガラス 塊を、 ハンマーや乳鉢等を用いて手作業で、 又は粉砕機、 ビーズミル等の装 置を用いて粉砕し、 粉砕物を得る工程である。 粉砕物の形態としては、 例え ば、 ビーズ状、 顆粒状、 粉末状などが挙げられる。 このように粉砕した光触 媒組成物では、 表面積が増大することで、 分解対象の有機物や殺菌対象の微 生物などとの接触性が高まり、 光触媒活性をより向上させることができる。 [0063] Further, a pulverized product obtained by pulverizing a plate glass or a glass lump by a pulverizing process can also be used as a photocatalyst composition. In this pulverization step, a plate glass or a lump of glass is manually pulverized using a hammer, mortar, or the like, or by using a device such as a pulverizer or a bead mill to obtain a pulverized product. Examples of the form of the pulverized product include beads, granules, and powder. In the photocatalyst composition pulverized in this way, the increased surface area increases the contact with organic substances to be decomposed and microorganisms to be sterilized, and the photocatalytic activity can be further improved.
[0064I 図 1は、 本実施の形態の光触媒組成物の製造工程の好ましい一例を示すフ ローチャートである。 この図 1に示すように、 本実施の形態の光触媒組成物 は、 混合工程、 加熱工程、 冷却工程、 粉砕工程を含むが、 これら以外にも、 ガラス製造に必要な工程を含んでもよい。 [0064I FIG. 1 is a flow chart showing a preferred example of the process for producing the photocatalyst composition of the present embodiment. As shown in FIG. 1, the photocatalyst composition of the present embodiment includes a mixing step, a heating step, a cooling step, and a pulverizing step, but may include other steps necessary for glass production.
[0065] 本実施の形態の光触媒組成物の形態は、 板ガラス、 ガラス塊、 又はビーズ 状、 顆粒状、 粉末状の粉砕物の何れの形態としてもよく、 用途や使用形態に よって適宜の形態とすることができる。 また、 複数の形態の光触媒組成物を 、 組み合わせて使用することもできる。 [0065] The form of the photocatalyst composition of the present embodiment may be plate glass, glass lumps, beads, granules, or pulverized powder. can do. Also, multiple forms of the photocatalyst composition can be used in combination.
[0066] 本実施の形態の光触媒組成物の形状としては、 例えば板ガラスの場合は、 四角形が好ましいが、 三角形、 五角形以上の多角形、 円形、 長円形などが挙 げられ、 星形、 ハート形など、 装飾性や嗜好性を高めた形状が挙げられる。 この場合、 サイズ (外径) としては、 1 mm以上 50mm以下が好ましい。 また、 ガ ラス塊、 粉砕物の場合は、 球状、 長球状、 円柱状、 角柱状、 円錐体状、 角錐 体状などが挙げられるが、 不定形状であってもよい。 この場合、 サイズとし ては、 1 mm以上 50mm以下が好ましい。 粉体の場合は、 形状は特に限定されず、 サイズ (粒径) としては、 平均粒子径 0. 1 Mm以上 5mm以下が好ましい。 ここで 、 「平均粒子径」 とは、 レーザー回折 •散乱法によって求めた粒度分布にお ける積算値 5〇%での粒径をいう。 [0066] The shape of the photocatalyst composition of the present embodiment, for example, in the case of plate glass, is preferably a quadrangle, but may include a triangle, a polygon with pentagons or more, a circle, an oval, a star, and a heart. , and other shapes that enhance decorativeness and taste. In this case, the size (outer diameter) is preferably 1 mm or more and 50 mm or less. In addition, in the case of glass lumps and pulverized materials, spherical, spheroidal, columnar, prismatic, conical, and pyramidal shapes may be mentioned, but irregular shapes may also be used. In this case, the size is preferably 1 mm or more and 50 mm or less. In the case of powder, the shape is not particularly limited, and the size (particle diameter) is preferably an average particle diameter of 0.1 mm or more and 5 mm or less. Here, "average particle size" refers to the particle size at an integrated value of 50% in the particle size distribution obtained by the laser diffraction/scattering method.
[0067] 上記製造方法で製造された本実施の形態の光触媒組成物は、 優れた光触媒 活性を有し、 かつこの優れた光触媒活性を長期に維持可能な優れた安定性を 有する。 この光触媒組成物では、 還元性有機物由来の炭素が鉄イオンを二価 の状態 (Fe2 +の状態) にして、 錯体を形成しているものと推測される。 また、 ケイ素供給原料のケイ素によって、 炭素と鉄との結合性が高まり、 光触媒と しての安定性が高くなると推測される。 [0067] The photocatalytic composition of the present embodiment produced by the above production method has excellent photocatalytic activity and excellent stability capable of maintaining this excellent photocatalytic activity for a long period of time. In this photocatalyst composition, it is presumed that the carbon derived from the reducing organic substance makes the iron ion into a divalent state (Fe2+ state) to form a complex. again, It is speculated that silicon in the silicon feedstock enhances the bonding between carbon and iron and increases the stability as a photocatalyst.
[0068I 本実施の形態の光触媒組成物は、 太陽光や、 200~ 1400nmという幅広い波長 域の光、 すなわち紫外線だけでなく可視光や赤外線を照射した場合にも、 こ れらの光を吸収して優れた光触媒活性を発揮する性質を有する。 [0068I] The photocatalyst composition of the present embodiment absorbs sunlight and light in a wide wavelength range of 200 to 1400 nm, that is, when irradiated with not only ultraviolet light but also visible light and infrared light. It has the property of exhibiting excellent photocatalytic activity.
[0069] ここで、 「紫外線」 とは、 380nm以下の波長域の光を指す。 また、 「可視光 J とは、 ヒトの目で見える波長域である波長 380~750nmの光を指す。 具体的 には、 「可視光」 には 380nm~450nm (紫色光) 、 450nm~495nm (青色光) 、 4 95nm~570nm (緑色光) 、 570nm~590nm (黄色光) 、 590nm~620nm (橙色光) 、 620nm~750nm (赤色光) の波長域の光が含まれる。 また、 「赤外線」 とは 、 750nm以上の波長域の光を指す。 [0069] Here, "ultraviolet rays" refer to light in a wavelength range of 380 nm or less. Also, “visible light J” refers to light with a wavelength of 380 to 750 nm, which is the wavelength range visible to the human eye. Specifically, “visible light” includes 380 nm to 450 nm (violet light), blue light), 495 nm to 570 nm (green light), 570 nm to 590 nm (yellow light), 590 nm to 620 nm (orange light), and 620 nm to 750 nm (red light). In addition, "infrared" refers to light in a wavelength range of 750 nm or more.
[0070] 中でも、 この光触媒組成物は、 紫外線を照射した時に極めて強い光触媒活 性 (殺菌作用) を示す。 特に近紫外線である 200nm~380nmの波長の光におい てのその活性の強さは、 酸化チタンよりも遥かに大きな光触媒活性を示す。 [0070] Above all, this photocatalytic composition exhibits extremely strong photocatalytic activity (bactericidal action) when irradiated with ultraviolet rays. In particular, the strength of its activity in light with a wavelength of 200 nm to 380 nm, which is near-ultraviolet, shows far greater photocatalytic activity than that of titanium oxide.
[0071 ] また、 本実施の形態の光触媒組成物は、 酸化チタンでは活性を示さない波 長域である可視光及び赤外線を照射した時にも強い光触媒活性を示す。 この 光触媒組成物は、 可視光では特に波長の短い紫色光〜青色光 (380~495nm) の波長域で強い活性を示す。 この光触媒組成物は、 赤外線では近赤外線であ る 750~ 1400nm (特に 900~ 1300nm付近、 さらに特には 1 100~ 1300nm付近) の 波長域で強い活性を示す。 [0071] In addition, the photocatalytic composition of the present embodiment exhibits strong photocatalytic activity even when irradiated with visible light and infrared light, which are wavelength regions in which titanium oxide does not exhibit activity. This photocatalyst composition exhibits strong activity in the wavelength region of violet light to blue light (380 to 495 nm), which has a particularly short wavelength, in visible light. This photocatalyst composition exhibits strong activity in the near-infrared wavelength range of 750 to 1400 nm (particularly around 900 to 1300 nm, more particularly around 1100 to 1300 nm), which is near infrared rays.
[0072] 本実施の形態の光触媒組成物に照射する光としては、 可視光、 紫外線、 赤 外線などが含まれる自然光 (太陽光) 、 所定の波長の光を照射する照明光な どが挙げられる。 例えば、 太陽光下では光触媒組成物の光触媒活性が他覚、 数秒で有機物分解や殺菌が可能となる。 また、 照明光としては、 白色 LED光源 からの白色 LED光が好ましく、 室内での使用に好適であるとともに、 室内のよ うに自然光が弱い環境で用いることで、 光触媒組成物の光触媒活性を高め、 有機物分解効果や殺菌効果をより高めることができる。 [0072] The light with which the photocatalyst composition of the present embodiment is irradiated includes natural light (sunlight) including visible light, ultraviolet rays, infrared rays, and the like, and illumination light that irradiates light of a predetermined wavelength. . For example, under sunlight, the photocatalytic activity of the photocatalytic composition can be observed, and organic matter can be decomposed and sterilized in a few seconds. In addition, as the illumination light, white LED light from a white LED light source is preferable, and is suitable for indoor use. It is possible to further enhance the organic substance decomposition effect and the sterilization effect.
[0073] 本実施の形態の光触媒組成物は、 照射された光エネルギーを吸収し、 近傍 の有機物質等を分解する活性を示す。 当該活性は、 光エネルギーによって励 起した光触媒が発生させるラジカルによって奏される現象と推測される。 [0073] The photocatalyst composition of the present embodiment absorbs irradiated light energy, shows activity to decompose organic substances. The activity is presumed to be a phenomenon brought about by radicals generated by a photocatalyst excited by light energy.
[0074I 本実施の形態の光触媒組成物は、 光を連続的に照射した場合、 照射してい る間は光触媒活性を連続して発揮する性質を有する。 また、 この光触媒組成 物は、 光照射を一度中断した場合においても、 再度の照射によって光触媒活 性が発揮される。 即ち、 この光触媒組成物は、 光触媒として繰り返して使用 することが可能な資材である。 これは、 当該反応生成物 (当該還元性有機物の Fe2 +錯体) の分子内の共鳴構 造が光エネルギーを Fe2 +に伝達して効率よくラジカルを発生させるとともに、 自らの分子はラジカルによる攻撃を受けても共鳴構造によりスカベンジする 安定した構造体であるためと推測される。 また、 ケイ素供給原料のケイ素に よって、 炭素と鉄との結合性が高まり、 光触媒としての安定性が高くなった からだと推測される。 [0074I] The photocatalyst composition of the present embodiment has a property of continuously exhibiting photocatalytic activity during continuous irradiation with light. In addition, even when light irradiation is interrupted once, this photocatalyst composition exhibits photocatalytic activity upon re-irradiation. That is, this photocatalyst composition is a material that can be used repeatedly as a photocatalyst. This is because the resonance structure in the molecule of the reaction product (the Fe2 + complex of the reducing organic substance) transmits light energy to Fe2 + to efficiently generate radicals, and the molecules themselves are not attacked by the radicals. It is presumed that this is because the structure is stable and scavenges by the resonance structure even if it is subjected to radiation. In addition, it is presumed that the silicon feedstock increases the bonding between carbon and iron, increasing the stability as a photocatalyst.
[0075I 本実施の形態の光触媒組成物は、 チタンなどを使用せず、 人体や環境に対 する影響が抑制されるため、 医薬、 食品、 公衆衛生、 農業等、 工業等、 様々 な用途に用いることができる。 すなわち、 還元性有機物として、 アスコルビ ン酸やポリフェノール類を用いており、 これらは食品由来の供給原料に由来 する物質であるので、 特に食品分野での使用が期待される。 特にアスコルビ ン酸は無色透明のため好適である。 また、 還元性有機物供給原料として、 植 物乾留液を用いた場合、 当該成分はやや匂いを有する物質を含む。 しかし、 当該原料は非常に安価であるため、 農業、 医薬、 公衆衛生等の分野での使用 が期待される。 [0075I] The photocatalyst composition of the present embodiment does not use titanium or the like and has less impact on the human body and the environment. be able to. That is, ascorbic acid and polyphenols are used as reducing organic substances, and since these are substances derived from food-derived feedstocks, they are expected to be used particularly in the food field. Ascorbic acid is particularly suitable because it is colorless and transparent. In addition, when a plant dry distillation solution is used as a reducing organic substance feedstock, the component contains a substance having a slight odor. However, since the raw material is very inexpensive, it is expected to be used in fields such as agriculture, medicine, and public health.
[0076I また、 本実施の形態の光触媒組成物では、 ガラス材料が、 イネ科植物、 シ ダ植物、 及び藻類から選ばれる植物体、 並びに植物体の加工品の何れかから なるケイ素供給原料を含有する。 このことからも、 本実施の形態の光触媒組 成物が、 医薬、 食品、 公衆衛生、 農業等、 工業等、 様々な用途に用いること ができるとともに、 ケイ素によって炭素と二価鉄の結合性を高め、 安定した 光触媒組成物を提供できる。 また、 ケイ素供給原料として、 ケイ酸を多く含 むイネ科植物、 シダ植物、 藻類などを用いることから、 これらの新たな可能 性を探る研究にもつながることが期待される。 また、 植物資源を活用するこ とで、 人体や環境への影響を抑制し、 原料が安価であり、 廃棄物を低減する ことができ、 付加価値の高い光触媒組成物を提供できる。 [0076I In addition, in the photocatalyst composition of the present embodiment, the glass material contains a silicon feedstock consisting of a plant body selected from gramineous plants, fern plants, and algae, or a processed product of the plant body. do. From this, the photocatalyst composition of the present embodiment can be used in various applications such as medicine, food, public health, agriculture, industry, etc., and the bonding between carbon and divalent iron is enhanced by silicon. It is possible to provide an enhanced and stable photocatalyst composition. In addition, as a silicon feedstock, it contains a large amount of silicic acid. It is expected to lead to research exploring these new possibilities, as plants of the grass family, ferns, algae, etc. are used. In addition, by utilizing plant resources, the effects on the human body and the environment can be suppressed, raw materials are inexpensive, waste can be reduced, and photocatalyst compositions with high added value can be provided.
[0077I 本実施形態の光触媒組成物は、 紫外線だけでなく可視光や赤外線を照射し た場合にも活性を発揮する性質を有する。 これにより本実施形態の光触媒組 成物は、 従来技術の酸化チタンでは利用が困難であった様々な用途での使用 が期待される。 例えば、 通常の室内空間や室内に配置した液体中 (花瓶、 水 槽などの容器に入れた水など) での利用が可能となる。 [0077I] The photocatalyst composition of the present embodiment has the property of exhibiting activity when irradiated with not only ultraviolet light but also visible light and infrared light. As a result, the photocatalyst composition of the present embodiment is expected to be used in various applications in which conventional titanium oxide was difficult to use. For example, it can be used in a normal indoor space or in a liquid placed in a room (such as water in a container such as a vase or aquarium).
[0078] (有機物分解剤、 殺菌剤、 消臭剤) 本実施の形態の光触媒組成物は、 優れた光触媒活性を有し、 安定性に優れ ているため、 有機物分解剤、 殺菌剤、 消臭剤として好適に用いることができ る。 以下、 各々について説明する。 (Organic substance decomposing agent, bactericidal agent, deodorant) [0078] The photocatalyst composition of the present embodiment has excellent photocatalytic activity and excellent stability, and therefore can be used as an organic matter decomposing agent, bactericidal agent, and deodorant. It can be suitably used as an agent. Each is described below.
[0079] (有機物分解剤) 本実施の形態の有機物分解剤は、 上述した可視光で触媒活性を示す光触媒 組成物を含有する。 このため、 本実施の形態の有機物分解剤は、 可視光を含 む幅広い波長の光に対する優れた光触媒活性を有し、 しかも安定性に優れる ものとなり、 様々な有機物質の分解に用いることができる。 特に、 この光触 媒組成物は、 有機系の汚染物質や有害物質の分解に好適に用いることができ るため、 環境浄化のー工程において有用である。 (Organic Matter Decomposing Agent) [0079] The organic matter decomposing agent of the present embodiment contains the photocatalyst composition exhibiting catalytic activity under visible light. Therefore, the organic substance decomposing agent of the present embodiment has excellent photocatalytic activity with respect to light of a wide range of wavelengths including visible light, and has excellent stability, and can be used for decomposing various organic substances. . In particular, this photocatalyst composition can be suitably used for decomposing organic pollutants and harmful substances, and is therefore useful in the process of environmental purification.
[0080] ここで、 汚染物質や有害物質としては、 水質汚染、 土壌汚濁、 大気汚染を 引き起こす物質をいう。 例えば、 生活排水、 し尿水、 工場排水、 汚染された 河川や湖沼水、 ゴミ廃棄場の土壌、 産業廃棄物、 農地、 工場跡地などに含ま れる人体や環境に影響を与える有機系物質などが挙げられる。 [0080] Here, pollutants and harmful substances refer to substances that cause water pollution, soil pollution, and air pollution. Examples include organic substances that affect the human body and the environment contained in domestic wastewater, night soil water, industrial wastewater, polluted river and lake water, soil of garbage disposal sites, industrial waste, agricultural land, and abandoned factory sites. be done.
[0081 ] 分解対象となる具体的な有機物質としては、 例えば、 洗剤、 飲食品残渣、 し尿、 糞便、 農薬、 悪臭物質、 廃油、 ダイオキシン、 PCB、 DNA、 RNA、 タンパ ク質など有機性廃棄物などが挙げられる。 [0081] Specific organic substances to be decomposed include, for example, detergents, food and drink residues, night soil, feces, pesticides, malodorous substances, waste oils, dioxins, PCBs, DNA, RNA, proteins, and other organic wastes. etc.
[0082] 本実施の形態の有機物分解剤は、 分解効果が極めて強力であるため、 難分 解性の有機物 (例えば塩基性フクシン) について効率良く分解することがで きる。 例えば、 100W/m2の光を照射する場合であれば、 1日あたり少なくとも 2. 5mg/L以上、 多い場合には 35mg/L以上の有機物分解が可能である。 [0082] Since the organic substance decomposing agent of the present embodiment has an extremely strong decomposing effect, It can efficiently decompose soluble organic substances (eg, basic fuchsin). For example, when irradiating with light of 100 W/m 2 , it is possible to decompose organic matter at least 2.5 mg/L or more per day, and at most 35 mg/L or more.
[0083] (殺菌剤) 本実施の形態の殺菌剤は、 上述した可視光で触媒活性を示す光触媒組成物 を含有する。 このため、 本実施の形態の殺菌剤は、 可視光を含む幅広い波長 の光に対する優れた光触媒活性を有し、 しかも安定性に優れたものとなり、 様々なものの殺菌に用いることができる。 この殺菌対象として、 具体的には 、 医療器具、 病室の壁、 患者の患部、 衣服、 寝具など、 食品の製造機器のラ イン、 食材、 まな板、 包丁等の台所用品、 食器、 便座、 手すり、 農機具、 養 液栽培の装置や養液などが挙げられる。 本実施の形態の殺菌剤では、 通常の 酸化チタンを用いた殺菌方法と違って可視光や赤外線の照射使用が可能であ るため、 使用用途や使用場面が大幅に向上したものとなる。 また、 本実施の 形態の殺菌剤は、 バクテリアだけでなく、 真核微生物、 藻類、 古細菌、 ウィ ルス、 ウィロイドなどの殺菌が可能である。 (Bactericidal agent) [0083] The bactericidal agent of the present embodiment contains the above-described photocatalyst composition that exhibits catalytic activity under visible light. Therefore, the sterilizing agent of the present embodiment has excellent photocatalytic activity with respect to light of a wide range of wavelengths including visible light, and has excellent stability, and can be used for sterilizing various things. Specifically, the objects to be sterilized include medical instruments, hospital room walls, affected areas of patients, clothes, bedding, etc., lines of food manufacturing equipment, foodstuffs, cutting boards, kitchen utensils such as kitchen knives, tableware, toilet seats, handrails, etc. Agricultural equipment, equipment for hydroponics, and hydroponics. The sterilizing agent of the present embodiment can be used for irradiation with visible light and infrared rays, unlike the normal sterilizing method using titanium oxide, so that the usage and usage situations are greatly improved. Moreover, the disinfectant of the present embodiment can disinfect not only bacteria but also eukaryotic microorganisms, algae, archaebacteria, viruses, viroids, and the like.
[0084I 本実施の形態の殺菌剤は、 殺菌効果が極めて強力であるため、 例えば表面 殺菌の場合、 太陽光照射を数分程度、 好ましくは 10分以上、 より好ましくは 2 0分以上の処理によって、 +分な殺菌効果が得られる。 また、 LEDや蛍光灯等 の比較的弱い光を照射する場合であっても、 1時間以上、 好ましくは 6時間以 上、 より好ましくは 12時間以上の処理によって +分な殺菌効果が得られる。 [0084I] Since the bactericidal agent of the present embodiment has an extremely strong bactericidal effect, for example, in the case of surface sterilization, it is treated with sunlight irradiation for several minutes, preferably 10 minutes or more, more preferably 20 minutes or more. , + minute sterilization effect is obtained. In addition, even when relatively weak light such as LED or fluorescent lamp is irradiated, a sufficient sterilization effect can be obtained by treatment for 1 hour or more, preferably 6 hours or more, more preferably 12 hours or more.
[0085] (消臭剤) また、 本実施の形態の消臭剤は、 上述した可視光で触媒活性を示す光触媒 組成物を含有する。 上述したように、 本実施の形態の光触媒組成物は、 優れ た有機物分解効果及び殺菌効果が得られるため、 有機物の臭いや、 微生物の 有機物の分解による臭いの発生を抑制することができる。 (Deodorant) [0085] The deodorant of the present embodiment contains the above-described photocatalyst composition exhibiting catalytic activity under visible light. As described above, the photocatalyst composition of the present embodiment has excellent organic substance decomposition effect and bactericidal effect, so that it is possible to suppress the generation of organic substance odors and odors caused by microbial decomposition of organic substances.
[0086] このため、 本実施の形態の消臭剤は、 様々な臭いの消臭に用いることがで きる。 特に、 上記有機物分解剤の説明で挙げたような有機物が発生する臭い に対する優れた消臭作用を発揮できる。 また、 上記殺菌剤の説明で挙げたよ うな微生物などによる有機物の分解による臭いの発生を良好に抑制できる。 [0087I 以上のように、 本実施の形態の光触媒組成物を、 有機物分解剤、 殺菌剤、 又は消臭剤として使用する場合、 その形態としては、 例えば、 板ガラス、 ガ ラス塊が挙げられ、 さらに、 ビーズ状、 顆粒状、 粉末状の粉砕物が挙げられ る。 このような形態の有機物分解剤、 殺菌剤、 又は消臭剤を、 そのまま、 又 は容器などに収納して、 分解対象、 殺菌対象、 又は消臭対象の気体中、 液体 中に配置し、 光を照射することで、 有機物分解作用、 殺菌作用、 消臭作用が 発揮される。 また、 ビーズ状、 顆粒状、 又は粉末状の粉砕物の形態である光 触媒組成物を含むコーティング剤としても利用できる。 [0086] Therefore, the deodorant of the present embodiment can be used to deodorize various odors. In particular, it can exert an excellent deodorizing action against the odors generated by organic substances as mentioned in the explanation of the organic substance decomposing agent. Also, as mentioned in the description of the disinfectant above, It is possible to satisfactorily suppress the generation of odors due to the decomposition of organic matter by microorganisms such as [0087I As described above, when the photocatalyst composition of the present embodiment is used as an organic substance decomposing agent, a disinfectant, or a deodorant, examples thereof include plate glass and glass lumps. , beads, granules, and pulverized powders. The organic substance decomposing agent, sterilizing agent, or deodorant in such a form is placed in a gas or liquid to be decomposed, sterilized, or deodorized as it is or stored in a container, and exposed to light. By irradiating, organic matter decomposition, sterilization, and deodorant effects are exhibited. It can also be used as a coating agent containing a photocatalyst composition in the form of pulverized particles such as beads, granules, or powder.
(水素製造方法における使用) 本実施の形態の光触媒組成物は、 優れた光触媒活性を有し、 安定性に優れ ているため、 水素製造方法において好適に用いることができる。 前記光触媒 組成物の強力な光触媒活性により、 水を酸素と水素に酸化分解することがで きる。 すなわち、 本開示によれば、 前記光触媒組成物を用いて、 水を酸化分 解して水素を発生させる工程を含む、 水素製造方法が提供される。 本実施の 形態の光触媒組成物を、 水素製造方法において使用する場合、 その形態とし ては、 例えば、 板ガラス、 ガラス塊が挙げられ、 さらに、 ビーズ状、 顆粒状 、 粉末状の粉砕物が挙げられる。 このような形態の光触媒組成物を、 そのま ま、 又は容器などに収納して、 水中に配置し、 光を照射することで、 水素を 発生させることができる。 実施例 1 (Use in hydrogen production method) The photocatalyst composition of the present embodiment has excellent photocatalytic activity and excellent stability, and thus can be suitably used in a hydrogen production method. Due to the strong photocatalytic activity of the photocatalytic composition, water can be oxidatively decomposed into oxygen and hydrogen. That is, according to the present disclosure, there is provided a method for producing hydrogen, which includes the step of oxidatively decomposing water to generate hydrogen using the photocatalyst composition. When the photocatalyst composition of the present embodiment is used in a method for producing hydrogen, the forms thereof include, for example, plate glass and glass lumps, and further include bead-like, granular, and powdery pulverized products. . Hydrogen can be generated by irradiating the photocatalyst composition in such a form as it is or in a container or the like, placing it in water, and irradiating it with light. Example 1
[0088I 以下、 実施例を挙げて本開示を具体的に説明するが、 本開示が以下の実施 例に限定されるものではない。 [0088I] Hereinafter, the present disclosure will be specifically described with reference to examples, but the present disclosure is not limited to the following examples.
[0089] (実施例 1 ) 実施例 1の光触媒組成物の製造例 (Example 1) Production example of the photocatalyst composition of Example 1
[原料] [表 1 ]
Figure imgf000027_0001
[material] [table 1 ]
Figure imgf000027_0001
[0090] [製造工程] 上記表 1の原料をるつぼに投入し、 還高圧バーナーを用いて 1 2〇〇0 C-[0090] [Manufacturing process] The raw materials in Table 1 above were charged into a crucible, and then heated to 12000C- using a return high-pressure burner.
1 3〇 O °Cで、 還元雰囲気下、 原料が溶解するまで加熱し、 板ガラスからな る光触媒組成物を製造した。 加熱時間は 2 0分間程度とした。 茶葉 (還元性 有機物供給原料) は、 茶殻粕 (茶葉の熱湯抽出残渣) を用い、 鉄塩 (鉄供給 原料) は、 三価鉄化合物である塩化鉄 (III) (FeC L3) を用いた。 茶葉と鉄塩と の混合比率は、 茶葉 100重量部 (乾燥重量換算) に対して、 鉄元素換算で鉄塩 At 130°C, the raw material was heated in a reducing atmosphere until it melted to produce a photocatalyst composition made of plate glass. The heating time was about 20 minutes. Tea leaves (reducing organic matter feedstock) used tea lees (residue of tea leaves extracted with boiling water), and iron salt (iron feedstock) used ferric chloride (III) (FeCL 3) , a trivalent iron compound. . The mixing ratio of the tea leaves and the iron salt is 100 parts by weight of the tea leaves (converted to dry weight) to 100 parts by weight of iron salt in terms of iron element.
4重量部とした。 ケイ素供給原料として籾殻を用いた。 茶葉 +鉄と籾殻との混 合比率は、 茶葉 +鉄塩 100重量部 (乾燥重量換算) に対して、 籾殻 100重量部 (ケイ素元素換算で 30重量部以上) とした。 4 parts by weight. Rice husk was used as silicon feedstock. The mixing ratio of tea leaves + iron and rice husks was 100 parts by weight of rice husks (30 parts by weight or more in terms of silicon element) per 100 parts by weight of tea leaves + iron salt (converted to dry weight).
[0091 I 上記工程によって得られた溶融物を、 放冷によって冷却して、 板状の光触 媒組成物 (板ガラス) を製造した。 次いで、 この板ガラスからなる光触媒組 成物を粉砕して、 実施例 1の粉末状の光触媒組成物 (粉末ガラス) を製造し た。 図 2 ( a ) に、 粉砕前の光触媒組成物 (板ガラス) の写真像図を、 図 2 ( b ) に、 粉砕後の実施例 1の光触媒組成物 (粉末ガラス) の写真像図を示 す。 [0091 I The melt obtained in the above step was cooled by standing to produce a plate-like photocatalyst composition (plate glass). Next, the photocatalyst composition composed of this sheet glass was pulverized to produce a powdered photocatalyst composition (powder glass) of Example 1. FIG. 2(a) shows a photographic image of the photocatalyst composition (plate glass) before pulverization, and FIG. 2(b) shows a photographic image of the photocatalyst composition (powder glass) of Example 1 after pulverization. .
[0092] (実施例 2 ) 上記実施例 1で説明したような原料の混合比率と、 製造方法により、 ガラ スビーズを作成し、 実施例 2のビーズ状の光触媒組成物とした。 (Example 2) [0092] Glass beads were produced according to the mixing ratio of the raw materials and the production method as described in Example 1 above, and the bead-like photocatalyst composition of Example 2 was obtained.
[0093] なお、 ケイ素供給原料として籾殻を使用した場合の光触媒組成物の原料の 混合比率 (各原料の配合量) は、 下記表 2のような範囲内とすればよいが、 上記実施例 1、 実施例 2のような混合比率とすることが最も好ましく、 ガラ スとしての品質に優れ、 光触媒活性に優れる光触媒組成物を得ることができ る。 [0093] The mixing ratio of the raw materials of the photocatalyst composition (mixture amount of each raw material) when rice husk is used as the silicon feedstock may be within the range shown in Table 2 below. A mixing ratio as in Example 2 is most preferable, and a photocatalyst composition having excellent quality as glass and excellent photocatalytic activity can be obtained.
[表 2]
Figure imgf000028_0001
[Table 2]
Figure imgf000028_0001
[0094] (実施例 3 ) ケイ素供給原料としてサトウキビの葉灰を用いて、 実施例 3の光触媒組成 物を製造した。 その原料を以下表 3に示す。 実施例 3の光触媒組成の製造エ 程は、 実施例 1における製造工程と同様である。 (Example 3) [0094] A photocatalyst composition of Example 3 was produced using sugarcane leaf ash as a silicon feedstock. The raw materials are shown in Table 3 below. The manufacturing process of the photocatalyst composition of Example 3 is the same as the manufacturing process in Example 1.
[原料] [表 3]
Figure imgf000029_0001
[material] [Table 3]
Figure imgf000029_0001
[0095] (実施例 4 ) 還元性有機物供給原料としてアスコルビン酸を用いて、 実施例 4の光触媒 組成物を製造した。 その原料を、 以下表 4に示す。 なお、 アスコルビン酸と 鉄塩とは、 1 : 1の比率 (アスコルビン酸 1 g +鉄塩 1 g) で混合した。 実施例 4 の光触媒組成の製造工程は、 実施例 1における製造工程と同様である。 (Example 4) [0095] A photocatalyst composition of Example 4 was produced using ascorbic acid as a reducing organic feedstock. The raw materials are shown in Table 4 below. Ascorbic acid and iron salt were mixed at a ratio of 1:1 (1 g of ascorbic acid + 1 g of iron salt). The manufacturing process of the photocatalyst composition of Example 4 is the same as the manufacturing process of Example 1.
[原料] [material]
[表 4]
Figure imgf000029_0002
[Table 4]
Figure imgf000029_0002
[0096] 上記実施例 1の粉末状の光触媒組成物、 実施例 2のビーズ状の光触媒組成 物を用いて、 以下に示すような各種性能の検証実験、 成分分析を行った。 ま た、 各実験で用いた白色 LED光源の光スペクトル分布を、 図 3に示す。 この図 3 によれば、 白色 LED光には、 380~750nmの可視光が含まれていることがわか る。 [0096] Using the powdered photocatalyst composition of Example 1 and the beaded photocatalyst composition of Example 2, the following performance verification experiments and component analysis were performed. Figure 3 shows the optical spectrum distribution of the white LED light source used in each experiment. According to FIG. 3, it can be seen that the white LED light contains visible light of 380 to 750 nm.
[0097] [成分組成の分析] 下記表 5に示す分析法により、 実施例 1の光触媒組成物の成分組成を分析 した。 同様に、 参考例 1 と参考例 2の光触媒について、 成分分析を行った。 分析結果を下記表 5に示す。 下記表 5の数値は、 光触媒組成物又はポリフエ ノール鉄錯体における各成分の含有量 (重量%) を示す。 [Analysis of component composition] [0097] The component composition of the photocatalyst composition of Example 1 was analyzed by the analysis method shown in Table 5 below. Similarly, the photocatalysts of Reference Examples 1 and 2 were subjected to component analysis. The analysis results are shown in Table 5 below. The numerical values in Table 5 below are for the photocatalyst composition or polyphenylene. The content (% by weight) of each component in the nor-iron complex is shown.
[0098I 参考例 1の光触媒として、 茶殻粕と塩化鉄 (III) (混合比率は実施例 1 と同 様) を含む水溶液を調製し、 室温で数分静置し、 茶殻粕由来のポリフエノー ル鉄錯体を得た。 また、 参考例 2の光触媒として、 コーヒー粕と塩化鉄 (III) (混合比率は実施例 1 と同様) を含む水溶液を調製し、 室温で数分静置し、 コーヒー粕由来のポリフェノール鉄錯体を得た。 [0098I As a photocatalyst in Reference Example 1, an aqueous solution containing used tea leaves and iron (III) chloride (the mixing ratio is the same as in Example 1) was prepared, allowed to stand at room temperature for several minutes, and polyphenolic iron derived from used tea leaves A complex was obtained. In addition, as a photocatalyst of Reference Example 2, an aqueous solution containing coffee grounds and iron (III) chloride (the mixing ratio is the same as in Example 1) was prepared and allowed to stand at room temperature for several minutes to produce a polyphenol iron complex derived from coffee grounds. Obtained.
[0099] [表 5]
Figure imgf000030_0001
分析法 :
[0099] [Table 5]
Figure imgf000030_0001
Analysis method:
ICP発光分光分析法、 ジピリジル反応分析法、 酸素循環燃焼法、 X線光電分 光法 (XPS : X-ray Photoe Lect ron Spect roscopy又は ESCA : E Lect ron Spect ro scopy for Chem i ca l Ana Lys i s) ICP emission spectroscopy, dipyridyl reaction analysis, oxygen circulation combustion method, X-ray photoelectric spectroscopy (XPS: X-ray Photoe Lectron Spectroscopy or ESCA: Electron Spectroscopy for Chemical Analysis )
[0100] [実験例 1 :鉄還元能の検証実験] 実施例 1の粉末状の光触媒組成物について、 ジピリジル反応分析法により 、 鉄還元能の検証実験を行った。 具体的には、 光触媒組成物に、 ジピリジル と酢酸を、 ジピリジル 2g/L、 酢酸 100g/Lとなるように添加混合して、 呈色反 応の有無を調べた。 [Experimental Example 1: Verification Experiment of Iron-Reducing Ability] [0100] The powdery photocatalyst composition of Example 1 was subjected to an iron-reducing ability verification experiment by dipyridyl reaction analysis. Specifically, dipyridyl and acetic acid were added and mixed to the photocatalyst composition so that dipyridyl was 2 g/L and acetic acid was 100 g/L, and the presence or absence of color reaction was examined.
[0101 ] ここで、 ジピリジルは、 三価の鉄とは反応せず無色のままであるが、 二価 鉄と反応したときに赤色に呈色する物質である。 二価鉄の検出に用いられる 〇 この結果、 実施例 1の粉末状の光触媒組成物を含有する溶液は、 赤色を呈 した。 すなわち、 光触媒組成物の原料として添加された三価鉄が、 還元雰囲 気下での加熱 (還元焼成) によって二価鉄に還元されたことが示された。 ま た、 ここで還元された二価鉄は、 二価鉄の状態で安定的に維持されることが 示された。 図 2 ( c ) に、 実施例 1の粉末状の光触媒組成物がジピリジルで 染色され、 赤色を呈した状態の写真像図を示す。 [0101] Here, dipyridyl is a substance that does not react with trivalent iron and remains colorless, but turns red when it reacts with divalent iron. Used for detection of divalent iron * As a result, the solution containing the powdered photocatalyst composition of Example 1 exhibited a red color. That is, the trivalent iron added as a raw material of the photocatalyst composition is It was shown that it was reduced to divalent iron by heating in air (reduction firing). It was also shown that the ferrous iron reduced here is stably maintained in the state of ferric iron. FIG. 2(c) shows a photographic image of the powdery photocatalyst composition of Example 1 dyed with dipyridyl to give a red color.
[0102] [実験例 2 :白色 LED光照射による光触媒組成物の有害物質の分解効果] 実施例 1の光触媒組成物の有害物質の光触媒反応による分解効果を検証す るために、 可視光である白色 LED光を用いて、 メチレンブルーの分解実験を行 った。 [0102] [Experimental Example 2: Effect of decomposing harmful substances of photocatalyst composition by irradiation with white LED light] In order to verify the effect of decomposing harmful substances of the photocatalyst composition of Example 1 by photocatalytic reaction, visible light was used. A decomposition experiment of methylene blue was performed using white LED light.
•実験方法 : 粉末状の実施例 1の光触媒組成物 10mgを 10m lのメチレンブルー液 (5000ppm のメチレンブルー液を水で 1000倍に薄めて 5ppmにしたもの) に投入し、 連続 的に白色 LED光 ( 3万ルクス) を照射し、 メチレンブルーの分解速度を計測し た。 この際、 メチレンブルー液 10“Lを、 一定時間ごとに追加して投入し、 分 解を繰り返し行わせた。 また、 対照区として酸化チタンを用いて、 同様の実 験を行った。 Experimental method: 10 mg of the powdery photocatalyst composition of Example 1 was added to 10 ml of methylene blue solution (5000 ppm methylene blue solution diluted 1000 times with water to 5 ppm), and continuously exposed to white LED light ( 30,000 lux) was irradiated, and the decomposition rate of methylene blue was measured. At this time, 10"L of methylene blue solution was additionally added at regular intervals to repeat the decomposition. In addition, a similar experiment was performed using titanium oxide as a control group.
[0103] •実験結果 : 図 4 ( a ) に実験結果をグラフで示した。 この図 4 ( a ) のグラフ中の矢 印は、 メチレンブルー液を 10 ML追加して投入したことを示す。 また、 図 4 ( b ) に、 実験終了後の対照区の溶液の写真像図を示し、 図 4 ( c ) に、 実験 終了後の実施例 1の光触媒組成物の光照射区の溶液の写真像図を示した。 [0103] • Experimental results: Fig. 4(a) graphically shows the experimental results. The arrows in the graph of FIG. 4(a) indicate that 10 ML of methylene blue solution was additionally added. In addition, FIG. 4(b) shows a photographic image of the solution in the control section after the experiment, and FIG. 4(c) shows a photograph of the solution in the light-irradiated section of the photocatalyst composition of Example 1 after the experiment. An image diagram is shown.
[0104] 図 4 ( a ) に示すように、 酸化チタンを用いた対照区では、 メチレンブル 一は分解せず、 メチレンブルーの追加によって濃度が高くなった。 また、 図 4 ( b ) の写真像図に示されるように、 対照区の溶液はメチレンブルーの色 (青色) のままであった。 これは、 酸化チタンは白色 LEDの光 (可視光) では 、 光触媒反応を示さないためである。 [0104] As shown in Fig. 4(a), in the control group using titanium oxide, methylene blue did not decompose, and the addition of methylene blue increased the concentration. Also, as shown in the photographic image of FIG. 4(b), the solution in the control group remained methylene blue (blue). This is because titanium oxide does not exhibit a photocatalytic reaction with white LED light (visible light).
[0105] これに対して、 実施例 1の光触媒組成物を用いた光照射区では、 図 4 ( a[0105] On the other hand, in the light irradiation section using the photocatalyst composition of Example 1, Fig. 4 (a
) に示すようにメチレンブルーを追加しても、 白色 LEDの連続照射によってメ チレンブルーは分解し、 濃度は減少した。 また、 図 4 ( c ) の写真像図に示 されるように、 光触媒組成物を用いた光照射区では、 溶液の色が透明となり 、 メチレンブルーが分解されたことがわかる。 したがって、 実施例 1の光触 媒組成物は、 白色 LEDの光 (可視光) に対して、 強い光触媒反応を示し、 メチ レンブルーのような有害物質の分解効果に優れることがわかった。 ), even when methylene blue was added, the methylene blue was decomposed by continuous white LED irradiation, and the concentration decreased. In addition, as shown in the photographic image of Fig. 4(c), As shown, in the light irradiation section using the photocatalyst composition, the color of the solution became transparent, indicating that methylene blue was decomposed. Therefore, it was found that the photocatalyst composition of Example 1 exhibits a strong photocatalytic reaction to the light (visible light) of the white LED, and is excellent in decomposing harmful substances such as methylene blue.
[0106] [実験例 3 :紫外線照射による光触媒組成物の有害物質の分解効果] 実施例 1の光触媒組成物の光触媒反応による有害物質の分解効果を検証す るために、 紫外線を用いて、 メチレンブルーの分解実験を行った。 [Experimental Example 3: Effect of photocatalyst composition on decomposing harmful substances by ultraviolet irradiation] [0106] In order to verify the effect of decomposing harmful substances by the photocatalytic reaction of the photocatalyst composition of Example 1, ultraviolet rays were used to decompose methylene blue. decomposition experiments were carried out.
•実験方法 : 光源として紫外線 LED光源 (図 5参照)を用いて、 上記実験例 2と同様に、 メ チレンブルーの分解実験を行った (紫外線照射区) 〇 また、 光触媒を添加し ない対照区と、 酸化チタンを用いた酸化チタン区でも同様の実験を行った。 実験に際して、 光触媒組成物の鉄と、 酸化チタンの濃度が同じになるように 調整し、 各々をメチレンブルー液に添加した。 次いで、 24時間、 連続的に紫 外線を照射し、 メチレンブルーの分解を観察した。 Experimental method: An ultraviolet LED light source (see Fig. 5) was used as the light source, and a decomposition experiment of methylene blue was performed in the same manner as in Experimental Example 2 above (ultraviolet irradiation group). , A similar experiment was conducted in the titanium oxide section using titanium oxide. In the experiment, the concentrations of iron and titanium oxide in the photocatalyst composition were adjusted to be the same, and each was added to the methylene blue solution. Then, it was continuously irradiated with ultraviolet rays for 24 hours, and the decomposition of methylene blue was observed.
[0107] •実験結果 : 図 5に、 実験結果の写真像図を示す。 この図 5中、 ( a ) は対照区 (光触 媒なし) の溶液の写真像図であり、 ( b ) は実施例 1の光触媒組成物を用い た紫外線照射区の溶液の写真像図であり、 ( c ) は酸化チタンを用いた酸化 チタン区の溶液の写真像図である。 これらの図に示すように、 ( a ) の対照 区では、 溶液が青いままでメチレンブルーが分解されなかった。 これに対し て、 ( b ) の実施例 1の光触媒組成物を用いた紫外線照射区及び ( c ) の酸 化チタン区では、 メチレンブルーの分解が認められた。 したがって、 実施例 1 の光触媒組成物は、 紫外線に対して、 強い光触媒反応を示し、 メチレンブ ルーのような有害物質の分解効果に優れることがわかった。 [0107] • Experimental results: Figure 5 shows a photographic image of the experimental results. In FIG. 5, (a) is a photographic image of the solution in the control section (no photocatalyst), and (b) is a photographic image of the solution in the ultraviolet irradiation section using the photocatalyst composition of Example 1. (c) is a photographic image of a solution of a titanium oxide group using titanium oxide. As shown in these figures, in the control group (a), the solution remained blue and methylene blue was not decomposed. On the other hand, in (b) the ultraviolet irradiation section using the photocatalyst composition of Example 1 and (c) the titanium oxide section, decomposition of methylene blue was observed. Therefore, it was found that the photocatalyst composition of Example 1 exhibits a strong photocatalytic reaction to ultraviolet rays and is excellent in decomposing harmful substances such as methylene blue.
[0108] [実験例 4 :近赤外線照射による光触媒組成物の有害物質の分解効果] 実施例 1の光触媒組成物の光触媒反応による有害物質の分解効果を検証す るために、 近赤外線を用いて、 メチレンブルーの分解実験を行った。 [Experimental Example 4: Effect of photocatalyst composition on decomposing harmful substances by near-infrared irradiation] , carried out a decomposition experiment of methylene blue.
•実験方法 : 光源として近赤外線 LED光源を用いて、 上記実験例 2、 3と同様に、 メチレ ンブルーの分解実験を行った (近赤外線照射区) 〇 また、 光触媒を添加しな い対照区と、 酸化チタンを用いた酸化チタンでも同様の実験を行った。 実験 に際して、 光触媒組成物の鉄と、 酸化チタンの濃度が同じになるように調整 し、 各々をメチレンブルー液に添加した。 次いで、 5日間、 連続的に近赤外線 (1200nm) を照射し、 メチレンブルーの分解を観察した。 •experimental method : Using a near-infrared LED light source as a light source, a decomposition experiment of methylene blue was performed in the same manner as in Experimental Examples 2 and 3 (near-infrared irradiation section). A similar experiment was conducted with the titanium oxide used. In the experiment, the concentrations of iron and titanium oxide in the photocatalyst composition were adjusted to be the same, and each was added to the methylene blue solution. Next, near-infrared rays (1200 nm) were continuously irradiated for 5 days, and decomposition of methylene blue was observed.
[0109] •実験結果 : 図 6に、 実験結果の写真像図を示す。 この図 6中、 ( a ) は対照区の溶液 の写真像図であり、 ( b ) は酸化チタンを用いた対照区の溶液の写真像図で あり、 ( c ) は実施例 1の光触媒組成物を用いた近赤外線照射区の溶液の写 真像図である。 図 6に示されるように、 ( a ) の対照区および ( b ) の酸化 チタン区では、 溶液が青いままでメチレンブルーが分解されなかった。 これ に対して、 ( c ) の実施例 1の光触媒組成物を用いた近赤外線照射区では、 メチレンブルーの分解が認められた。 したがって、 実施例 1の光触媒組成物 は、 近赤外線に対して、 強い光触媒反応を示し、 メチレンブルーのような有 害物質の分解効果に優れることがわかった。 [0109] • Experimental results: Figure 6 shows a photographic image of the experimental results. In FIG. 6, (a) is a photographic image of the control solution, (b) is a photographic image of the control solution using titanium oxide, and (c) is the photocatalyst composition of Example 1. FIG. 4 is a photographic image of a solution in a near-infrared irradiation section using a material. As shown in FIG. 6, in the control group (a) and the titanium oxide group (b), the solution remained blue and methylene blue was not decomposed. In contrast, decomposition of methylene blue was observed in the near-infrared irradiation section using the photocatalyst composition of Example 1 (c). Therefore, it was found that the photocatalyst composition of Example 1 exhibits a strong photocatalytic reaction to near-infrared rays and is excellent in decomposing harmful substances such as methylene blue.
[01 10] 以上、 実験例 2〜実験例 4の実験結果から、 実施例 1の光触媒組成物は、 紫外線、 可視光、 赤外線を含む幅広い波長域の光に対して、 優れた光触媒活 性を発揮する性質を有することが確認された。 これに対して、 酸化チタンを 用いた場合は、 可視光や近赤外線に対して、 光触媒活性が発揮されないこと が確認された。 また、 実施例 3、 実施例 4の光触媒組成物についても、 同様 の実験を行ったところ、 紫外線、 可視光、 赤外線を含む幅広い波長域の光に 対して、 優れた光触媒活性を発揮することが確認された。 [01 10] As described above, from the experimental results of Experimental Examples 2 to 4, the photocatalyst composition of Example 1 exhibits excellent photocatalytic activity against light in a wide wavelength range including ultraviolet light, visible light, and infrared light. It was confirmed that it has the property to exhibit. On the other hand, when titanium oxide was used, it was confirmed that photocatalytic activity was not exhibited with respect to visible light and near-infrared rays. Similar experiments were also conducted on the photocatalyst compositions of Examples 3 and 4, and it was found that they exhibit excellent photocatalytic activity with respect to light in a wide wavelength range including ultraviolet light, visible light, and infrared light. confirmed.
[01 1 1 ] [実験例 5 :微生物の殺菌効果] 実施例 1の光触媒組成物の光触媒反応による微生物の殺菌効果を検証する ために病原菌の殺菌実験を行った。 供試微生物 (病原菌) として、 カット野 菜汚染の原因である大腸菌 0-157 (Escher i ch i a co L i ) と、 植物病原菌である 青枯病菌 (Ra Lston i a〇 Lanacearum) を用いた。 [0112] •実験方法 :
Figure imgf000034_0001
ンチューブに入れ、 白色 LED (3万ルクス) を 30分間連続照射した (光照射区 ) 〇 対照区として、 光触媒組成物を添加せず、 白色 LED光照射の処理のみを行 った 「光照射のみ区」 と、 光触媒組成物を添加したが、 白色 LED光照射を行わ ずに暗条件下に置いた 「暗条件区」 を設けた。 また、 フローサイトメトリー により、 各処理区における各病原菌の生死の判定測定を行った。
[01 1 1] [Experimental Example 5: Microbial sterilization effect] In order to verify the microbial sterilization effect of the photocatalytic reaction of the photocatalyst composition of Example 1, a pathogen sterilization experiment was conducted. Escherichia coli 0-157 (Escherichia co Li), which is a cause of contamination of cut vegetables, and Ra Lston ia O Lanacearum, which is a plant pathogen, were used as test microorganisms (pathogens). [0112] Experimental method:
Figure imgf000034_0001
It was placed in a tube and was continuously irradiated with a white LED (30,000 lux) for 30 minutes (light irradiation group). A "only zone" and a "dark condition zone" in which the photocatalyst composition was added but placed under dark conditions without irradiation with white LED light were provided. In addition, flow cytometry was used to measure the viability of each pathogen in each treatment plot.
[0113] •実験結果 : 図 7に、 大腸菌に対する処理後の各処理区の写真像図を示す。 図 7 (a) は対照区である 「光照射のみ処理区」 を示し、 図 7 (b) は対照区である光 触媒組成物を用いた 「暗条件区」 を示し、 図 7 (c) は光触媒組成物を用い た 「光照射区」 を示す。 [0113] • Experimental results: Fig. 7 shows a photographic image of each treated plot after treatment with E. coli. FIG. 7(a) shows the control group, ``light irradiation only treatment group'', FIG. 7(b) shows the ``dark condition group'' using the photocatalyst composition, which is the control group, and FIG. 7(c). indicates the “light irradiation section” using the photocatalyst composition.
[0114] 図 8に、 フローサイトメトリーによる大腸菌の生死の判定結果を示す。 図 8 (a) は対照区である光触媒組成物を用いた 「暗条件区」 での大腸菌の生 死の判定結果を示し、 図 8 (b) は光触媒組成物を用いた 「光照射区」 での 大腸菌の生死の判定結果を示す。 図 9に、 フローサイトメトリーによる青枯 病菌の生死の判定結果を示す。 図 9 (a) は対照区である光触媒組成物を用 いた 「暗条件区」 での青枯病菌の生死の判定結果を示し、 図 9 (b) は光触 媒組成物を用いた 「光照射区」 での青枯病菌の生死の判定結果を示す。 [0114] Fig. 8 shows the results of determination of survival of E. coli by flow cytometry. Figure 8 (a) shows the result of determining whether E. coli is alive or dead in the "dark condition section" using the photocatalyst composition, which is the control group, and Figure 8 (b) shows the "light irradiation section" using the photocatalyst composition. shows the results of life-and-death determination of E. coli in . Fig. 9 shows the results of determination of life and death of R. wilt by flow cytometry. Fig. 9(a) shows the result of judging the survival of bacterial wilt bacteria in the "dark condition section" using the photocatalyst composition, which is the control group, and Fig. 9(b) shows the "photocatalyst composition" using the photocatalyst composition. Shown are the results of life-and-death determination of the bacterial wilt in the irradiated section.
[0115] 図 8、 図 9の各図からわかるように、 「光照射のみ処理区」 と 「暗条件区 」 では、 大腸菌の生存が確認されたのに対し、 実施例 1の光触媒組成物を用 いて白色 LED光照射を行った 「光照射区」 では、 大腸菌が完全に死滅したこと が確認された。 また、 図 9の各図からわかるように、 実施例 1の光触媒組成 物を用いて白色 LED光照射を行った 「光照射区」 では、 青枯病菌に対する高い 殺菌効果が確認された。 [0115] As can be seen from Figs. 8 and 9, the survival of E. coli was confirmed in the "light irradiation only treatment area" and the "dark condition area", whereas the photocatalyst composition of Example 1 was used. It was confirmed that the E. coli was completely killed in the “light-irradiated area” where the white LED light irradiation was performed. In addition, as can be seen from each figure in FIG. 9, in the “light irradiation section” in which the photocatalyst composition of Example 1 was used to irradiate with white LED light, a high bactericidal effect against bacterial wilt was confirmed.
[0116] [実験例 6 :光触媒組成物のルミノール反応によるラジカル種の同定実験[0116] [Experimental Example 6: Identification Experiment of Radical Species by Luminol Reaction of Photocatalyst Composition
] 実施例 1の光触媒組成物について、 ルミノールを用いた発光法によるラジ カル種の同定実験 ( •〇2とも〇2の検出) を行った。 ] For the photocatalyst composition of Example 1, radioactivity was detected by a luminescence method using luminol. Identification experiments of Cull species (detection of 〇2 and 〇2) were carried out.
■実験方法 ルミノールと ・〇2が反応することで生じる 425nmの発光を利用し、 この発光 をフォトンカウンティング法で検出した。 この手法により、 •〇2の存在を明ら かにすることができる。 ■Experimental method Using the luminescence at 425 nm generated by the reaction between luminol and 〇2, this luminescence was detected by the photon counting method. By this method, the existence of •〇2 can be clarified.
[01 17] •実験結果 図 1 〇に、 同定実験の結果を示す。 この図 1 〇に示されるように、 実施例[01 17] •Experimental results Figure 1 O shows the results of the identification experiment. As shown in this figure 1, the embodiment
1 の光触媒組成物に高いルミノール反応が認められた。 ルミノールは •〇2のほ かに過酸化水素とも反応する性質を持っていることから、 反応中に過酸化水 素が発生したことが明らかになった。 この反応液に、 ラジカル消去剤を添加 することで、 フォトン数 (光子数) が減少することが明らかになった。 A high luminol reaction was observed in the photocatalyst composition No. 1. Since luminol has the property of reacting with hydrogen peroxide in addition to 〇2, it was clarified that hydrogen peroxide was generated during the reaction. It was found that the number of photons (number of photons) decreased by adding a radical scavenger to this reaction solution.
[01 18] [実験例 7 : MPEC試薬を用いたスーパーオキシドラジカル ( •〇厂) の同定実 験] 実施例 1の光触媒組成物について、 MPEC試薬を用いたスーパーオキシドラ ジカル ( •〇厂) の同定実験を行った。 [01 18] [Experimental Example 7: Identification experiment of superoxide radicals ( 〇厂) using MPEC reagent] For the photocatalyst composition of Example 1, superoxide radicals ( 〇〇) were identified using MPEC reagents. identification experiments were carried out.
■実験方法 ■ Experimental method
MPEC試薬はスーパーオキシド (・〇2-) と特異的に反応する発光試薬である 〇 この反応を利用して、 MPECとスーパーオキシド (・〇2-) との反応で発生す る光の量を測定し、 スーパーオキシド (・〇2「) の存在の有無を確認した。 The MPEC reagent is a luminescence reagent that specifically reacts with superoxide (・〇2-). We measured and confirmed the presence or absence of superoxide (・〇2”).
[01 19] •実験結果 図 1 1に、 同定実験の結果を示す。 この図 1 1に示すように、 実施例 1の 光触媒組成物に白色 LED光を照射することで、 スーパーオキシド (・〇2-) の発 生が認められた。 この反応液に、 スーパーオキシドラジカル消去剤を添加す ることで、 フォトン数 (光子数) が減少することが明らになった。 [01 19] •Experimental results Fig. 11 shows the results of the identification experiment. As shown in FIG. 11, generation of superoxide (·○2-) was observed by irradiating the photocatalyst composition of Example 1 with white LED light. It was found that the number of photons (number of photons) decreased by adding a superoxide radical scavenger to this reaction solution.
[0120] [実験例 8 :スピントラップを用いた ESR法によるヒドロキシルラジカルの 同定実験] 実施例 1の光触媒組成物について、 スピントラップを用いた ESR法によるヒ ドロキシルラジカルの同定実験を行った。 •実験方法 : 蒸留水 960 uLをエッペンチューブに入れ、 実施例 1の光触媒組成物を 20mg 添加した。 さらに、 180mMスピントラップ剤 DMPOを 40 /£し添加し、 紫外線 LED光 (UV光) 照射により ESR装置 (E Lect ron Sp i n Resonance ;電子スピン共鳴装 置) で 30秒、 60秒、 30分に ESRスペクトルの測定を行った。 さらに、 光触媒組 成物と白色 LED光 (可視光) との反応を、 ESR解析した。 [Experimental Example 8: Hydroxyl Radical Identification Experiment by ESR Method Using Spin Trap] [0120] For the photocatalyst composition of Example 1, a hydroxyl radical identification experiment was performed by an ESR method using a spin trap. •Experimental method: 960 uL of distilled water was placed in an Eppendorf tube, and 20 mg of the photocatalyst composition of Example 1 was added. Furthermore, 180 mM spin trapping agent DMPO was added at 40/pound and irradiated with ultraviolet LED light (UV light) for 30 seconds, 60 seconds, and 30 minutes with an ESR device (Electron Spin Resonance). ESR spectra were measured. Furthermore, ESR analysis was performed on the reaction between the photocatalyst composition and white LED light (visible light).
[0121 ] •実験結果 : 図 1 2にスピントラップを用いた ESR法によるヒドロキシルラジカルの同定 実験の結果として、 紫外線 LED光照射による ESRスペクトルの測定結果を示す 〇 図 1 3に白色 LED光照射 (可視光照射) による ESR解析結果を示す。 図 1 3 中の 「 Referenced (対照区) は光触媒組成物を無添加で測定した場合の ESR 解析結果である。 図 1 2に示されるように、 30秒と 60秒間の紫外線照射では ラジカル類の発生は認められなかった。 これに対して、 30分間の紫外線照射 ではヒドロキシルラジカル ( - 0H) の発生が認められた。 また、 図 1 3に示 されるように、 光触媒組成物と可視光の反応を ESR解析したところ、 ヒドロキ シルラジカル ( • 0H) の検出が確認された。 [0121] Experimental results: Fig. 12 shows the results of the hydroxyl radical identification experiment by the ESR method using spin trap, showing the measurement results of the ESR spectrum by ultraviolet LED light irradiation ○ Fig. 13 shows white LED light irradiation ( The results of ESR analysis by visible light irradiation) are shown. Referenced (control group) in FIG. 13 is the ESR analysis result when the photocatalyst composition was not added. As shown in FIG. No generation was observed.On the other hand, the generation of hydroxyl radicals (-0H) was observed with ultraviolet irradiation for 30 minutes.In addition, as shown in FIG. ESR analysis of the reaction confirmed the detection of a hydroxyl radical ( • 0H).
[0122I また、 紫外線 LED光 (UV光) との反応により、 ヒドロキシルラジカルのほか に、 メチルラジカル ( • CH3) や炭素を中心としたラジカル類も発生している ことが ESR解析で明らかとなった。 下記表 6に、 光触媒組成物と、 ポリフェノ ール鉄錯体と、 酸化チタンにおけるラジカル類の発生の有無を示す。 また、 対照区として、 参考例 1の茶殻粕由来のポリフェノール鉄錯体と、 従来例と しての酸化チタンについても、 同様の実験を行った。 表 6中、 〇はラジカル が発生したことを示し、 ◎はラジカルが多く発生したことを示し、 Xはラジ カルの発生がないことを示す。 [0122I In addition, ESR analysis revealed that in addition to hydroxyl radicals, methyl radicals (CH3) and carbon-centered radicals were also generated by the reaction with ultraviolet LED light (UV light). . Table 6 below shows the presence or absence of generation of radicals in the photocatalyst composition, polyphenol iron complex, and titanium oxide. In addition, as a control group, the same experiment was conducted with the polyphenol iron complex derived from used tea leaves of Reference Example 1 and with titanium oxide as a conventional example. In Table 6, ◯ indicates that radicals were generated, ◎ indicates that many radicals were generated, and X indicates that no radicals were generated.
[0123] [表 6] 各触媒 の光照射によって検出された ラジカルの種類
Figure imgf000037_0001
[0123] [Table 6] Types of radicals detected by photoirradiation of each catalyst
Figure imgf000037_0001
[0124] [実験例 9 :切花 (ツバキ) の鮮度保持効果] 実施例 2の光触媒組成物による切花の鮮度保持効果の立証実験を行った。 [Experimental Example 9: Effect of preserving freshness of cut flowers (camellia)] [0124] An experiment was conducted to verify the effect of the photocatalyst composition of Example 2 on preserving the freshness of cut flowers.
•供試花 :ツバキ Test flower: Camellia
•実験方法 : 蒸留水 100m Iと実施例 2のビーズ状の光触媒組成物 4gを 200m Iビーカーに入 れ、 ツバキの花を浮かせた。 これに白色 LED光を連続照射し (図 1 4の (a) の写真像図参照) 、 1 〇日後の状態を観察した。 なお、 白色 LED光は、 8 : 00 ~18 : 00の間で照射し、 18 : 00 -翌朝 8 : 00の間は消灯した。 対照区として、 光照射しない暗条件区を用いた。 •Experimental method: 100 ml of distilled water and 4 g of the bead-like photocatalyst composition of Example 2 were placed in a 200 ml beaker, and camellia flowers were made to float. This was continuously irradiated with white LED light (see the photographic image of FIG. 14(a)), and the state after 10 days was observed. The white LED light was applied from 8:00 to 18:00, and turned off from 18:00 to 8:00 the next morning. As a control plot, a dark plot without light irradiation was used.
[0125] •実験結果 : 図 1 4に、 実験開始から 1 〇日後の光照射区と、 対照区の写真像図を示す 。 この図 1 4中、 (b) は 1 0日後の光照射区の写真像図であり、 (c) は 1 〇日後の対照区の写真像図である。 図 1 4の (c) に示されるように、 対 照区 (暗条件区) ではツバキの花が腐敗し、 蒸留水が黄色くなった。 これに 対して、 図 1 4の (b) に示されるように、 実施例 2の光触媒組成物を用い て白色 LED光を照射した光照射区では、 ツバキの腐敗は認められず、 蒸留水が 透明のままだった。 このことから、 実施例 2の光触媒組成物は、 切花の鮮度 保持に利用できることが確認された。 [0125] • Experimental results: Fig. 14 shows photographic images of the light-irradiated group and the control group 10 days after the start of the experiment. In FIG. 14, (b) is a photographic image of the light irradiation section after 10 days, and (c) is a photographic image of the control section after 10 days. As shown in FIG. 14(c), in the control section (dark condition section), camellia flowers rotted and the distilled water turned yellow. On the other hand, as shown in FIG. 14(b), in the light-irradiated section in which the photocatalyst composition of Example 2 was used to irradiate white LED light, no rotting of the camellia was observed, and distilled water was used. remained transparent. From this, it was confirmed that the photocatalyst composition of Example 2 can be used to keep cut flowers fresh.
[0126] [実験例 8 :切花 (サポナリア・バッカリア) の鮮度保持効果] 実施例 2の光触媒組成物による他の異なる切花の鮮度保持効果の立証実験 を行った。 [Experimental Example 8: Effect of Preserving Freshness of Cut Flowers (Saponaria Baccaria)] [0126] An experiment was conducted to prove the effect of the photocatalyst composition of Example 2 on preserving the freshness of other different cut flowers.
•供試花 :サポナリア・バッカリア Sample flower: Saponaria baccaria
•実験方法 : 蒸留水 50m Iと実施例 2のビーズ状の光触媒組成物 4gを 100m Iプラントボック スに入れ、 供試花としてサポナリア・バッカリアの切り花を活けた。 これに 白色 LED光を連続照射し、 3日後の状態を観察した。 なお、 白色 LED光は、 8 : 00- 18 : 00の間で照射し、 18 : 00 -翌朝 8 : 00の間は消灯した。 対照区として 、 光照射しない暗条件区を用いた。 •Experimental method: 50 ml of distilled water and 4 g of the beaded photocatalyst composition of Example 2 were placed in a 100 ml plant box, and cut flowers of Saponaria baccaria were arranged as test flowers. This was continuously irradiated with white LED light, and the state after 3 days was observed. The white LED light was applied from 8:00 to 18:00, and turned off from 18:00 to 8:00 the next morning. As a control section, a dark section without light irradiation was used.
[0127] •実験結果 : 図 1 5 ( a ) に、 実験開始時の白色 LED光照射区と、 対照区の写真像図を示 す。 図 1 5 ( b ) に、 実験開始から 3日後の白色 LED光照射区と、 対照区の写 真像図を示す。 これらの写真像図にも示されるように、 試験開始から 3日後 の対照区 (暗条件区) の蒸留水は微生物の増殖によって白く濁った。 これに 対し、 実施例 2の光触媒組成物を用いて白色 LED光を照射した光照射区では、 試験開始から 3日後でも蒸留水の腐敗は認められず、 蒸留水が透明のまま保 持された。 この実験結果からも、 実施例 2の光触媒組成物は、 切花の鮮度保 持に利用できることが確認された。 [0127] •Experimental results: Fig. 15(a) shows photographic images of the white LED light irradiation area at the start of the experiment and the control area. FIG. 15(b) shows a photographic image of the white LED light irradiation section and the control section 3 days after the start of the experiment. As shown in these photographic images, the distilled water in the control section (dark condition section) 3 days after the start of the test turned white and turbid due to the proliferation of microorganisms. On the other hand, in the light irradiation section irradiated with white LED light using the photocatalyst composition of Example 2, no decomposition of the distilled water was observed even after 3 days from the start of the test, and the distilled water remained transparent. . This experimental result also confirmed that the photocatalyst composition of Example 2 can be used to maintain the freshness of cut flowers.
[0128] [実験例 9 :光触媒組成物の紫外線照射による種子の殺菌効果] 実施例 2の光触媒組成物の紫外線照射による種子の殺菌効果の立証実験を 行った。 [Experimental Example 9: Seed sterilization effect of photocatalyst composition by ultraviolet irradiation] [0128] An experiment was conducted to verify the seed sterilization effect of the photocatalyst composition of Example 2 by ultraviolet irradiation.
•供試種子 : ヒョコ豆 Test seeds: chickpeas
•実験方法 : 蒸留水 50m lを含んだ 100m l透明容器に、 実施例 2のビーズ状の光触媒組成物Experimental method: The bead-shaped photocatalyst composition of Example 2 was placed in a 100 ml transparent container containing 50 ml of distilled water.
4gとヒョコ豆 50gを入れ、 紫外線 LED光源を用いて紫外線 LED光を連続照射し、 7日後の状態を観察した。 なお、 紫外線 LED光は、 8 : 00-18 : 00の間で照射し s 18 : 00 -翌朝 8 : 00の間は消灯した。 対照区として蒸留水のみを用いた。 実 験中の設定温度は 23°Cであった。 また実験後の紫外線 LED光照射区と対照区のヒョコ豆の雑菌の繁殖状態を観 察した。 Add 4g and 50g of chickpeas and continuously irradiate with UV LED light using UV LED light source. The condition was observed after 7 days. The ultraviolet LED light was applied from 8:00 to 18:00 and turned off from 18:00 to 8:00 the next morning. Only distilled water was used as a control group. The set temperature during the experiment was 23°C. In addition, after the experiment, we observed the breeding state of various bacteria in chickpeas in the UV LED light irradiation area and the control area.
[0129] •実験結果 : 図 1 6 (a) に、 実験開始から 7日後の対照区の写真像図を示す。 図 1 6 (b) に、 実験開始から 7日後の紫外線 LED光照射区の写真像図を示す。 図 1[0129] •Experimental results: Fig. 16(a) shows a photographic image of the control group 7 days after the start of the experiment. FIG. 16(b) shows a photographic image of the section irradiated with ultraviolet LED light 7 days after the start of the experiment. Figure 1
6 (b) 中の矢印は、 実施例 2のビーズ状の光触媒組成物を指し示している 〇 また、 図 1 7 (a) に、 対照区のヒョコ豆の雑菌の繁殖状態の写真像図を 示し、 図 1 7 (b) に、 紫外線 LED光照射区のヒョコ豆の雑菌の繁殖状態の写 真像図を示す。 図 1 7中の写真における白色呈示部分は、 雑菌が存在する部 分を示し、 無色の部分は雑菌が存在しない部分を示す。 The arrow in 6(b) points to the bead-like photocatalyst composition of Example 2. ○ Also, FIG. , Fig. 17(b) shows a photographic image of the breeding state of various bacteria in chickpeas in the ultraviolet LED light irradiation area. The white portion in the photograph in FIG. 17 indicates the portion where bacteria are present, and the colorless portion indicates the portion where bacteria are not present.
[0130] 図 1 6 (a) 、 図 1 7 (a) に示されるように、 対照区の蒸留水に沢山の 菌が増殖し、 白く濁った。 これに対し、 図 1 6 (b) 、 図 1 7 (b) に示さ れるように、 実施例 2の光触媒組成物を用いた紫外線 LED光照射区では雑菌の 増殖が認められず、 実験後も蒸留水が透明のまま保持された。 このことから 、 実施例 2の光触媒組成物は、 微生物の殺菌に利用できることが確認された[0130] As shown in Figs. 16(a) and 17(a), a large number of bacteria grew in the distilled water of the control group, and the water became cloudy white. On the other hand, as shown in FIGS. 16(b) and 17(b), in the ultraviolet LED light irradiation section using the photocatalyst composition of Example 2, no growth of various bacteria was observed, and even after the experiment Distilled water remained clear. From this, it was confirmed that the photocatalyst composition of Example 2 can be used for sterilizing microorganisms.
[0131] (実施例 5) ケイ素供給原料として珪藻 (キートセロス・グラシリス) 由来のシリカを 用いて、 実施例 5の光触媒組成物を製造した。 その原料を以下表 7に示す。 実施例 5の光触媒組成物の製造工程は、 実施例 1における製造工程と同様で ある。 (Example 5) [0131] A photocatalyst composition of Example 5 was produced using silica derived from diatom (Chaetoceros gracilis) as a silicon feedstock. The raw materials are shown in Table 7 below. The manufacturing process of the photocatalyst composition of Example 5 is the same as the manufacturing process of Example 1.
[原料] [表 7]
Figure imgf000040_0001
[material] [Table 7]
Figure imgf000040_0001
[0132] [珪藻からのシリカの抽出工程] 図 1 8に、 珪藻からのシリカの抽出工程を示す。 珪藻 (キートセロス・グ ラシリス) はヤンマー (株) から購入した。 1 X 1 〇8 ce L L/m Lの藻類液 500m l をアルミナ製の容器に入れ、 120°Cで 24時間加熱乾燥させた後、 大気中にて 30 0°Cで 2時間、 600°Cで 5時間、 300°Cで 2時間の条件で焼結処理することで、 10g の珪藻由来シリカを得た。 [0132] [Extraction process of silica from diatom] Fig. 18 shows a process of extracting silica from diatom. Diatom (Chaetoceros gracilis) was purchased from Yanmar Co., Ltd. Put 500 ml of 1 x 108 ceLL/ml algae liquid in an alumina container, heat and dry at 120°C for 24 hours, and then heat at 300°C for 2 hours and then at 600°C in the air. 10 g of diatom-derived silica was obtained by sintering under the conditions of 5 hours at 300°C and 2 hours at 300°C.
[0133] (実施例 6 ) 還元性有機物供給原料としてアスコルビン酸を用いて、 実施例 5の光触媒 組成物を製造した。 その原料を、 以下表 8に示す。 なお、 アスコルビン酸と 鉄塩とは、 1 : 1の比率 (アスコルビン酸 1 g +鉄塩 1 g) で混合した。 実施例 6 の光触媒組成物の製造工程は、 実施例 1における製造工程と同様である。[0133] (Example 6) The photocatalyst composition of Example 5 was produced using ascorbic acid as a reducing organic feedstock. The raw materials are shown in Table 8 below. Ascorbic acid and iron salt were mixed at a ratio of 1:1 (1 g of ascorbic acid + 1 g of iron salt). The manufacturing process of the photocatalyst composition of Example 6 is the same as the manufacturing process of Example 1.
[原料] [material]
[表 8]
Figure imgf000040_0002
[Table 8]
Figure imgf000040_0002
[0134] [実験例 1 〇 :可視光照射による光触媒組成物の有害物質の分解効果] 実施例 5及び 6の光触媒組成物の有害物質の光触媒反応による分解効果を 検証するために、 可視光である紫色光〜青色光 (380~495nm) LEDを用いて、 メチレンブルーの分解実験を行った。 [0134] [Experimental Example 1: Effect of decomposing harmful substances of the photocatalyst composition by visible light irradiation] In order to verify the effect of decomposing harmful substances of the photocatalyst compositions of Examples 5 and 6 by photocatalytic reaction, visible light was used. Using a certain violet to blue light (380~495nm) LED, A decomposition experiment of methylene blue was carried out.
•実験方法 : 粉末状の実施例 5又は 6の光触媒組成物 50mgを 10mlのメチレンブルー液 (5 000ppmのメチレンブルー液を水で 1000倍に薄めて 5ppmにしたもの) に投入し 、 連続的に LED光 (1万ルクス) を 4時間照射し、 メチレンブルーの分解速度 を計測した。 また、 対照区として光照射しない暗条件区を用いた。 •Experimental method: 50 mg of the photocatalyst composition of Example 5 or 6 in powder form was added to 10 ml of methylene blue solution (5000 ppm methylene blue solution diluted 1000 times with water to 5 ppm), and LED light was emitted continuously. (10,000 lux) was irradiated for 4 hours, and the decomposition rate of methylene blue was measured. In addition, a dark condition plot without light irradiation was used as a control plot.
[0135] •実験結果 : 図 1 9及び図 20に、 実施例 5及び 6の各光触媒組成物の実験結果を示し た。 図 1 9 (a) 及び図 20 (a) に、 各光触媒組成物の実験結果をグラフ で示した。 また、 図 1 9 (b) 及び図 20 (b) に、 実験終了後 (実験開始 から 4時間後) の各光触媒組成物の LED照射区及び対照区の溶液の写真像図を ホした。 [0135] • Experimental results: Fig. 19 and Fig. 20 show the experimental results of each photocatalyst composition of Examples 5 and 6. Fig. 19(a) and Fig. 20(a) graphically show the experimental results of each photocatalyst composition. 19(b) and 20(b) show photographic images of the solution of each photocatalyst composition in the LED-irradiated area and the control area after the end of the experiment (4 hours after the start of the experiment).
[0136] 図 1 9 (a) 及び図 20 (a) に示すように、 暗条件を用いた対照区では 、 メチレンブルーは分解しなかった。 また、 図 1 9 (b) 及び図 20 (b) の写真像図に示されるように、 対照区の溶液はメチレンブルーの色 (青色) のままであった。 [0136] As shown in Figures 19(a) and 20(a), methylene blue did not decompose in the dark control plot. In addition, as shown in the photographic images of Figures 19(b) and 20(b), the solution in the control group remained methylene blue (blue).
[0137] これに対して、 各光触媒組成物を用いた光照射区では、 図 1 9 (a) 及び 図 20 (a) に示すように、 紫色〜青色 LED光の連続照射によってメチレンブ ルーは分解し、 濃度は減少した。 また、 図 1 9 (b) 及び図 20 (b) の写 真像図に示されるように、 各光触媒組成物を用いた光照射区では、 溶液の色 が透明となり、 メチレンブルーが分解されたことがわかる。 [0137] On the other hand, in the light irradiation section using each photocatalyst composition, as shown in Fig. 19(a) and Fig. 20(a), methylene blue was decomposed by continuous irradiation with violet to blue LED light. and the concentration decreased. In addition, as shown in the photographic images of FIGS. 19(b) and 20(b), in the light irradiation section using each photocatalyst composition, the color of the solution became transparent, indicating that methylene blue was decomposed. I understand.
[0138] したがって、 実施例 5及び 6の光触媒組成物は、 紫色〜青色 LEDの光 (可視 光) に対して、 強い光触媒反応を示し、 メチレンブルーのような有害物質の 分解効果に優れることがわかった。 実施例 5及び 6の光触媒組成物は大量生産が可能な藻類を原料にされてい る。 これらの藻類は多くの二酸化炭素 (C〇 2) を吸収することが知られてい る。 したがって、 これに加えて藻類の機能・有効成分を様々な産業応用に向 けたビジネスの可能性に期待できる。 藻類を活用した新産業が期待できる。 藻類は、 光合成を通じてカーボンニュートラル実現や、 SDGs r GOAL 13:気候 変動に具体的な対策を」 の貢献に期待されている。 産業上 の利用 可能性 [0138] Therefore, the photocatalyst compositions of Examples 5 and 6 exhibited a strong photocatalytic reaction against violet to blue LED light (visible light), and were found to be excellent in decomposing harmful substances such as methylene blue. rice field. The photocatalyst compositions of Examples 5 and 6 are made from algae that can be mass-produced. These algae are known to absorb a lot of carbon dioxide (C02). Therefore, in addition to this, we can expect business possibilities for various industrial applications of the functions and active ingredients of algae. A new industry using algae can be expected. Algae are expected to contribute to achieving carbon neutrality through photosynthesis and to SDGs r GOAL 13: Take concrete action against climate change. Industrial applicability
[0139I 本開示の光触媒は、 食品、 医療、 公衆衛生、 農業、 環境浄化などの幅広い 分野での殺菌や有機物分解に幅広く利用されることが期待される。 関連 出願の相 互参照 [0139I] The photocatalyst of the present disclosure is expected to be widely used for sterilization and decomposition of organic matter in a wide range of fields such as food, medicine, public health, agriculture, and environmental purification. Cross-reference to related applications
[0140] 本出願は、 2 0 2 1年 2月 4日に日本国特許庁に出願された特願 2 0 2 1[0140] This application is based on Japanese Patent Application No. 2021 filed with the Japan Patent Office on February 4, 2021.
- 0 1 6 9 4 4に基づいて優先権を主張し、 その全ての開示は完全に本明細 書で参照により組み込まれる。 - 016944, the entire disclosure of which is fully incorporated herein by reference.

Claims

請 求の範 囲 The scope of the claims
[請求項 1 ] 可視光で触媒活性を示す光触媒組成物であって、 三価鉄を二価鉄に還元する作用を有する還元性有機物、 鉄供給原料 、 及び、 ガラス材料を含有し、 前記還元性有機物が、 ポリフェノール類及びアスコルビン酸の少な くとも何れかを含有し、 前記鉄供給原料が、 二価鉄化合物及び三価鉄化合物の少なくとも何 れかを含有する、 光触媒組成物。 [Claim 1] A photocatalyst composition exhibiting catalytic activity under visible light, comprising a reducing organic substance having an action of reducing trivalent iron to divalent iron, an iron feedstock, and a glass material, wherein the reduction a photocatalyst composition, wherein the organic substance contains at least one of polyphenols and ascorbic acid, and the iron feedstock contains at least one of a divalent iron compound and a trivalent iron compound.
[請求項 2] 前記ガラス材料が、 イネ科植物、 シダ植物、 及び藻類から選ばれる 植物体、 並びに前記植物体の加工品の何れかからなるケイ素供給原料 を含有する、 請求項 1 に記載の光触媒組成物。 [Claim 2] The glass material according to claim 1, wherein the glass material contains a plant body selected from gramineous plants, fern plants, and algae, and a silicon feedstock made from any of the processed products of the plant body. Photocatalyst composition.
[請求項 3] 前記還元性有機物と前記ケイ素供給原料との混合比率は、 前記還元 性有機物の乾燥重量 100重量部に対して、 前記ケイ素供給原料を、 ケ イ素元素の重量換算で 5重量部以上、 99重量部以下である、 請求項 2 に記載の光触媒組成物。 [Claim 3] The mixing ratio of the reducing organic substance and the silicon feedstock is 5 parts by weight of the silicon feedstock in terms of the weight of silicon element per 100 parts by weight of the dry weight of the reducing organic substance. 3. The photocatalyst composition according to claim 2, wherein the amount is at least 99 parts by weight.
[請求項 4] 前記還元性有機物と前記鉄供給原料との混合比率は、 前記還元性有 機物の乾燥重量 100重量部に対して、 前記鉄供給原料を、 鉄元素の重 量換算で 0. 1重量部以上、 10重量部以下である、 請求項 1〜 3の何れ かー項に記載の光触媒組成物。 [Claim 4] The mixing ratio of the reducing organic matter and the iron feedstock is such that the iron feedstock is added to 100 parts by weight of the dry weight of the reducing organic matter, and the iron feedstock is 0 in terms of the weight of the iron element. 4. The photocatalyst composition according to any one of claims 1 to 3, which is 1 part by weight or more and 10 parts by weight or less.
[請求項 5] 前記ポリフェノール類が、 クロロゲン酸、 カフェイン酸、 タンニン 酸、 及びカテキンから選ばれる 1以上の化合物、 及び前記化合物を分 子内に 1以上有する化合物の何れかである、 請求項 1〜 4の何れかー 項に記載の光触媒組成物。 [Claim 5] The polyphenols are either one or more compounds selected from chlorogenic acid, caffeic acid, tannic acid, and catechin, and compounds having one or more of the above compounds in the molecule. 5. The photocatalyst composition according to any one of 1 to 4.
[請求項 6] 前記還元性有機物の供給原料が、 コーヒー豆焙煎物、 茶葉、 果実搾 汁液、 及び植物乾留液の何れかである、 請求項 1〜 4の何れかー項に 記載の光触媒組成物。 [Claim 6] The photocatalyst composition according to any one of claims 1 to 4, wherein the feedstock of the reducing organic matter is any one of roasted coffee beans, tea leaves, fruit juice, and dry distillation of plants. thing.
[請求項 7] 請求項 1〜 6の何れか一項に記載の可視光で触媒活性を示す光触媒 組成物を含有する、 消臭剤。 [Claim 7] A deodorant containing the photocatalyst composition according to any one of claims 1 to 6, which exhibits catalytic activity under visible light.
[請求項 8] 請求項 1〜 6の何れか一項に記載の可視光で触媒活性を示す光触媒 組成物の製造方法であ って、 三価鉄を二価鉄に還元する作用を有する前記還元性有機物、 前記鉄 供給原料、 及び、 前記ガラス材料を、 還元雰囲気下、 加熱温度 9 0 0 °C以上、 加熱時間 12分以上で加熱処理する工程を含む、 光触媒組成物 の製造方法。 [Claim 8] A method for producing a photocatalyst composition exhibiting catalytic activity under visible light according to any one of claims 1 to 6, wherein the photocatalyst composition has an action of reducing trivalent iron to divalent iron A method for producing a photocatalyst composition, comprising the step of heat-treating a reducing organic substance, the iron feedstock, and the glass material in a reducing atmosphere at a heating temperature of 900° C. or higher for a heating time of 12 minutes or longer.
[請求項 9] 前記加熱温度が、 1 2 0 0 °C以上、 1 3 0 0 °C以下であり、 前記加 熱時間が、 12分以上、 12時間以下である、 請求項 8に記載の光触媒組 成物の製造方法。 [Claim 9] The heating temperature is 1200 ° C or more and 1300 ° C or less, and the heating time is 12 minutes or more and 12 hours or less. A method for producing a photocatalyst composition.
PCT/JP2022/000093 2021-02-04 2022-01-17 Photocatalyst composition, method for producing same, and deodorizing agent WO2022168519A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022579395A JPWO2022168519A1 (en) 2021-02-04 2022-01-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-016944 2021-02-04
JP2021016944 2021-02-04

Publications (1)

Publication Number Publication Date
WO2022168519A1 true WO2022168519A1 (en) 2022-08-11

Family

ID=82740588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000093 WO2022168519A1 (en) 2021-02-04 2022-01-17 Photocatalyst composition, method for producing same, and deodorizing agent

Country Status (2)

Country Link
JP (1) JPWO2022168519A1 (en)
WO (1) WO2022168519A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015218081A (en) * 2014-05-16 2015-12-07 公立大学法人首都大学東京 Photocatalytic glass
JP6340657B2 (en) * 2013-08-28 2018-06-13 国立研究開発法人農業・食品産業技術総合研究機構 Photocatalyst using reducing organic substances
CN110204031A (en) * 2019-06-05 2019-09-06 长春理工大学 The integrated apparatus and its application method of light Fenton-just infiltration Combined Treatment bio-refractory organic wastewater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6340657B2 (en) * 2013-08-28 2018-06-13 国立研究開発法人農業・食品産業技術総合研究機構 Photocatalyst using reducing organic substances
JP2015218081A (en) * 2014-05-16 2015-12-07 公立大学法人首都大学東京 Photocatalytic glass
CN110204031A (en) * 2019-06-05 2019-09-06 长春理工大学 The integrated apparatus and its application method of light Fenton-just infiltration Combined Treatment bio-refractory organic wastewater

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KISHIRO HISATOMI; AHMED SALAH ABDELKAREEM ALI: "Correlation between the local structure of iron ions and the photo-Fenton effect in glass-ceramics made from household waste incineration slag", HIKARI ALLIANCE, vol. 31, no. 5, 1 May 2020 (2020-05-01), JP , pages 1 - 6, XP009538756, ISSN: 0917-026X *

Also Published As

Publication number Publication date
JPWO2022168519A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
JP6478209B2 (en) Photocatalyst using reducing organic substances
JP6340657B2 (en) Photocatalyst using reducing organic substances
Nguyen et al. Recent advances on botanical biosynthesis of nanoparticles for catalytic, water treatment and agricultural applications: A review
KR101789359B1 (en) Fenton reaction catalyst produced using reducing organic substance as raw material
JP5733781B2 (en) Fenton reaction catalyst made from coffee cake or tea husk
Rafique et al. Growth response of wheat to titania nanoparticles application
Salih et al. Biosynthesis of zinc oxide nanoparticles using Phoenix dactylifera and their effect on biomass and phytochemical compounds in Juniperus procera
Jamshidi et al. Effect of gamma and microwave irradiation on antioxidant and antimicrobial activities of Cinnamomum zeylanicum and Echinacea purpurea.
Gangwar et al. Unlocking the potential of biosynthesized zinc oxide nanoparticles for degradation of synthetic organic dyes as wastewater pollutants
Veličković et al. The determination of the phenolic composition, antioxidative activity and heavy metals in the extracts of Calendula officinalis L.
Yashni et al. A review on green synthesis of ZnO nanoparticles using Coriandrum sativum leaf extract for degrading dyes in textile wastewater: a prospect towards green chemistry
Princy et al. Hibiscus cannabinus seeds assisted spherical silver nanoparticles and its antibacterial and photocatalytic applications
Mumivand et al. Biochar amendment improves growth and the essential oil quality and quantity of peppermint (Mentha× piperita L.) grown under waste water and reduces environmental contamination from waste water disposal
Twumasi et al. Assessment of the levels of cadmium and lead in soil and vegetable samples from selected dumpsites in the Kumasi Metropolis of Ghana
WO2022172649A1 (en) Polyphenol-iron complex capsule, hydrogen peroxide capsule, fenton reaction kit, and method for breeding fish and shellfish or treating diseases of fish and shellfish
JP6057227B2 (en) Fenton reaction catalyst made from reducing organic materials
WO2022168519A1 (en) Photocatalyst composition, method for producing same, and deodorizing agent
JP6179957B2 (en) Fenton reaction catalyst made from reducing organic materials
WO2022172688A1 (en) Visible-light-responsive porous photocatalyst body, method for producing same, and use of same
JP6202770B2 (en) Fenton reaction catalyst made from reducing organic materials
Withanage et al. Analysis of metal content in turmeric powder available in the Sri Lankan market
WO2022185706A1 (en) Radical-generating composition, sterilizing composition, and organic substance-decomposing composition
Mtewa et al. Antioxidant potential and total phenolic changes in Malawian herbal formulations stored in clay pots and plastic bottles
Chakroborty et al. Green nanotechnology research avenue in medicinal biology
Salih et al. Biosynthesis and Characterization of Zinc Oxide Nanoparticles Using Leaf Extract of Phoenix Dactylifera and Their Impact on Biomass and Bioactive Compounds in Juniperus Procera in Vitro

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749398

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022579395

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749398

Country of ref document: EP

Kind code of ref document: A1