JP2018019241A - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
JP2018019241A
JP2018019241A JP2016147782A JP2016147782A JP2018019241A JP 2018019241 A JP2018019241 A JP 2018019241A JP 2016147782 A JP2016147782 A JP 2016147782A JP 2016147782 A JP2016147782 A JP 2016147782A JP 2018019241 A JP2018019241 A JP 2018019241A
Authority
JP
Japan
Prior art keywords
signal
sensor
output
pixel
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016147782A
Other languages
English (en)
Other versions
JP6702058B2 (ja
Inventor
西野 弘師
Hiroshi Nishino
弘師 西野
康夫 松宮
Yasuo Matsumiya
康夫 松宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2016147782A priority Critical patent/JP6702058B2/ja
Priority to US15/645,143 priority patent/US10616517B2/en
Publication of JP2018019241A publication Critical patent/JP2018019241A/ja
Application granted granted Critical
Publication of JP6702058B2 publication Critical patent/JP6702058B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/767Horizontal readout lines, multiplexers or registers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/20Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only
    • H04N23/23Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only from thermal infrared radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Studio Devices (AREA)

Abstract

【課題】画像の乱れを抑制できる、撮像装置を提供すること。【解決手段】共通のセンサ素子に対して複数の出力系統が設けられたイメージセンサと、前記イメージセンサの出力から画像信号を生成する信号処理部とを備え、前記複数の出力系統は、夫々、トランジスタと、前記トランジスタを介して前記センサ素子に流れる電流に応じた電荷を蓄積する容量と、前記容量の電圧に応じたセンサ信号を出力する出力部とを有し、前記トランジスタは、夫々、互いに異なる期間に前記電流を流し、前記信号処理部は、前記センサ信号が互いに一致しないとき前記センサ信号を使用せず、前記センサ信号が互いに一致するとき前記センサ信号を前記画像信号の生成に使用する、撮像装置。【選択図】図6

Description

本発明は、撮像装置に関する。
撮像装置として、赤外線イメージセンサを利用した赤外線撮像装置が知られている。赤外線イメージセンサを利用した赤外線撮像装置は、非接触で温度測定が可能であるという特徴を有し、保安、医療、保全、研究開発、軍事などの用途に使用される。例えば、赤外線撮像装置は、空港で乗客の体温を非接触で測定して、感染症の患者を抽出するのに利用される。また、赤外線撮像装置は、暗視装置として利用される場合もある。以下、赤外線撮像素子を使用した赤外線撮像装置の例を説明するが、記載する技術は、これに限定されるものではない。
図1は、赤外線イメージセンサ14を利用した赤外線撮像装置1の構成の一例を示す図である。赤外線撮像装置1は、撮像部10と、撮像部10が出力する赤外線撮像信号を信号処理する信号処理回路18とを備える。撮像部10は、レンズ11と、赤外線イメージセンサ14とを備える。信号処理回路18は、感度補正演算回路16と、画像化回路15とを備える。
図2は、赤外線イメージセンサ14の構成の一例を示す図である。赤外線イメージセンサ14は、観測対象物の表面温度に応じて当該観測対象物から放射される赤外線を、二次元のアレイ状に配置された複数のセンサ素子で検出する。そして、赤外線イメージセンサ14は、当該観測対象物の表面温度分布を示す熱画像(サーモグラフィ画像)を生成するためのセンサ出力信号を出力する。
赤外線イメージセンサ14は、センサアレイ12と、CMOS(Complementary Metal Oxide Semiconductor)読み出し回路13とを備える。CMOS読み出し回路13は、基板に設けられている。センサアレイ12とCMOS読み出し回路13との対応する電極同士は、インジウム製のバンプ17により接続されている。センサアレイ12は、二次元のアレイ状に配置された複数のセンサ素子(画素)を有する。センサアレイ12の各センサ素子は、赤外線の入射量に応じて抵抗値が変化する特性を有する光伝導型素子である。
レンズ11(図1参照)は、観測対象物から放射された赤外線を、センサアレイ12上に投射する。センサアレイ12の各センサ素子は、投射された赤外線の入射光量に応じた光電流を発生する。これにより、赤外線は、電気信号に変換される。電気信号は、CMOS読み出し回路13によってマルチプレクスされた後、信号処理回路18の感度補正演算回路16に出力される。画像化回路15は、感度補正演算回路16による感度補正処理後の赤外線撮像信号を、熱画像を生成するための画像信号に、フォーマット変換する。不図示の表示モニタは、画像化回路15から出力された画像信号に基づいて、熱画像を表示する。
図3は、CMOS読み出し回路13の構成の一例を示す図である。CMOS読み出し回路13は、複数の画素回路21と、スキャン回路25とを備える。
スキャン回路25は、水平方向(行方向)に平行に伸びる複数のスキャンライン27と、垂直方向(列方向)に平行に伸びる複数の垂直バスライン28と、垂直走査シフトレジスタ22と、水平走査シフトレジスタ23とを備える。
画素回路21は、複数のスキャンライン27と複数の垂直バスライン28との各交差部に対応してマトリクス状に配置されている。画素回路21内のセンサ素子24は、赤外線イメージセンサ14の感光部であるセンサアレイ12(図2参照)に設けられるセンサ素子(セル)を示している。画素回路21は、複数のセンサ素子24の夫々に、設けられている。
画素回路21では、リセットゲート用のトランジスタ36にリセット信号RSが印加され、トランジスタ36が導通して蓄積容量41が所定値に充電される。リセット信号RSの印加が停止した後、入力ゲート用のトランジスタ35に積分信号IG−T2が一定期間印加され、センサ素子24に赤外線強度に対応した電流が流れ、蓄積容量41の電圧が赤外線強度に対応した電圧になる。次に、サンプルホールドリセット用のトランジスタ37は、リセット信号SHRSに応じて導通し、サンプルホールド容量42の電圧レベルを所定値にリセットする。次に、トランスファーゲート38にサンプルホールド信号SHおよび/SHが印加され、蓄積容量41の電圧がサンプルホールド容量42に転送され、保持される。サンプルホールド信号/SHは、サンプルホールド信号SHの反転信号である。このような動作が複数の画素回路21でそれぞれ同時に行われるので、各センサ素子24の赤外線強度に対応した電圧が各サンプルホールド容量42に保持される。
垂直走査シフトレジスタ22は、複数のスキャンライン27を1本ずつ選択するスキャンパルスV−Selを順次出力する。スキャンパルスV−Selに応じて、そのスキャンパルスV−Selが出力されたスキャンライン27にゲートが接続されるトランジスタ32が導通する。導通したトランジスタ32にトランジスタ31を介して接続された画素回路21のサンプルホールド容量42に保持された電圧が、トランジスタ31およびトランジスタ32を介して、対応する垂直バスライン28のそれぞれに出力される。
水平走査シフトレジスタ23は、トランジスタ33に読み出しパルスH−selを順次印加する。読み出しパルスH−Selに応じて、垂直バスライン28の電圧は、読み出しライン26に出力され、イメージ信号電圧Vpxlが生じる。イメージ信号電圧Vpxlは、最終出力段増幅器29からアナログの出力信号Voutとして順次出力される。
すべての垂直バスライン28の電圧の出力が終了すると、垂直走査シフトレジスタ22が次のスキャンライン27にスキャンパルスV−Selを印加する。以後、上記の動作を繰り返すことにより、1本の出力線に、2次元配置されたすべてのセンサ素子24の信号が多重化されて出力される。トランジスタ34は、信号VRSに応じて導通し、読み出しライン26をグランドレベルにリセットする。
リセット信号RSなど、CMOS読み出し回路13を動作させるタイミング制御信号は、タイミング生成器20から与えられる。
特開2011−142558号公報
ところが、CMOSトランジスタのゲート電極界面に電荷トラップが存在すると、トラップに出入りする電子の有無により、トランジスタのチャネル電位が変調を受ける。図4は、画素回路の一部の構成を示す図である。入力ゲート用のトランジスタ35のチャネル電位が電荷トラップにより変調を受けると、外部からトランジスタ35のゲートに与える電圧を一定にしても、トランジスタ35のゲート−ソース間の電圧が変化するので、トランジスタ35のソース電位が変化する。トランジスタ35のソース電位の変化は、センサ素子24の両端に印加されるバイアス電圧を変動させるので、センサ素子24で発生する光電流の変動を引き起こす。そのため、蓄積容量41に蓄積されてサンプルホールド容量42に転送される電荷量は変動する。したがって、画素回路21から読み出される画素出力電圧は、入力ゲート部のトランジスタ35のトラップ状態の時間的変化に応じて時間的に変動する。
この画素出力電圧の変動は、図5に示されるように、比較的振幅の大きい2値的な変動となって現れることが多く、ランダムテレグラフノイズと呼ばれる。図5は、画素出力電圧の変動の一例を示す図であり、或る一つの画素回路からの画素出力電圧を時間軸上で連続的に並べた連続データで表現している。ある画素に関して図5に示されるような画素出力電圧の変動が継続すると、当該画素に対応する部分の輝度が表示モニタ上で時間的に変化するので、表示モニタの画像が乱れるおそれがある。
そこで、本開示の一態様は、画像の乱れを抑制できる、撮像装置の提供を目的とする。
上記目的を達成するため、本開示の一態様では、
共通のセンサ素子に対して複数の出力系統が設けられたイメージセンサと、
前記イメージセンサの出力から画像信号を生成する信号処理回路とを備え、
前記複数の出力系統は、夫々、トランジスタと、前記トランジスタを介して前記センサ素子に流れる電流に応じた電荷を蓄積する容量と、前記容量の電圧に応じたセンサ信号を出力する出力部とを有し、
前記トランジスタは、夫々、互いに異なる期間に前記電流を流し、
前記信号処理回路は、前記センサ信号が互いに一致しないとき前記センサ信号を使用せず、前記センサ信号が互いに一致するとき前記センサ信号を前記画像信号の生成に使用する、撮像装置が提供される。
本開示の一態様によれば、画像の乱れを抑制できる。
赤外線イメージセンサを利用した赤外線撮像装置の構成の一例を示す図である。 赤外線イメージセンサの構成の一例を示す図である。 CMOS読み出し回路の構成の一例を示す図である。 画素回路の一部の構成を示す図である。 画素出力電圧の変動の一例を示す図である。 CMOS読み出し回路の構成の一例を示す図である。 画素回路の動作の一例の示すタイミングチャートである。 スキャン回路の動作の一例を示すタイミングチャートである。 信号処理部の構成の一例を示す図である。 2つの出力信号の変化の一例を示す図である。 赤外線撮像装置の構成の一例を示す図である。 赤外線イメージセンサを含む撮像部の構成の一例を示す図である。 信号処理部の構成の一例を示す図である。 ランダムテレグラフノイズの対処手順の一例を示すフローチャートである。 信号処理部の構成の一例を示す図である。 ランダムテレグラフノイズの対処手順の一例を示すフローチャートである。 信号処理部の構成の一例を示す図である。 ランダムテレグラフノイズの対処手順の一例を示すフローチャートである。
図6は、一実施形態に係るCMOS読み出し回路113の構成の一例を示す図である。CMOS読み出し回路113は、複数の画素回路121と、スキャン回路125とを有する。
スキャン回路125は、水平方向(行方向)に平行に伸びる複数のスキャンライン127と、垂直方向(列方向)に平行に伸びる複数の垂直バスライン128と、垂直走査シフトレジスタ122と、水平走査シフトレジスタ123とを備える。
画素回路121は、複数のスキャンライン127と複数の垂直バスライン128との各交差部に対応してマトリクス状に配置されている。画素回路121内のセンサ素子124は、図2に示された赤外線イメージセンサ14と同様に、センサアレイに設けられるセンサ素子(セル)を示している。図6に示された画素回路121は、複数のセンサ素子124の夫々に、設けられている。センサ素子124は、赤外線の入射量に応じて抵抗値が変化する特性を有する光伝導型素子である。各々の画素回路121は、互いに同じ構成を有する。
CMOS読み出し回路113は、共通のセンサ素子124に対して複数の出力系統が設けられている。図6の構成では、一つのセンサ素子124に接続される入力ゲート部以降の出力系統が二つ設けられている。
二つの出力系統は、夫々、入力ゲート部を有する。第1の入力ゲート部は、センサ素子124に接続されたトランジスタ139と、センサ素子124にトランジスタ139を介して接続され且つトランジスタ139に直列に接続されたトランジスタ135とを有する。第2の入力ゲート部は、センサ素子124に接続されたトランジスタ239と、センサ素子124にトランジスタ239を介して接続され且つトランジスタ239に直列に接続されたトランジスタ235とを有する。
入力ゲート部において、センサ素子124のバイアス電圧を制御するトランジスタ139,239の各ゲート電極には、共通のゲート配線が接続されていて、共通の一定のゲート駆動信号IG−T1が印加される。つまり、トランジスタ139,239がそれぞれセンサ素子124の両端に印加する電圧は、同じバイアス電圧に設定されている。
一方、入力ゲート部において、センサ素子124に電流を流す時間(蓄積容量141,241から電荷を放電する時間)を制御するトランジスタ135,235の各ゲート電極には、互いに異なるゲート配線が接続されていて、独立のゲート駆動信号である積分信号が印加される。一方のトランジスタ135のゲート電極には、積分信号IG1−T2が印加され、他方のトランジスタ235のゲート電極には、積分信号IG2−T2が印加される。つまり、トランジスタ135,235が互いに異なる期間で開閉できるように設定されているので、トランジスタ139,239は互いに異なる期間にセンサ素子124に電流を流すことができる。
また、二つの出力系統は、夫々、サンプルホールド部を有する。第1のサンプルホールド部は、トランジスタ136,137、トランスファーゲート138と、蓄積容量141と、サンプルホールド容量142とを有する。トランスファーゲート138は、蓄積容量141とサンプルホールド容量142との間に設けられたサンプルホールドスイッチ回路の一例である。第2のサンプルホールド部は、トランジスタ236,237、トランスファーゲート238と、蓄積容量241と、サンプルホールド容量242とを有する。トランスファーゲート238は、蓄積容量241とサンプルホールド容量242との間に設けられたサンプルホールドスイッチ回路の一例である。
図7は、画素回路121の動作の一例を示すタイミングチャートである。図6を参照して、図7について以下説明する。
トランジスタ139,239は、共通の一定のゲート駆動信号IG−T1が常時印加されていることによって、常時オンし、パルス動作をしていない。最初に、リセットゲート用のトランジスタ136,236に共通のリセット信号RSが印加され、トランジスタ136,236が導通して蓄積容量41が所定値に充電される。トランジスタ136,236は、Pチャネル型のMOSトランジスタであるため、リセット信号RSがローレベルの期間にオン(開)となる。
リセット信号RSの印加が停止した後、入力ゲート用のトランジスタ135,235は、積分信号IG1−T2,IG2−T2に従って交互に開閉する。トランジスタ135,235の開閉は、1フレーム期間内に少なくとも2回以上繰り返される。センサ素子124に赤外線強度に対応した電流が蓄積容量141,241に交互に流れ、蓄積容量141,241の電圧が赤外線強度に対応した電圧になる。
次に、サンプルホールドリセット用のトランジスタ137,237は、共通のリセット信号SHRSに応じて導通し、サンプルホールド容量142,242の電圧レベルを所定値にリセットする。トランジスタ137,237は、Pチャネル型のMOSトランジスタであるため、リセット信号SHRSがローレベルの期間にオン(開)となる。
次に、トランスファーゲート138,238にサンプルホールド信号SHおよび/SHが印加され、蓄積容量141の電圧がサンプルホールド容量142に転送されて保持される一方で、蓄積容量241の電圧がサンプルホールド容量242に転送されて保持される。サンプルホールド信号/SHは、サンプルホールド信号SHの反転信号である。
このような動作が複数の画素回路121で1フレーム期間毎にそれぞれ同時に行われるので、各センサ素子124の赤外線強度に対応した電圧が各サンプルホールド容量142,242に保持される。このように、サンプルホールド容量142は、トランジスタ135,139を介してセンサ素子124に流れる電流に応じた電荷を蓄積し、サンプルホールド容量242は、トランジスタ235,239を介してセンサ素子124に流れる電流に応じた電荷を蓄積する。
また、図6において、二つの出力系統は、夫々、出力部を有する。第1の出力部は、第1の増幅トランジスタ131、第1の行選択トランジスタ132、第1の垂直バスライン128、第1の列選択トランジスタ133、第1の読み出しライン126、第1の出力段増幅器129を有する。第2の出力部は、第2の増幅トランジスタ231、第2の行選択トランジスタ232、第2の垂直バスライン228、第2の列選択トランジスタ233、第2の読み出しライン226、第2の出力段増幅器229を有する。
図8は、スキャン回路125の動作の一例を示すタイミングチャートである。図6を参照して、図8について以下説明する。
サンプルホールド容量142,242に転送された各画素の信号電圧(画素出力電圧)は、シフトレジスタによる行・列マトリクスのスイッチ切替により時系列に読み出される。シフトレジスタの動作は次の通りである。
パルス信号V−Startにより垂直走査シフトレジスタ122の走査が開始し、パルス信号H−Startにより水平走査シフトレジスタ123の走査が開始する。垂直走査シフトレジスタ122の最初の選択により1行目の行選択トランジスタ132,232がスキャンパルスV−Selによりオンとされている期間に、クロック信号(Clock)に応じて水平走査シフトレジスタ123が順次カウントアップしていく。これにより、各列に設けられた列選択トランジスタ133,233が、1列目、2列目、3列目と順番にオンとなって切り替わるように、水平走査シフトレジスタ123の読み出しパルスH−selにより選択される。そして、1行目の先頭列から最終列までの画素選択が水平走査シフトレジスタ123により行われ、1行目の最終列の選択後に、水平走査シフトレジスタ123の最後尾選択信号V−Datのレベルがアクティブレベルとなる。
アクティブレベルの最後尾選択信号V−Datにより、垂直走査シフトレジスタ122を一つカウントアップさせて、次の2行目の行選択への切り替えが垂直走査シフトレジスタ122により行われる。パルス信号H−Startが水平走査シフトレジスタ123に再度与えられる。垂直走査シフトレジスタ122の選択により2行目の行選択トランジスタ132,232がスキャンパルスV−Selによりオンとされている期間に、クロック信号(Clock)に応じて水平走査シフトレジスタ123が順次カウントアップしていく。これにより、各列に設けられた列選択トランジスタ133,233が、1列目、2列目、3列目と順番にオンとなって切り替わるように、水平走査シフトレジスタ123の読み出しパルスH−selにより選択される。そして、2行目の先頭列から最終列までの画素選択が水平走査シフトレジスタ123により行われ、2行目の最終列の選択後に、水平走査シフトレジスタ123の最後尾選択信号V−Datのレベルがアクティブレベルとなる。そして、最終行の選択まで繰り返される。
このようなシフトレジスタ動作が繰り返されて、垂直方向・水平方向に画素選択の走査が実施されることにより、全画素の出力が順次読み出される。つまり、二つの時系列の出力信号Vout1,Vout2が読み出し回路113から出力される。出力信号Vout1,Vout2は、センサ信号の一例である。トランジスタ134,234は、共通の信号VRSに応じて導通し、読み出しライン126,226をグランドレベルにリセットする。
リセット信号RSなど、CMOS読み出し回路113を動作させるタイミング制御信号は、タイミング生成器120から与えられる。タイミング生成器120は、読み出し回路113の内部に又は読み出し回路113の外部(例えば、後述の信号処理回路118)に設けられる。
図9は、信号処理回路118の構成の一例を示す図である。信号処理回路118は、信号処理部の一例である。信号処理回路118は、赤外線イメージセンサ114の内部の読み出し回路113から出力された二つの時系列の出力信号Vout1,Vout2から、表示モニタに表示される熱画像を生成するための画像信号を生成する。
信号処理回路118は、各画素(各画素回路121)の感度ばらつきを補正する感度補正回路116,216と、各画素(各画素回路121)の感度ばらつきを補正するための補正係数を記憶するメモリ119,219とを備える。メモリ119は、センサ素子124を含む画素回路121から読み出された出力信号Vout1を補正するための補正係数をセンサ素子124毎に記憶する。メモリ219は、センサ素子124を含む画素回路121から読み出された出力信号Vout2を補正するための補正係数をセンサ素子124毎に記憶する。
赤外線イメージセンサ114の各画素の感度は、センサ素子124の光応答特性の違いや、トランジスタ139,239の特性の差異によるセンサ素子124への駆動バイアスの変動などの影響を受けてばらつく。これらの各画素での感度ばらつきを補正するため、感度補正回路116,216は、時系列に読み出された各出力信号Vout1,Vout2に感度補正係数を乗じる処理を1画素毎に行う。画素毎に基準となるオフセット値及び各画素の光応答感度に相当するゲイン値は、メモリ119,219に補正係数として記憶されている。感度補正回路116,216は、メモリ119,219から読み出した補正係数を用いて、一様な入射光に対して各画素で等しい出力(感度)が得られるような補正演算処理を行う。
また、信号処理回路118は、加算器150と、比較器151と、フレームメモリ152と、画像化回路115とを備える。
加算器150は、感度補正回路116による感度補正後の出力信号Vout1と感度補正回路216による感度補正後の出力信号Vout2とを加算する。比較器151は、感度補正回路116による感度補正後の出力信号Vout1と感度補正回路216による感度補正後の出力信号Vout2とを比較する。フレームメモリ152は、比較器151の比較結果に応じて加算器150の加算結果を記憶する。画像化回路115は、フレームメモリ152から読み出された感度補正後の赤外線撮像信号(画素出力データ)を、熱画像を生成するための画像信号に、フォーマット変換する。画像化回路115は、画像信号を表示モニタに出力する。
本実施形態では、図6〜8で示したように、タイミング生成器120は、トランジスタ135とトランジスタ235とが同期間でオンとならないようにトランジスタ135とトランジスタ235とを交互に駆動する。これにより、オン状態のトランジスタ139を介してセンサ素子124を流れる光電流は蓄積容量141により積分され、オン状態のトランジスタ239を介してセンサ素子124を流れる光電流は蓄積容量241により積分される。トランジスタ139,239のバイアス電圧は同じ電圧値に設定されているため、ほぼ等しい光電流信号が発生する。
入力ゲート部のタイミングゲート(トランジスタ135とトランジスタ235)の開閉は、1フレーム期間内で積分時間が細分化されるように交互に繰り返される。トランジスタ135が開となっている時間の和とトランジスタ235が開となっている時間の和は、一致するように設定されている。積分時間(撮像時のシャッターが開いている期間)は、短い周期で繰り返されている。そのため、トランジスタ135で決まる撮像タイミング(シャッター開の期間)とトランジスタ235で決まる撮像タイミング(シャッター開の期間)とは、ほぼ同じ時間とみなすことができる(図7参照)。したがって、赤外線イメージセンサ114からの各出力(出力信号Vout1と出力信号Vout2)は、ランダムテレグラフノイズのような雑音がトランジスタ139又はトランジスタ239に影響しなければ、本来同じ出力結果となるはずである。
図9に示された信号処理回路118は、出力信号Vout1と出力信号Vout2についてノイズ判定をして、画像信号を生成する。信号処理回路118は、Vout1とVout2のそれぞれに感度補正処理を感度補正回路116,216によって施すことで、補正後のVout1と補正後のVout2との感度差を小さくする。
一つのセンサ素子124を同じバイアスで駆動するので、出力信号Vout1と出力信号Vout2との感度差はほぼ等しいはずであるが、トランジスタ特性の僅かな差異や出力系統の特性差異によって、二つの出力信号間には僅かなずれが発生することがある。感度補正処理は、このような感度差をキャンセルするための処理である。
信号処理回路118は、補正後のVout1と補正後のVout2との感度差を小さくした上で、補正後のVout1と補正後のVout2とを比較器151により比較するとともに、補正後のVout1と補正後のVout2とを加算器150により加算する。
図10は、出力信号Vout1とVout2の変化の一例を示す図である。出力信号Vout1,Vout2の変化がセンサ素子124に入射した赤外線の変化に起因するものであれば、Vout1とVout2は同相で変化する(図10の左図参照)。一方、出力信号Vout1,Vout2の変化がランダムテレグラフノイズに起因するものであれば、Vout1とVout2のうちいずれか一方のみが変化する(図10の右図参照)。なぜならば、ランダムテレグラフノイズが二つのトランジスタ139,239で同時に起こる頻度は極めて低いと考えられるからである。
そこで、図9に示される信号処理回路118は、補正後のVout1と補正後のVout2とが比較器151により一致すると判定された場合、ランダムテレグラフノイズが発生していないと判断できる。一方、信号処理回路118は、補正後のVout1と補正後のVout2とが比較器151により一致しないと判定された場合、ランダムテレグラフノイズが発生したと判断できる。つまり、信号処理回路118は、赤外線イメージセンサ114の出力信号の変動が、センサ素子124に入射した赤外線のような入射波の変化によるものか、ランダムテレグラフノイズのような雑音によるものなのかを判別できる。
信号処理回路118は、例えば、補正後のVout1と補正後のVout2との電圧差が比較器151により所定値以下と検知された場合、補正後のVout1と補正後のVout2とが一致していると判定する。一方、信号処理回路118は、例えば、補正後のVout1と補正後のVout2との電圧差が比較器151により所定値より大きいと検知された場合、補正後のVout1と補正後のVout2とが一致していないと判定する。
信号処理回路118は、補正後のVout1と補正後のVout2とが比較器151により一致すると判定された場合、補正後のVout1と補正後のVout2とを画像信号の生成に使用する。例えば、信号処理回路118は、補正後のVout1と補正後のVout2とが加算器150により加算された結果をフレームメモリ152に記録した上で、フレームメモリ152から読み出された画素出力データを画像化回路115に送信する。フレームメモリ152には、前回の撮像フレームでの加算後の画素出力データが記憶されているので、信号処理回路118は、前回の撮像フレームでの加算後の画素出力データを今回の撮像フレームでの加算後の画像出力データに更新する。
一方、信号処理回路118は、補正後のVout1と補正後のVout2とが比較器151により一致しないと判定された場合、補正後のVout1と補正後のVout2とを画像信号の生成に使用しない。例えば、信号処理回路118は、補正後のVout1と補正後のVout2とが一致しない場合、フレームメモリ152内の画素出力データを更新しない。これにより、ランダムテレグラフノイズが無い画素出力データに基づいて生成された画像信号が、画像化回路115から出力される。画像化回路115は、補正後のVout1と補正後のVout2とが一致しない場合(ランダムテレグラフノイズが発生したと判定した場合)、ノイズが発生する前にフレームメモリ152に記憶された画像出力データに基づいて、画像信号を生成する。
したがって、本実施形態によれば、互いに一致しない補正後のVout1と補正後のVout2とは画像信号の生成に使用されず、互いに一致する補正後のVout1と補正後のVout2とは画像信号の生成に使用される。これにより、ランダムテレグラフノイズのような雑音を起因とした輝度変化などの画像の目立った乱れを抑制することができる。また、トランジスタ135の開期間で撮像された出力とトランジスタ235の開期間で撮像された出力との加算結果に基づいて画像信号が生成されるので、トランジスタ一つ当たりの開期間が短くても、画像全体での平均的な信号雑音比の低下を抑制可能である。
次に、撮像装置の具体例について説明する。
図11は、赤外線撮像装置101の構成の一例を示す図である。赤外線撮像装置101は、撮像部110と、信号処理回路118と、表示モニタ153とを備える。赤外線撮像装置101に、表示モニタ153は含まれても含まれなくてもよい。
図12は、赤外線イメージセンサ114を含む撮像部110の構成の一例を示す図である。赤外線イメージセンサ114は、CMOS読み出し回路113(図6参照)のチップの上にフリップチップ接続された受光素子アレイチップを有する。受光素子アレイチップは、量子井戸型赤外線検知素子(QWIP:Quantum Well Infrared Photodetector)が二次元のアレイ状に配置されたセンサアレイである。
赤外線イメージセンサ114は、真空容器155内に封入されている。冷却器156は、赤外線イメージセンサ114を70〜80Kへと冷却する。真空容器155の先端には赤外線の入射窓154が取り付けられている。真空容器155の前方に設置されたレンズ111を含む光学系により結像された赤外線が、入射窓154を通して赤外線イメージセンサ114へ入射される。レンズ111が結像する焦点の位置は、赤外線イメージセンサ114の入射面に調整される。
撮像部110は、赤外線イメージセンサ114の冷却温度を一定に保つための冷却器制御回路158と、レンズ111の焦点調整を行うための光学制御回路157とを有する。
撮像部110は、赤外線イメージセンサ114を駆動するためのセンサ駆動回路159を有する。センサ駆動回路159は、タイミングパルス信号(例えば、クロック信号、フレーム同期信号、シフトレジスタ制御信号等)を、赤外線イメージセンサ114のCMOS読み出し回路113に供給するタイミング生成器120を有する。センサ駆動回路159は、CMOS読み出し回路113の動作電源、CMOS読み出し回路113内部の増幅器の電源電圧、リセット電圧、ゲート駆動信号IG−T1等のバイアス電圧を、赤外線イメージセンサ114のCMOS読み出し回路113に供給する。
センサ駆動回路159は、A/D(Analog-to-Digital)変換器160,260を有する。A/D変換器160は、CMOS読み出し回路113からのアナログの出力信号Vout1を、例えば14ビットの並行デジタル出力に変換する。14本の並行デジタル出力は、シリアライザ161によって1系統の時系列デジタル信号に変換され、変換後のデジタル信号は、出力信号Vout1として外部へ出力される。同様に、A/D変換器260は、CMOS読み出し回路113からのアナログの出力信号Vout2を、例えば14ビットの並行デジタル出力に変換する。14本の並行デジタル出力は、シリアライザ261によって1系統の時系列デジタル信号に変換され、変換後のデジタル信号は、出力信号Vout2として外部へ出力される。
なお、図12は、A/D変換器160,260の後段の構成を二つの出力系統で示している。しかしながら、二次元アレイの画素を複数の領域に分割して読み出す場合、CMOS読み出し回路113からの出力チャネルは複数となるため、チャネル数に応じてA/D変換器の数を増やしてもよい。
図13は、信号処理回路118Aの構成の一例を示す図である。信号処理回路118Aは、信号処理回路118の第一例である。信号処理回路118Aは、撮像部110からの出力信号を信号処理する。
赤外線イメージセンサ114から時系列に出力される出力信号Vout1,Vout2は、光応答の感度ばらつきを持つ。感度補正回路116,216は、その感度ばらつきを補正する。感度補正回路116,216は、センサ素子124への一定の入射量に対する出力信号Vout1,Vout2が互いに同じになるように、メモリ119,219に記憶された補正係数を出力信号Vout1,Vout2に乗じる。メモリ119は、出力信号Vout1に乗じる補正係数を各センサ素子124について記憶し、メモリ219は、出力信号Vout2に乗じる補正係数を各センサ素子124について記憶する。
比較器151は、感度補正後の出力信号Vout1と感度補正後の出力信号Vout2との差異を検出して、ランダムテレグラフノイズの発生有無を判断する。また、加算器150は、感度補正後の出力信号Vout1と感度補正後の出力信号Vout2とを加算して1つの出力信号(画素出力データ)にまとめた後、当該画素出力データをフレームメモリ152に記録する。フレームメモリ152は、画像信号を生成する元の信号を記憶する。画素出力データの更新の際、図14に示されるフローチャートに従ってデータ更新が行われる。
図14は、ランダムテレグラフノイズの対処手順の一例を示すフローチャートである。
ステップS10にて、感度補正回路116,216は、感度補正後の出力信号Vout1,Vout2を加算器150及び比較器151に入力する。
ステップS12にて、加算器150は、入力された出力信号Vout1とVout2とを加算する。
ステップS14にて、比較器151は、入力された出力信号Vout1とVout2とが一致するか否かを判定する。入力された出力信号Vout1とVout2とが一致すると比較器151により判定された場合、加算器150は、フレームメモリ152に既に記憶された画素出力データを、今回のステップS12での加算結果を表す画素出力データに書き換える(ステップS16)。一方、入力された出力信号Vout1とVout2とが一致しないと比較器151により判定された場合、加算器150は、フレームメモリ152に既に記憶された画素出力データを、今回のステップS12での加算結果を表す画素出力データに書き換えない。
これにより、ステップS20にて、ランダムテレグラフノイズが無いと判断された画素については、フレームメモリ152内の画素出力データは最新のデータに更新される。ランダムテレグラフノイズがあると判断された画素については、フレームメモリ152内の画素出力データは前回以前のフレームの画素出力データが保持される。
ステップS22にて、フレームメモリ152内の画素出力データは、画像化回路115に出力される。
図13において、画像化回路115は、フレームメモリ152に蓄積されたセンサ素子124毎の画素出力データを用いて画像信号を生成する。フレームメモリ152内の画素出力データは、赤外線イメージセンサ114の出力信号Vout1,Vout2の感度補正後の14ビットの信号を加算して得られたデータである。
調整回路162は、表示モニタ153が256階調のグレースケール表示でモニタ出力する場合、14ビットの画素出力データを8ビットの画素出力データに変換する。元の14ビットの画素出力データは、赤外線イメージセンサ114の出力全範囲に対応した情報を有している。調整回路162は、出力全範囲を白黒のグレースケール表示で表示モニタ153にモニタ出力させるのではなく、出力全範囲の一部を切り出し、その切り出した範囲を白黒表示で表示モニタ153にモニタ出力させる。調整回路162は、出力全範囲のうちのどの部分を中心にしてどれ程の幅で切り出しを行うかを調整して、8ビットの画素出力データを生成する。
調整回路162は、切り出す際の中央値を定めるレベル調整を行い、このレベル調整を行うことによって、撮像結果を表示する場合の画面全体の明るさを調整する。一方、調整回路162は、切り出し幅を定めるゲイン調整を行い、このゲイン調整を行うことによって、画面表示のコントラストを調整する。
画像信号生成回路163は、調整回路162によって生成された8ビットの画像出力データを、表示モニタ153の表示形式等に応じたデータ配列に変換するフォーマット変換処理を行い、フォーマット変換処理後の画像信号を表示モニタ153に出力する。
図13及び図14では、ランダムテレグラフノイズへの対処をフレームメモリ152でのデータ更新の切り替えにより実現したが、対処方法はこれに限るものではない。
図15は、信号処理回路118Bの構成の一例を示す図である。図16は、信号処理回路118Bによるランダムテレグラフノイズの対処手順の一例を示すフローチャートである。信号処理回路118Bは、信号処理回路118の第二例である。上述と同様の構成については、上述の説明を援用して省略する。図15の構成について、図16に示される各処理ステップと対比して以下説明する。
図15において、感度補正回路116は、撮像部110から送られるセンサ出力A(出力信号Vout1)を感度補正し、感度補正回路216は、撮像部110から送られるセンサ出力B(出力信号Vout2)を感度補正する。感度補正回路116は、感度補正後のセンサ出力A,Bを比較器165に入力する(ステップS30)。比較器165は、感度補正後のセンサ出力A,Bが互いに一致するか否かを判定する比較を行う(ステップS32)。
比較器165での比較結果によりセンサ出力A,Bが一致すると判定された場合(ランダムテレグラフノイズが発生していないと判定された場合)、切替器164,264は、補正後のセンサ出力A,Bを加算器150に入力する。加算器150は、入力されたセンサ出力A,Bを加算して(ステップS34)、その加算結果をフレームメモリ152に記録する(ステップS36)。
一方、比較器165での比較結果によりセンサ出力A,Bが一致しないと判定された場合(ランダムテレグラフノイズが発生していると判定された場合)、切替器164,264は、補正後のセンサ出力A,Bを比較・選択器171に入力する。
比較・選択器171は、前のフレーム(例えば、一つ前のフレーム)の画素出力データをフレームメモリ152から引き込む(ステップS40)。この際、フレームメモリ152内の画素出力データは、センサ出力Aとセンサ出力Bとの加算値であるので、比較・選択器171は、この加算値を除算器166で半分にした値を参照値として引き込む。比較・選択器171は、引き込んだ参照値を、二つの補正後のセンサ出力A,Bのそれぞれと同じ画素同士で比較する(ステップS42)。
比較・選択器171は、差分値Xと差分値Yとを比較する。差分値Xは、補正後のセンサ出力Aから参照値を引いた値を表し、差分値Yは、補正後の出力Bから参照値を引いた値を表す。比較・選択器171は、差分値Xと差分値Yのうち値が小さくなる方のセンサ出力がランダムテレグラフノイズの影響を受けていない出力と推定できる。なぜなら、画素出力データの変化が前後のフレーム間で小さいほど、ランダムテレグラフノイズが発生している可能性が小さいとみなすことができるからである。
比較・選択器171は、差分値Xと差分値Yのうち値が小さくなる方のセンサ出力を、画像信号の生成に使用可能なセンサ出力として選択する。比較・選択器171は、差分値Xが差分値Yよりも大きい場合、補正後のセンサ出力Bを選択し、差分値Xが差分値Yよりも小さい場合、補正後のセンサ出力Aを選択する。
比較・選択器171により選択されたセンサ出力は、フレームメモリ152内の加算値とレベルを揃えるため、乗算器167により2倍に乗算されて(ステップS48)、フレームメモリ152に格納される。
ステップS38にて、フレームメモリ152内の画素出力データは、画像化回路115に出力される。フレームメモリ152内の画素出力データから画像信号を生成する処理は、上述と同様である。
図17は、信号処理回路118Cの構成の一例を示す図である。図18は、信号処理回路118Cによるランダムテレグラフノイズの対処手順の一例を示すフローチャートである。信号処理回路118Cは、信号処理回路118の第三例である。上述と同様の構成については、上述の説明を援用して省略する。図17の構成について、図18に示される各処理ステップと対比して以下説明する。
図17において、感度補正回路116は、撮像部110から送られるセンサ出力A(出力信号Vout1)を感度補正し、感度補正回路216は、撮像部110から送られるセンサ出力B(出力信号Vout2)を感度補正する。感度補正回路116は、感度補正後のセンサ出力A,Bを比較器168に入力する(ステップS60)。比較器168は、感度補正後のセンサ出力A,Bが互いに一致するか否かを判定する比較を行う(ステップS62)。
比較器168での比較結果によりセンサ出力A,Bが一致しないと判定された場合、比較器168は、センサ出力A,Bが一致しない画素(センサ素子124)が欠陥であると判定する。比較器168は、欠陥と判断された画素の位置情報を欠陥アドレスメモリ169に追加登録する(ステップS66)。
一方、比較器168での比較結果によりセンサ出力A,Bが一致すると判定された場合、比較器168は、欠陥画素がないと判定する。比較器168は、欠陥画素がないと判定した場合、欠陥アドレスメモリ169を書換えない(ステップS64)。
他方、ステップS68にて、感度補正回路116,216は、感度補正後のセンサ出力A,Bを加算器150に入力する。ステップS70にて、加算器150は、入力されたセンサ出力Aとセンサ出力Bとを加算する。
欠陥置換処理回路170は、加算器150によって加算値が得られた画素の位置情報が、欠陥アドレスメモリ169に登録された位置情報に含まれているか否かを判定することによって、当該画素が欠陥画素か否かを判定する(ステップS72)。
欠陥置換処理回路170は、加算器150によって加算値が得られた画素の位置情報が、欠陥アドレスメモリ169に登録された位置情報に含まれている場合、当該画素が欠陥画素と判定する。欠陥置換処理回路170は、隣接する画素同士の画素出力データは近似しているとみなして、欠陥画素と判定された画素の画素出力データを、当該欠陥画素に隣接する正常な画素の画素出力データに置換する(ステップS74)。これにより、当該欠陥画素の画素出力データを正常な画素の画素出力データで臨時的に代用することができる。欠陥置換処理回路170は、フレームメモリ152に既に記憶された画素出力データを、置換した画素出力データに書き換える(ステップS78)。
一方、欠陥置換処理回路170は、加算器150によって加算値が得られた画素の位置情報が、欠陥アドレスメモリ169に登録された位置情報に含まれていない場合、置換処理を実施しない(ステップS76)。欠陥置換処理回路170は、フレームメモリ152に既に記憶された画素出力データを、今回のステップS70での加算結果を表す画素出力データに書き換える(ステップS78)。
このように、比較器168は、センサ出力A,Bが一致しない画素があると判定した場合、当該画素にランダムテレグラフノイズが発生したと判断し、ランダムテレグラフノイズが発生した当該画素の位置情報を欠陥アドレスメモリ169に記録する。画像信号を生成する際に、欠陥置換処理回路170は、欠陥アドレスメモリ169を参照する。そして、欠陥置換処理回路170は、欠陥画素が検知された場合、その欠陥画素の画素出力データを隣接の正常画素の画素出力データに置換する処理を実施する。この置換処理によって、ランダムテレグラフノイズの影響は低減される。
ステップS80にて、フレームメモリ152内の画素出力データは、画像化回路115に出力される。フレームメモリ152内の画素出力データから画像信号を生成する処理は、上述と同様である。
以上、撮像装置を実施形態により説明したが、本発明は上記実施形態に限定されるものではない。他の実施形態の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。
例えば、センサ素子に接続される入力ゲート部以降の出力系統の数は、二つに限られず、三つ以上でもよい。
また、センサ素子の観測対象は、赤外線に限られず、可視光線、紫外線、X線などの他の電磁波でもよい。
以上の実施形態に関し、更に以下の付記を開示する。
(付記1)
共通のセンサ素子に対して複数の出力系統が設けられたイメージセンサと、
前記イメージセンサの出力から画像信号を生成する信号処理部とを備え、
前記複数の出力系統は、夫々、トランジスタと、前記トランジスタを介して前記センサ素子に流れる電流に応じた電荷を蓄積する容量と、前記容量の電圧に応じたセンサ信号を出力する出力部とを有し、
前記トランジスタは、夫々、互いに異なる期間に前記電流を流し、
前記信号処理部は、前記センサ信号が互いに一致しないとき前記センサ信号を使用せず、前記センサ信号が互いに一致するとき前記センサ信号を前記画像信号の生成に使用する、撮像装置。
(付記2)
前記信号処理部は、前記センサ信号が互いに一致するとき、前記センサ信号を互いに加算して前記映像信号の生成に使用する、付記1に記載の撮像装置。
(付記3)
前記トランジスタは、夫々、前記電流を交互に流す、付記1又は2に記載の撮像装置。
1,101 赤外線撮像装置
10,110 撮像部
11,111 レンズ
12 センサアレイ
13,113 CMOS読み出し回路
14,114 赤外線イメージセンサ
18,118 信号処理回路
20,120 タイミング生成器
21,121 画素回路
24,124 センサ素子
25,125 スキャン回路
41,141,241 蓄積容量
42,142,242 サンプルホールド容量

Claims (2)

  1. 共通のセンサ素子に対して複数の出力系統が設けられたイメージセンサと、
    前記イメージセンサの出力から画像信号を生成する信号処理部とを備え、
    前記複数の出力系統は、夫々、トランジスタと、前記トランジスタを介して前記センサ素子に流れる電流に応じた電荷を蓄積する容量と、前記容量の電圧に応じたセンサ信号を出力する出力部とを有し、
    前記トランジスタは、夫々、互いに異なる期間に前記電流を流し、
    前記信号処理部は、前記センサ信号が互いに一致しないとき前記センサ信号を使用せず、前記センサ信号が互いに一致するとき前記センサ信号を前記画像信号の生成に使用する、撮像装置。
  2. 前記信号処理部は、前記センサ信号が互いに一致するとき、前記センサ信号を互いに加算して前記画像信号の生成に使用する、請求項1に記載の撮像装置。
JP2016147782A 2016-07-27 2016-07-27 撮像装置 Active JP6702058B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016147782A JP6702058B2 (ja) 2016-07-27 2016-07-27 撮像装置
US15/645,143 US10616517B2 (en) 2016-07-27 2017-07-10 Imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016147782A JP6702058B2 (ja) 2016-07-27 2016-07-27 撮像装置

Publications (2)

Publication Number Publication Date
JP2018019241A true JP2018019241A (ja) 2018-02-01
JP6702058B2 JP6702058B2 (ja) 2020-05-27

Family

ID=61010421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016147782A Active JP6702058B2 (ja) 2016-07-27 2016-07-27 撮像装置

Country Status (2)

Country Link
US (1) US10616517B2 (ja)
JP (1) JP6702058B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023021774A1 (ja) * 2021-08-17 2023-02-23 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び撮像装置を備える電子機器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100013181A1 (it) 2021-05-20 2022-11-20 St Microelectronics Srl Procedimento di raccolta di segnali rilevati da transistori di rilevamento, corrispondenti dispositivo sensore e fotocamera per immagini

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4608599A (en) * 1983-07-28 1986-08-26 Matsushita Electric Industrial Co., Ltd. Infrared image pickup image
US4659928A (en) * 1985-04-22 1987-04-21 Texas Instruments Incorporated Focal plane array infrared device
US4831257A (en) * 1986-09-26 1989-05-16 Honeywell Inc. Gate coupled input circuit
JPH01296785A (ja) * 1988-05-24 1989-11-30 Fujitsu Ltd 画像重畳装置
US5013919A (en) * 1989-10-17 1991-05-07 Grumman Aerospace Corporation Detector element signal comparator system
JP2550882B2 (ja) * 1993-09-28 1996-11-06 日本電気株式会社 赤外線撮像装置
JP3212874B2 (ja) * 1996-04-19 2001-09-25 日本電気株式会社 ボロメータ型赤外線撮像装置
US6230108B1 (en) * 1997-10-23 2001-05-08 Fujitsu Limited Realtime sensitivity correction method and infrared imaging system
US7016550B2 (en) * 2002-04-19 2006-03-21 Lockheed Martin Corporation Scene-based non-uniformity offset correction for staring arrays
US6901173B2 (en) * 2001-04-25 2005-05-31 Lockheed Martin Corporation Scene-based non-uniformity correction for detector arrays
GB0301623D0 (en) * 2003-01-24 2003-02-26 Koninkl Philips Electronics Nv Electroluminescent display devices
JP4372097B2 (ja) * 2005-12-27 2009-11-25 株式会社東芝 赤外線センサ、赤外線カメラ、赤外線センサの駆動方法および赤外線カメラの駆動方法
IL173418A (en) * 2006-01-29 2013-10-31 Rafael Advanced Defense Sys Correction of unevenness of characters produced by staring detectors
US8487231B2 (en) * 2007-03-05 2013-07-16 Arokia Nathan Sensor pixels, arrays and array systems and methods therefor
JP4941989B2 (ja) 2007-12-05 2012-05-30 国立大学法人静岡大学 イメージセンサ
JP4900283B2 (ja) * 2008-02-29 2012-03-21 日本電気株式会社 赤外線撮像装置および固定パターンノイズ補正方法
US7995859B2 (en) * 2008-04-15 2011-08-09 Flir Systems, Inc. Scene based non-uniformity correction systems and methods
US9843742B2 (en) * 2009-03-02 2017-12-12 Flir Systems, Inc. Thermal image frame capture using de-aligned sensor array
US9998697B2 (en) * 2009-03-02 2018-06-12 Flir Systems, Inc. Systems and methods for monitoring vehicle occupants
JP2011142558A (ja) 2010-01-08 2011-07-21 Fujitsu Ltd イメージセンサおよび撮像システム
US10389953B2 (en) * 2011-06-10 2019-08-20 Flir Systems, Inc. Infrared imaging device having a shutter
JP6337131B2 (ja) * 2014-09-30 2018-06-06 富士フイルム株式会社 赤外線撮像装置、固定パターンノイズ算出方法、及び固定パターンノイズ算出プログラム
CN106409847B (zh) * 2015-07-29 2020-05-12 联华电子股份有限公司 影像感测器像素结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023021774A1 (ja) * 2021-08-17 2023-02-23 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び撮像装置を備える電子機器

Also Published As

Publication number Publication date
US10616517B2 (en) 2020-04-07
US20180035065A1 (en) 2018-02-01
JP6702058B2 (ja) 2020-05-27

Similar Documents

Publication Publication Date Title
JP5034610B2 (ja) 固体撮像装置、固体撮像装置の信号処理方法および撮像装置
EP2519932B1 (en) Generating column offset corrections for image sensors
JP6694605B2 (ja) 固体撮像装置、固体撮像装置の駆動方法、及び、電子機器
US20050259170A1 (en) Image sensing apparatus
US8199225B2 (en) Generating column offset corrections for image sensors
US7876371B2 (en) Systems and methods to perform digital correlated double sampling using successive approximation analog to digital conversion techniques
JP4927669B2 (ja) 固体撮像装置
JP2011513702A (ja) X線検出器における直接検出現象の抑制
JP2012070849A (ja) 撮像装置、撮像システム、撮像装置の制御方法
US11765481B2 (en) Imaging element, photodetector element, and electronic equipment with a threshold that is randomly varied for an analog-to-digital converter
US8547464B2 (en) Solid-state imaging device and frame data correcting method which determine a voltage value corresponding to a pixel portion in frame data
KR101503944B1 (ko) 고체 촬상 장치
US8228403B2 (en) Generating column offset corrections for image sensors
JP6702058B2 (ja) 撮像装置
JP4809189B2 (ja) 撮像装置及び固体撮像素子の制御方法
JPH10209868A (ja) A/d変換装置
JP2011151549A (ja) 信号処理装置、撮像装置、及び信号処理方法
JP6693355B2 (ja) 信号出力回路、イメージセンサ及び撮像装置
JPH0921879A (ja) 放射線平面検出器及び放射線撮像装置
TWI458344B (zh) Solid - state camera device and frame data correction method
US10623642B2 (en) Image capturing apparatus and control method thereof with change, in exposure period for generating frame, of conversion efficiency
JPH10108075A (ja) 信号増幅型撮像装置
WO2020071104A1 (ja) 固体撮像装置と駆動方法および電子機器
US20190072680A1 (en) Radiation imaging apparatus, method of driving the same, and radiation imaging system
US11843890B2 (en) Photoelectric conversion device, image pickup apparatus, control method, and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200420

R150 Certificate of patent or registration of utility model

Ref document number: 6702058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150