JP2018018038A - パターン形成方法及びこれを用いた電子デバイスの製造方法 - Google Patents

パターン形成方法及びこれを用いた電子デバイスの製造方法 Download PDF

Info

Publication number
JP2018018038A
JP2018018038A JP2016150668A JP2016150668A JP2018018038A JP 2018018038 A JP2018018038 A JP 2018018038A JP 2016150668 A JP2016150668 A JP 2016150668A JP 2016150668 A JP2016150668 A JP 2016150668A JP 2018018038 A JP2018018038 A JP 2018018038A
Authority
JP
Japan
Prior art keywords
group
pattern
resin
acid
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016150668A
Other languages
English (en)
Inventor
創 古谷
So Furuya
創 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2016150668A priority Critical patent/JP2018018038A/ja
Publication of JP2018018038A publication Critical patent/JP2018018038A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)

Abstract

【課題】ダブルパターニングプロセスによるパターン形成方法において、基板へのダメージが少なく、また、プロセスが簡略化されたパターン形成方法を提供する。また、上記パターン形成方法を用いた電子デバイスの製造方法を提供する。【解決手段】基板上に、感活性光線性又は感放射線性樹脂組成物を用いてレジスト膜を形成するレジスト膜形成工程と、上記レジスト膜を露光する露光工程と、露光された上記レジスト膜を、有機溶剤を含む現像液を用いて現像し、第1のパターンを形成する現像工程と、上記第1のパターンを覆うように無機膜を形成する工程と、上記無機膜を、上記第1のパターンの側壁部のみに残るようにエッチングにより除去する、エッチング工程と、アルカリ処理液を用いて上記第1のパターンを除去して、上記無機膜からなる第2のパターンを形成する工程と、を有するパターン形成方法。【選択図】なし

Description

本発明は、パターン形成方法及びこれを用いた電子デバイスの製造方法に関する。
従来、IC(Integrated Circuit、集積回路)及びLSI(Large Scale Integrated circuit、大規模集積回路)等の半導体デバイスの製造プロセスにおいては、フォトレジスト組成物を用いたリソグラフィーによる微細加工が行われている。近年、集積回路の高集積化に伴い、サブミクロン領域又はクオーターミクロン領域の超微細パターン形成が要求されている。それに伴い、露光波長もg線からi線に、更にKrFエキシマレーザー光に、というように短波長化の傾向が見られ、現在では193nm波長を有するArFエキシマレーザーを光源とする露光機が開発されている。また、更に解像力を高める技術として、投影レンズと試料の間を高屈折率の液体(以下、「液浸液」ともいう)で満たす、いわゆる「液浸法」の開発が進み、また、更には、現在では、エキシマレーザー光以外にも、電子線、X線及びEUV(Extreme Ultra Violet、極紫外線)光等を用いたリソグラフィーも開発が進んでいる。
ところで、昨今、先端のパターン形成においてはArF液浸リソグラフィーが用いられているが、NA(numerical aperture)1.35レンズを用いた水液浸リソグラフィーの最高NAで到達できる解像度は40〜38nmである。そのため、30nmノード以下のパターン形成は、ダブルパターニングプロセスが採られているのが現状である。
ダブルパターニングプロセスとは、第1のパターン形成工程と、この第1のパターン形成工程の後に行われる第2のパターン形成工程の2段階のパターニングを行うものである。ダブルパターニングプロセスによれば、上記の2段階のパターニングによって、1回のパターニングで形成されるよりも更に微細なライン幅及びスペース幅を形成することができる。
例えば、特許文献1には、「フォトレジスト膜を露光、現像して得られたフォトレジストの第1パターンに基づいて、基板上の被エッチング層を所定のパターンにエッチングして、半導体装置を製造する半導体装置の製造方法であって、上記フォトレジストの第1パターンの上にSiO膜を成膜する成膜工程と、上記SiO膜を上記フォトレジストの第1パターンの側壁部にのみ残るようにエッチングするエッチング工程と、上記フォトレジストの第1パターンを除去して上記SiO膜の第2パターンを形成する第2パターン形成工程と、を具備したことを特徴とする半導体装置の製造方法。」が開示されている。特許文献1では、芯材である第1パターンの除去工程の具体的な方法として、アッシングによる方法を開示している。
特開2009−99938号公報
本発明者らは、特許文献1に記載されたダブルパターニング方法について検討したところ、芯材である第1パターンの除去をアッシングにより実施した場合、アッシング時の熱により基板がダメージを受ける場合(具体的には、アッシングの際にオゾン又はプラズマのような高反応性雰囲気下に置かれることにより、基板が変性する場合)があることを知見した。
また、一方で、アッシングによる芯材の除去は、装置が大掛かりとなるため、アッシングに替わるより簡易な方法(言い換えると、プロセスの簡略化)が潜在的に求められているのが実情である。
そこで、本発明は、ダブルパターニングプロセスによるパターン形成方法において、基板へのダメージが少なく、また、プロセスが簡略化されたパターン形成方法を提供することを課題とする。
また、本発明は、上記パターン形成方法を用いた電子デバイスの製造方法を提供することを課題とする。
本発明者らは、上記課題を達成すべく鋭意検討した結果、ダブルパターニングプロセスにおいて、アルカリ処理液を用いて芯材の除去を実施することにより上記課題が解決できることを見出し、本発明を完成させた。
すなわち、以下の構成により上記目的を達成することができることを見出した。
(1) 基板上に、樹脂を含む感活性光線性又は感放射線性樹脂組成物を用いてレジスト膜を形成するレジスト膜形成工程と、
上記レジスト膜を露光する露光工程と、
露光された上記レジスト膜を、有機溶剤を含む現像液を用いて現像し、第1のパターンを形成する現像工程と、
上記第1のパターンを覆うように無機膜を形成する工程と、
上記無機膜を、上記第1のパターンの側壁部のみに残るようにエッチングにより除去する、エッチング工程と、
アルカリ処理液を用いて上記第1のパターンを除去して、上記無機膜からなる第2のパターンを形成する工程と、を有するパターン形成方法。
(2) 上記樹脂は、酸の作用により極性が増大して有機溶剤を含む現像液に対する溶解性が減少する樹脂である、(1)に記載のパターン形成方法。
(3) 上記樹脂が、後述する一般式(1)で表される繰り返し単位を、樹脂の全繰り返し単位に対して51モル%以上含有する、(1)又は(2)に記載のパターン形成方法。
(4) 上記樹脂が、後述する一般式(2)で表される繰り返し単位を、樹脂の全繰り返し単位に対して56モル%以上含有する、(1)又は(2)に記載のパターン形成方法。
(5) 上記樹脂の重量平均分子量が14000以下である、(1)〜(4)のいずれかに記載のパターン形成方法。
(6) 上記感活性光線性又は感放射線性樹脂組成物が、更に、活性光線又は放射線の照射により酸を発生する化合物を含有し、
上記活性光線又は放射線の照射により酸を発生する化合物の含有量が、上記感活性光線性又は感放射線性樹脂組成物中の全固形分量に対して11質量%以上である、(1)〜(5)のいずれかに記載のパターン形成方法。
(7) 上記第1のパターンを形成する現像工程の後、上記無機膜を形成する工程の前に、更に、120〜250℃にて現像後のパターンを加熱する工程を有する、(1)〜(6)のいずれかに記載のパターン形成方法。
(8) 上記無機膜を形成する工程において、化学気相成長法により上記無機膜を形成する、(1)〜(7)のいずれかに記載のパターン形成方法。
(9) 上記無機膜が珪素酸化膜である、(1)〜(8)のいずれかに記載のパターン形成方法。
(10) (1)〜(9)のいずれかに記載のパターン形成方法を含む、電子デバイスの製造方法。
本発明によれば、ダブルパターニングプロセスによるパターン形成方法において、基板へのダメージが少なく、また、プロセスが簡略化されたパターン形成方法を提供することができる。
また、本発明によれば、上記パターン形成方法を用いた電子デバイスの製造方法を提供することができる。
工程(A)のレジスト膜形成工程を説明する模式図である。 工程(B)の露光工程を説明する模式図である。 工程(C)の現像工程を説明する模式図である。 工程(D)の無機膜形成工程を説明する模式図である。 工程(E)のエッチング工程を説明する模式図である。 工程(F)の芯材の除去工程を説明する模式図である。 工程(G)を説明する模式図であって、工程(F)を経て形成された第2のパターンをマスクとして被加工基板13をエッチングする工程を示す図である。
以下、本発明について詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
本明細書に於ける基(原子団)の表記に於いて、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
本明細書中における「活性光線」又は「放射線」とは、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、及び、電子線(EB)等を意味する。また、本発明において光とは、活性光線又は放射線を意味する。
また、本明細書中における「露光」とは、特に断らない限り、水銀灯、エキシマレーザーに代表される遠紫外線、極紫外線、X線、及び、EUV光等による露光のみならず、電子線、及び、イオンビーム等の粒子線による描画も露光に含める。
本願明細書において「〜」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
本発明において、重量平均分子量(Mw)及び数平均分子量(Mn)は、展開溶媒としてテトラヒドロフラン(THF)を用いて、ゲルパーミエーションクロマトグラフィー(GPC:Gel Permeation Chromatography)法により求められるポリスチレン換算値である。
なお、具体的な装置は以下の通りである。
装置:東ソー社製 HLC−8120。
カラム:東ソー社製 TSK gel Multipore HXL−M
〔パターン形成方法〕
本発明のパターン形成方法は、
基板上に、樹脂を含む感活性光線性又は感放射線性樹脂組成物を用いてレジスト膜を形成するレジスト膜形成工程(以下「工程(A)」ともいう。)と、
上記レジスト膜を露光する露光工程(以下「工程(B)」ともいう。)と、
露光された上記レジスト膜を、有機溶剤を含む現像液を用いて現像し、第1のパターンを形成する現像工程(以下「工程(C)」ともいう。)と、
上記第1のパターンを覆うように無機膜を形成する工程(以下「工程(D)」ともいう。)と、
上記無機膜を、上記第1のパターンの側壁部のみに残るようにエッチングにより除去する、エッチング工程(以下「工程(E)」ともいう。)と、
アルカリ処理液を用いて上記第1のパターンを除去して、上記無機膜からなる第2のパターンを形成する工程(以下「工程(F)」ともいう。)と、を有する。
上記のパターン形成方法は、ダブルパターニングプロセスによるパターン形成方法において、基板へのダメージが少ない。また、アッシング処理による芯材の除去工程を含まないため、プロセスを簡略化するものである。
また、本発明者は、特許文献1に記載のパターン形成方法において、芯材の除去工程をアッシングからアルカリ処理液を用いた方法に替えて種々の検討を行ったところ、アルカリ処理液による除去は、アッシングによる除去と比べて、パターンの底部に残渣が発生しやすいことを知見している。したがって、本発明者は、本発明のパターン形成方法において残渣が生じにくい感活性光性又は感放射線性樹脂組成物についても検討を行い、発明を完成させた。
以下、本発明のパターン形成方法について、図面を参照して説明する。
図1A〜図1Fは、本発明のパターン形成方法の実施形態の一例を示す断面模式図であり、それぞれ工程(A)〜(F)の各工程を説明する図である。
(工程(A)〜(C))
本発明の実施形態においては、図1Aに示すように、先ず、第1の基板14の上に、第2の基板としての被加工基板13、及び、上記感活性光線性又は感放射線性樹脂組成物によるレジスト層(レジスト膜)23Aをこの順で形成する(工程(A))。
次いで、このレジスト膜23Aに対して工程(B)の露光工程を実施し(図1B参照)、更に工程(C)の現像工程を実施することにより、図1Cに示すような第1のパターン23を形成する。
以下、工程(A)〜(C)の各工程について、詳細に説明する。
第1の基板14、及び、第2の基板としての被加工基板13は特に限定されるものではなく、それぞれ、例えば、シリコン、SiN、SiO若しくはSiN等の無機基板、SOG(Spin on glass)等の塗布系無機基板等、又は、IC等の半導体製造工程、液晶若しくはサーマルヘッド等の回路基板の製造工程、若しくは、上記以外のフォトファブリケーションのリソグラフィー工程で一般的に用いられる基板を用いることができる。更に、必要に応じて反射防止膜等の下層膜を基板の上に形成させてもよい。下層膜としては、有機反射防止膜、無機反射防止膜、又はその他の機能膜を適宜選択することができる。下層膜材料はブリューワーサイエンス社、又は日産化学工業株式会社等から入手可能である。有機溶剤を含む現像液を用いて現像するプロセスに好適な下層膜としては、例えば、WO2012/039337Aに記載の下層膜が挙げられる。
被加工基板13を形成する方法は、典型的には、第1の基板14の上に、被加工基板13を構成する材料をCVD(chemical vapor deposition)法を用いて堆積する方法により実施できる。
感活性光線性又は感放射線性樹脂組成物を用いてレジスト膜23Aを形成する方法は、感活性光線性又は感放射線性樹脂組成物を基板上に塗布することにより実施できる。塗布方法としては、従来公知のスピンコート法、スプレー法、ローラーコート法、又は浸漬法等が挙げられる。
本発明のパターン形成方法は、工程(A)のレジスト膜形成工程と工程(B)の露光工程との間に、前加熱工程(PB;Prebake)を含むことも好ましい。
また、本発明のパターン形成方法は、工程(B)の露光工程と工程(C)の現像工程との間に、露光後加熱工程(PEB;Post Exposure Bake)を含むことも好ましい。上記前加熱工程及び/又は露光後加熱工程により、露光部の反応が促進され、感度又はパターンプロファイルが改善する。前加熱工程及び露光後加熱工程は、いずれも複数回の加熱工程を含んでいてもよい。
加熱温度は、PB及びPEBのいずれにおいても、70〜130℃が好ましく、80〜120℃がより好ましい。
加熱時間は、PB及びPEBのいずれにおいても、30〜300秒が好ましく、30〜180秒がより好ましく、30〜90秒が更に好ましい。
加熱は、通常の露光現像機に備わっている手段で行うことができ、ホットプレート等を用いてもよい。
工程(B)の露光工程において、露光装置に用いられる光源波長は、特に限定されないが、赤外光、可視光、紫外光、遠紫外光、極紫外光、X線、及び電子線等が挙げられ、好ましくは250nm以下、より好ましくは220nm以下、更に好ましくは1〜200nmの波長の遠紫外光、具体的には、KrFエキシマレーザー(248nm)、ArFエキシマレーザー(193nm)、Fエキシマレーザー(157nm)、X線、EUV(13nm)、又は電子線等であり、KrFエキシマレーザー、ArFエキシマレーザー、EUV又は電子線が好ましく、ArFエキシマレーザーがより好ましい。
工程(B)は、複数回の露光工程を含んでいてよい。
本発明のパターン形成方法において、工程(B)の露光工程には、液浸露光方法を適用することができる。液浸露光方法は、位相シフト法又は変形照明法等の超解像技術と組み合わせることが可能である。液浸露光は、例えば、特開2013−242397号公報の段落[0594]〜[0601]に記載された方法に従って行うことができる。
なお、レジスト膜の後退接触角が小さすぎると、液浸媒体を介して露光する場合に好適に用いることができず、かつ水残り(ウォーターマーク)欠陥低減の効果を十分に発揮することができない。好ましい後退接触角を実現するためには、後述する疎水性樹脂(HR)を後述する感光性又は感放射線性樹脂組成物(以下「レジスト組成物」ともいう。)に含ませることが好ましい。あるいは、レジスト膜の上層に、後述する疎水性樹脂(HR)により形成される液浸液難溶性膜(以下、「トップコート」ともいう)を設けてもよい。トップコートに必要な機能としては、レジスト膜上層部への塗布適正又は液浸液難溶性等が挙げられる。トップコートを形成するための組成物は、後述するレジスト組成物による組成物膜と混合せず、更にレジスト組成物による組成物膜上層に均一に塗布できることが好ましい。
トップコートを形成するための組成物の調製、及びトップコートの形成方法については特に限定されず、従来公知の方法、例えば、特開2014−059543号公報の段落[0072]〜[0082]の記載に基づいて実施することができる。
また、特開2013−61648号公報に記載された塩基性化合物を含有するトップコートをレジスト膜上に形成することも好ましい。
また、液浸露光方法以外によって露光を行う場合であっても、レジスト膜上にトップコートを形成してもよい。
液浸露光工程においては、露光ヘッドが高速でウエハ上をスキャンし露光パターンを形成していく動きに追随して、液浸液がウエハ上を動く必要がある。このため、動的な状態におけるレジスト膜に対する液浸液の接触角が重要になり、液滴が残存することなく、露光ヘッドの高速なスキャンに追随する性能がレジストには求められる。
工程(C)の現像工程においては、有機溶剤を含有する現像液(以下、有機系現像液とも言う)を用いる。
有機系現像液としては、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、若しくはエーテル系溶剤等の極性溶剤、又は炭化水素系溶剤を用いることができる。
ケトン系溶剤としては、例えば、1−オクタノン、2−オクタノン、1−ノナノン、2−ノナノン、アセトン、2−ヘプタノン(メチルアミルケトン)、4−ヘプタノン、1−ヘキサノン、2−ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、イオノン、ジアセトニルアルコール、アセチルカービノール、アセトフェノン、メチルナフチルケトン、イソホロン、又はプロピレンカーボネート等を挙げることができる。
エステル系溶剤としては、例えば、酢酸メチル、酢酸ブチル、酢酸エチル、酢酸イソプロピル、酢酸ペンチル、酢酸イソペンチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチルー3−エトキシプロピオネート、3−メトキシブチルアセテート、3−メチル−3−メトキシブチルアセテート、蟻酸メチル、蟻酸エチル、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル、ブタン酸ブチル、2−ヒドロキシイソ酪酸メチル、酢酸イソアミル、イソ酪酸イソブチル、又はプロピオン酸ブチル等を挙げることができる。
アルコール系溶剤としては、例えば、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、イソブチルアルコール、n−ヘキシルアルコール、n−ヘプチルアルコール、n−オクチルアルコール、若しくはn−デカノール等のアルコール;エチレングリコール、ジエチレングリコール、トリエチレングリコール等のグリコール系溶剤;又は、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、若しくはメトキシメチルブタノール等のグリコールエーテル系溶剤;等を挙げることができる。
エーテル系溶剤としては、例えば、上記グリコールエーテル系溶剤の他、ジオキサン、又はテトラヒドロフラン等が挙げられる。
アミド系溶剤としては、例えば、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ヘキサメチルホスホリックトリアミド、又は1,3−ジメチル−2−イミダゾリジノン等が使用できる。
炭化水素系溶剤としては、例えば、トルエン、若しくはキシレン等の芳香族炭化水素系溶剤;又は、ペンタン、ヘキサン、オクタン、若しくはデカン等の脂肪族炭化水素系溶剤;等が挙げられる。
上記の溶剤は、複数混合してもよいし、上記以外の溶剤又は水と混合し使用してもよい。但し、本発明の効果を十二分に奏するためには、現像液全体としての含水率が10質量%未満であることが好ましく、実質的に水分を含有しないことがより好ましい。
すなわち、有機系現像液に対する有機溶剤の使用量は、現像液の全量に対して、90質量%以上100質量%以下であることが好ましく、95質量%以上100質量%以下であることがより好ましい。
特に、有機系現像液は、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、及びアミド系溶剤及びエーテル系溶剤からなる群より選択される少なくとも1種類の有機溶剤を含有する現像液であるのが好ましい。
有機系現像液の蒸気圧は、20℃において、5kPa以下が好ましく、3kPa以下がより好ましく、2kPa以下が更に好ましい。有機系現像液の蒸気圧を5kPa以下にすることにより、現像液の基板上あるいは現像カップ内での蒸発が抑制され、ウエハ面内の温度均一性が向上し、結果としてウエハ面内の寸法均一性が良化する。
有機系現像液には、必要に応じて界面活性剤を適当量添加することができる。
界面活性剤としては特に限定されないが、例えば、イオン性又は非イオン性のフッ素系及び/又はシリコン系界面活性剤等を用いることができる。これらのフッ素及び/又はシリコン系界面活性剤として、例えば特開昭62−36663号公報、特開昭61−226746号公報、特開昭61−226745号公報、特開昭62−170950号公報、特開昭63−34540号公報、特開平7−230165号公報、特開平8−62834号公報、特開平9−54432号公報、特開平9−5988号公報、米国特許第5405720号明細書、同5360692号明細書、同5529881号明細書、同5296330号明細書、同5436098号明細書、同5576143号明細書、同5294511号明細書、又は同5824451号明細書記載の界面活性剤を挙げることができ、好ましくは、非イオン性の界面活性剤である。非イオン性の界面活性剤としては特に限定されないが、フッ素系界面活性剤又はシリコン系界面活性剤を用いることが更に好ましい。
界面活性剤の使用量は現像液の全量に対して、通常0.001〜5質量%、好ましくは0.005〜2質量%、より好ましくは0.01〜0.5質量%である。
有機系現像液は、塩基性化合物を含んでいてもよい。塩基性化合物としては、例えばアミン化合物、アミド基含有化合物、ウレア化合物、又は含窒素複素環化合物等が挙げられる。
現像方法としては、例えば、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、又は、一定速度で回転している基板上に一定速度で現像液吐出ノズルをスキャンしながら現像液を吐出しつづける方法(ダイナミックディスペンス法)等を適用することができる。なお、吐出される現像液の吐出圧の好適範囲、及び、現像液の吐出圧を調整する方法等については、特に限定されないが、例えば、特開2013−242397号公報の段落[0631]〜[0636]に記載された範囲及び方法を用いることができる。
工程(C)の現像工程の後(露光後加熱工程がある場合には、露光後加熱工程の後)には、リンス液を用いて洗浄する工程(リンス工程)を含むことが好ましい。
有機溶剤を含む現像液を用いて現像する工程の後のリンス工程に用いるリンス液としては、レジストパターンを溶解しなければ特に制限はなく、一般的な有機溶剤を含む溶液を使用することができる。リンス液としては、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、及びエーテル系溶剤からなる群より選択される少なくとも1種類の有機溶剤を含有するリンス液を用いることがより好ましい。
炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、及びエーテル系溶剤の具体例としては、有機溶剤を含む現像液において説明したものと同様のものが挙げられる。
有機溶剤を含む現像液を用いて現像する工程の後に、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、及び、炭化水素系溶剤からなる群より選択される少なくとも1種類の有機溶剤を含有するリンス液を用いて洗浄する工程を行うことが好ましい。なお、上記リンス液としては、アルコール系溶剤又はエステル系溶剤を含有するリンス液が好ましく、1価アルコールを含有するリンス液がより好ましく、炭素数5以上の1価アルコールを含有するリンス液が更に好ましい。
ここで、リンス工程で用いられる1価アルコールとしては、直鎖状、分岐状、又は環状の1価アルコールが挙げられる。具体的には、1−ブタノール、2−ブタノール、3−メチル−1−ブタノール、tert―ブチルアルコール、1−ペンタノール、2−ペンタノール、1−ヘキサノール、4−メチル−2−ペンタノール、1−ヘプタノール、1−オクタノール、2−ヘキサノール、シクロペンタノール、2−ヘプタノール、2−オクタノール、3−ヘキサノール、3−ヘプタノール、3−オクタノール、4−オクタノール、又はメチルイソブチルカルビノールが挙げられる。炭素数5以上の1価アルコールとしては、1−ヘキサノール、2−ヘキサノール、4−メチル−2−ペンタノール、1−ペンタノール、3−メチル−1−ブタノール、又はメチルイソブチルカルビノール等が挙げられる。
炭化水素系溶剤を含有するリンス液としては、炭素数6〜30の炭化水素化合物が好ましく、炭素数8〜30の炭化水素化合物がより好ましく、炭素数8〜30の炭化水素化合物が更に好ましく、炭素数10〜30の炭化水素化合物が特に好ましい。中でも、デカン及び/又はウンデカンを含むリンス液を用いることにより、パターン倒れを抑制することができる。
リンス液としてエステル系溶剤を用いる場合には、エステル系溶剤(1種又は2種以上)に加えて、グリコールエーテル系溶剤を用いてもよい。この場合の具体例としては、エステル系溶剤(好ましくは、酢酸ブチル)を主成分として、グリコールエーテル系溶剤(好ましくはプロピレングリコールモノメチルエーテル(PGME))を副成分として用いることが挙げられる。これにより、残渣欠陥を抑制することができる。
各成分は、複数混合してもよいし、上記以外の有機溶剤と混合し使用してもよい。
リンス液中の含水率は、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が更に好ましくい。含水率を10質量%以下とすることで、良好な現像特性を得ることができる。
有機溶剤を含む現像液を用いて現像する工程の後に用いるリンス液の蒸気圧は、20℃に於いて0.05kPa以上、5kPa以下が好ましく、0.1kPa以上、5kPa以下がより好ましく、0.12kPa以上、3kPa以下が更に好ましい。リンス液の蒸気圧を0.05kPa以上、5kPa以下にすることにより、ウエハ面内の温度均一性が向上し、更にはリンス液の浸透に起因した膨潤が抑制され、ウエハ面内の寸法均一性が良化する。
リンス液には、界面活性剤を適当量添加して使用することもできる。
リンス工程においては、有機溶剤を含む現像液を用いる現像を行ったウエハを上記の有機溶剤を含むリンス液を用いて洗浄処理する。洗浄処理の方法は特に限定されないが、例えば、一定速度で回転している基板上にリンス液を吐出しつづける方法(回転塗布法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、又は、基板表面にリンス液を噴霧する方法(スプレー法)等を適用することができる。なかでも、回転塗布方法で洗浄処理を行い、洗浄後に基板を2000rpm〜4000rpmの回転数で回転させ、リンス液を基板上から除去することが好ましい。
工程(C)の現像工程の後(リンス工程を実施した場合にはリンス工程の後)、工程(D)の無機膜の形成工程を実施する前に、加熱工程(Post Bake)を含むことが好ましい。上記加熱工程を実施することにより、後述する工程(F)の芯材の除去工程において第1のパターンが除去されやすく、残渣がより低減する効果が得られる。
工程(C)の現像工程の後の加熱工程は、好ましくは80〜250℃、より好ましくは120〜250℃で、好ましくは30〜120秒間程度、より好ましくは30〜90秒間行う。
(工程(D))
次いで、上述の第1のパターン23を覆うように無機膜を形成する。工程(D)により、図1Dに示すように、第1のパターン23の上面、及び第1のパターン23のパターン間のスペースに、無機膜16が形成される。
無機膜を形成する方法としては、化学気相成長法(CVD:Chemical Vapor Deposition)が好ましい。CVDとしては、減圧化学気相蒸着(LPCVD)、プラズマ−励起化学気相蒸着(PECVD)、及び原子層蒸着(ALD;Atomic Layer Deposition)等が挙げられる(特開2003−7700号公報及び特開2005−197561号公報参照)。
CVDの温度は、CVDの装置、又は形成する膜種によって異なるが、珪素酸化膜(SiO膜)の場合、20〜350℃が好ましく、180〜300℃がより好ましい。
無機膜としては、珪素酸化膜、珪素窒化膜、又は、HfO若しくはAl等の各種金属酸化物若しくは金属窒化物の膜が好適に挙げられる。なかでも、高すぎない温度のCVDで安定して形成可能な珪素酸化膜であることが好ましい。
(工程(E))
次いで、上記の無機膜を、第1のパターンの側壁部のみに残るようにエッチングにより除去する。つまり、図1Eに示すように、第1のパターン側壁部以外の位置から無機膜16を除去することにより、第1のパターン側壁部に堆積した残渣無機膜26Aのみが残るようにする。
工程(E)において、無機膜の除去法としては、エッチングプロセスが代表的であり、エッチングプロセスとしては異方性エッチング(RIE)が一般的である(特開2006−32648号公報及び特開2007−305970号公報参照)。
(工程(F))
次いで、第1のパターンを除去して、無機膜からなる第2のパターンを形成する工程を行う。つまり、図1Fに示すように、無機膜からなる第2のパターン26を残して、芯材である第1のパターン23のみを除去する。
本発明のパターン形成方法において、工程(F)はアルカリ処理液を用い実施する。
工程(F)のアルカリ処理液は、特に限定されないが、例えば、無機系アルカリ処理液及び有機系アルカリ処理液が挙げられる。
無機系アルカリ処理液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、硅酸ナトリウム、又はメタ硅酸ナトリウムを、濃度が0.1〜50質量%、好ましくは1〜30質量%、より好ましくは5〜20質量%となるように溶解した水溶液が挙げられる。
有機系アルカリ処理液としては、アンモニア水、エチルアミン、ジエチルアミン、ジメチルエタノールアミン、テトラメチルアンモニウムヒドロキシド(別名:テトラメチルアンモニウムハイドロオキサイド(TMAH))、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、コリン、ピロール、ピペリジン、及び、1,8−ジアザビシクロ−[5,4,0]−7−ウンデセン等のアルカリ性化合物を、濃度が0.1〜20質量%、好ましくは1〜10質量%となるように溶解した水溶液が挙げられる。
アルカリ処理液には、例えばメタノール及びエタノール等の水溶性有機溶剤、及び/又は、界面活性剤等が適量含まれていてもよい。なお、このようなアルカリ処理液を使用した場合には、一般に、処理液に純水による洗浄(リンス)を実施することが好ましい。処理液方法としては、工程(A)で説明した現像方法と同様の方法が挙げられる。
アルカリ処理液による処理温度は、通常20〜30℃であることが好ましく、処理時間は20〜90秒であることが好ましい。
(工程(G))
本発明のパターン形成方法は、工程(F)の芯材の除去工程後に、更に、第2のパターンをマスクとして被加工基板13のエッチング処理(工程(G))を有していてもよい。
工程(G)は、図1Gに示すように、第2のパターン26をマスクとして被加工基板13をエッチングする工程であり、工程(G)を経ることで、第1の基板14上に、パターン27が形成される。
工程(G)におけるエッチング処理は、特に限定されず、公知のエッチング方法を採用することができる。
(感活性光線性又は感放射線性樹脂組成物)
以下、上述した本発明のパターン形成方法を可能とする、感活性光線性又は感放射線性樹脂組成物について説明する。
<樹脂>
感活性光線性又は感放射線性樹脂組成物は、樹脂を含有する。
樹脂としては、レジストパターンを形成し得る公知の樹脂を用いることができるが、なかでも、酸の作用により分解して極性が増大する樹脂(P)であることがより好ましい。つまり、酸の作用によりアルカリ現像液に対する溶解性が増大し、あるいは、酸の作用により極性が増大して有機溶剤を含む現像液に対する溶解性が減少する樹脂であり、具体的には、樹脂の主鎖及び側鎖の少なくともいずれかに、酸の作用により分解してアルカリ可溶性基を生じる基(以下、「酸分解性基」ともいう)を有する樹脂である。
アルカリ可溶性基としては、例えば、カルボキシ基、フッ素化アルコール基(好ましくはヘキサフルオロイソプロパノール基)、又はスルホン酸基が挙げられる。
以下、樹脂(P)について詳述する。
樹脂Pは、全繰り返し単位に対して、後述する一般式(1)で表される繰り返し単位を51モル%以上、又は、後述する一般式(2)で表される繰り返し単位を56モル%以上含むことが好ましい。上記の構成とすることで、工程(F)の芯材の除去工程において第1のパターンが除去されやすく、残渣がより低減する効果が得られる。
また、樹脂Pは、更に他の好適態様として、重量平均分子量(Mw)が14,000以下のものが好ましい。重量平均分子量を14,000以下とすることによりアルカリ処理液により溶解しやすくなり、つまり、工程(F)の芯材除去工程において第1のパターンが除去されやすく、残渣がより低減する効果が得られる。ただし、パターン成形性の観点から、樹脂Pの重量平均分子量は1,000以上であることが好ましい。
樹脂Pとしては、なかでも、後述する一般式(1)で表される繰り返し単位を51モル%以上、又は、後述する一般式(2)で表される繰り返し単位を56モル%以上含み、且つ、重量平均分子量が14,000以下のものがより好ましい。
以下、一般式(1)で表される繰り返し単位、及び一般式(2)で表される繰り返し単位についてそれぞれ説明する。
(1)一般式(1)で表される繰り返し単位
下記一般式(1)で表される繰り返し単位は、通常、酸の作用によって分解し、カルボキシ基を生じる。
一般式(1)に於いて、Aは、単結合又は2価の連結基を表し、Rは、炭素数1〜3のアルキル基を表し、Rは、炭素数1〜5のアルキル基を表し、Rは、炭素数1〜6のアルキレン基を表す。*は、結合位置を表す。
一般式(1)中のRは、炭素数1〜3のアルキル基であれば特に限定されず、無置換であっても置換されていてもよい。例えば、フッ素原子又は水酸基等の置換基を有していてもよい炭素数1〜3のアルキル基が挙げられる。
としては、メチル基、トリフルオロメチル基、又はヒドロキシメチル基が好ましい。
一般式(1)中のRは、炭素数1〜5のアルキル基であれば特に限定されず、無置換であっても置換されていてもよい。例えば、フッ素原子又は水酸基等の置換基を有していてもよい炭素数1〜5のアルキル基が挙げられる。
としては、メチル基、エチル基、tert−ブチル基、又はtert−アミル基が好ましい。
一般式(1)中のRは、炭素数1〜6のアルキレン基であれば特に限定されず、無置換であっても置換されていてもよい。また、Rが表すアルキレン基は、CH基がヘテロ原子(例えば、酸素原子)で置換されていてもよい。
なかでも、Rは、炭素数2〜3の、酸素で置換されていてもよいアルキレン基が好ましい。
としては、−(CH−基、−(CH−基、又は−CH−O−CH−基が好ましい。
なお、一般式(1)中の単環のシクロアルキル基は、置換可能な水素原子が置換基で置換されていてもよい。
一般式(1)中のAは、単結合又は2価の連結基を表す。2価の連結基としては、アルキレン基、−Rt−COO−基、又は−O−Rt−基等(Rtは、アルキレン基又はシクロアルキレン基を表す。)が挙げられる。
Aは、単結合又は−Rt−COO−基が好ましい。Rtは、炭素数1〜5のアルキレン基が好ましく、−CH−基、−(CH−基、又は−(CH−基がより好ましい。
以下に、一般式(1)で表される繰り返し単位の具体例を示す(下記式中、結合位置を表す*は省略している)。ただし、本発明はこれに限定されるものではない。
上記樹脂Pが含有する一般式(1)で表される繰り返し単位は、1種であってもよいし2種以上を併用していてもよい。
上記樹脂Pの全繰り返し単位に対する、一般式(1)で表される繰り返し単位の含有量は特に制限されず、30〜90モル%の場合が多く、工程(F)の芯材の除去工程における残渣除去性の観点から、51モル%以上であることが好ましく、60モル%以上であることがより好ましい。その上限は特に限定されないが、85モル%以下であることが好ましく、80モル%以下であることがより好ましい。
(2)一般式(2)で表される繰り返し単位
下記一般式(2)で表される繰り返し単位は、通常、酸の作用によって分解し、カルボキシ基を生じる。
一般式(2)中、Aは、単結合又は2価の連結基を表し、Rは、炭素数1〜3のアルキル基を表し、R、R及びRは、それぞれ独立に、炭素数1〜5のアルキル基を表す。ただし、R、R、R同士が互いに結合して、環構造を形成しない。*は、結合位置を表す。
の具体例及び好適な態様は、上述した一般式(1)中のRと同じである。
の具体例及び好適な態様は、上述した一般式(1)中のAと同じである。
、R及びRは、炭素数1〜5のアルキル基であれば特に限定されず、無置換であっても置換されていてもよい。例えば、フッ素原子又は水酸基等の置換基を有していてもよい炭素数1〜5のアルキル基が挙げられる。
、R及びRとしては、メチル基、又はエチル基が好ましい。
なお、R、R、R同士が互いに結合して、環構造を形成しない。より具体的には、RとR、RとR、または、RとRとの間で、互いに結合して環構造が形成されることはない。
以下に、一般式(2)で表される繰り返し単位の具体例を示す。ただし、本発明はこれに限定されるものではない。
上記樹脂Pが含有する一般式(2)で表される繰り返し単位は、1種であってもよいし2種以上を併用していてもよい。
上記樹脂Pの全繰り返し単位に対する、一般式(2)で表される繰り返し単位の含有量は特に制限されず、30〜90モル%の場合が多く、工程(F)の芯材除去工程における残渣除去性の観点から、56モル%以上であることが好ましく、60モル%以上であることがより好ましい。その上限は特に限定されないが、85モル%以下であることが好ましく、80モル%以下であることがより好ましい。
(3)その他の繰り返し単位
(酸分解性基を有する繰り返し単位)
また、樹脂Pは、上記一般式(1)で表される繰り返し単位、又は、上記一般式(2)で表される繰り返し単位のほかに、下記一般式(AI)で表される繰り返し単位を含んでいてもよい。なお、下記一般式(AI)で表される繰り返し単位には、上記一般式(1)で表される繰り返し単位、及び、上記一般式(2)で表される繰り返し単位の構造は含まれない。
一般式(AI)に於いて、
Xaは、水素原子、置換基を有していてもよいアルキル基を表す。
Tは、単結合又は2価の連結基を表す。
Rx〜Rxは、それぞれ独立に、アルキル基(直鎖若しくは分岐)又はシクロアルキル基(単環若しくは多環)を表す。
Rx〜Rxの2つが結合して、シクロアルキル基(単環若しくは多環)を形成してもよい。
Xaにより表される、置換基を有していてもよいアルキル基としては、例えば、メチル基又は−CH−R11で表される基が挙げられる。R11は、ハロゲン原子(フッ素原子等)、水酸基又は1価の有機基を表す。
Xaは、一態様において、好ましくは水素原子、メチル基、トリフルオロメチル基又はヒドロキシメチル基等である。
Tの2価の連結基としては、アルキレン基、−COO−Rt−基、及び、−O−Rt−基等が挙げられる。式中、Rtは、アルキレン基又はシクロアルキレン基を表す。
Tは、単結合又は−COO−Rt−基が好ましい。Rtは、炭素数1〜5のアルキレン基が好ましく、−CH−基、−(CH−基、又は、−(CH−基がより好ましい。
Rx〜Rxのアルキル基としては、炭素数1〜4のものが好ましい。
Rx〜Rxのシクロアルキル基としては、シクロペンチル基、若しくはシクロヘキシル基等の単環のシクロアルキル基、又は、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、若しくはアダマンチル基等の多環のシクロアルキル基が好ましい。
Rx〜Rxの2つが結合して形成されるシクロアルキル基としては、シクロペンチル基、若しくはシクロヘキシル基等の単環のシクロアルキル基、又は、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、若しくはアダマンチル基等の多環のシクロアルキル基が好ましい。炭素数5〜6の単環のシクロアルキル基がより好ましい。
Rx〜Rxの2つが結合して形成される上記シクロアルキル基は、例えば、環を構成するメチレン基の1つが、酸素原子等のヘテロ原子、又はカルボニル基等のヘテロ原子を有する基で置き換わっていてもよい。
一般式(AI)で表される繰り返し単位は、例えば、Rxがメチル基又はエチル基であり、RxとRxとが結合して上述のシクロアルキル基を形成している態様が好ましい。
上記各基は、置換基を有していてもよく、置換基としては、例えば、アルキル基(炭素数1〜4)、ハロゲン原子、水酸基、アルコキシ基(炭素数1〜4)、カルボキシ基、又はアルコキシカルボニル基(炭素数2〜6)等が挙げられ、炭素数8以下が好ましい。
上記樹脂Pが含有する一般式(AI)で表される繰り返し単位は、1種であってもよいし2種以上を併用していてもよい。
上記樹脂Pが、一般式(AI)で表される繰り返し単位を含有する場合、上記樹脂Pの全繰り返し単位に対する、一般式(AI)で表される繰り返し単位の含有量は、5〜40モル%であることが好ましく、5〜20モル%であることがより好ましい。
以下に、一般式(AI)で表される繰り返し単位の具体例を示す。ただし、本発明はこれに限定されるものではない。
なお具体例中、Rx及びXaは、各々独立して、水素原子、CH、CF、又はCHOHを表す。Rxa及びRxbは、各々炭素数1〜4のアルキル基を表す。Zは、極性基を含む置換基を表し、複数存在する場合は各々独立である。pは0又は正の整数を表す。Zにより表される極性基を含む置換基としては、例えば、水酸基、シアノ基、アミノ基、アルキルアミド基、又はスルホンアミド基を有する、直鎖若しくは分岐のアルキル基又はシクロアルキル基が挙げられ、好ましくは水酸基を有するアルキル基である。分岐状アルキル基としてはイソプロピル基がより好ましい。
(ラクトン構造又はスルトン構造を有する繰り返し単位)
また、樹脂Pは、ラクトン構造又はスルトン(環状スルホン酸エステル)構造を有する繰り返し単位を含有することが好ましい。
ラクトン構造又はスルトン構造を有する繰り返し単位は、ラクトン構造又はスルトン構造を側鎖に有していることが好ましく、例えば(メタ)アクリル酸誘導体モノマーに由来する繰り返し単位であることがより好ましい。
ラクトン構造又はスルトン構造を有する繰り返し単位は、1種単独で用いてもよく、2種以上を併用していてもよいが、1種単独で用いることが好ましい。
上記樹脂Pがラクトン構造又はスルトン構造を有する繰り返し単位を含有する場合、樹脂Pの全繰り返し単位に対する、ラクトン構造又はスルトン構造を有する繰り返し単位の含有量は、例えば、3〜40モル%が挙げられ、10〜40モル%が好ましい。
ラクトン構造としては、好ましくは5〜7員環のラクトン構造であり、5〜7員環のラクトン構造にビシクロ構造又はスピロ構造を形成する形で他の環構造が縮環している構造が好ましい。下記一般式(LC1−1)〜(LC1−17)のいずれかで表されるラクトン構造を有する繰り返し単位を有することがより好ましい。好ましいラクトン構造としては(LC1−1)、(LC1−4)、(LC1−5)、又は(LC1−8)であり、(LC1−4)がより好ましい。
ラクトン構造部分は、置換基(Rb)を有していても有していなくてもよい。好ましい置換基(Rb)としては、炭素数1〜8のアルキル基、炭素数4〜7のシクロアルキル基、炭素数1〜8のアルコキシ基、炭素数2〜8のアルコキシカルボニル基、カルボキシ基、ハロゲン原子、水酸基、シアノ基、及び酸分解性基等が挙げられる。nは、0〜4の整数を表す。nが2以上のとき、複数存在する置換基(Rb)は、同一でも異なっていてもよく、また、複数存在する置換基(Rb)同士が結合して環を形成してもよい。
スルトン構造としては、好ましくは5〜7員環のスルトン構造であり、5〜7員環のスルトン構造にビシクロ構造又はスピロ構造を形成する形で他の環構造が縮環している構造が好ましい。下記一般式(SL1−1)及び(SL1−2)のいずれかで表されるスルトン構造を有する繰り返し単位を有することがより好ましい。また、スルトン構造が主鎖に直接結合していてもよい。
スルトン構造部分は、置換基(Rb)を有していても有していなくてもよい。上記式中、置換基(Rb)及びnは、上述したラクトン構造部分の置換基(Rb)及びnと同義である。
ラクトン構造又はスルトン構造を有する繰り返し単位としては、下記一般式(III)で表される繰り返し単位が好ましい。
一般式(III)中、
Aは、エステル結合(−COO−で表される基)又はアミド結合(−CONH−で表される基)を表す。
は、複数個ある場合にはそれぞれ独立にアルキレン基、シクロアルキレン基、又はその組み合わせを表す。
Zは、複数個ある場合にはそれぞれ独立に、単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合
又はウレア結合
を表す。ここで、Rは、各々独立して水素原子、アルキル基、シクロアルキル基、又はアリール基を表す。
は、ラクトン構造又はスルトン構造を有する1価の有機基を表す。
nは、−R−Z−で表される構造の繰り返し数であり、0〜2の整数を表す。
は、水素原子、ハロゲン原子又はアルキル基を表す。
のアルキレン基又はシクロアルキレン基は置換基を有してよい。
Zは好ましくは、エーテル結合、又はエステル結合であり、より好ましくはエステル結合である。
のアルキル基は、炭素数1〜4のアルキル基が好ましく、メチル基、又はエチル基がより好ましく、メチル基が更に好ましい。Rのアルキレン基、及びシクロアルキレン基、並びにRにおけるアルキル基は、各々、置換されていてもよい。Rは、水素原子、メチル基、トリフルオロメチル基、又は、ヒドロキシメチル基が好ましい。
の鎖状アルキレン基としては炭素数1〜10の鎖状のアルキレンが好ましく、より好ましくは炭素数1〜5である。好ましいシクロアルキレン基としては、炭素数3〜20のシクロアルキレン基である。なかでも、鎖状アルキレン基がより好ましく、メチレン基が更に好ましい。
で表されるラクトン構造又はスルトン構造を有する1価の有機基は、ラクトン構造又はスルトン構造を有していれば限定されるものではなく、具体例として上述した一般式(LC1−1)〜(LC1−17)、(SL1−1)及び(SL1−2)で表されるラクトン構造又はスルトン構造が挙げられ、これらのうち(LC1−4)で表される構造が特に好ましい。また、(LC1−1)〜(LC1−17)、(SL1−1)及び(SL1−2)におけるnは2以下のものがより好ましい。
また、Rは無置換のラクトン構造若しくはスルトン構造を有する1価の有機基、又は、メチル基、シアノ基、N−アルコキシアミド基、若しくはアルコキシカルボニル基を置換基として有するラクトン構造若しくはスルトン構造を有する1価の有機基が好ましく、シアノ基を置換基として有するラクトン構造(シアノラクトン)又はスルトン構造(シアノスルトン)を有する1価の有機基がより好ましい。
一般式(III)において、nが1又は2であることが好ましい。
(その他の繰り返し単位)
上記樹脂Pは、その他の繰り返し単位を含んでいてもよい。
例えば、樹脂Pは、水酸基又はシアノ基を有する繰り返し単位を含んでいてもよい。このような繰り返し単位としては、例えば、特開2014−098921号公報の段落[0081]〜[0084]に記載された繰り返し単位が挙げられる。
また、樹脂Pは、アルカリ可溶性基を有する繰り返し単位を有してもよい。アルカリ可溶性基としてはカルボキシ基、スルホンアミド基、スルホニルイミド基、ビススルホニルイミド基、α位が電子求引性基で置換された脂肪族アルコール(例えばヘキサフロロイソプロパノール基)が挙げられる。アルカリ可溶性基を有する繰り返し単位としては、例えば、特開2014−098921号公報の段落[0085]〜[0086]に記載された繰り返し単位が挙げられる。
また、樹脂Pは、更に極性基(例えば、アルカリ可溶性基、水酸基、シアノ基等)を持たない脂環炭化水素構造を有し、酸分解性を示さない繰り返し単位を有することができる。このような繰り返し単位としては、例えば、特開2014−106299号公報の段落[0114]〜[0123]に記載された繰り返し単位が挙げられる。
また、樹脂Pは、例えば、特開2009−258586号公報の段落[0045]〜[0065]に記載された繰り返し単位を含んでいてもよい。
感活性光線性又は感放射線性樹脂組成物に用いられる樹脂Pは、上記の繰り返し単位以外に、様々な繰り返し単位を有することができる。このような繰り返し単位としては、下記の単量体に相当する繰り返し単位を挙げることができるが、これらに限定されるものではない。
このような単量体として、例えばアクリル酸エステル類、メタクリル酸エステル類、アクリルアミド類、メタクリルアミド類、アリル化合物、ビニルエーテル類、及び、ビニルエステル類等から選ばれる付加重合性不飽和結合を1個有する化合物等を挙げることができる。
その他にも、上記種々の繰り返し構造単位に相当する単量体と共重合可能である付加重合性の不飽和化合物であれば、共重合されていてもよい。
感活性光線性又は感放射線性樹脂組成物に用いられる樹脂Pにおいて、各繰り返し構造単位の含有モル比は、適宜設定される。
本発明のパターン形成工程において、工程(B)にArF露光を適用する場合には、ArF光への透明性の点から樹脂Pは実質的には芳香族基を有さないことが好ましい。より具体的には、樹脂Pの全繰り返し中、芳香族基を有する繰り返し単位が全体の5モル%以下であることが好ましく、3モル%以下であることがより好ましく、理想的には0モル%、すなわち芳香族基を有する繰り返し単位を有さないことが更に好ましい。樹脂Pは単環又は多環の脂環炭化水素構造を有することが好ましい。
樹脂Pの重量平均分子量(Mw)は、工程(F)の芯材の除去工程における残渣低減の観点から20,000以下であることが好ましく、14,000以下がより好ましく、10,000以下が更に好ましい。また、その下限は1,000以上であればよいが、3,000以上がより好ましい。
樹脂Pにおける重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)である分散度(分子量分布)は、通常1.0〜3.0であり、好ましくは1.0〜2.6、より好ましくは1.0〜2.0、更に好ましくは1.1〜2.0の範囲である。分子量分布が小さいものほど、解像度、レジスト形状が優れ、且つレジストパターンの側壁がスムーズであり、ラフネス性に優れる。
樹脂Pの組成物全体中の含有率は、全固形分を基準として、30〜99質量%が好ましく、より好ましくは50〜95質量%である。
なお、樹脂Pは、1種単独で使用してもよいし、2種以上を併用してもよい。2種以上の樹脂Pを併用する場合には、合計含有量が上記範囲内であることが好ましい。
<活性光線又は放射線の照射により酸を発生する化合物>
感活性光線性又は感放射線性樹脂組成物は、活性光線又は放射線の照射により酸を発生する化合物(以下、「酸発生剤」ともいう)を含有することが好ましい。酸発生剤としては、特に限定されないが、活性光線又は放射線の照射により有機酸を発生する化合物であることが好ましい。
酸発生剤としては、特に限定されず、光カチオン重合の光開始剤、光ラジカル重合の光開始剤、色素類の光消色剤、又は光変色剤のほか、マイクロレジスト等に使用されている、活性光線又は放射線の照射により酸を発生する公知の化合物及びそれらの混合物を適宜に選択して使用することができ、例えば、特開2010−61043号公報の段落[0039]〜[0103]に記載されている化合物、又は特開2013−4820号公報の段落[0284]〜[0389]に記載されている化合物等が挙げられる。
具体的には、例えば、ジアゾニウム塩、ホスホニウム塩、スルホニウム塩、ヨードニウム塩、イミドスルホネート、オキシムスルホネート、ジアゾジスルホン、ジスルホン、又はo−ニトロベンジルスルホネートを挙げることができる。
感活性光線性又は感放射線性樹脂組成物が含有する酸発生剤としては、下記一般式(3)で表される酸発生剤を好適に挙げることができる。
(一般式(3)で表される酸発生剤)
≪アニオン≫
一般式(3)中、
Xfは、各々独立に、フッ素原子、又は、少なくとも一つのフッ素原子で置換されたアルキル基を表す。
及びRは、各々独立に、水素原子、フッ素原子、アルキル基、又は、少なくとも一つのフッ素原子で置換されたアルキル基を表し、複数存在する場合のR、Rは、それぞれ同一でも異なっていてもよい。
Lは、2価の連結基を表し、複数存在する場合のLは同一でも異なっていてもよい。
Wは、環状構造を含む有機基を表す。
oは、1〜3の整数を表す。pは、0〜10の整数を表す。qは、0〜10の整数を表す。
Xfは、フッ素原子、又は、少なくとも1つのフッ素原子で置換されたアルキル基を表す。このアルキル基の炭素数は、1〜10であることが好ましく、1〜4であることがより好ましい。また、少なくとも1つのフッ素原子で置換されたアルキル基は、パーフルオロアルキル基であることが好ましい。
Xfは、好ましくは、フッ素原子又は炭素数1〜4のパーフルオロアルキル基である。Xfは、フッ素原子又はCFであることがより好ましい。特に、双方のXfがフッ素原子であることが好ましい。
4及びRは、各々独立に、水素原子、フッ素原子、アルキル基、又は、少なくとも一つのフッ素原子で置換されたアルキル基を表し、複数存在する場合のR、Rは、それぞれ同一でも異なっていてもよい。
4及びRとしてのアルキル基は、置換基を有していてもよく、炭素数1〜4のものが好ましい。R4及びRは、より好ましくは水素原子である。
少なくとも一つのフッ素原子で置換されたアルキル基の具体例及び好適な態様は一般式(3)中のXfの具体例及び好適な態様と同じである。
Lは、2価の連結基を表し、複数存在する場合のLは同一でも異なっていてもよい。
2価の連結基としては、例えば、−COO−、−OCO−、−CONH−、−NHCO−、−CO−、−O−、−S−、−SO−、−SO−、アルキレン基(好ましくは炭素数1〜6)、シクロアルキレン基(好ましくは炭素数3〜10)、アルケニレン基(好ましくは炭素数2〜6)又はこれらの複数を組み合わせた2価の連結基等が挙げられる。これらの中でも、−COO−、−OCO−、−CONH−、−NHCO−、−CO−、−O−、−SO−、−COO−アルキレン基−、−OCO−アルキレン基−、−CONH−アルキレン基−、又は−NHCO−アルキレン基−が好ましく、−COO−、−OCO−、−CONH−、−SO−、−COO−アルキレン基−、又は−OCO−アルキレン基−がより好ましい。
Wは、環状構造を含む有機基を表す。なかでも環状の有機基であることが好ましい。
環状の有機基としては、例えば、脂環基、アリール基、及び複素環基が挙げられる。
脂環基は、単環式であってもよく、多環式であってもよい。また、窒素原子等のヘテロ原子を含んでいてもよい。
単環式の脂環基としては、例えば、シクロペンチル基、シクロヘキシル基、シクロオクチル基、及び等の単環のシクロアルキル基が挙げられる。多環式の脂環基としては、例えば、ノルボルニル基、トリシクロデカニル基、テトラシクロデカニル基、テトラシクロドデカニル基、ビシクロデカニル基、アザビシクロデカニル基、及びアダマンチル基等の多環のシクロアルキル基が挙げられる。中でも、ノルボルニル基、トリシクロデカニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及びアダマンチル基等の炭素数7以上のかさ高い構造を有する脂環基が、PEB(露光後加熱)工程での膜中拡散性の抑制及びMEEF(Mask Error Enhancement Factor)の向上の観点から好ましい。
アリール基は、単環式であってもよく、多環式であってもよい。このアリール基としては、例えば、フェニル基、ナフチル基、フェナントリル基、及びアントリル基が挙げられる。中でも、193nmにおける光吸光度が比較的低いナフチル基が好ましい。
複素環基は、単環式であってもよく、多環式であってもよいが、多環式の方がより酸の拡散を抑制可能である。また、複素環基は、芳香族性を有していてもよく、芳香族性を有していなくてもよい。芳香族性を有している複素環としては、例えば、フラン環、チオフェン環、ベンゾフラン環、ベンゾチオフェン環、ジベンゾフラン環、ジベンゾチオフェン環、及びピリジン環が挙げられる。芳香族性を有していない複素環としては、例えば、テトラヒドロピラン環、ラクトン環、スルトン環、及びデカヒドロイソキノリン環が挙げられる。複素環基における複素環としては、フラン環、チオフェン環、ピリジン環、又はデカヒドロイソキノリン環が好ましい。また、ラクトン環及びスルトン環の例としては、前述の<樹脂>において例示したラクトン構造及びスルトン構造が挙げられる。
上記環状の有機基は、置換基を有していてもよい。この置換基としては、例えば、アルキル基(直鎖及び分岐のいずれであってもよく、炭素数1〜12が好ましい)、シクロアルキル基(単環、多環、及びスピロ環のいずれであってもよく、炭素数3〜20が好ましい)、アリール基(炭素数6〜14が好ましい)、水酸基、アルコキシ基、エステル基、アミド基、ウレタン基、ウレイド基、チオエーテル基、スルホンアミド基、及びスルホン酸エステル基が挙げられる。なお、環状の有機基を構成する炭素(環形成に寄与する炭素)はカルボニル炭素であってもよい。
oは、1〜3の整数を表す。pは、0〜10の整数を表す。qは、0〜10の整数を表す。
一態様において、一般式(3)中のoが1〜3の整数であり、pが1〜10の整数であり、qが0であることが好ましい。Xfは、フッ素原子であることが好ましく、R4及びRは共に水素原子であることが好ましく、Wは多環式の炭化水素基であることが好ましい。oは1又は2であることがより好ましく、1であることが更に好ましい。pが1〜3の整数であることがより好ましく、1又は2であることが更に好ましく、1が特に好ましい。Wは多環のシクロアルキル基であることがより好ましく、アダマンチル基又はジアマンチル基であることが更に好ましい。
≪カチオン≫
一般式(3)中、Xは、カチオンを表す。
は、カチオンであれば特に制限されないが、好適な態様としては、例えば、後述する一般式(ZI)、又は(ZII)中のカチオン(Z以外の部分)が挙げられる。
≪好適な態様≫
上記一般式(3)で表される光酸発生剤の好適な態様としては、例えば、下記一般式(ZI)又は(ZII)で表される化合物が挙げられる。
上記一般式(ZI)において、
201、R202及びR203は、各々独立に、有機基を表す。
201、R202及びR203としての有機基の炭素数は、一般的に1〜30、好ましくは1〜20である。
また、R201〜R203のうち2つが結合して環構造を形成してもよく、環内に酸素原子、硫黄原子、エステル結合、アミド結合、又はカルボニル基を含んでいてもよい。R201〜R203の内の2つが結合して形成する基としては、アルキレン基(例えば、ブチレン基、又はペンチレン基)を挙げることができる。
は、一般式(3)中のアニオンを表し、具体的には、上述のとおりである。
更に好ましい(ZI)成分として、以下に説明する化合物(ZI−1)、(ZI−2)、及び(ZI−3)及び(ZI−4)を挙げることができる。
先ず、化合物(ZI−1)について説明する。
化合物(ZI−1)は、上記一般式(ZI)のR201〜R203の少なくとも1つがアリール基である、アリールスルホニウム化合物、即ち、アリールスルホニウムをカチオンとする化合物である。
アリールスルホニウム化合物は、R201〜R203の全てがアリール基でもよいし、R201〜R203の一部がアリール基で、残りがアルキル基又はシクロアルキル基でもよい。
アリールスルホニウム化合物としては、例えば、トリアリールスルホニウム化合物、ジアリールアルキルスルホニウム化合物、アリールジアルキルスルホニウム化合物、ジアリールシクロアルキルスルホニウム化合物、及び、アリールジシクロアルキルスルホニウム化合物を挙げることができる。
アリールスルホニウム化合物のアリール基としてはフェニル基、ナフチル基が好ましく、より好ましくはフェニル基である。アリール基は、酸素原子、窒素原子、及び、硫黄原子等を有する複素環構造を有するアリール基であってもよい。複素環構造としては、ピロール残基、フラン残基、チオフェン残基、インドール残基、ベンゾフラン残基、及び、ベンゾチオフェン残基等が挙げられる。アリールスルホニウム化合物が2つ以上のアリール基を有する場合に、2つ以上あるアリール基は同一であっても異なっていてもよい。
アリールスルホニウム化合物が必要に応じて有しているアルキル基又はシクロアルキル基は、炭素数1〜15の直鎖又は分岐アルキル基及び炭素数3〜15のシクロアルキル基が好ましく、例えば、メチル基、エチル基、プロピル基、n−ブチル基、sec−ブチル基、t−ブチル基、シクロプロピル基、シクロブチル基、及び、シクロヘキシル基等を挙げることができる。
201〜R203のアリール基、アルキル基、シクロアルキル基は、アルキル基(例えば炭素数1〜15)、シクロアルキル基(例えば炭素数3〜15)、アリール基(例えば炭素数6〜14)、アルコキシ基(例えば炭素数1〜15)、ハロゲン原子、水酸基、又は、フェニルチオ基を置換基として有してもよい。
次に、化合物(ZI−2)について説明する。
化合物(ZI−2)は、式(ZI)におけるR201〜R203が、各々独立に、芳香環を有さない有機基を表す化合物である。ここで芳香環とは、ヘテロ原子を含有する芳香族環も包含するものである。
201〜R203としての芳香環を含有しない有機基は、一般的に炭素数1〜30、好ましくは炭素数1〜20である。
201〜R203は、各々独立に、好ましくはアルキル基、シクロアルキル基、アリル基、又は、ビニル基であり、より好ましくは直鎖又は分岐の2−オキソアルキル基、2−オキソシクロアルキル基、又は、アルコキシカルボニルメチル基であり、更に好ましくは直鎖又は分岐2−オキソアルキル基である。
201〜R203のアルキル基及びシクロアルキル基としては、好ましくは、炭素数1〜10の直鎖又は分岐アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、又は、ペンチル基)、炭素数3〜10のシクロアルキル基(シクロペンチル基、シクロヘキシル基、又は、ノルボニル基)を挙げることができる。
201〜R203は、ハロゲン原子、アルコキシ基(例えば炭素数1〜5)、水酸基、シアノ基、又は、ニトロ基によって更に置換されていてもよい。
次に、化合物(ZI−3)について説明する。
化合物(ZI−3)とは、以下の一般式(ZI−3)で表される化合物であり、フェナシルスルフォニウム塩構造を有する化合物である。
一般式(ZI−3)中、
1c〜R5cは、各々独立に、水素原子、アルキル基、シクロアルキル基、アリール基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アルキルカルボニルオキシ基、シクロアルキルカルボニルオキシ基、ハロゲン原子、水酸基、ニトロ基、アルキルチオ基又はアリールチオ基を表す。
6c及びR7cは、各々独立に、水素原子、アルキル基、シクロアルキル基、ハロゲン原子、シアノ基又はアリール基を表す。
及びRは、各々独立に、アルキル基、シクロアルキル基、2−オキソアルキル基、2−オキソシクロアルキル基、アルコキシカルボニルアルキル基、アリル基又はビニル基を表す。
1c〜R5c中のいずれか2つ以上、R5cとR6c、R6cとR7c、R5cとR、及びRとRは、各々結合して環構造を形成してもよく、この環構造は、酸素原子、硫黄原子、ケトン基、エステル結合、又は、アミド結合を含んでいてもよい。
上記環構造としては、芳香族若しくは非芳香族の炭化水素環、芳香族若しくは非芳香族の複素環、又は、これらの環が2つ以上組み合わされてなる多環縮合環を挙げることができる。環構造としては、3〜10員環を挙げることができ、4〜8員環であることが好ましく、5又は6員環であることがより好ましい。
1c〜R5c中のいずれか2つ以上、R6cとR7c、及びRとRが結合して形成する基としては、ブチレン基、ペンチレン基等を挙げることができる。
5cとR6c、及び、R5cとRが結合して形成する基としては、単結合又はアルキレン基であることが好ましく、アルキレン基としては、メチレン基、エチレン基等を挙げることができる。
Zcは、一般式(3)中のアニオンを表し、具体的には、上述のとおりである。
1c〜R5cとしてのアルコキシカルボニル基におけるアルコキシ基の具体例は、上記R1c〜R5cとしてのアルコキシ基の具体例と同様である。
1c〜R5cとしてのアルキルカルボニルオキシ基及びアルキルチオ基におけるアルキル基の具体例は、上記R1c〜R5cとしてのアルキル基の具体例と同様である。
1c〜R5cとしてのシクロアルキルカルボニルオキシ基におけるシクロアルキル基の具体例は、上記R1c〜R5cとしてのシクロアルキル基の具体例と同様である。
1c〜R5cとしてのアリールオキシ基及びアリールチオ基におけるアリール基の具体例は、上記R1c〜R5cとしてのアリール基の具体例と同様である。
本発明における化合物(ZI−2)又は(ZI−3)におけるカチオンとしては、米国特許出願公開第2012/0076996号明細書の段落[0036]以降に記載のカチオンを挙げることができる。
次に、化合物(ZI−4)について説明する。
化合物(ZI−4)は、下記一般式(ZI−4)で表される。
一般式(ZI−4)中、
13は水素原子、フッ素原子、水酸基、アルキル基、シクロアルキル基、アルコキシ基、アルコキシカルボニル基、又はシクロアルキル基を有する基を表す。これらの基は置換基を有してもよい。
14は、複数存在する場合は各々独立して、水酸基、アルキル基、シクロアルキル基、アルコキシ基、アルコキシカルボニル基、アルキルカルボニル基、アルキルスルホニル基、シクロアルキルスルホニル基、又はシクロアルキル基を有する基を表す。これらの基は置換基を有してもよい。
15は各々独立して、アルキル基、シクロアルキル基又はナフチル基を表す。これらの基は置換基を有してもよい。2個のR15が互いに結合して環を形成してもよい。2個のR15が互いに結合して環を形成するとき、環骨格内に、酸素原子、窒素原子等のヘテロ原子を含んでもよい。一態様において、2個のR15がアルキレン基であり、互いに結合して環構造を形成することが好ましい。
lは0〜2の整数を表す。
rは0〜8の整数を表す。
は、一般式(3)中のアニオンを表し、具体的には、上述のとおりである。
一般式(ZI−4)において、R13、R14及びR15のアルキル基としては、直鎖状若しくは分岐状であり、炭素数が1〜10のものが好ましく、メチル基、エチル基、n−ブチル基、又は、t−ブチル基等がより好ましい。
本発明における一般式(ZI−4)で表される化合物のカチオンとしては、特開2010−256842号公報の段落[0121]、[0123]、[0124]、及び、特開2011−76056号公報の段落[0127]、[0129]、[0130]等に記載のカチオンを挙げることができる。
次に、一般式(ZII)について説明する。
一般式(ZII)中、R204〜R205は、各々独立に、アリール基、アルキル基、又はシクロアルキル基を表す。
204〜R205のアリール基としては、フェニル基又はナフチル基が好ましく、フェニル基がより好ましい。R204〜R205のアリール基は、酸素原子、窒素原子、又は硫黄原子等を有する複素環構造を有するアリール基であってもよい。複素環構造を有するアリール基の骨格としては、例えば、ピロール、フラン、チオフェン、インドール、ベンゾフラン、又はベンゾチオフェン等を挙げることができる。
204〜R205におけるアルキル基及びシクロアルキル基としては、好ましくは、炭素数1〜10の直鎖又は分岐アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、又はペンチル基)、又は炭素数3〜10のシクロアルキル基(シクロペンチル基、シクロヘキシル基、又はノルボニル基)を挙げることができる。
204〜R205のアリール基、アルキル基、又はシクロアルキル基は、置換基を有していてもよい。R204〜R205のアリール基、アルキル基、又はシクロアルキル基が有していてもよい置換基としては、例えば、アルキル基(例えば炭素数1〜15)、シクロアルキル基(例えば炭素数3〜15)、アリール基(例えば炭素数6〜15)、アルコキシ基(例えば炭素数1〜15)、ハロゲン原子、水酸基、又はフェニルチオ基等を挙げることができる。
は、一般式(3)中のアニオンを表し、具体的には、上述のとおりである。
酸発生剤は、低分子化合物の形態であってもよく、重合体の一部に組み込まれた形態であってもよい。また、低分子化合物の形態と重合体の一部に組み込まれた形態を併用してもよい。
酸発生剤が、低分子化合物の形態である場合、分子量は3000以下が好ましく、2000以下がより好ましく、1000以下が更に好ましい。
酸発生剤が、重合体の一部に組み込まれた形態である場合、前述した樹脂Pの一部に組み込まれてもよく、樹脂Pとは異なる樹脂に組み込まれてもよい。
酸発生剤は、公知の方法で合成することができ、例えば、特開2007−161707号公報に記載の方法に準じて合成することができる。
酸発生剤は、1種類単独又は2種類以上を組み合わせて使用することができる。
酸発生剤の含有量(複数種存在する場合はその合計)は、組成物の全固形分を基準として、11質量%以上であることが好ましい。酸発生剤の含有量を上記の範囲とすることで、工程(F)の芯材除去工程において第1のパターンが除去されやすく、残渣がより低減する効果が得られる。酸発生剤の含有量は、11〜30質量%が好ましく、より好ましくは12〜25質量%、更に好ましくは12〜23質量%、特に好ましくは12〜20質量%である。
また、酸発生剤が上記一般式(ZI−3)又は(ZI−4)により表される酸発生剤である場合(複数種存在する場合はその合計)には、その含有量は、組成物の全固形分を基準として、11〜35質量%が好ましく、12〜30質量%がより好ましく、12〜25質量%が更に好ましい。
<酸拡散制御剤>
感活性光線性又は感放射線性樹脂組成物は、酸拡散制御剤を含有することが好ましい。酸拡散制御剤は、露光時に酸発生剤等から発生する酸をトラップし、余分な発生酸による、未露光部における酸分解性樹脂の反応を抑制するクエンチャーとして作用するものである。酸拡散制御剤としては、塩基性化合物、窒素原子を有し、酸の作用により脱離する基を有する低分子化合物、活性光線又は放射線の照射により塩基性が低下又は消失する塩基性化合物、又は、酸発生剤に対して相対的に弱酸となるオニウム塩を使用することができる。なお、上記酸拡散制御剤の中には、活性光線により開裂して酸を発生するものもある。上記のような化合物の場合には、酸発生剤としてみなす。
(塩基性化合物)
塩基性化合物としては、好ましくは、下記式(A)〜(E)で示される構造を有する化合物を挙げることができる。
一般式(A)及び(E)中、
200、R201及びR202は、同一でも異なってもよく、水素原子、アルキル基(好ましくは炭素数1〜20)、シクロアルキル基(好ましくは炭素数3〜20)又はアリール基(炭素数6〜20)を表し、ここで、R201とR202は、互いに結合して環を形成してもよい。
203、R204、R205及びR206は、同一でも異なってもよく、炭素数1〜20個のアルキル基を表す。
上記アルキル基について、置換基を有するアルキル基としては、炭素数1〜20のアミノアルキル基、炭素数1〜20のヒドロキシアルキル基、又は炭素数1〜20のシアノアルキル基が好ましい。
これら一般式(A)及び(E)中のアルキル基は、無置換であることがより好ましい。
好ましい化合物として、グアニジン、アミノピロリジン、ピラゾール、ピラゾリン、ピペラジン、アミノモルホリン、アミノアルキルモルフォリン、又はピペリジン等が挙げられる。なかでも、より好ましい化合物として、イミダゾール構造、ジアザビシクロ構造、オニウムヒドロキシド構造、オニウムカルボキシレート構造、トリアルキルアミン構造、アニリン構造若しくはピリジン構造を有する化合物;水酸基及び/又はエーテル結合を有するアルキルアミン誘導体;水酸基及び/又はエーテル結合を有するアニリン誘導体等が挙げられる。
好ましい化合物の具体例としては、US2012/0219913A1 [0379]に例示された化合物が挙げられる。
好ましい塩基性化合物として、更に、フェノキシ基を有するアミン化合物、フェノキシ基を有するアンモニウム塩化合物、スルホン酸エステル基を有するアミン化合物、又はスルホン酸エステル基を有するアンモニウム塩化合物が挙げられる。
これらの塩基性化合物は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
感活性光線性又は感放射線性樹脂組成物は、塩基性化合物を含有してもしなくてもよいが、含有する場合、塩基性化合物の含有率は、組成物の固形分を基準として、通常、0.001〜10質量%、好ましくは0.01〜5質量%である。
酸発生剤と塩基性化合物の組成物中の使用割合は、酸発生剤/塩基性化合物(モル比)=2.5〜300が好ましく、より好ましくは5.0〜200、更に好ましくは7.0〜150である。
(窒素原子を有し、酸の作用により脱離する基を有する低分子化合物)
窒素原子を有し、酸の作用により脱離する基を有する低分子化合物(以下、「化合物(C)」ともいう。)は、酸の作用により脱離する基を窒素原子上に有するアミン誘導体であることが好ましい。
酸の作用により脱離する基として、アセタール基、カルボネート基、カルバメート基、3級エステル基、3級水酸基、又はヘミアミナールエーテル基が好ましく、カルバメート基、又はヘミアミナールエーテル基がより好ましい。
化合物(C)の分子量は、100〜1000が好ましく、100〜700がより好ましく、100〜500が更に好ましい。
化合物(C)は、窒素原子上に保護基を有するカルバメート基を有してもよい。カルバメート基を構成する保護基としては、下記一般式(d−1)で表すことができる。
一般式(d−1)において、
Rbは、各々独立に、水素原子、アルキル基(好ましくは炭素数1〜10)、シクロアルキル基(好ましくは炭素数3〜30)、アリール基(好ましくは炭素数3〜30)、アラルキル基(好ましくは炭素数1〜10)、又はアルコキシアルキル基(好ましくは炭素数1〜10)を表す。Rbは相互に連結して環を形成していてもよい。
Rbが示すアルキル基、シクロアルキル基、アリール基、及びアラルキル基は、ヒドロキシル基、シアノ基、アミノ基、ピロリジノ基、ピペリジノ基、モルホリノ基、若しくはオキソ基等の官能基、アルコキシ基、又はハロゲン原子で置換されていてもよい。Rbが示すアルコキシアルキル基についても同様である。
Rbとして好ましくは、直鎖状若しくは分岐状のアルキル基、シクロアルキル基、又はアリール基である。より好ましくは、直鎖状若しくは分岐状のアルキル基、又はシクロアルキル基である。
2つのRbが相互に連結して形成する環としては、脂環式炭化水素基、芳香族炭化水素基、若しくは複素環式炭化水素基、又はそれらの誘導体等が挙げられる。
一般式(d−1)で表される基の具体的な構造としては、US2012/0135348 A1 [0466]に開示された構造を挙げることができるが、これに限定されるものではない。
なかでも、化合物(C)は、下記一般式(6)で表される化合物が好ましい。
一般式(6)において、Raは、水素原子、アルキル基、シクロアルキル基、アリール基又はアラルキル基を表す。lが2のとき、2つのRaは同じでも異なっていてもよく、2つのRaは相互に連結して式中の窒素原子と共に複素環を形成していてもよい。上記複素環には式中の窒素原子以外のヘテロ原子を含んでいてもよい。
Rbは、上記一般式(d−1)におけるRbと同義であり、好ましい例も同様である。
lは0〜2の整数を表し、mは1〜3の整数を表し、l+m=3を満たす。
一般式(6)において、Raとしてのアルキル基、シクロアルキル基、アリール基、及びアラルキル基は、Rbとしてのアルキル基、シクロアルキル基、アリール基、及びアラルキル基が置換されていてもよい基として前述した基と同様な基で置換されていてもよい。
上記Raのアルキル基、シクロアルキル基、アリール基、及びアラルキル基(これらのアルキル基、シクロアルキル基、アリール基、及びアラルキル基は、上記基で置換されていてもよい)の具体例としては、Rbについて前述した具体例と同様な基が挙げられる。
本発明における特に好ましい化合物(C)の具体的としては、US2012/0135348 A1 [0475]に開示された化合物を挙げることができるが、これに限定されるものではない。
一般式(6)で表される化合物は、特開2007−298569号公報、特開2009−199021号公報等に基づき合成することができる。
本発明において、酸の作用により脱離する基を窒素原子上に有する低分子化合物(C)は、一種単独でも又は2種以上を混合しても使用することができる。
感活性光線性又は感放射線性樹脂組成物における化合物(C)の含有量は、組成物の全固形分を基準として、0.001〜20質量%であることが好ましく、より好ましくは0.001〜10質量%、更に好ましくは0.01〜5質量%である。
(活性光線又は放射線の照射により塩基性が低下又は消失する塩基性化合物)
活性光線又は放射線の照射により塩基性が低下又は消失する塩基性化合物(以下、「化合物(PA)」ともいう。)は、プロトンアクセプター性官能基を有し、且つ、活性光線又は放射線の照射により分解して、プロトンアクセプター性が低下、消失、又はプロトンアクセプター性から酸性に変化する化合物である。
プロトンアクセプター性官能基とは、プロトンと静電的に相互作用し得る基或いは電子を有する官能基であって、例えば、環状ポリエーテル等のマクロサイクリック構造を有する官能基、又は、π共役に寄与しない非共有電子対をもった窒素原子を有する官能基を意味する。π共役に寄与しない非共有電子対を有する窒素原子とは、例えば、下記式に示す部分構造を有する窒素原子である。
プロトンアクセプター性官能基の好ましい部分構造として、例えば、クラウンエーテル、アザクラウンエーテル、1〜3級アミン、ピリジン、イミダゾール、又はピラジン構造等を挙げることができる。
化合物(PA)は、活性光線又は放射線の照射により分解してプロトンアクセプター性が低下、消失、又はプロトンアクセプター性から酸性に変化した化合物を発生する。ここでプロトンアクセプター性の低下、消失、又はプロトンアクセプター性から酸性への変化とは、プロトンアクセプター性官能基にプロトンが付加することに起因するプロトンアクセプター性の変化であり、具体的には、プロトンアクセプター性官能基を有する化合物(PA)とプロトンからプロトン付加体が生成する時、その化学平衡に於ける平衡定数が減少することを意味する。
プロトンアクセプター性は、pH測定を行うことによって確認することができる。
本発明においては、活性光線又は放射線の照射により化合物(PA)が分解して発生する化合物の酸解離定数pKaが、pKa<−1を満たすことが好ましく、より好ましくは−13<pKa<−1であり、更に好ましくは−13<pKa<−3である。
本発明に於いて、酸解離定数pKaとは、水溶液中での酸解離定数pKaのことを表し、例えば、化学便覧(II)(改訂4版、1993年、日本化学会編、丸善株式会社)に記載のものであり、この値が低いほど酸強度が大きいことを示している。水溶液中での酸解離定数pKaは、具体的には、無限希釈水溶液を用い、25℃での酸解離定数を測定することにより実測することができ、また、下記ソフトウェアパッケージ1を用いて、ハメットの置換基定数及び公知文献値のデータベースに基づいた値を、計算により求めることもできる。本明細書中に記載したpKaの値は、全て、このソフトウェアパッケージを用いて計算により求めた値を示している。
ソフトウェアパッケージ1: Advanced Chemistry Development (ACD/Labs) Software V8.14 for Solaris (1994−2007 ACD/Labs)。
化合物(PA)は、活性光線又は放射線の照射により分解して発生する上記プロトン付加体として、例えば、下記一般式(PA−1)で表される化合物を発生する。一般式(PA−1)で表される化合物は、プロトンアクセプター性官能基とともに酸性基を有することにより、化合物(PA)に比べてプロトンアクセプター性が低下、消失、又はプロトンアクセプター性から酸性に変化した化合物である。
一般式(PA−1)中、
Qは、−SOH、−COH、又は−WNHWを表す。ここで、Rは、アルキル基(好ましくは炭素数1〜20)、シクロアルキル基(好ましくは炭素数3〜20)又はアリール基(好ましくは炭素数6〜30)を表し、W及びWは、各々独立に、−SO−又は−CO−を表す。
Aは、単結合又は2価の連結基を表す。
Xは、−SO−又は−CO−を表す。
nは、0又は1を表す。
Bは、単結合、酸素原子、又は−N(R)R−を表す。ここで、Rは水素原子又は1価の有機基を表し、Rは単結合又は2価の有機基を表す。Rは、Rと結合して環を形成していてもよく、Rと結合して環を形成していてもよい。
Rは、プロトンアクセプター性官能基を有する1価の有機基を表す。
一般式(PA−1)について更に詳細に説明する。
Aにおける2価の連結基としては、好ましくは少なくとも1つのフッ素原子を有するアルキレン基であり、パーフロロエチレン基、パーフロロプロピレン基、又はパーフロロブチレン基等のパーフルオロアルキレン基がより好ましい。
Rxにおける1価の有機基としては、例えば、アルキル基、シクロアルキル基、アリール基、アラルキル基、及びアルケニル基等が挙げられ、これら基は更に置換基を有していてもよい。
Rxにおけるアルキル基としては、好ましくは炭素数1〜20の直鎖及び分岐アルキル基であり、アルキル鎖中に酸素原子、硫黄原子、又は窒素原子を有していてもよい。
Rxにおけるシクロアルキル基としては、好ましくは炭素数3〜20の単環又は多環シクロアルキル基であり、環内に酸素原子、硫黄原子、又は窒素原子を有していてもよい。
Rxにおけるアリール基としては、好ましくは炭素数6〜14のものが挙げられ、例えば、フェニル基及びナフチル基等が挙げられる。
Rxにおけるアラルキル基としては、好ましくは炭素数7〜20のものが挙げられ、例えば、ベンジル基及びフェネチル基等が挙げられる。
Rxにおけるアルケニル基は、炭素数が3〜20が好ましく、例えば、ビニル基、アリル基及びスチリル基等が挙げられる。
Ryにおける2価の有機基としては、好ましくはアルキレン基を挙げることができる。
RxとRyが互いに結合して形成してもよい環構造としては、窒素原子を含む5〜10員の環が挙げられる。
Rにおけるプロトンアクセプター性官能基とは、上記の通りである。
このような構造を有する有機基として、好ましい炭素数は4〜30の有機基であり、アルキル基、シクロアルキル基、アリール基、アラルキル基、及びアルケニル基等を挙げることができる。
Rにおけるプロトンアクセプター性官能基又はアンモニウム基を含むアルキル基、シクロアルキル基、アリール基、アラルキル基、及びアルケニル基に於けるアルキル基等は、上記Rxとして挙げたアルキル基等と同様のものである。
Bが−N(Rx)Ry−の時、RとRxが互いに結合して環を形成していることが好ましい。環を形成する炭素数は4〜20が好ましく、単環式でも多環式でもよく、環内に酸素原子、硫黄原子、又は窒素原子を含んでいてもよい。
単環式構造としては、窒素原子を含む4〜8員環等を挙げることができる。多環式構造としては、2又は3以上の単環式構造の組み合わせから成る構造を挙げることができる。
Qにより表される−WNHW2におけるRとして、好ましくは炭素数1〜6のパーフルオロアルキル基である。また、W及びW2としては、少なくとも一方が−SO−であることが好ましい。
化合物(PA)は、イオン性化合物であることが好ましい。プロトンアクセプター性官能基はアニオン部、カチオン部のいずれに含まれていてもよいが、アニオン部位に含まれていることが好ましい。
化合物(PA)として、好ましくは下記一般式(4)〜(6)で表される化合物が挙げられる。
一般式(4)〜(6)において、A、X、n、B、R、R、W及びWは、一般式(PA−1)における各々と同義である。
はカウンターカチオンを示す。
カウンターカチオンとしては、オニウムカチオンが好ましい。より詳しくは、酸発生剤における一般式(ZI)におけるS(R201)(R202)(R203)として説明されているスルホニウムカチオン、一般式(ZII)におけるI(R204)(R205)として説明されているヨードニウムカチオンが好ましい例として挙げられる。
化合物(PA)の具体例としては、US2011/0269072A1 [0280]に例示された化合物を挙げることができる。
化合物(PA)は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
化合物(PA)の含有量は、組成物の全固形分を基準として、0.1〜10質量%が好ましく、0.1〜8質量%がより好ましい。
(酸発生剤に対して相対的に弱酸となるオニウム塩)
感活性光線性又は感放射線性樹脂組成物は、酸発生剤に対して相対的に弱酸となるオニウム塩を酸拡散制御剤として含有してもよい。
酸発生剤と、酸発生剤から生じた酸に対して相対的に弱酸である酸を発生するオニウム塩を混合して用いた場合、活性光線性又は放射線の照射により酸発生剤から生じた酸が未反応の弱酸アニオンを有するオニウム塩と衝突すると、塩交換により弱酸を放出して強酸アニオンを有するオニウム塩を生じる。この過程で強酸がより触媒能の低い弱酸に交換されるため、見かけ上、酸が失活して酸拡散の制御を行うことができる。
酸発生剤に対して相対的に弱酸となるオニウム塩としては、下記一般式(d1−1)〜(d1−3)で表される化合物であることが好ましい。
式中、R51は置換基を有していてもよい炭化水素基であり、Z2cは置換基を有していてもよい炭素数1〜30の炭化水素基(ただし、Sに隣接する炭素にはフッ素原子は置換されていないものとする)であり、R52は有機基であり、Yは直鎖状、分岐鎖状若しくは環状のアルキレン基又はアリーレン基であり、Rfはフッ素原子を含む炭化水素基であり、Mは各々独立に、スルホニウム又はヨードニウムカチオンである。
として表されるスルホニウムカチオン又はヨードニウムカチオンの好ましい例としては、一般式(ZI)で例示したスルホニウムカチオン及び一般式(ZII)で例示したヨードニウムカチオンを挙げることができる。
一般式(d1−1)で表される化合物のアニオン部の好ましい例としては、特開2012−242799号公報の段落〔0198〕に例示された構造を挙げることができる。
一般式(d1−2)で表される化合物のアニオン部の好ましい例としては、特開2012−242799号公報の段落〔0201〕に例示された構造を挙げることができる。
一般式(d1−3)で表される化合物のアニオン部の好ましい例としては、特開2012−242799号公報の段落〔0209〕及び〔0210〕に例示された構造を挙げることができる。
酸発生剤に対して相対的に弱酸となるオニウム塩は、(C)カチオン部位とアニオン部位を同一分子内に有し、かつ、上記カチオン部位とアニオン部位が共有結合により連結している化合物(以下、「化合物(CA)」ともいう。)であってもよい。
化合物(CA)としては、下記一般式(C−1)〜(C−3)のいずれかで表される化合物であることが好ましい。
一般式(C−1)〜(C−3)中、
、R、及びRは、炭素数1以上の置換基を表す。
は、カチオン部位とアニオン部位を連結する2価の連結基又は単結合を表す。
−Xは、−COO、−SO 、−SO 、及び−N−Rから選択されるアニオン部位を表す。Rは、隣接するN原子との連結部位に、カルボニル基:−C(=O)−、スルホニル基:−S(=O)−、又は、スルフィニル基:−S(=O)−を有する1価の置換基を表す。
、R、R、R、及びLは互いに結合して環構造を形成してもよい。また、(C−3)において、R〜Rのうち2つを合わせて、N原子と2重結合を形成してもよい。
〜Rにおける炭素数1以上の置換基としては、アルキル基、シクロアルキル基、アリール基、アルキルオキシカルボニル基、シクロアルキルオキシカルボニル基、アリールオキシカルボニル基、アルキルアミノカルボニル基、シクロアルキルアミノカルボニル基、及びアリールアミノカルボニル基等が挙げられる。好ましくは、アルキル基、シクロアルキル基、又はアリール基である。
2価の連結基としてのLは、直鎖又は分岐鎖状アルキレン基、シクロアルキレン基、アリーレン基、カルボニル基、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、及びこれらの2種以上を組み合わせてなる基等が挙げられる。好ましくは、Lは、アルキレン基、アリーレン基、エーテル結合、エステル結合、又はこれらの2種以上を組み合わせてなる基である。
一般式(C−1)で表される化合物の好ましい例としては、特開2013−6827号公報の段落〔0037〕〜〔0039〕及び特開2013−8020号公報の段落〔0027〕〜〔0029〕に例示された化合物を挙げることができる。
一般式(C−2)で表される化合物の好ましい例としては、特開2012−189977号公報の段落〔0012〕〜〔0013〕に例示された化合物を挙げることができる。
一般式(C−3)で表される化合物の好ましい例としては、特開2012−252124号公報の段落〔0029〕〜〔0031〕に例示された化合物を挙げることができる。
酸発生剤に対して相対的に弱酸となるオニウム塩の含有量は、組成物の固形分基準で、0.5〜10.0質量%であることが好ましく、0.5〜8.0質量%であることがより好ましい。
<疎水性樹脂>
感活性光線性又は感放射線性樹脂組成物には、疎水性樹脂(HR)を含有してもよい。なお、疎水性樹脂(HR)は、上述した樹脂Pとは異なることが好ましい。
疎水性樹脂(HR)は、界面に偏在するように設計されることが好ましいが、界面活性剤とは異なり、必ずしも分子内に親水基を有する必要はなく、極性/非極性物質を均一に混合することに寄与しなくてもよい。
疎水性樹脂を添加することの効果として、水に対するレジスト膜表面の静的/動的な接触角の制御、液浸液追随性の向上、又はアウトガスの抑制等を挙げることができる。
疎水性樹脂(HR)は、膜表層への偏在化の観点から、“フッ素原子”、“珪素原子”、及び、“樹脂の側鎖部分に含有されたCH部分構造”のいずれか1種以上を有することが好ましく、2種以上を有することが更に好ましい。
疎水性樹脂(HR)が、フッ素原子及び/又は珪素原子を含む場合、疎水性樹脂(HR)に於ける上記フッ素原子及び/又は珪素原子は、樹脂の主鎖中に含まれていてもよく、側鎖中に含まれていてもよい。
疎水性樹脂(HR)がフッ素原子を含んでいる場合、フッ素原子を有する部分構造として、フッ素原子を有するアルキル基、フッ素原子を有するシクロアルキル基、又は、フッ素原子を有するアリール基を有する樹脂であることが好ましい。
フッ素原子を有するアルキル基(好ましくは炭素数1〜10、より好ましくは炭素数1〜4)は、少なくとも1つの水素原子がフッ素原子で置換された直鎖又は分岐アルキル基であり、更にフッ素原子以外の置換基を有していてもよい。
フッ素原子を有するシクロアルキル基及びフッ素原子を有するアリール基は、それぞれ、1つの水素原子がフッ素原子で置換されたシクロアルキル基及びフッ素原子を有するアリール基であり、更にフッ素原子以外の置換基を有していてもよい。
フッ素原子を有するアルキル基、フッ素原子を有するシクロアルキル基、及びフッ素原子を有するアリール基として、好ましくは、下記一般式(F2)〜(F4)で表される基を挙げることができるが、本発明は、これに限定されるものではない。
一般式(F2)〜(F4)中、
57〜R68は、各々独立に、水素原子、フッ素原子又はアルキル基(直鎖若しくは分岐)を表す。但し、R57〜R61の少なくとも1つ、R62〜R64の少なくとも1つ、及びR65〜R68の少なくとも1つは、各々独立に、フッ素原子又は少なくとも1つの水素原子がフッ素原子で置換されたアルキル基(好ましくは炭素数1〜4)を表す。
57〜R61及びR65〜R67は、全てがフッ素原子であることが好ましい。R62、R63及びR68は、少なくとも1つの水素原子がフッ素原子で置換されたアルキル基(好ましくは炭素数1〜4)が好ましく、炭素数1〜4のパーフルオロアルキル基であることがより好ましい。R62とR63は、互いに連結して環を形成してもよい。
疎水性樹脂(HR)は、珪素原子を含有してもよい。珪素原子を有する部分構造として、アルキルシリル構造(好ましくはトリアルキルシリル基)、又は環状シロキサン構造を有する樹脂であることが好ましい。
フッ素原子又は珪素原子を有する繰り返し単位の例としては、US2012/0251948A1〔0519〕に例示されたものを挙げることができる。
また、上記したように、疎水性樹脂(HR)は、側鎖部分にCH部分構造を含むことも好ましい。
ここで、疎水性樹脂(HR)中の側鎖部分が有するCH部分構造(以下、単に「側鎖CH部分構造」ともいう)には、エチル基又はプロピル基等が有するCH部分構造を包含するものである。
一方、疎水性樹脂(HR)の主鎖に直接結合しているメチル基(例えば、メタクリル酸構造を有する繰り返し単位のα−メチル基)は、主鎖の影響により疎水性樹脂(HR)の表面偏在化への寄与が小さいため、本発明におけるCH部分構造に包含されないものとする。
より具体的には、疎水性樹脂(HR)が、例えば、下記一般式(M)で表される繰り返し単位等の、炭素−炭素二重結合を有する重合性部位を有するモノマーに由来する繰り返し単位を含む場合であって、R11〜R14がCH「そのもの」である場合、そのCHは、本発明における側鎖部分が有するCH部分構造には包含されない。
一方、C−C主鎖から何らかの原子を介して存在するCH部分構造は、本発明におけるCH部分構造に該当するものとする。例えば、R11がエチル基(CHCH)である場合、本発明におけるCH部分構造を「1つ」有するものとする。
上記一般式(M)中、
11〜R14は、各々独立に、側鎖部分を表す。
側鎖部分のR11〜R14としては、水素原子、又は1価の有機基等が挙げられる。
11〜R14についての1価の有機基としては、アルキル基、シクロアルキル基、アリール基、アルキルオキシカルボニル基、シクロアルキルオキシカルボニル基、アリールオキシカルボニル基、アルキルアミノカルボニル基、シクロアルキルアミノカルボニル基、及び、アリールアミノカルボニル基等が挙げられ、これらの基は、更に置換基を有していてもよい。
疎水性樹脂(HR)は、側鎖部分にCH部分構造を有する繰り返し単位を有する樹脂であることが好ましく、このような繰り返し単位として、下記一般式(II)で表される繰り返し単位、及び、下記一般式(III)で表される繰り返し単位のうち少なくとも一種の繰り返し単位(x)を有していることがより好ましい。
以下、一般式(II)で表される繰り返し単位について詳細に説明する。
上記一般式(II)中、Xb1は水素原子、アルキル基、シアノ基又はハロゲン原子を表し、Rは1つ以上のCH部分構造を有する、酸に対して安定な有機基を表す。ここで、酸に対して安定な有機基は、より具体的には、酸分解性基(酸の作用により分解してカルボキシ基等の極性基を生じる基)を有さない有機基であることが好ましい。
b1のアルキル基は、炭素数1〜4のアルキル基が好ましく、メチル基、エチル基、プロピル基、ヒドロキシメチル基、及び、トリフルオロメチル基等が挙げられるが、メチル基であることがより好ましい。
b1は、水素原子又はメチル基であることが好ましい。
としては、1つ以上のCH部分構造を有する、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アリール基、及び、アラルキル基が挙げられる。上記のシクロアルキル基、アルケニル基、シクロアルケニル基、アリール基、及び、アラルキル基は、更に、置換基としてアルキル基を有していてもよい。
は、1つ以上のCH部分構造を有する、アルキル基又はアルキル置換シクロアルキル基が好ましい。
としての1つ以上のCH部分構造を有する酸に安定な有機基は、CH部分構造を2個以上10個以下有することが好ましく、2個以上8個以下有することがより好ましい。
一般式(II)で表される繰り返し単位の好ましい具体例を以下に挙げる。なお、本発明はこれに限定されるものではない。
一般式(II)で表される繰り返し単位は、酸に安定な(非酸分解性の)繰り返し単位であることが好ましく、具体的には、酸の作用により分解して極性基を生じる基を有さない繰り返し単位であることが好ましい。
以下、一般式(III)で表される繰り返し単位について詳細に説明する。
上記一般式(III)中、Xb2は水素原子、アルキル基、シアノ基又はハロゲン原子を表し、Rは1つ以上のCH部分構造を有する、酸に対して安定な有機基を表し、nは1から5の整数を表す。
b2のアルキル基は、炭素数1〜4のものが好ましく、メチル基、エチル基、プロピル基、ヒドロキシメチル基又はトリフルオロメチル基等が挙げられるが、水素原子であることがより好ましい。
b2は、水素原子であることが好ましい。
は、酸に対して安定な有機基であるため、より具体的には、酸分解性基を有さない有機基であることが好ましい。
としては、1つ以上のCH部分構造を有する、アルキル基が挙げられる。
としての1つ以上のCH部分構造を有する酸に安定な有機基は、CH部分構造を1個以上10個以下有することが好ましく、1個以上8個以下有することがより好ましく、1個以上4個以下有することが更に好ましい。
nは1から5の整数を表し、1〜3の整数を表すことがより好ましく、1又は2を表すことが更に好ましい。
一般式(III)で表される繰り返し単位の好ましい具体例を以下に挙げる。なお、本発明はこれに限定されるものではない。
一般式(III)で表される繰り返し単位は、酸に安定な(非酸分解性の)繰り返し単位であることが好ましく、具体的には、酸の作用により分解して、極性基を生じる基を有さない繰り返し単位であることが好ましい。
疎水性樹脂(HR)が、側鎖部分にCH部分構造を含む場合であり、更に、特にフッ素原子及び珪素原子を有さない場合、一般式(II)で表される繰り返し単位、及び、一般式(III)で表される繰り返し単位のうち少なくとも一種の繰り返し単位(x)の含有量は、疎水性樹脂(HR)の全繰り返し単位に対して、90モル%以上であることが好ましく、95モル%以上であることがより好ましい。含有量は、疎水性樹脂(HR)の全繰り返し単位に対して、通常、100モル%以下である。
疎水性樹脂(HR)が、一般式(II)で表される繰り返し単位、及び、一般式(III)で表される繰り返し単位のうち少なくとも一種の繰り返し単位(x)を、疎水性樹脂(HR)の全繰り返し単位に対し、90モル%以上で含有することにより、疎水性樹脂(HR)の表面自由エネルギーが増加する。その結果として、疎水性樹脂(HR)がレジスト膜の表面に偏在しにくくなり、水に対するレジスト膜の静的/動的接触角を確実に向上させて、液浸液追随性を向上させることができる。
また、疎水性樹脂(HR)は、(i)フッ素原子及び/又は珪素原子を含む場合においても、(ii)側鎖部分にCH部分構造を含む場合においても、下記(x)〜(z)の群から選ばれる基を少なくとも1つを有していてもよい。
(x)酸基、
(y)ラクトン構造を有する基、酸無水物基、又は酸イミド基、
(z)酸の作用により分解する基
酸基(x)としては、フェノール性水酸基、カルボン酸基、フッ素化アルコール基、スルホン酸基、スルホンアミド基、スルホニルイミド基、(アルキルスルホニル)(アルキルカルボニル)メチレン基、(アルキルスルホニル)(アルキルカルボニル)イミド基、ビス(アルキルカルボニル)メチレン基、ビス(アルキルカルボニル)イミド基、ビス(アルキルスルホニル)メチレン基、ビス(アルキルスルホニル)イミド基、トリス(アルキルカルボニル)メチレン基、及びトリス(アルキルスルホニル)メチレン基等が挙げられる。
好ましい酸基としては、フッ素化アルコール基(好ましくはヘキサフルオロイソプロパノール)、スルホンイミド基、又はビス(アルキルカルボニル)メチレン基が挙げられる。
酸基(x)を有する繰り返し単位としては、アクリル酸又はメタクリル酸による繰り返し単位のような樹脂の主鎖に、直接、酸基が結合している繰り返し単位、或いは、連結基を介して樹脂の主鎖に酸基が結合している繰り返し単位等が挙げられ、更には酸基を有する重合開始剤又は連鎖移動剤を重合時に用いてポリマー鎖の末端に導入することもでき、いずれの場合も好ましい。酸基(x)を有する繰り返し単位が、フッ素原子及び珪素原子の少なくともいずれかを有していてもよい。
酸基(x)を有する繰り返し単位の含有量は、疎水性樹脂(HR)中の全繰り返し単位に対し、1〜50モル%が好ましく、より好ましくは3〜35モル%、更に好ましくは5〜20モル%である。
酸基(x)を有する繰り返し単位の具体例を以下に示すが、本発明は、これに限定されるものではない。式中、Rxは水素原子、CH、CF、又は、CHOHを表す。
ラクトン構造を有する基、酸無水物基、又は酸イミド基(y)としては、ラクトン構造を有する基が特に好ましい。
これらの基を含んだ繰り返し単位は、例えば、アクリル酸エステル及びメタクリル酸エステルによる繰り返し単位等の、樹脂の主鎖に直接この基が結合している繰り返し単位である。或いは、この繰り返し単位は、この基が連結基を介して樹脂の主鎖に結合している繰り返し単位であってもよい。或いは、この繰り返し単位は、この基を有する重合開始剤又は連鎖移動剤を重合時に用いて、樹脂の末端に導入されていてもよい。
ラクトン構造を有する基を有する繰り返し単位としては、例えば、先に樹脂(A)の項で説明したラクトン構造を有する繰り返し単位と同様のものが挙げられる。
ラクトン構造を有する基、酸無水物基、又は酸イミド基を有する繰り返し単位の含有量は、疎水性樹脂(HR)中の全繰り返し単位を基準として、1〜100モル%であることが好ましく、3〜98モル%であることがより好ましく、5〜95モル%であることが更に好ましい。
疎水性樹脂(HR)に於ける、酸の作用により分解する基(z)を有する繰り返し単位は、樹脂(A)で挙げた酸分解性基を有する繰り返し単位と同様のものが挙げられる。酸の作用により分解する基(z)を有する繰り返し単位が、フッ素原子及び珪素原子の少なくともいずれかを有していてもよい。疎水性樹脂(HR)に於ける、酸の作用により分解する基(z)を有する繰り返し単位の含有量は、樹脂(HR)中の全繰り返し単位に対し、1〜80モル%が好ましく、より好ましくは10〜80モル%、更に好ましくは20〜60モル%である。
疎水性樹脂(HR)は、更に、上述した繰り返し単位とは別の繰り返し単位を有していてもよい。
フッ素原子を含む繰り返し単位は、疎水性樹脂(HR)に含まれる全繰り返し単位中10〜100モル%が好ましく、30〜100モル%がより好ましい。また、珪素原子を含む繰り返し単位は、疎水性樹脂(HR)に含まれる全繰り返し単位中、10〜100モル%が好ましく、20〜100モル%がより好ましい。
一方、特に疎水性樹脂(HR)が側鎖部分にCH部分構造を含む場合においては、疎水性樹脂(HR)が、フッ素原子及び珪素原子を実質的に含有しない形態も好ましい。また、疎水性樹脂(HR)は、炭素原子、酸素原子、水素原子、窒素原子及び硫黄原子から選ばれる原子のみによって構成された繰り返し単位のみで実質的に構成されることが好ましい。
疎水性樹脂(HR)の標準ポリスチレン換算の重量平均分子量は、好ましくは1,000〜100,000で、より好ましくは1,000〜50,000である。
疎水性樹脂(HR)の組成物中の含有量は、感活性光線性又は感放射線性樹脂組成物中の全固形分に対し、0.01〜10質量%が好ましく、0.05〜8質量%がより好ましい。
なお、疎水性樹脂(HR)は1種を単独で用いても、2種以上を併用してもよい。2種以上の疎水性樹脂(HR)を併用する場合には、合計含有量が上記範囲内であることが好ましい。
疎水性樹脂(HR)は、残留単量体又はオリゴマー成分が0.01〜5質量%であることが好ましく、より好ましくは0.01〜3質量%である。また、分子量分布(Mw/Mn、分散度ともいう)は、1〜5の範囲が好ましく、より好ましくは1〜3の範囲である。
疎水性樹脂(HR)は、各種市販品を利用することもできるし、常法に従って(例えばラジカル重合)合成することができる。
<溶剤>
感活性光線性又は感放射線性樹脂組成物は、通常、溶剤を含有する。
組成物を調製する際に使用することができる溶剤としては、例えば、アルキレングリコールモノアルキルエーテルカルボキシレート、アルキレングリコールモノアルキルエーテル、乳酸アルキルエステル、アルコキシプロピオン酸アルキル、環状ラクトン(好ましくは炭素数4〜10)、環を有してもよいモノケトン化合物(好ましくは炭素数4〜10)、アルキレンカーボネート、アルコキシ酢酸アルキル、及びピルビン酸アルキル等の有機溶剤が挙げられる。
これらの溶剤の具体例としては、米国特許出願公開2008/0187860号明細書[0441]〜[0455]に記載のものが挙げられる。
本発明においては、有機溶剤として構造中に水酸基を含有する溶剤と、水酸基を含有しない溶剤とを混合した混合溶剤を使用してもよい。
水酸基を含有する溶剤、及び水酸基を含有しない溶剤としては前述の例示化合物が適宜選択可能であるが、水酸基を含有する溶剤としては、アルキレングリコールモノアルキルエーテル、又は乳酸アルキル等が好ましく、プロピレングリコールモノメチルエーテル(PGME、別名1−メトキシ−2−プロパノール)、2−ヒドロキシイソ酪酸メチル、又は乳酸エチルがより好ましい。また、水酸基を含有しない溶剤としては、アルキレングリコールモノアルキルエーテルアセテート、アルキルアルコキシプロピオネート、環を含有してもよいモノケトン化合物、環状ラクトン、酢酸アルキル等が好ましく、これらの内でもプロピレングリコールモノメチルエーテルアセテート(PGMEA、別名1−メトキシ−2−アセトキシプロパン)、エチルエトキシプロピオネート、2−ヘプタノン、γ−ブチロラクトン、シクロヘキサノン、又は酢酸ブチルがより好ましく、プロピレングリコールモノメチルエーテルアセテート、エチルエトキシプロピオネート、又は2−ヘプタノンが更に好ましい。
水酸基を含有する溶剤と水酸基を含有しない溶剤との混合比(質量比)は、1/99〜99/1、好ましくは10/90〜90/10、更に好ましくは20/80〜60/40である。水酸基を含有しない溶剤を50質量%以上含有する混合溶剤が塗布均一性の点で特に好ましい。
溶剤は、プロピレングリコールモノメチルエーテルアセテートを含むことが好ましく、プロピレングリコールモノメチルエーテルアセテート単独溶剤、又は、プロピレングリコールモノメチルエーテルアセテートを含有する2種類以上の混合溶剤であることが好ましい。
(その他の添加剤)
感活性光線性又は感放射線性樹脂組成物は、必要に応じて更に、界面活性剤、酸増殖剤、染料、可塑剤、光増感剤、光吸収剤、アルカリ可溶性樹脂、溶解阻止剤、又は、現像液に対する溶解性を促進させる化合物(例えば、分子量1000以下のフェノール化合物、カルボキシ基を有する脂環族、又は脂肪族化合物)等を含有してもよい。
なお、感活性光線性又は感放射線性樹脂組成物が、界面活性剤を含有する場合には、フッ素系及び/又はシリコン系界面活性剤(フッ素系界面活性剤、シリコン系界面活性剤、又はフッ素原子とケイ素原子との両方を有する界面活性剤)が好ましい。
このような分子量1000以下のフェノール化合物は、例えば、特開平4−122938号公報、特開平2−28531号公報、米国特許第4,916,210号明細書、又は欧州特許第219294号明細書等に記載の方法を参考にして、当業者において容易に合成することができる。
カルボキシ基を有する脂環族、又は脂肪族化合物の具体例としては、コール酸、デオキシコール酸、若しくはリトコール酸等のステロイド構造を有するカルボン酸誘導体、アダマンタンカルボン酸誘導体、アダマンタンジカルボン酸、シクロヘキサンカルボン酸、又はシクロヘキサンジカルボン酸等が挙げられる。
なお、本発明のパターン形成方法において使用される各種材料(例えば、レジスト溶剤、現像液、リンス液、アルカリ処理液、反射防止膜形成用組成物、又はトップコート形成用組成物等)は、金属等の不純物を含まないことが好ましい。これら材料に含まれる不純物の含有量としては、1ppm以下が好ましく、100ppt以下がより好ましく、10ppt以下が更に好ましく、実質的に含まないこと(測定装置の検出限界以下であること)が特に好ましい。
上記各種材料から金属等の不純物を除去する方法としては、例えば、フィルターを用いた濾過を挙げることができる。フィルター孔径としては、ポアサイズ10nm以下が好ましく、5nm以下がより好ましく、3nm以下が更に好ましい。フィルターの材質としては、ポリテトラフロロエチレン製、ポリエチレン製、又はナイロン製のフィルターが好ましい。フィルターは、有機溶剤であらかじめ洗浄したものを用いてもよい。フィルター濾過工程では、複数種類のフィルターを直列又は並列に接続して用いてもよい。複数種類のフィルターを使用する場合は、孔径及び/又は材質が異なるフィルターを組み合わせて使用してもよい。また、各種材料を複数回濾過してもよく、複数回濾過する工程が循環濾過工程であってもよい。
また、上記各種材料に含まれる金属等の不純物を低減する方法としては、各種材料を構成する原料として金属含有量が少ない原料を選択する、各種材料を構成する原料に対してフィルター濾過を行う、又は、装置内をテフロン(登録商標)でライニングする等してコンタミネーションを可能な限り抑制した条件下で蒸留を行う等の方法が挙げられる。各種材料を構成する原料に対して行うフィルター濾過における好ましい条件は、上記した条件と同様である。
フィルター濾過のほか、吸着材による不純物の除去を行ってもよく、フィルター濾過と吸着材を組み合わせて使用してもよい。吸着材としては、公知の吸着材を用いることができ、例えば、シリカゲル若しくはゼオライト等の無機系吸着材、又は活性炭等の有機系吸着材を使用することができる。
<調製方法>
感活性光線性又は感放射線性樹脂組成物は、解像力向上の観点から、膜厚90nm以下、好ましくは85nm以下のレジスト膜とすることが好ましい。組成物中の固形分濃度を適切な範囲に設定して適度な粘度をもたせ、塗布性又は製膜性を向上させることにより、このような膜厚とすることができる。
本発明における組成物の固形分濃度は、通常1.0〜10質量%であり、好ましくは、2.0〜5.7質量%、更に好ましくは2.0〜5.3質量%である。固形分濃度を上記範囲とすることで、レジスト溶液を基板上に均一に塗布することができ、更にはLWR(Line Width Roughness)により優れたレジストパターンを形成することが可能になる。その理由は明らかではないが、恐らく、固形分濃度を10質量%以下、好ましくは5.7質量%以下とすることで、レジスト溶液中での素材、特には光酸発生剤の凝集が抑制され、その結果として、均一なレジスト膜が形成できるものと考えられる。
固形分濃度とは、組成物の総質量に対する、溶剤を除く他のレジスト成分の質量の質量百分率である。
感活性光線性又は感放射線性樹脂組成物は、上記の成分を所定の有機溶剤、好ましくは上記混合溶剤に溶解し、フィルター濾過した後、所定の支持体(基板)上に塗布して用いる。フィルター濾過に用いるフィルターのポアサイズは0.1μm以下、より好ましくは0.05μm以下、更に好ましくは0.03μm以下のポリテトラフロロエチレン製、ポリエチレン製、又はナイロン製のものが好ましい。フィルター濾過においては、例えば特開2002−62667号公報のように、循環的な濾過を行ったり、複数種類のフィルターを直列又は並列に接続して濾過を行ったりしてもよい。また、組成物を複数回濾過してもよい。更に、フィルター濾過の前後で、組成物に対して脱気処理等を行ってもよい。
本発明は、上記した本発明のパターン形成方法を含む、電子デバイスの製造方法、及び、この製造方法により製造された電子デバイスにも関する。
本発明の電子デバイスは、電気電子機器(家電、OA(office automation)・メディア関連機器、光学用機器及び通信機器等)に、好適に、搭載されるものである。
以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
<合成例(樹脂A−1の合成)>
シクロヘキサノン 102.3質量部を窒素気流下で80℃に加熱した。この液を攪拌しながら、下記構造式M−1で表されるモノマー 25.0質量部、下記構造式M−2で表されるモノマー 20.5質量部、シクロヘキサノン 189.9質量部、及び2,2’−アゾビスイソ酪酸ジメチル〔V−601、和光純薬工業(株)製〕3.10質量部の混合溶液を5時間かけて滴下した。滴下終了後、80℃で更に2時間攪拌した。反応液を放冷後、多量のヘキサン/酢酸エチル(質量比9:1)で再沈殿し、ろ過し、得られた固体を真空乾燥することで、樹脂(P−1)を40.0質量部得た。
得られた樹脂のGPC(キャリア:テトラヒドロフラン(THF))から求めた重量平均分子量(Mw:ポリスチレン換算)は、Mw=7000、分散度はMw/Mn=1.60であった。13C−NMR(核磁気共鳴)により測定した組成比(モル比)は50/50であった。
<樹脂>
以下、同様にして、下記表1に示す樹脂(酸分解性樹脂)P−2〜P−33を合成した。表2に、樹脂P−1〜P−33における繰り返し単位の組成比(モル比;左から順に対応)、重量平均分子量(Mw)、分散度(Mw/Mn)を示す。
<疎水性樹脂>
以下、同様にして、下記に示す樹脂HR−1〜HR−7を合成した。表3に、樹脂HR−1〜HR−7における繰り返し単位の組成比(モル比;左から順に対応)、重量平均分子量(Mw)、分散度(Mw/Mn)を示す。
<酸発生剤>
酸発生剤としては、以下の化合物を用いた。
<酸拡散制御剤>
酸拡散制御剤として、以下の化合物を用いた。
<溶剤>
溶剤としては、以下のものを用いた。
SL−1: プロピレングリコールモノメチルエーテルアセテート(PGMEA)
SL−2: プロピレングリコールモノメチルエーテル(PGME)
SL−3: シクロヘキサノン
SL−4: γ−ブチロラクトン
SL−5: プロピレンカーボネート
〔実施例1〜38〕
<第1のパターンの形成工程>
(感活性光線性又は感放射線性樹脂組成物の調製)
下記表4に示す成分を同表に示す溶剤に全固形分で3.5質量%となるように溶解させ、それぞれを0.03μmのポアサイズを有するポリエチレンフィルターでろ過して、感活性光線性又は感放射線性樹脂組成物(レジスト組成物)(Ar−1)〜(Ar−36)を調製した。
なお、表中、「全固形分に対する、(1)+(2)(PAG連結型)の含有量(質量%)」とは、全固形分に対する、活性光線又は放射線の照射により酸を発生する化合物の含有量を意味する。本実施例の組成において、活性光線又は放射線の照射により酸を発生する化合物には、酸発生剤(PAG−1〜12)と、酸発生剤(PAG)連結型酸拡散制御剤(Q−5、6、7、8、10)が該当する。
例えば、組成物Ar−17の場合、その全固形分に対する(1)+(2)(PAG連結型)の含有量(質量%)は、{(酸発生剤PAG−6及びPAG−7の合計量2.0g)+(PAG連結型酸拡散制御剤Q−5の量0.05g)}/全固形分(溶剤を除く各成分の合計量)=15.6質量%となる。
(レジスト膜の形成:工程(A))
シリコンウエハ上にSOC NCA9053EH(日産化学社製)を塗布し、240℃で60秒間ベークを行い、膜厚200nmのSOC(Spin on Carbon)膜を形成した。その上にシリコンハードマスクNCH7433(日産化学社製)を塗布し、200℃で60秒間ベークを行い、膜厚35nmのシリコンハードマスクを形成した。その上に感活性光線性又は感放射線性樹脂組成物(Ar−1)〜(Ar−36)を塗布し、100℃で60秒間に亘ってベーク(PB:Prebake)を行い、膜厚80nmのレジスト膜を形成した。
(レジストパターンの形成:工程(B)、工程(C))
このレジスト膜に、ArFエキシマレーザー液浸スキャナー(ASML社製;XT1700i、NA1.20、Dipole、アウターシグマ0.980、インナーシグマ0.89、Y偏向)を用い、ピッチが100nm且つ線幅が60nmのクロムのハーフトーンマスクを介して、パターン露光を行った。液浸液としては超純水を用いた。その後、105℃で60秒間加熱(PEB:Post Exposure Bake)した。
次いで、表5に示す有機溶剤系の現像液で30秒間パドルして現像し、表5に示すリンス液で30秒間パドルしてリンスした(ただし、表5の「パターン形成工程」においてリンス液の記載がない例については、リンス工程は実施しなかった)。
続いて、2000rpmの回転数で30秒間ウエハを回転させたのちに、表5の「ポストベーク」の欄に記載の温度で60秒間加熱(Post Bake)を行い、ライン幅40nm、スペース幅60nmのLS(ラインアンドスペース)パターン(フォトレジストからなる第1のパターン)を得た。
なお、表5中の「ポストベーク」の欄の「100C60s」とは100℃で60秒間加熱したことを意図する。
また、表中、「MIBC」は、メチルイソブチルカルビノールを意味する。
(CVD法による珪素酸化膜の形成:工程(D))
得られたライン/スペースのパターンの周囲に、基板温度が100℃の条件下にて、CVD装置を用いて、厚さ20nmの珪素酸化膜を形成した。
(エッチング工程;工程(E))
Tactras Vigas(東京エレクトロン製)を用いて、30℃にて真空中にCF反応性ガスを導入し、対抗した電極に高周波をかけることによりプラズマを発生させ、第1のパターンの側壁部に形成されたSiO膜を選択的に残すような異方エッチングを実施した。結果として、第1のパターンの上面及び基板の表面に形成されたSiO膜が除去され(言い換えると、第1のパターンの側壁部以外の位置にある無機膜が除去され)、ライン幅約80nm、スペース幅20nmの無機膜及び第1のパターンからなるLSパターンが得られた。
(芯材の除去工程:工程(D))
次に、2.38%TMAH(水酸化テトラメチルアンモニウム)水溶液を行いて30秒間現像し、芯材である第1のパターンを除去した。この結果、SiOからなるハーフピッチ20nmのLSパターン(無機膜からなる第2のパターン)が得られた。
<残渣の有無の評価方法>
得られたラインパターンを、測長走査型電子顕微鏡(日立社製S9380II)にて観察し、下記の評価基準に基づいて残渣の有無を評価した。
「A」:ラインパターンの底部に残渣がない。
「B」:ラインパターンの底部の1箇所において、残渣が確認された。
「C」:ラインパターンの底部の2〜5箇所において、残渣が確認された。
「D」:ラインパターンの底部の5箇所超において、残渣が確認された。
結果を表5に示す。
本発明のパターン形成方法によれば、ダブルパターニングプロセスによるパターン形成方法において、芯材の除去をアッシングにより実施していないため、基板へのダメージが少ないことが確認された。
表5の結果から、レジスト膜形成用組成物が、樹脂の全繰り返し単位に対して一般式(1)で表される繰り返し単位を51モル%以上か、又は一般式(2)で表される繰り返し単位を56モル%以上含み且つ重量平均分子量が14000以下の酸分解性樹脂と、全固形分量に対して11質量%以上の活性光線又は放射線の照射により酸を発生する化合物と、を含有することにより、アルカリ処理液により芯材を除去するに際して残渣を優れた程度で低減できることが確認された(実施例2〜5、12、19、21、24、38)。
また、表5の結果から、レジスト膜形成用組成物に含まれる樹脂が、樹脂の全繰り返し単位に対して一般式(1)で表される繰り返し単位(A)を51モル%以上若しくは一般式(2)で表される繰り返し単位を56モル%以上含むか、又は、重量平均分子量が14000以下であり、且つ、レジスト膜形成用組成物に含まれる活性光線又は放射線の照射により酸を発生する化合物が、全固形分量に対して11質量%以上であり、更に、工程(D)の前に、120〜250℃にて現像後のパターンを加熱する工程を実施することにより、残渣を優れた程度で低減できることが確認された(実施例14、22、23、24、25、37、38)。
また、表5の結果から、レジスト膜形成用組成物に含まれる樹脂が、樹脂の全繰り返し単位に対して一般式(1)で表される繰り返し単位を51モル%以上か、又は一般式(2)で表される繰り返し単位を56モル%以上含み且つ重量平均分子量が14000以下の酸分解性樹脂であり、且つ、工程(D)の前に、120〜250℃にて現像後のパターンを加熱する工程を実施することにより、残渣を優れた程度で低減できることが確認された(実施例29、24、38)。
13 被加工基板
14 基板
16 無機膜
26A 残渣無機膜
26 第2のパターン
23 第1のパターン
23A レジスト膜
27 パターン

Claims (10)

  1. 基板上に、樹脂を含む感活性光線性又は感放射線性樹脂組成物を用いてレジスト膜を形成するレジスト膜形成工程と、
    前記レジスト膜を露光する露光工程と、
    露光された前記レジスト膜を、有機溶剤を含む現像液を用いて現像し、第1のパターンを形成する現像工程と、
    前記第1のパターンを覆うように無機膜を形成する工程と、
    前記無機膜を、前記第1のパターンの側壁部のみに残るようにエッチングにより除去する、エッチング工程と、
    アルカリ処理液を用いて前記第1のパターンを除去して、前記無機膜からなる第2のパターンを形成する工程と、を有するパターン形成方法。
  2. 前記樹脂は、酸の作用により極性が増大して有機溶剤を含む現像液に対する溶解性が減少する樹脂である、請求項1に記載のパターン形成方法。
  3. 前記樹脂が、下記一般式(1)で表される繰り返し単位を、樹脂の全繰り返し単位に対して51モル%以上含有する、請求項1又は2に記載のパターン形成方法。
    一般式(1)に於いて、
    Aは、単結合又は2価の連結基を表す。
    は、炭素数1〜3のアルキル基を表す。
    は、炭素数1〜5のアルキル基を表す。
    は、ヘテロ原子を有していてもよい、炭素数1〜6のアルキレン基を表す。
  4. 前記樹脂が、下記一般式(2)で表される繰り返し単位を、樹脂の全繰り返し単位に対して56モル%以上含有する、請求項1又は2に記載のパターン形成方法。
    一般式(B)に於いて、
    は、単結合又は2価の連結基を表す。
    は、炭素数1〜3のアルキル基を表す。
    、R、及び、Rは、それぞれ独立に、炭素数1〜5のアルキル基を表す。ただし、R、R、R同士が互いに結合して、環構造を形成しない。
  5. 前記樹脂の重量平均分子量が14000以下である、請求項1〜4のいずれか1項に記載のパターン形成方法。
  6. 前記感活性光線性又は感放射線性樹脂組成物が、更に、活性光線又は放射線の照射により酸を発生する化合物を含有し、
    前記活性光線又は放射線の照射により酸を発生する化合物の含有量が、前記感活性光線性又は感放射線性樹脂組成物中の全固形分量に対して11質量%以上である、請求項1〜5のいずれか1項に記載のパターン形成方法。
  7. 前記第1のパターンを形成する現像工程の後、前記無機膜を形成する工程の前に、更に、120〜250℃にて現像後のパターンを加熱する工程を有する、請求項1〜6のいずれか1項に記載のパターン形成方法。
  8. 前記無機膜を形成する工程において、化学気相成長法により前記無機膜を形成する、請求項1〜7のいずれか1項に記載のパターン形成方法。
  9. 前記無機膜が珪素酸化膜である、請求項1〜8のいずれか1項に記載のパターン形成方法。
  10. 請求項1〜9のいずれか1項に記載のパターン形成方法を含む、電子デバイスの製造方法。
JP2016150668A 2016-07-29 2016-07-29 パターン形成方法及びこれを用いた電子デバイスの製造方法 Pending JP2018018038A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016150668A JP2018018038A (ja) 2016-07-29 2016-07-29 パターン形成方法及びこれを用いた電子デバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016150668A JP2018018038A (ja) 2016-07-29 2016-07-29 パターン形成方法及びこれを用いた電子デバイスの製造方法

Publications (1)

Publication Number Publication Date
JP2018018038A true JP2018018038A (ja) 2018-02-01

Family

ID=61076185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016150668A Pending JP2018018038A (ja) 2016-07-29 2016-07-29 パターン形成方法及びこれを用いた電子デバイスの製造方法

Country Status (1)

Country Link
JP (1) JP2018018038A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018180525A (ja) * 2017-04-17 2018-11-15 Jsr株式会社 感放射線性樹脂組成物及びレジストパターンの形成方法
WO2019216118A1 (ja) * 2018-05-10 2019-11-14 富士フイルム株式会社 レジスト組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
CN110895380A (zh) * 2018-09-13 2020-03-20 信越化学工业株式会社 图案形成方法
CN112920314A (zh) * 2021-01-26 2021-06-08 宁波南大光电材料有限公司 一种酸活性树脂以及光刻胶
US11747725B2 (en) 2017-04-17 2023-09-05 Jsr Corporation Radiation-sensitive resin composition and method for forming resist pattern

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018180525A (ja) * 2017-04-17 2018-11-15 Jsr株式会社 感放射線性樹脂組成物及びレジストパターンの形成方法
JP7091762B2 (ja) 2017-04-17 2022-06-28 Jsr株式会社 感放射線性樹脂組成物及びレジストパターンの形成方法
US11747725B2 (en) 2017-04-17 2023-09-05 Jsr Corporation Radiation-sensitive resin composition and method for forming resist pattern
WO2019216118A1 (ja) * 2018-05-10 2019-11-14 富士フイルム株式会社 レジスト組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
JPWO2019216118A1 (ja) * 2018-05-10 2021-05-20 富士フイルム株式会社 レジスト組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
CN110895380A (zh) * 2018-09-13 2020-03-20 信越化学工业株式会社 图案形成方法
CN112920314A (zh) * 2021-01-26 2021-06-08 宁波南大光电材料有限公司 一种酸活性树脂以及光刻胶

Similar Documents

Publication Publication Date Title
JP6320530B2 (ja) 感活性光線性又は感放射線性樹脂組成物、パターン形成方法、及び、電子デバイスの製造方法
JP6655628B2 (ja) 感活性光線性又は感放射線性樹脂組成物、パターン形成方法、及び、電子デバイスの製造方法
JP6368786B2 (ja) 感活性光線性又は感放射線性樹脂組成物、パターン形成方法及び電子デバイスの製造方法
WO2015080048A1 (ja) 感活性光線性又は感放射線性樹脂組成物、及び、パターン形成方法
WO2014175270A1 (ja) 感活性光線性又は感放射線性樹脂組成物、及び、パターン形成方法
JP2018018038A (ja) パターン形成方法及びこれを用いた電子デバイスの製造方法
JP2018163348A (ja) 感活性光線性又は感放射線性樹脂組成物、パターン形成方法、及び、電子デバイスの製造方法
WO2017135003A1 (ja) パターン形成方法、電子デバイスの製造方法、及び、感活性光線性又は感放射線性樹脂組成物
WO2017110352A1 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、及び、電子デバイスの製造方法
WO2016190368A1 (ja) 基板処理方法、樹脂組成物及び電子デバイスの製造方法
JP6126961B2 (ja) パターン形成方法、パターンマスクの形成方法及び電子デバイスの製造方法
JP6307309B2 (ja) 感活性光線性又は感放射線性樹脂組成物、パターン形成方法、電子デバイスの製造方法及び電子デバイス
WO2018116916A1 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、電子デバイスの製造方法、及び、光酸発生剤
JP2018004909A (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
WO2018116915A1 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、及び、電子デバイスの製造方法
WO2014141858A1 (ja) 感活性光線性又は感放射線性樹脂組成物、該組成物を用いたレジスト膜、パターン形成方法、電子デバイスの製造方法及び電子デバイス
WO2014185347A1 (ja) パターン形成方法、それに用いられる感活性光線性又は感放射線性樹脂組成物、及び、これらを用いる電子デバイス及びその製造方法
JP6467033B2 (ja) 有機パターン埋め込み用組成物、パターン形成方法、及び、電子デバイスの製造方法
WO2015087676A1 (ja) 感活性光線性又は感放射線性樹脂組成物、パターン形成方法、電子デバイスの製造方法、電子デバイス
JP2022125078A (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
JP7124094B2 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
JP2018059992A (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、及び、電子デバイスの製造方法
JP7125470B2 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、電子デバイスの製造方法
JP6194264B2 (ja) 感活性光線性又は感放射線性樹脂組成物、パターン形成方法、電子デバイスの製造方法及び電子デバイス
JP7125476B2 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、及び電子デバイスの製造方法