JP2018014500A - レーザ構成要素およびレーザ構成要素を製造するための方法 - Google Patents

レーザ構成要素およびレーザ構成要素を製造するための方法 Download PDF

Info

Publication number
JP2018014500A
JP2018014500A JP2017141345A JP2017141345A JP2018014500A JP 2018014500 A JP2018014500 A JP 2018014500A JP 2017141345 A JP2017141345 A JP 2017141345A JP 2017141345 A JP2017141345 A JP 2017141345A JP 2018014500 A JP2018014500 A JP 2018014500A
Authority
JP
Japan
Prior art keywords
laser
conversion element
chip
laser component
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017141345A
Other languages
English (en)
Other versions
JP6514281B2 (ja
Inventor
ヤン ザイデンファーデン
Marfeld Jan
ヤン ザイデンファーデン
ヤン マルトフェルト
Jan Marfeld
ヤン マルトフェルト
フーベルト シュミット
Schmid Hubert
フーベルト シュミット
ゼーンケ タウツ
Tautz Soenke
ゼーンケ タウツ
ローラント エンツマン
Enzmann Roland
ローラント エンツマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Publication of JP2018014500A publication Critical patent/JP2018014500A/ja
Application granted granted Critical
Publication of JP6514281B2 publication Critical patent/JP6514281B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/0231Stems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0087Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for illuminating phosphorescent or fluorescent materials, e.g. using optical arrangements specifically adapted for guiding or shaping laser beams illuminating these materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0092Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02257Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02375Positioning of the laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02438Characterized by cooling of elements other than the laser chip, e.g. an optical element being part of an external cavity or a collimating lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02461Structure or details of the laser chip to manipulate the heat flow, e.g. passive layers in the chip with a low heat conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • H01S5/02484Sapphire or diamond heat spreaders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • H01S5/4093Red, green and blue [RGB] generated directly by laser action or by a combination of laser action with nonlinear frequency conversion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/0234Up-side down mountings, e.g. Flip-chip, epi-side down mountings or junction down mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】青色光放射を少なくとも部分的に変換させ、放射変換中の電力損失として生じる熱エネルギーの放散が改善されたレーザ構成要素を提供する。
【解決手段】レーザ構成要素100は、ハウジング130と、レーザ放射190を生成するためのレーザ・チップ110と、放射変換のための蛍光体層161を備える変換素子160とを備える。放射変換に使用される変換素子160は薄層構成を有し、セラミック蛍光体層161と、蛍光体層161上に配置されている反射層162と、反射層162上に配置されている熱伝導層163とを備え、熱伝導層163によって熱拡散を行うことができ、取り付け区画142、および、基部140の残りの部分)への熱伝達を可能にすることができる。
【選択図】図1

Description

本発明は、ハウジングと、レーザ・チップとを備えるレーザ構成要素およびレーザ構成要素を製造するための方法に関する。
たとえば、発光ダイオードまたはレーザ・ダイオードのような半導体光源は、今日、照明用途にますます使用されるようになってきている。これは、たとえば、動力車のヘッドライトに関する。
LARP(レーザ活性化リモート蛍光体)と称される1つの既知の構成において、1つまたは複数のレーザ構成要素が、青色レーザ放射を生成するために使用される。そのようなレーザ構成要素は一般的に、内部にレーザ・チップが位置するTOハウジング(トランジスタ・アウトライン)を備える。青色光放射は、たとえば、レンズまたはインテグレータのような光学素子を介して別個のシート形状変換素子に投影される。変換素子は、レーザ構成要素から一定距離をおいて位置する。変換素子によって、白色光放射を生成することができるように、青色光放射を少なくとも部分的に変換することができる。放射変換中の電力損失として生じる熱エネルギーが、変換素子の横方向に実質的に放散され得る。
本発明の目的は、改善されたレーザ構成要素、および、そのレーザ構成要素を製造するための方法を提供することである。
この目的は、独立請求項の特徴によって達成される。本発明のさらなる有利な実施形態は、従属請求項において指定される。
本発明の一態様では、レーザ構成要素を提案する。レーザ構成要素は、ハウジングと、ハウジング内に配置されているレーザ・チップと、ハウジング内に配置されている、放射変換のための変換素子とを備える。変換素子は、レーザ・チップのレーザ放射で照射可能である。
提案するレーザ構成要素は、一体型変換素子を備える。変換素子は、レーザ・チップとともにレーザ構成要素のハウジング内に位置する。このように、レーザ・チップおよび変換素子は、外的影響に対して確実に保護することができる。変換素子は、レーザ構成要素の動作中に、レーザ・チップによって生成されるレーザ放射(これ以降では一次光放射とも称される)で変換素子が照射され得るように、レーザ・チップに対して配置されている。変換素子によって、一次光放射を少なくとも部分的に変換することができる。結果として、変換素子、ひいてはレーザ構成要素は、一次放射部分および二次放射部分、すなわち、非変換放射部分および変換放射部分を含み得る放射を放出することができる。
ハウジング内に一体化されている変換素子を備えるレーザ構成要素は、従来のLARP構成よりもコンパクトに、かつ、より空間を節約して実現することができる。さらに、変換素子は、レーザ・チップから小さい距離に位置決めされ得る。レーザ構成要素の動作中、変換素子上に電力密度が高い小さい輝点を生成することが可能であり、それによって、輝度が高いレーザ構成要素からの放射放出が可能である。この目的のために、レーザ・チップと変換素子との間に光学素子を使用する必要はない。
レーザ構成要素について考えられる、さらなる可能な詳細および実施形態を、下記により綿密に説明する。
レーザ・チップによって生成されるレーザ放射は、たとえば、青色光放射であってもよい。レーザ構成要素によって放出される放射全体は、青色光放射に加えて変換放射部分を含み得るが、たとえば、白色光放射であってもよい。このように、レーザ構成要素は、たとえば、動力車のヘッドライト内に利用することができる。
さらなる実施形態において、変換素子は、蛍光体層を備える。放射変換は、蛍光体層によって行うことができる。蛍光体層は、一次光放射を1つの二次光放射に変換するための1つの蛍光体、または、一次光放射を複数の異なる二次光放射に変換するための複数の異なる蛍光体を含むことができる。これは、たとえば、黄色、緑色および/または赤色の光放射を含んでもよい。蛍光体層は、セラミック層であってもよい。
変換素子は、プレート形状または薄層状に構成することができ、平面構成を有することができる。変換素子は、透過動作モードのために設けられてもよい。この場合、変換素子は、レーザ・チップに向かい合う面を有することができ、レーザ放射で照射することができる。変換素子のそれとは反対の面を介して、光放出、すなわち、一次放射部分および二次放射部分の放出を実行することができる。
放射変換中、変換素子の蛍光体層内の電力損失として、熱エネルギーが生成され得る。レーザ構成要素は、熱を効率的に放散することができるように構成することができる。結果として、変換特性および輝度の熱によって影響される変化を抑制することができる。下記に説明する実施形態によって、熱の効率的な放散を達成することができる。
さらなる実施形態によれば、変換素子の蛍光体層は、1つの蛍光体または複数の異なる蛍光体が内部に埋め込まれている熱伝導材料を含むことが可能である。結果として、蛍光体層内で生成された熱が蛍光体層内に分散されることが可能である。これは、熱伝導性が高い熱伝導材料を使用することによって促進することができる。これらはたとえば、窒化アルミニウムを含む。
さらなる実施形態において、変換素子は、蛍光体層から熱を放散するための熱伝導層を備える。熱伝導層は、蛍光体層、および、レーザ構成要素のさらなる構成要素部分に熱的に結合することができる。このように、熱伝導層は、熱拡散をもたらすことができ、蛍光体層内で生成される熱を放散して、その熱をレーザ構成要素のさらなる構成要素部分に供給するためのヒートシンクとしての役割を果たすことができる。熱伝導層は、熱伝導性が高い材料、たとえば、例として銅のような金属材料から形成することができる。このように、効率的な熱放散を促進することができる。
金属の他に、熱伝導層は、何らかの他の材料から形成されてもよい。例として、セラミック、ダイヤモンド、サファイア、または、カーボン・ナノチューブを埋め込まれた一次材もしくはマトリクス材から成る構成が考えられる。
変換素子は、蛍光体層が熱伝導層によって部分的に遮蔽されるように構成することができる。この場合、蛍光体層は、蛍光体層が熱伝導層によって遮蔽されていない領域において、レーザ・チップのレーザ放射で照射することができる。以下の実施形態は、このことが考慮され得る。
さらなる実施形態において、熱伝導層は、開口部を有するフレーム形状構成を備える。この実施形態において、蛍光体層は、熱伝導層の開口部を介して、レーザ・チップのレーザ放射で照射することができる。その結果として熱が上昇する点を横方向において包囲することができる、熱伝導層のフレーム形状は、効率的な熱拡散および熱放散が促進されることを可能にする。
さらなる実施形態において、変換素子は、蛍光体層状に配置されている反射層を備える。蛍光体層は、反射層を介して、レーザ・チップのレーザ放射で照射することができる。この場合、反射層は、蛍光体層の、レーザ・チップに向かい合う面上に位置することができる。反射層によって、レーザ・チップの方向における変換素子からの放射の後方散乱を抑制するか、または、最小限に抑えることができる。このように、輝度が高い放射放出を促進することができる。反射層は、レーザ放射の範囲内の波長を有する光放射が、反射層によって伝達(反射)され、それによって、蛍光体層に導入され、少なくとも部分的に変換され得るように、構成することができる。また、反射層は、異なるまたはより大きい波長を有する光放射、すなわち、蛍光体層内で生成される変換放射に対して高度な反射性を備えるように、構成することができる。
変換素子が蛍光体層、反射層および熱伝導層を有して構成される場合、蛍光体層は、レーザ・チップに向かい合う面を、反射層でコーティングすることができる。熱伝導層は、反射層上に配置することができ、それによって、反射層を介して蛍光体層に熱的に結合することができる。代替的な構成としては、熱伝導層は、蛍光体層上、または、蛍光体層の、レーザ・チップに面する面上に直に配置することができ、それによって、蛍光体層に直に熱的に結合することができる。この場合、反射層は、蛍光体層上の、蛍光体層が熱伝導層によって遮蔽されていない領域内に位置することができる。熱伝導層が、上述したようなフレーム形状構成である場合、反射層は、熱伝導層の開口部内で、蛍光体層上に配置することができる。
さらなる実施形態において、変換素子は、さらなる熱伝導層を備える。さらなる熱伝導層は、同様に、蛍光体層から熱を放散するために使用することができる。蛍光体層は、熱伝導層と、さらなる熱伝導層との間に配置される。この実施形態によって、効率的な熱放散をさらに促進することができる。
2つの熱伝導層は、蛍光体層の両面上に位置することができ、当該面に熱的に結合することができる。さらに、2つの熱伝導層は、変換素子の対向する両面上に配置することができる。これらの面は、レーザ・チップに面し、レーザ・チップのレーザ放射で照射可能である面と、それとは反対であり、光放出に使用される変換素子の面であってもよい。
熱伝導層に関連して上記で言及した特徴および詳細は、さらなる熱伝導層にも同様に適用することができる。下記に言及する個々のまたは複数の実施形態は、このことを踏まえる。さらなる熱伝導層は、金属または何らかの他の材料、たとえば、セラミック、ダイヤモンド、サファイア、または、カーボン・ナノチューブが埋め込まれた一次材もしくはマトリクス材から形成することができる。さらなる熱伝導層は、蛍光体層上、または、蛍光体層の、レーザ・チップから外方に面する面上に直に配置することができる。変換素子は、蛍光体層がさらなる熱伝導層によって部分的に被覆されるように構成することができる。変換素子または蛍光体層からの光放出は、蛍光体層がさらなる熱伝導層によって遮蔽されていない領域において実行することができる。この目的のために、さらなる熱伝導層は、開口部を有するフレーム形状構成を備えることができる。この実施形態において、光放出は、さらなる熱伝導層の開口部を介して実行することができる。
さらなる実施形態において、変換素子は、はんだ面を備える。はんだ面は、金属層の形態で構成することができ、熱伝導層上に配置することができる。この構成において、変換素子は、はんだ接続を介してハウジング内に固定することができる。この場合、変換素子は、はんだ面によって、および、はんだを用いて、レーザ構成要素のさらなる構成要素部分に機械的かつ熱的に接続することができる。はんだ接続によって、変換素子を確実に固定することが可能になり、変換素子の効率的な熱放散が促進される。レーザ構成要素の構成に応じて、変換素子は、1つのみのはんだ面を備えてもよいし、または、他の様態として複数もしくは2つのはんだ面を備えてもよい。
さらなる実施形態において、レーザ・チップは、端面発光型レーザ・チップである。この構成において、レーザ・チップは、レーザ・チップからレーザ放射を放出することができる側方放出ファセットを備える。放出ファセットに隣接して、レーザ・チップは、2つの対向する長手方向面を備えることができ、それら長手方向面は、レーザ・チップの上面および下面を形成することができる。レーザ放射は、長手方向面の1つの近傍において放出ファセットを介して、特徴的なビーム広がりで放出することができる。
さらなる実施形態において、レーザ・チップは、チップ・キャリア上に配置される。サブマウントと称される場合があるチップ・キャリアは、レーザ・チップのヒートシンクとしての役割を果たすことができる。チップ・キャリアは、熱伝導性セラミック材料を含むことができる。レーザ・チップは、長手方向面のうちの1つをチップ・キャリアの上にして配置することができる。これは、その付近でレーザ放射が放出される長手方向面を含み得る。広がって放出されるレーザ放射のシェーディングは、様々な方法で回避することができる。例として、レーザ・チップは、レーザ・チップの放出ファセットがチップ・キャリアに対して横方向に突出するように、チップ・キャリア上に配置することができる。また、チップ・キャリアが段付き断面形状を有することも可能である。この場合、レーザ・チップは、レーザ・チップの放出ファセットが、レーザ・チップを取り付けるために設けられているチップ・キャリアの取り付け面に対して横方向に突出するように、チップ・キャリア上に配置することができる。
レーザ・チップは、上述したチップ・キャリアによって、レーザ構成要素のさらなる構成要素部分上に配置することができる。レーザ・チップをさらなる構成要素部分上に直に、すなわち、チップ・キャリアを使用することなく配置することも可能である。チップ・キャリアが使用される場合、変換素子も、チップ・キャリア上に配置することができる。
レーザ構成要素のハウジングは、たとえば、TOハウジング(トランジスタ・アウトライン)のような、標準的なハウジングであってもよい。このように、既存の製造技法をレーザ構成要素の製造に使用することが可能であり、コスト効率的な製造が可能である。
さらなる実施形態において、ハウジングは、基部と、基部に接続されるキャップとを備える。基部およびキャップは、封止される内部を包囲することができ、その中に、レーザ・チップおよび変換素子が配置される。基部およびキャップは、金属材料を含むことができ、結果として熱伝導性にすることができる。基部はTOヘッダであってもよく、キャップはTOキャップであってもよい。さらに、基部およびキャップは、溶接接続によって互いに接続することができる。
さらなる実施形態において、基部は、突出取り付け区画を備える。取り付け区画は、ステムと称される場合があり、金属材料を含むことができ、さらなる構成要素部分を取り付けるために使用することができる。
上記で示したように、レーザ・チップは、ヒートシンクとしての役割を果たすチップ・キャリア上に配置することができる。さらなる実施形態において、チップ・キャリアは、基部の取り付け区画上に配置される。このように、レーザ構成要素の動作中、レーザ・チップ内で生成される熱を、チップ・キャリア、さらには、取り付け区画および基部の残りの部分を介して放散することができる。
さらなる実施形態において、変換素子は、取り付け区画上に配置される。結果として、取り付け区画ひいては基部を介して変換素子から熱を確実に放散することも可能である。この構成において、変換素子は、上述したはんだ面によって、および、はんだを用いて基部の取り付け区画に機械的かつ熱的に接続することができる。
チップ・キャリアおよび変換素子が両方とも基部の取り付け区画上に配置される場合、チップ・キャリアは、チップ・キャリアのために設けられている取り付け区画の取り付け面上に配置することができ、変換素子は、取り付け区画の、取り付け面に垂直に向けられている面上に配置することができる。
さらなる実施形態において、変換素子は、チップ・キャリア上に配置される。このように、変換素子からの熱を、同様にチップ・キャリア上に配置されているレーザ・チップのように、チップ・キャリアを介して、さらには、取り付け区画および基部の残りの部分を介して、確実に放散することができる。この構成において、変換素子は、上述したはんだ面によって、および、はんだを用いてチップ・キャリアに機械的かつ熱的に接続することができる。レーザ・チップは、取り付け面上に配置することができ、変換素子は、チップ・キャリアの、取り付け面に垂直に向けられている面上に配置することができる。レーザ・チップが、その付近でレーザ放射が放出される長手方向面でチップ・キャリア上に配置される場合、レーザ放射のシェーディングを回避するために、断面形状が段付きになっているチップ・キャリアの上述した構成を利用することができる。
レーザ・チップと変換素子をともにチップ・キャリア上に配置することによって、レーザ・チップと変換素子との間の距離を相対的に小さく、または、最小にすることが可能になる。結果として、変換素子上で相対的に高いまたは最大の電力密度を達成することが可能であり、それによって、輝度が高い放射放出を促進することができる。
さらに、上述した実施形態では、製造の状況で実行される光学的測定が、早ければレーザ・チップおよび変換素子をチップ・キャリア上に配置した後に実行されることを可能にする。複数のレーザ構成要素の製造中、欠陥のある構成要素を、より早期の段階において特定することができる。
さらなる実施形態において、レーザ構成要素は、基部上に配置されている複数の熱伝導性保持部分を備える。変換要素は、複数の保持部分上に配置される。このように、保持部分および基部を介して変換素子から熱を放散することができる。複数の保持部分によって、変換素子からの効率的な熱放散が可能である。保持部分は、熱伝導性セラミック材料を含むことができる。複数のはんだ面を備える変換素子の上述した構成は、変換素子を固定するために利用することができる。この場合、変換素子は、はんだ面によって、および、はんだを用いて保持部分に機械的かつ熱的に接続することができる。
上記で述べたように、レーザ・チップは、ヒートシンクとしての役割を果たすチップ・キャリア上に配置することができる。さらなる実施形態において、チップ・キャリアは、上述した熱伝導性保持部分のうちの1つの上に配置される。このように、レーザ構成要素の動作中、レーザ・チップ内で生成される熱を、チップ・キャリアさらには関連する保持部分および基部を介して放散することができる。
さらなる実施形態において、レーザ・チップ自体が、保持部分のうちの1つの上に配置される。この場合、関連する保持部分はチップ・キャリアとしての役割を果たすことができ、保持部分および基部を介してレーザ・チップから熱を放散することができる。保持部分にレーザ・チップを直に配置することによって、レーザ・チップからの熱の放散を促進することができる。さらに、コストの節約が可能である。
さらに、レーザ構成要素が、基部上に配置されている1つのまたは1つのみの熱伝導性保持部分を備える構成も考えられる。この場合もまた、レーザ・チップまたはレーザ・チップを担持するチップ・キャリアを、保持部分上に配置することができる。変換素子は、保持部分またはチップ・キャリア上に配置することができる。
基部に接続されているキャップは、放射透過性射出窓を備えることができる。レーザ構成要素の動作中、変換素子によって放出される光放射は、一次放射部分および二次放射部分を含み、射出窓を通過し、それによって、レーザ構成要素によって放出される。
さらなる実施形態において、キャップは、放射透過性光学素子を含む。この構成において、光学素子は、キャップの射出窓を形成することができる。この場合、変換素子によって放出される光放射は、光学素子を通過することができ、光学素子によってビーム成形を行うことができる。キャップ内に一体化されている光学素子は、たとえば、レンズであってもよい。このようにして、例えば、変換素子によって散乱された形態で放出され得る光放射は、集束される。
さらなる実施形態において、変換素子は、放射透過性光学素子を含む。変換素子の光学素子は、たとえば、レンズであってもよい。このようにしても、変換素子によって放出される光放射のビーム成形(たとえば、集束)を行うことができる。さらに、変換素子の光学素子は、さらなる熱放散を可能にする。光学素子は、変換素子の蛍光体層の、レーザ・チップから外方に面する面上に配置することができる。
熱伝導層とさらなる熱伝導層とを備え、それらの間に蛍光体層が配置される変換素子の上述した構成に関連して、光学素子は、さらなる熱伝導層上に配置することができる。
一体型光学素子を備える構成によって、光学素子を追加することなく、デバイスまたはシステム(たとえば、ヘッドライト)内でレーザ構成要素を使用することが可能になる。その結果として、システムレベルにおいても、コンパクトな設計が可能になる。
レーザ構成要素のさらなる構成および詳細を考慮することができる。電気的接触に関連して、基部は、たとえば、端子ピンを備えることができる。端子ピンは、基部上に、電気的に絶縁して固定することができ、基部を通じて延伸することができる。レーザ・チップは、端子ピンに電気接続することができる。電気接触構造、たとえば、ボンド・ワイヤ、および、チップ・キャリアまたは熱伝導性保持部分上のコンタクト・パッドを、この目的のために利用することができる。
レーザ構成要素は、ハウジング内に配置されている1つのみのレーザ・チップを備えてもよい。レーザ構成要素がハウジング内に配置されている複数のレーザ・チップを備え、同様にハウジング内に位置する変換素子が複数のレーザ・チップのレーザ放射で照射可能である、といった実施形態も可能である。複数のレーザ・チップは、ハウジング内で互いに並行して配置することができる。そのような構造に関連して、上記で説明した実施形態を、同様に利用することができる。例として、1つまたは複数の以下の構成が存在し得る。
各レーザ・チップが、専用チップ・キャリア上に配置されてもよい。代替的に、複数のレーザ・チップが、共通のチップ・キャリア上に配置されてもよい。チップ・キャリアは、キャップに接続されている基部の突出取り付け区画上に配置されてもよい。変換素子は同様に、取り付け区画上に配置されてもよい。変換素子がチップ・キャリア上に配置される構成も可能である。
基部上に配置されている複数の熱伝導性保持部分を備え、その上に配置されている変換素子を備えるレーザ構成要素の構成において、チップ・キャリアは、保持部分のうちの1つの上に配置されてもよい。複数のレーザ・チップが、関連する保持部分上に直に配置されることも可能である。これは、1つの熱伝導性保持部分を備え、その上にチップ・キャリアまたは複数のレーザ・チップが直に配置されるレーザ構成要素の構成に当てはまる。この場合、変換素子は、保持部分またはチップ・キャリア上に配置することができる。
本発明の一態様では、レーザ構成要素を製造するための方法を提案する。レーザ構成要素は、上述した構造、または、上述した1つもしくは複数の実施形態による構造を有する。本方法においては、レーザ・チップ、放射変換のための変換素子およびハウジング部分を含むレーザ構成要素の構成要素部分を準備する。そして、内部にレーザ・チップおよび変換素子が配置され、変換素子がレーザ・チップのレーザ放射で照射可能であるハウジングが提供されるように、レーザ構成要素の構成要素部分を組み立てる。
本方法によって製造されるレーザ構成要素は、ハウジング内に一体化されている変換素子を備える。結果として、レーザ構成要素をコンパクトに設計することができる。その上、変換素子は、レーザ・チップから小さい距離に配置することができる。結果として、輝度が高い放射放出によるレーザ構成要素の操作が可能である。
本方法に関連して、以下の実施形態を利用することができる。例として、変換素子は、蛍光体層と、熱伝導層とを備えることができる。熱伝導層の形成は、スパッタリング方法によって実行することができる。変換素子にはさらに、反射層を設けることができる。反射層は、蛍光体層の、レーザ構成要素内のレーザ・チップに向かい合う面上に形成することができる。フレーム形状に具現化することができる熱伝導層は、反射層上に形成することができる。熱伝導層および反射層を、蛍光体層の、レーザ構成要素内のレーザ・チップに向かい合う面上に形成することも可能である。この場合、反射層は、蛍光体層上で、蛍光体層が熱伝導層によって遮蔽されていない領域内に設けることができる。
さらに、変換素子を提供する際に、熱伝導層上に少なくとも1つのはんだ面を形成してもよい。さらに、たとえば、レンズのような光学素子を、蛍光体層上に、特に、蛍光体層の、レーザ構成要素内のレーザ・チップから外方に向かい合う面上に配置してもよい。
ハウジング部分に関しては、基部およびキャップを提供することができる。基部は、突出取り付け区画を備えることができる。レーザ・チップをチップ・キャリア上に配置することができ、チップ・キャリアはその後、取り付け区画上に配置することができる。変換素子も、取り付け区画上に配置することができる。変換素子をレーザ・チップとともにチップ・キャリア上に取り付け、その後、チップ・キャリアを取り付け区画上に配置することも可能である。上記で言及した工程の各事例において、はんだ付け工程を実行することができる。
さらに、基部、キャップ、および複数の熱伝導性保持部分を提供することが可能である。この場合、レーザ・チップが設けられているチップ・キャリアを、保持部分のうちの1つの上に配置することができ、この保持部分および少なくとも1つのさらなる保持部分を、基部上に取り付けることができる。その後、変換素子を、複数の保持部分上に固定することができる。レーザ・チップは、代替的に、保持部分のうちの1つの上に直に位置決めされてもよい。変換素子が保持部分上に予め取り付けられることも可能であり、関連する保持部分が基部上に固定され、変換素子が、すでに基部上に位置する少なくとも1つのさらなる保持部分上に固定されることも可能である。すでに基部上に存在する保持部分に、チップ・キャリアまたはレーザ・チップを設けることができる。上記で言及した工程の各事例において、はんだ付け工程を実行することができる。
本方法の終わりに、基部およびキャップを、たとえば、溶接によって互いに接続することができる。この工程の前に、たとえば、ボンド・ワイヤを接続することによって、基部上に配置されているレーザ・チップと端子ピンとの間の電気接続をさらに生成することができる。
上述したような、および/または、従属請求項において提示されているような、本発明の有利な実施形態および発展は、依存関係が一義的である場合、または、代替形態が両立しない場合を除き、個々にまたは他の様態で互いに任意に組み合わせて利用することができる。
本発明の上述した特性、特徴および利点、ならびに、それらが達成される様式は、概略図によってさらに詳細に説明され、例示的な実施形態の以下の説明によってさらに明瞭になり、さらに明瞭に理解される。
ハウジングと、レーザ・チップと、変換素子とを備え、ハウジングは基部と、キャップとを備え、変換素子は、蛍光体層と、蛍光体層上に配置されている反射層と、反射層上に配置されている熱伝導層とを備え、レーザ・チップは、チップ・キャリア上に配置されており、チップ・キャリアおよび変換素子は、基部の取り付け区画上に配置されている、レーザ構成要素の側面図である。 はんだ面を有する図1の変換素子の平面図である。 チップ・キャリアが段付き形状を有し、チップ・キャリア上に配置されている変換素子を備える、さらなるレーザ構成要素の側面図である。 チップ・キャリア上に配置されている変換素子を備える、さらなるレーザ構成要素の側面図である。 変換素子が両方の保持部分上に配置されており、レーザ・チップを担持するチップ・キャリアが1つの保持部分上に配置されており、基部上に配置されている2つの熱伝導性保持部分を備える、さらなるレーザ構成要素の側面図である。 2つのはんだ面を有する図5の変換素子の平面図である。 図5のレーザ構成要素を製造するためのステップを示す図である。 図5のレーザ構成要素を製造するためのステップを示す図である。 図5のレーザ構成要素を製造するためのステップを示す図である。 レーザ・チップが1つの保持部分上に配置されており、熱伝導性保持部分を備える、さらなるレーザ構成要素の側面図である。 レンズを備えるキャップを備える、さらなるレーザ構成要素の側面図である。 レンズを備えるキャップを備える、さらなるレーザ構成要素の側面図である。 レンズを備える変換素子を備える、さらなるレーザ構成要素の側面図である。 レンズを介した熱放散が示されている、図13のレーザ構成要素の構成要素部分の拡大図である。 レンズを備える変換素子を備える、さらなるレーザ構成要素の側面図である。 蛍光体層上に配置されている熱伝導層を備えた変換素子を備える、さらなるレーザ構成要素の側面図である。 蛍光体層上に配置されている熱伝導層を備えた変換素子を備える、さらなるレーザ構成要素の側面図である。 熱伝導層およびさらなる熱伝導層を備えた変換素子を備える、さらなるレーザ構成要素の側面図である。 熱伝導層およびさらなる熱伝導層を備えた変換素子を備える、さらなるレーザ構成要素の側面図である。
レーザ構成要素100の構成を、添付の概略図を参照しながら説明する。レーザ構成要素100は、ハウジング130と、レーザ放射190を生成するためのレーザ・チップ110と、放射変換のための蛍光体層161を備える変換素子160とを備える。上記変換素子は、レーザ放射190で照射可能である。レーザ・チップ110および変換素子160は、ハウジング130内に配置される。結果として、レーザ構成要素100は、コンパクトで空間を節約する構造を有することができる。さらに、変換素子160は、レーザ・チップ110から小さい距離に位置決めすることができ、その結果として、輝度が高い放射放出が可能である。レーザ構成要素100は、変換素子160からの熱の効率的な放散を達成することができるように構成される。レーザ構成要素100は、レーザパッケージと称される場合があり、蛍光体層161を備える一体型変換素子160のために、蛍光体層一体型レーザパッケージと称される場合がある。レーザ構成要素100は、白色光放射を生成するように構成することができるため、たとえば、動力車のヘッドライトに使用することができる。
図面は本質的に概略図に過ぎず、原寸に比例してはいないことを指摘しておく。この意味で、図面に示されている構成要素部分および構造は、より良好な理解をもたらすために、サイズを誇張するか、または、サイズを低減して示されている場合がある。同じように、レーザ構成要素100は、図示および説明されている構成要素部分および構造に加えて、さらなる構成要素部分および構造を備えてもよい。
図1は、レーザ構成要素100の概略側面図を示す。レーザ構成要素100は、ハウジング130と、レーザ・チップ110と、変換素子160とを備える。ハウジング130は、2つのハウジング部分、詳細には基部140と、基部140に接続されるキャップ150とを備える。ハウジング部分140、150は内部を包囲し、その中に、レーザ・チップ110および変換素子160が配置されている。これによって、レーザ・チップ110および変換素子160は、外的影響から保護される。ハウジング130は、TO缶とも称される、いわゆるTOハウジング(トランジスタ・アウトライン)であってもよい。この場合、基部140は、TOヘッダと称される場合もあり、キャップ150はTOキャップと称される場合もある。
ハウジング部分140、150は、金属材料を含むことができ、溶接接続によって互いに接続することができる。基部140から外方に面する面(図1の右側面)上で、キャップ150は、放射透過性材料から成る射出窓(図示せず)を備えることができる。動作中のレーザ構成要素100内で生成される光放射は、射出窓を介して放出することができる。
電気的接触のために、レーザ構成要素100は、基部140から外向きに突出する2つの端子ピン141を備える。端子ピン141は、基部140上に、電気的に絶縁して固定することができ、基部140を通じてハウジング130によって包囲されている内部へと延伸することができる。端子ピン141は、端子ピン141を介してレーザ・チップ110に電気エネルギーを供給することができるように、レーザ・チップ110に電気接続されている(各事例においては図示されていない)。この詳細については後述する。
レーザ・チップ110は、半導体レーザまたはレーザダイオードチップと称される場合がある、端面発光型レーザ・チップである。この構成において、レーザ・チップ110は、横側面115を備え、レーザ・チップ110はその動作中に横側面115を介してレーザ放射190を放出することができる。横側面115は、以下、放出ファセット115という。また、一次光放射としても参照されるレーザ放射190は、青色光放射であってもよい。図1に示すように、レーザ放射190は、放出ファセット115から特徴的なビーム広がりで放出することができる。レーザ・チップ110は、たとえば、mW範囲の出力、または何らかの他の出力、たとえば、W範囲内の出力を有することができる。
レーザ・チップは、放出ファセット115に隣接する2つの対向する面、すなわち、長手方向面111、112を有する。長手方向面111、112は、レーザ・チップ100の上面および下面を形成する。図1に示すように、レーザ放射190は、長手方向面のうちの1つの近傍(本事例においては、長手方向面111の近傍)において、放出ファセット115から放出される。
レーザ・チップ110は、p型ドープ半導体領域と、n型ドープ半導体領域と、それらの間に配置されている、放射を生成するための活性ゾーンとを備える(図示せず)。p型ドープ半導体領域は、長手方向面111の領域内に位置することができ、n型ドープ半導体領域よりも厚さが小さいものであり得る。n型ドープ半導体領域は、長手方向面112の領域内に位置することができる。さらに、レーザ・チップ110は、長手方向面111、112の各々の上に金属コンタクト・パッド(図示せず)を備える。レーザ放射190の生成および放出のための電気エネルギーは、コンタクト・パッドを介して、レーザ・チップ110に供給することができる。
レーザ構成要素100のさらなる構成部品は、図1に示すように、レーザ・チップ110を担持するチップ・キャリア120である。レーザ・チップ110は、チップ・キャリア120(レーザ・チップ110のために設けられている)の取り付け面上に配置される。チップ・キャリア120は、サブマウントと称される場合があり、レーザ・チップ110のヒートシンクとしての役割を果たす。チップ・キャリア120は、たとえば、窒化アルミニウムのような、熱伝導性セラミック材料を含むことができる。チップ・キャリア120およびレーザ・チップ110を備える構成は、チップ・オン・サブマウント・アセンブリ(COSA)と称される場合もある。
図1に示す設計の場合、レーザ・チップ110は、長手方向面111をチップ・キャリア120の上にして配置される。レーザ・チップ110のp型ドープ半導体領域およびn型ドープ半導体領域の上記で示した向きによれば、この構成は、pダウンという指定によって特徴付けることができ、これに関連して、レーザ・チップ110が設けられているチップ・キャリア120は、pダウンCOSAと指定することができる。図1は、レーザ・チップ110の放出ファセット115がチップ・キャリア120に対して横方向に突出するように、レーザ・チップ110がチップ・キャリア120上に配置されることをさらに示している。これによって、長手方向面111の近傍において放出されるレーザ放射190の、チップ・キャリア120によるシェーディングが防止される。
チップ・キャリア120は、取り付け面上の金属相手方コンタクト・パッドを備える。金属相手方コンタクト・パッドの上には、レーザ・チップ110が配置される。チップ・キャリア120の相手方コンタクト・パッドおよびレーザ・チップ110の長手方向面111上に存在するコンタクト・パッドは、たとえば、はんだのような導電性接続材料を介して互いに電気的かつ機械的に接続することができる(それぞれ図示せず)。
図1にさらに示すように、基部140は、同様に金属材料を含む、突出取り付け区画142を備える。取り付け区画142はまた、ステムとしても指定される場合がある。レーザ・チップ110が設けられているチップ・キャリア120は、チップ・キャリア120のために設けられている取り付け区画142の取り付け面上に配置される。チップ・キャリア120および取り付け区画142は、はんだによって互いに接続することができる。この目的のために、チップ・キャリア120の、レーザ・チップ110を有する面とは反対にあり、取り付け区画142に面している面上で、チップ・キャリア120は金属コーティングを有することができる(それぞれ図示せず)。
放射変換に使用される変換素子160は薄層構成を有し、図1に示すように、セラミック蛍光体層161と、蛍光体層161上に配置されている反射層162と、反射層162上に配置されている熱伝導層163とを備える。変換素子160は、取り付け面に垂直に向けられている取り付け区画142の端面上に配置されている。変換素子160は、そこから取り付け区画142に対して突出している。これによって、レーザ構成要素100の動作中、変換素子160には、レーザ・チップ110に向かい合う面上にレーザ放射190が照射される。
蛍光体層161は、変換素子160の、レーザ・チップ110から離れて面する面を形成し、この面を介して、レーザ構成要素100の動作中、レーザ放射を放出することができる。蛍光体層161は、レーザ・チップ110によって放出される一次青色光放射190を、より波長が長い1つの二次光放射または複数の異なる二次光放射に少なくとも部分的に変換するための、1つの蛍光体、または、複数の異なる蛍光体を含む。これは、たとえば、黄色、緑色および/または赤色の光放射を含んでもよい。このように、一次放射部分および二次放射部分、すなわち、非変換放射部分および変換放射部分(図示せず)を含み得る光放射は、レーザ・チップ110から離れて面する面上の蛍光体層161によってキャップ150の射出窓の方向に放出することができる。光放射は、白色を有してもよく、射出窓を介してレーザ構成要素100から放出することができる。
図2は、変換素子160の平面図を示し、これに基づいて、さらなる詳細が明らかになる。図1に関連して、図2は、変換素子160の、レーザ・チップ110に面する面を示す。反射層162上に配置されている熱伝導層163は、開口部165を有するフレーム形状構成を備える。開口部165の領域において、反射層162、および、下部に位置する蛍光体層161は、熱伝導層163によって遮蔽されない。このように、反射層162および蛍光体層161は、その領域内で、レーザ放射190で照射することができる。
蛍光体層161の、レーザ・チップ110に面する面上に位置する反射層162は、レーザ放射190が反射層162によって伝達(反射)されることによって、蛍光体層161内に導入され得るように構成されている。レーザ構成要素100の動作中、反射層162は、蛍光体層161内で生成される変換放射を反射することを可能にする。このように、レーザ・チップ110の方向における変換素子160からの放射の後方散乱、および、それと関連付けられる効率の損失を、最小限に抑えることができる。青色レーザ放射190に関連して、反射層162は、約500nmの波長を下回る光放射のみが層162を通過することができ、層162は、約500nmを上回る放射に対しては高度に反射性を有するように構成することができる。
図2は、破線によって、レーザ構成要素100の動作中、変換素子160、すなわち蛍光体層161を、レーザ放射190で照射することができる領域191を示している。図示されている楕円形の照射領域191は、レーザ・チップ110の楕円形モードプロファイルの結果である。さらなる破線は、活性領域195を示しており、その中で、変換素子160の、レーザ・チップ110から離れて面する面上にレーザ放射を放出することができる。活性領域195は、照射領域191よりも大きい。これは、すべての可能な空間方向における一次放射の吸収および二次放射の再放出を含む放射変換に起因し、蛍光体層161内で発生する散乱に起因する。図示されている矩形形状の先端において、放出領域195は、丸い、たとえば、楕円形または円形の幾何形状を有することができる。
図1に示すように、変換素子160は、レーザ・チップ110の放出ファセット115に直に近接して配置することができる。結果として、図2に示す照射領域191は相対的に小さくすることができ、領域191内に高い電力密度が存在し得る。結果として、変換素子160からの、すなわち、レーザ構成要素100からの輝度が高い放射放出を達成することが可能である。この目的のために、レーザ・チップ110と変換素子160との間に光学素子を使用する必要はない。
図2は、変換素子160が、熱伝導層163上に配置されているはんだ面167を備えることをさらに示す。はんだ面167は、はんだパッドと称される場合もあり、たとえば、インジウムから成る金属層の形態で構成されてもよい。変換素子160は、はんだ面167によって、および、はんだ(図示せず)を介して基部140の取り付け区画142に接続することができる。
上記で示したように、基部140上に配置されている端子ピン141が、レーザ・チップ110に電気接続されており、それによって、端子ピン141を介してレーザ・チップ110に電気エネルギーを供給することができる。これは、ボンド・ワイヤ(図示せず)によって実現することができる。この場合、一方の端子ピン141を、ボンド・ワイヤを介してレーザ・チップ110の長手方向面112上のコンタクト・パッドに接続することができる。他方の端子ピン141を、さらなるボンド・ワイヤを介してチップ・キャリア120の相手方コンタクト・パッドに接続することができ、上記相手方コンタクト・パッドは、レーザ・チップ110の長手方向面111上のコンタクト・パッドに電気接続されている。
レーザ・チップ110の動作は、レーザ・チップ110における発熱と関連付けられる。レーザ・チップ110に接続されているチップ・キャリア120を介して、さらには、上記チップ・キャリアに隣接する取り付け区画142および基部140の残りの部分を介して、効率的に熱を放散することができる。変換素子160の蛍光体層161において行われる放射変換も同様に、発熱をもたらす。蛍光体層161からの熱の効率的な放散は、工程における輝度を損なうことなく、以下のように達成することができる。
変換素子160の蛍光体層161は、熱伝導性が高い熱伝導性材料を含むことができ(図示せず)、その熱伝導性材料には、1つまたは複数の蛍光体が内部に埋め込まれている。蛍光体層161の熱伝導性材料は、たとえば、窒化アルミニウムであってもよい。結果として、生成された熱は、蛍光体層161内に分散され得る。
変換素子160の熱伝導層163によって熱拡散を行うことができ、上記熱伝導層は、反射層162を介して蛍光体層161に熱的に結合されている。この効果は、熱が上昇する点または領域を横方向に包囲することができるフレーム形状の熱伝導層163によって、促進することができる。熱伝導層163は、さらに、蛍光体層161から、隣接するヒートシンク(すなわち、本事例においては取り付け区画142、および、基部140の残りの部分)への熱伝達を可能にすることができる。高い効率を達成するために、熱伝導層163は、熱伝導性が高い材料、たとえば、例として銅のような金属材料から形成することができる。熱の効率的な放散は、さらに、変換素子160がはんだ面167を備え、はんだ接続を介して取り付け区画142に固定されることによって、促進することができる。
TOハウジング130を使用する場合には、すでに存在するゆえに、コストが効率的な製造技法を利用することができる、図1に示すレーザ構成要素100の製造(図示せず)は、以下のように実行することができる。この場合、レーザ構成要素100の構成要素部分、すなわち、ハウジング部分140、150、レーザ・チップ110、チップ・キャリア120および変換素子160が提供(準備)され、組み立てられる。
変換素子160を提供するために、1つまたは複数の蛍光体が内部に埋め込まれている熱伝導性材料を含むセラミック層要素を製造する。これは、後に、複数の矩形または平行六面体蛍光体層161に分割される。上記蛍光体層161の各々は、専用変換素子160の製造に使用される。そのような蛍光体層161は、製造されることになるレーザ構成要素100内のレーザ・チップ110に面する面に、反射層162がコーティングされる。その後、フレーム形状熱伝導層163が、反射層162上に形成される。これは、スパッタリング方法を実行することを含んでもよい。その後、はんだ面167が、熱伝導層163上に形成される。
はんだ付けによって、レーザ・チップ110は、チップ・キャリア120上に配置される。レーザ・チップ110がチップ・キャリア120上に配置された後、基部140の取り付け区画142上へのチップ・キャリア120の配置は、はんだ付けを用いて実行される。同様に、変換素子160は、取り付け区画142上にはんだ付けされる。
終わりに、基部140へのキャップ150の接続が実行される。この目的のために、溶接方法を実行することができる。事前に(すなわちキャッピングの前に)、端子ピン141がレーザ・チップ110に電気接続される。上記で示したように、ボンド・ワイヤを介した対応する電気接続が形成されるワイヤボンディング工程を、この目的のために実行することができる。
レーザ構成要素100、その構成部品および製造方法について考えられる変形形態および変更形態を、下記に説明する。すでに述べた特徴および利点や、同一のおよび同一に作用する構成要素部分は、下記では再び詳細には説明しない。それに関連する詳細については、代わりに上記の説明を参照されたい。さらに、レーザ構成要素100の1つの構成に関連して言及されている態様および詳細は、別の構成に関連して適用することもでき、2つまたは複数の構成の特徴を、互いに組み合わせることができる。
1つの可能な変更形態は、たとえば、変換素子160をチップ・キャリア120上に配置することである。そのような設計を説明するために、図3は、さらなるレーザ構成要素100の概略側面図を示す。レーザ構成要素100は、レーザ放射190を生成および放出するためのレーザ・チップ110と、放射変換のための変換素子160がその上に配置されているチップ・キャリア120とを備える。上記変換素子は、レーザ放射190で照射可能である。レーザ・チップ110は、チップ・キャリア120の取り付け面上に位置する。この点において、レーザ・チップ110のコンタクト・パッドを、はんだ(図示せず)を介してチップ・キャリア120の相手方コンタクト・パッドに接続することができる。
図3に示すように、変換素子160は、取り付け面に垂直に向けられている、チップ・キャリア120の端面上に配置されている。この点において、蛍光体層161と、反射層162と、熱伝導層163とを備える変換素子160は、金属はんだ面167を有する(図2参照)。チップ・キャリア120は、端面上に、それと協働する金属コーティングを有することができ、それによって、はんだ接続(図示せず)を介して変換素子160をチップ・キャリア120上に固定することができる。チップ・キャリア120の端面上、または、そこから、変換素子160は、チップ・キャリア120に対して突出している。それによって、変換素子160には、レーザ・チップ110に面する面上でレーザ放射190が照射される。
図3は、レーザ・チップ110が、長手方向面111をチップ・キャリア120上に配置されることをさらに示している。その長手方向面付近では、放出ファセット115を介してレーザ放射190が放出される(pダウン構成)。レーザ放射190のシェーディングを回避するために、図3に示すチップ・キャリア120は、矩形断面形状を有した図1のチップ・キャリア120の先端に側方突出肩部125を有する。したがって、図3に示すチップ・キャリア120は、断面において段付き形状を有する。この構成は、放出ファセット115を有する肩部125の領域においてレーザ・チップ110がチップ・キャリア120の取り付け面に対して横方向に突出するように、チップ・キャリア120上にレーザ・チップ110を取り付けることを可能にする。変換素子160が配置されているチップ・キャリア120の端面は、肩部125によって形成される。
図3からのレーザ構成要素100の場合、チップ・キャリア120は、基部140の取り付け区画142上に配置される。本事例において、チップ・キャリア120は、レーザ・チップ110と変換素子160の共通のヒートシンクとしての役割を果たすことができる。レーザ構成要素100の動作中、これらの構成要素部分110、160内で生成される熱を、チップ・キャリア120、チップ・キャリアに隣接する取り付け区画142、および基部140の残りの部分を介して、放散することができる。変換素子160に関連して、熱伝導層163は、蛍光体層161からチップ・キャリア120への熱伝達を可能にすることができる。
図3のレーザ構成要素100の場合、レーザ・チップ110および変換素子160をともにチップ・キャリア120上に配置することによって、レーザ・チップ110と変換素子160との間の距離を小さく、または、最小にすることが可能になる。レーザ構成要素100の動作中、変換素子160上で高いまたは最大の電力密度を提供することが可能である。その結果として、レーザ構成要素100は、相対的に高い輝度によって区別することができる。
図3のレーザ構成要素100の製造の際、レーザ・チップ110および変換素子160は、はんだ付けによってチップ・キャリア120上に配置することができる。その後、同様にはんだ付けによって、チップ・キャリア120を、取り付け区画142上に固定することができる。上記で言及した中からさらなるステップ(ワイヤボンディング、キャッピング)を実行し、レーザ構成要素100を完成させることができる。
図3のレーザ構成要素100に関連して、チップ・キャリア120上にレーザ・チップ110および変換素子160を配置した後という早期に、光学測定(COSAレベルにおける測定を含む)やテスト動作を実行することが可能である。複数のレーザ構成要素100の製造に関連して、このように、より早期の段階において欠陥のある構成要素を特定することが可能であり、それによって、より高い歩留まりを達成することが可能である。
上述した態様は、図4のレーザ構成要素100の事例に適用することができる。レーザ構成要素100は、矩形断面形状を有するチップ・キャリア120と、レーザ放射190を生成するためのレーザ・チップ110と、上記チップ・キャリア上に配置されている変換素子160とを備える。レーザ・チップ110は、取り付け面上に位置し、変換素子160は、チップ・キャリア120の、取り付け面に垂直に向けられている端面上に位置する。レーザ・チップ110は、変換素子160からの距離が小さいまたは最小の位置に位置決めされる。端面上から始まる変換素子160は、チップ・キャリア120に対して突出しており、それによって、変換素子160には、レーザ・チップ110に面する面上でレーザ放射190が照射される。
図4のレーザ構成要素100の場合、放出ファセット115を介してレーザ・チップ110によって放出されるレーザ放射190のシェーディングは、以下のように回避される。レーザ・チップ110は、放射放出が行われる長手方向面111付近ではなく、それとは反対の長手方向面112でチップ・キャリア120上に配置される。この点において、レーザ・チップ110のコンタクト・パッドを、はんだ(図示せず)を介してチップ・キャリア120の相手方コンタクト・パッドに接続することができる。レーザ・チップ110のp型ドープ半導体領域およびn型ドープ半導体領域の上記で示した向きに従って、この構成は、pアップという指定によって特徴付けることができる。
図5は、さらなるレーザ構成要素100の概略側面図を示す。レーザ構成要素100は、端子ピン141を有する基部140を備える。図1、図3、図4に示す構成とは対照的に、図5の基部140は、取り付け区画142を備えない。代わりに、複数の熱伝導性保持部分149(すなわち、本事例においては2つの熱伝導性保持部分)が、基部140上に配置される。保持部分149は、平行六面体に構成することができる。さらに、保持部分149は、たとえば、炭化ケイ素および金属コーティングのような、熱伝導性セラミック材料を含むことができる(図示せず)。基部140は、キャップ150に接続され、キャップは、基部140から離れて面する面上に射出窓(図示せず)を備えることができる。
図5にさらに示すように、レーザ・チップ110を設けられているチップ・キャリア120が、保持部分149のうちの1つの上に配置される。これは、図1に示し、上述したようなものと同じCOSA設計を含む。はんだ接続を介して、チップ・キャリア120を、保持部分149上に固定することができる(図示せず)。
図5のレーザ構成要素100の場合、放射変換に使用される変換素子160は、2つの熱伝導性保持部分149または2つの保持部分149の端面上に配置される。結果として、変換素子160は、保持部分149の間の中間空間を被覆し、その中にレーザ・チップ110が位置する。レーザ構成要素100の動作中、変換素子160には、レーザ・チップ110に面する面上で、レーザ・チップ110によって放出されるレーザ放射190が照射される。
図5のレーザ構成要素100の変換素子160も、セラミック蛍光体層161と、蛍光体層161上に配置されている反射層162と、反射層162上に配置されている熱伝導層163とを備える。レーザ・チップ110に面する面から見たときの変換素子160の平面図を示す図6を参照すると、ここでも、熱伝導層163が、開口部165を有するフレーム形状構成を備えることが明らかである。開口部165の領域において、反射層162および蛍光体層161は、レーザ放射で照射することができる。
図6では、レーザ放射190で照射される領域191、および、変換素子160の活性領域195を、破線によってさらに示している。また、図6では、変換素子160が、熱伝導層163上に配置されている2つのはんだ面167を備えることをさらに示している。このように、変換素子160は、はんだ面167によって、および、はんだ(図示せず)を介して、熱伝導性保持部分149に接続することができる。
図5のレーザ構成要素100の動作中、レーザ・チップ110内で生成される熱を、チップ・キャリア120を介して、さらには、チップ・キャリアに隣接する保持部分149および基部140を介して、放散することができる。2つの保持部分149を介して、さらには、基部140を介して、変換素子160から熱を放散することができる。この場合、変換素子160の熱伝導層163は、蛍光体層161から保持部分149への熱伝達を可能にすることができる。2つの保持部分149を備えるレーザ構成要素100の構成に起因して、変換素子160から熱を効率的に放散することが可能である。
図5に示すレーザ構成要素100を製造するために、ハウジング部分140、150、熱伝導性保持部分149、レーザ・チップ110、チップ・キャリア120および変換素子160が提供される。これらの構成要素部分のさらなる組み立ては、以下のように実行することができる。
レーザ・チップ110を、チップ・キャリア120上に配置することができる。図7に示す状態が存在するように、その後、レーザ・チップ110を設けられているチップ・キャリア120を、保持部分149上に取り付けることができ、関連する保持部分149をその後、基部140上に固定することができる。これらのステップにおいて、各事例においてはんだ付け工程を実行することができる。
その後、基部140上に配置されている端子ピン141を、レーザ・チップ110に電気接続することができる。ボンド・ワイヤを介した対応する電気接続が形成されるワイヤボンディング工程(図示せず)を、この目的のために実行することができる。この場合、一方の端子ピン141を、ボンド・ワイヤを介してレーザ・チップ110の長手方向面112上のコンタクト・パッドに接続することができる。他方の端子ピン141を、さらなるボンド・ワイヤを介してチップ・キャリア120の相手方コンタクト・パッドに接続することができ、相手方コンタクト・パッドは、レーザ・チップ110の長手方向面111上のコンタクト・パッドに電気接続されている。
その後、図8に示すように、他方の保持部分149を、はんだ付けによって基部140上に配置することができる。その後、図9に示すように、変換素子160を、保持部分149上にはんだ付けすることができる。基部140をさらに、キャップ150に接続することができる。このようにして、図5のレーザ構成要素100が完成する。
代替的に、図8に示す状態は、変換素子160が保持部分149上に予め取り付けられ、さらに、上記保持部分149が基部140上に固定され、変換素子160が、すでに基部140上に位置する保持部分149上に固定される手順によって、省略することができる。
図10は、基部140上に配置されている熱伝導性保持部分149を備える、さらなるレーザ構成要素100の概略側面図を示す。図5に示す構成とは対照的に、図10のレーザ構成要素100では、レーザ・チップ110は、保持部分149のうちの1つの上に直に配置される。関連する保持部分149は、チップ・キャリアとしての役割を果たす。レーザ・チップ110は、その近傍において、放出ファセット115を介してレーザ・チップ110からレーザ放射190が放出される長手方向面111とは反対の長手方向面112で、保持部分149上に取り付けられる。したがって、pアップ構成が実現される。これによって、レーザ放射190が保持部分149によってシェーディングされることが防止される。
レーザ・チップ110を担持する保持部分149は、金属相手方コンタクト・パッドを有し、金属相手方コンタクト・パッドは、レーザ・チップ110の長手方向面112上のコンタクト・パッドに電気接続されている。この構成においても、相手方コンタクト・パッドは、たとえば、ボンド・ワイヤを介して基部140の端子ピン141に電気接続されている(それぞれ図示せず)。
レーザ・チップ110の動作中にレーザ・チップ110内で生成される熱を、レーザ・チップに隣接する保持部分149および基部140を介して放散することができる。レーザ・チップ110を保持部分149上に直に配置することによって、図5に示すようにチップ・キャリア120を使用する場合と比較して、熱放散を改善することが可能になる。さらに、コストの節約を達成することができる。図10のレーザ構成要素100の製造は、図5のレーザ構成要素100の製造と同様に、レーザ・チップ110が保持部分149のうちの1つの上に直に配置されることで実行することができる。
図1、図3、図4、図5および図10に示した上記レーザ構成要素100の場合、光放射は、変換素子160から、すなわち、キャップ150の射出窓を介して散乱された形態で放出され得る。しかしながら、ビーム成形を達成するために、一体型光学素子を備えるレーザ構成要素100の構成も考慮され得る。
説明のために、図11は、図1のレーザ構成要素100の構成を発展させた、さらなるレーザ構成要素100の概略側面図を示す。図11のレーザ構成要素100は、基部140に離れて面する面上に、キャップ150を備える。キャップ150は、射出窓としての役割を果たすレンズ159を有する。これによって、関連する変換素子160によって放出される光放射を集束させることが可能である。これにより、レーザ構成要素100によって放出される光線のビームは、広がりを小さくすることができる。レーザ構成要素100の製造において、一体型レンズ159を有するキャップ150を提供することができる。
一体型レンズ159に起因して、図11からのレーザ構成要素100は、デバイスまたはシステム(たとえば、ヘッドライト)に使用することができ、追加の光学素子は使用しなくてもよくなる(図示せず)。その結果として、システムレベルにおいてコンパクトな設計が可能となる。
一体型レンズ159を有するキャップ150を備える構成は、図3、図4、図5および図10に示すレーザ構成要素100について適用することができる。図3に関連して、レーザ構成要素100のそのような構成は、たとえば、図12に示されている。
図13は、図1のレーザ構成要素100の構成を発展させた、さらなるレーザ構成要素100の概略側面図を示す。図13のレーザ構成要素100は、蛍光体層161と、反射層162と、熱伝導層163と、追加のレンズ169とを備える変換素子160を備える。変換素子160のレンズ169は、蛍光体層161の、レーザ構成要素100のレーザ・チップ110から離れて面する面上に配置される。この構成は、変換素子160によって放出される光放射を集束させることを可能にする。これによって、レーザ構成要素100によって放出される光線のビームの広がりを小さくすることができる。
レーザ構成要素100の製造において、または、変換素子160の提供において、レンズ169は、蛍光体層161上に取り付けることができる。レンズ169に起因して、レーザ構成要素100は、デバイスまたはシステムにおいて追加の光学素子を使用しなくてもよくなる。これによって、この構成においても、システムレベルにおいてコンパクトな設計が可能となる。
図13のレーザ構成要素100のキャップ150は、基部140から離れて面する面上に、射出窓を備える上述した設計を有することができる(図示せず)。レーザ・チップ110および蛍光体層161によってレーザ構成要素100内で生成され、レンズ169を通過し、レンズ169によって集束される光放射は、射出窓を介して放出することができる。
一体型レンズ169によって達成することができるさらなる利点は、変換素子160からの熱の放散が改善されることである。これについて、図14は、図13のレーザ構成要素100の構成要素部分の拡大図を示す。図14は、さらに、蛍光体層161における放射変換、および、蛍光体層161からの光放出を行うことができる活性領域195を示す。蛍光体層161上に配置されているレンズ169は、図14において矢印によって示されているように、追加の熱放散を可能にする。その結果として、この構成において、活性領域195の冷却を促進することができ、熱管理を改善することが可能である。
図3、図4、図5および図10に示すレーザ構成要素100について、一体型レンズ169を有する変換素子160を利用することによって、対応する構成を実現することが可能である。図3に関連して、レーザ構成要素100のそのような設計は、たとえば、図15に示されている。
図16は、図1のレーザ構成要素100の変更形態である、さらなるレーザ構成要素100の概略側面図を示す。図16のレーザ構成要素100は、蛍光体層161と、反射層162(図16には示されていない)と、熱伝導層163とを備える変換素子160を備える。熱伝導層163は、蛍光体層161上に直に、すなわち、蛍光体層161の、レーザ構成要素100のレーザ・チップ110に面する面上に配置される。これは反射層162にも当てはまる。熱伝導層163は、図2に示すような、開口部165を有するフレーム形状構成を備える。反射層162は、蛍光体層161上で、熱伝導層163の開口部165内に配置される。レーザ構成要素100の製造における変換素子160を提供する過程において、2つの層162、163を蛍光体層161上に、連続して形成することができる。
上述した構成は、図3、図4、図5、図10、図11、図12、図13および図15に示すレーザ構成要素100の変換素子160に適用できる。図3に関連して、そのような実施形態は、たとえば、図17に示されている。
図18は、図1からのレーザ構成要素100の変更形態である、さらなるレーザ構成要素100の概略側面図を示す。図18のレーザ構成要素100は、蛍光体層161と、反射層162と、熱伝導層163と、さらなる熱伝導層263とを備える変換素子160を備える。さらなる熱伝導層263によって、追加の熱放散を可能にすることができ、結果として、蛍光体層161からの熱の効率的な放散を促進することができる。
図18に示すように、熱伝導層163およびさらなる熱伝導層263は、変換素子160の対向する両面(レーザ構成要素100のレーザ・チップ110に面し、レーザ・チップ110のレーザ放射190で照射可能な面、および、変換素子160の、その面とは反対の、光放出に使用される面)上に位置する。蛍光体層161は、熱伝導層163と、さらなる熱伝導層263との間に配置される。
追加の熱伝導層263とは別に、図18のレーザ構成要素100の変換素子160の構造は、図1のレーザ構成要素100の変換素子160に対応する。反射層162は、蛍光体層161の、レーザ・チップ110に面する面上に位置する。熱伝導層163は、反射層162上に配置される。熱伝導層163は、図2に示す構成、すなわち、開口部165を有するフレーム形状構成を有する。それによって、この領域において、反射層162および蛍光体層161を、レーザ・チップ110のレーザ放射190で照射することができる。
図18に示すように、さらなる熱伝導層263は、蛍光体層上161に直に、すなわち、蛍光体層161の、レーザ・チップ110から離れて面する面上に配置される。さらなる熱伝導層263は、熱伝導層163に対応するように構成される。この意味で、さらなる熱伝導層263は、熱伝導性が高い材料、たとえば銅のような金属材料から形成される。その上、さらなる熱伝導層263は、図2に対応する構成、すなわち、開口部(図示せず)を有するフレーム形状構成を有する。このように、光は、さらなる熱伝導層263の開口部を介して変換素子160から放出することができる。変換素子160の提供においてさらなる熱伝導層263を形成することは、他方の熱伝導層163に対応するように、スパッタリング方法を実行することを含んでもよい。
2つの熱伝導層163、263を備える上述した構成は、図3、図4、図5、図10、図11、図12、図13および図15に示すレーザ構成要素100の変換素子160に適用できる。図13および図15に示すレーザ構成要素100に関連して、さらなる熱伝導層263は、蛍光体層161の、レーザ・チップ110から外方に面する面上に配置することができ、レンズ169は、さらなる熱伝導層263上に配置することができる。
さらに、2つの熱伝導層163、263を備える変換素子160を使用することが可能であり、その場合、一方のみではなく、両方の熱伝導層163、263が、蛍光体層161上に直に配置される。
例示的な説明のために、図19は、図16のレーザ構成要素100の変更形態である、さらなるレーザ構成要素100の概略側面図を示す。図19のレーザ構成要素100は、蛍光体層161と、反射層162(図19には示されていない)と、熱伝導層163と、さらなる熱伝導層263とを備える変換素子160を備える。熱伝導層163およびさらなる熱伝導層263は、変換素子160の対応する両面上に位置する。蛍光体層161は、熱伝導層163と、さらなる熱伝導層263との間に配置される。
図19に示すように、熱伝導層163は、蛍光体層161上に直に、すなわち、蛍光体層161の、レーザ構成要素100のレーザ・チップ110に面する面上に配置される。これはまた、反射層162にも当てはまる。熱伝導層163は、図2に示すような、開口部165を有するフレーム形状構成を備える。反射層162は、蛍光体層161上で、熱伝導層163の開口部165内に配置される。
さらなる熱伝導層263は、蛍光体層上161に直に、すなわち、図19に示すように、蛍光体層161の、レーザ・チップ110から外方に面する面上に配置される。さらなる熱伝導層263は、熱伝導層163と同様に、図2に対応する、開口部を有するフレーム形状構成を備える(図示せず)。
蛍光体層161上に直に配置されている2つの熱伝導層163、263を備える上述した構成は、図3、図4、図5、図10、図11、図12、図13および図15に示すレーザ構成要素100の変換素子160に適用できる。図13および図15に示すレーザ構成要素100に関連して、さらなる熱伝導層263は、蛍光体層161の、レーザ・チップ110から外方に面する面上に配置することができ、レンズ169は、さらなる熱伝導層263上に配置することができる。
図示および上述したる実施形態に加えて、特徴のさらなる修正および/または組み合わせを含んだ、さらなる実施形態が考えられる。
図11〜図15を参照して説明した実施形態に関連して、たとえば、レンズ159、169の代わりに、ビーム成形のための他の光学素子を使用することが可能である。これらは、たとえば、マイクロレンズアレイまたはマイクロプリズムアレイを含む光学素子を含む。
さらに、一体型光学素子を有する変換素子160、さらには、一体型光学素子を有するキャップ150を備えるレーザ構成要素100を実現することが可能である。
図5および図10に示すような、取り付け区画142を有しない基部140を備えるレーザ構成要素100に関連して、基部140上に配置されている異なる数またはより多数の熱伝導性保持部分149を備える代替的な構成を適用してもよい。この場合、変換素子160は、複数の保持部分149上に配置することができる。また、レーザ・チップ110を設けられているチップ・キャリア120またはレーザ・チップ110は、保持部分149のうちの1つの上に配置することができる。さらに、たとえば、基部140上に配置されている1つのみの熱伝導性保持部分149を備える構成が可能であり、変換素子160と、レーザ・チップ110が設けられているチップ・キャリア120またはレーザ・チップ110とは、上記保持部分上に配置される。
さらに、上述した構成は、単一の放出器、すなわち単一のレーザ・チップ110を備えるレーザ構成要素100に限定されない。ハウジング130内に配置されており、一体型変換素子160を照射する役割を果たす複数の放出器またはレーザ・チップ110を備える同等の構造を有するレーザ構成要素100がさらに考えられる。
これまでの説明において、たとえば、各レーザ・チップ110を、専用チップ・キャリア120上に配置することが可能である。代替的に、複数のレーザ・チップ110の共通のチップ・キャリア120を提供することが可能である。チップ・キャリア120または共通のチップ・キャリア120は、基部140の取り付け区画142上に配置することができる。変換素子160はまた、取り付け区画142上に取り付けられてもよい。代替的に、変換素子160は、複数のチップ・キャリア120または共通のチップ・キャリア120上に配置されてもよい。さらに、複数の熱伝導性保持部分149がその上に配置されている、取り付け区画142を有しない基部140が利用されてもよい。この場合、チップ・キャリア120または共通のチップ・キャリア120は、保持部分149のうちの1つの上に配置することができる。1つまたは複数のチップ・キャリア120を使用することも、未然に防ぐことができる。この場合、複数のレーザ・チップ110を、保持部分149のうちの1つの上に直に配置することができる。複数のレーザ・チップ110を備えるレーザ構成要素100は、横から見たときに、図1、図3、図4、図5、図10、図11、図12、図13、図15、図16、図17、図18、図19に対応する構造を有することができる。この場合、複数のレーザ・チップ110を、関連する図面の描写面に垂直に、互いに平行に配置することができる。
変換素子160の熱伝導層163、263に関連し、さらなる変更を考慮に入れることができる。金属とは別に、そのような層は、何らかの他の材料、たとえば、セラミック、ダイヤモンド、サファイア、または、カーボン・ナノチューブを埋め込まれた一次材もしくはマトリクス材から形成されてもよい。
本発明について、好ましい例示的な実施形態を用いて、より特定的に、詳細に、説明したが、本発明は、開示されている例に限定されず、本発明の保護範囲から逸脱することなく、当業者によってそこから他の変形形態を導出することができる。
本特許出願は、独国特許出願公開第10 2016 113 470.8号の優先権を主張し、当該特許文献の開示内容は、参照により本明細書に組み込まれる。
100 レーザ構成要素
110 レーザ・チップ
111 面
112 面
115 放出ファセット
120 チップ・キャリア
125 肩部
130 ハウジング
140 基部
141 端子ピン
142 取り付け区画
149 保持部分
150 キャップ
159 レンズ
160 変換素子
161 蛍光体層
162 反射層
163 熱伝導層
165 開口部
167 はんだ面
169 レンズ
190 レーザ放射
191 照射領域
195 活性領域
263 熱伝導層

Claims (20)

  1. ハウジング(130)と、
    前記ハウジング(130)内に配置されているレーザ・チップ(110)と、
    放射変換のための変換素子(160)であって、前記ハウジング(130)内に配置されており、前記レーザ・チップ(110)のレーザ放射(190)で照射可能である、変換素子(160)と、
    を備える、レーザ構成要素(100)。
  2. 前記変換素子(160)は、蛍光体層(161)を備える、
    請求項1に記載のレーザ構成要素。
  3. 前記蛍光体層(161)は、1つの蛍光体または複数の蛍光体が内部に埋め込まれている熱伝導性材料を含む、
    請求項2に記載のレーザ構成要素。
  4. 前記変換素子(160)は、前記蛍光体層(161)から熱を放散するための熱伝導層(163)を備える、
    請求項2または3に記載のレーザ構成要素。
  5. 前記熱伝導層(163)は、
    材料である、金属、セラミック、ダイヤモンド、サファイア、カーボン・ナノチューブが埋め込まれているマトリクス材のうちの1つから形成される、
    請求項4に記載のレーザ構成要素。
  6. 前記蛍光体層(161)は前記熱伝導層(163)によって部分的に遮蔽されており、前記蛍光体層(161)は、前記蛍光体層(161)が前記熱伝導層(163)によって遮蔽されていない領域において、前記レーザ・チップ(110)のレーザ放射(190)で照射可能である、
    請求項4または5に記載のレーザ構成要素。
  7. 前記熱伝導層(163)は開口部(165)を有するフレーム形状構成を備え、前記蛍光体層(161)は、前記熱伝導層(163)の前記開口部(165)を介して、前記レーザ・チップ(110)のレーザ放射(190)で照射可能である、
    請求項4〜6のいずれか一項に記載のレーザ構成要素。
  8. 前記変換素子(160)はさらなる熱伝導層(263)を備え、前記蛍光体層(161)は、前記熱伝導層(161)と前記さらなる熱伝導層(263)との間に配置される、
    請求項4〜7のいずれか一項に記載のレーザ構成要素。
  9. 前記変換素子(160)は前記蛍光体層(161)上に配置されている反射層(162)を備え、前記蛍光体層(161)は、前記反射層(162)を介して、前記レーザ・チップ(110)のレーザ放射(190)で照射可能である、
    請求項2〜8のいずれか一項に記載のレーザ構成要素。
  10. 前記変換素子(160)は、はんだ面(167)を備える、
    請求項1〜9のいずれか一項に記載のレーザ構成要素。
  11. 前記ハウジング(130)は、基部(140)と、前記基部(140)に接続されているキャップ(150)とを備える、
    請求項1〜10のいずれか一項に記載のレーザ構成要素。
  12. 前記基部(140)は、突出取り付け区画(142)を備える、
    請求項11に記載のレーザ構成要素。
  13. 前記変換素子(160)は、前記突出取り付け区画(142)上に配置されている、
    請求項12に記載のレーザ構成要素。
  14. 前記レーザ・チップ(110)は、チップ・キャリア(120)上に配置されており、前記チップ・キャリア(120)は、前記突出取り付け区画(142)上に配置されている、
    請求項12または13に記載のレーザ構成要素。
  15. 前記変換素子(160)は、前記チップ・キャリア(120)上に配置されている、
    請求項14に記載のレーザ構成要素。
  16. 前記基部(140)上に配置されている複数の熱伝導性保持部分(149)を備える前記レーザ構成要素であって、前記変換素子(160)は、前記複数の熱伝導性保持部分(149)上に配置されている、
    請求項11に記載のレーザ構成要素。
  17. 前記レーザ・チップ(110)は、前記熱伝導性保持部分(149)のうちの1つの上に配置されているか、
    または、前記レーザ・チップ(110)は、チップ・キャリア(120)上に配置されており、前記チップ・キャリア(120)は、前記保持部分(149)のうちの1つの上に配置されている、
    請求項16に記載のレーザ構成要素。
  18. 前記変換素子(160)は、光学素子(169)を備え、かつ/または、前記ハウジング(130)のキャップ(150)であって、前記ハウジング(130)の基部(140)に接続されている前記キャップ(150)が、光学素子(159)を備える、
    請求項1〜17のいずれか一項に記載のレーザ構成要素。
  19. 前記変換素子(160)は、前記レーザ・チップ(110)に面し、前記レーザ・チップ(110)の前記レーザ放射(190)で照射可能である面と、光放出のための、前記面とは反対の面とを備える、
    請求項1〜18のいずれか一項に記載のレーザ構成要素。
  20. 請求項1〜19のいずれか一項に記載のレーザ構成要素を製造するための方法であって、
    レーザ・チップ(110)、放射変換のための変換素子(160)およびハウジング部分を含む前記レーザ構成要素の構成要素部分を準備するステップと、
    内部に前記レーザ・チップ(110)および前記変換素子(160)が配置され、前記変換素子(160)が前記レーザ・チップ(110)のレーザ放射(190)で照射可能であるハウジング(130)が提供されるように、前記レーザ構成要素の前記構成要素部分を組み立てるステップと、
    を含む、方法。
JP2017141345A 2016-07-21 2017-07-20 レーザ構成要素およびレーザ構成要素を製造するための方法 Active JP6514281B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016113470.8A DE102016113470A1 (de) 2016-07-21 2016-07-21 Laserbauelement
DE102016113470.8 2016-07-21

Publications (2)

Publication Number Publication Date
JP2018014500A true JP2018014500A (ja) 2018-01-25
JP6514281B2 JP6514281B2 (ja) 2019-05-15

Family

ID=60890063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017141345A Active JP6514281B2 (ja) 2016-07-21 2017-07-20 レーザ構成要素およびレーザ構成要素を製造するための方法

Country Status (4)

Country Link
US (1) US10431954B2 (ja)
JP (1) JP6514281B2 (ja)
KR (1) KR102346887B1 (ja)
DE (1) DE102016113470A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6906721B1 (ja) * 2020-08-12 2021-07-21 三菱電機株式会社 半導体レーザ装置
US11131433B2 (en) 2018-08-20 2021-09-28 Nichia Corporation Fluorescent module and illumination device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10108079B2 (en) 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
KR101929465B1 (ko) * 2016-10-18 2019-03-14 주식회사 옵텔라 광학모듈
DE102018203694B4 (de) * 2018-03-12 2021-12-23 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Bestrahlungseinheit mit Pumpstrahlungsquelle und Konversionselement
DE102018118762A1 (de) * 2018-08-02 2020-02-06 Osram Opto Semiconductors Gmbh Laserbauelement mit einem Laserchip
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system
JP2021027136A (ja) * 2019-08-02 2021-02-22 CIG Photonics Japan株式会社 光モジュール
DE102020215038A1 (de) 2020-11-30 2022-06-02 Robert Bosch Gesellschaft mit beschränkter Haftung Laserdiodenvorrichtung
DE102021112359A1 (de) 2021-05-12 2022-11-17 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronische leuchtvorrichtung
DE102021131795A1 (de) * 2021-12-02 2023-06-07 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Laserbauelement und verfahren zur herstellung eines laserbauelements

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183065U (ja) * 1984-11-07 1986-06-02
JP2003243761A (ja) * 2002-02-19 2003-08-29 Matsushita Electric Ind Co Ltd 半導体パッケージ
JP2004207551A (ja) * 2002-12-26 2004-07-22 Ricoh Co Ltd 光学装置およびその製造方法および光学装置部品およびその製造方法
WO2007105647A1 (ja) * 2006-03-10 2007-09-20 Nichia Corporation 発光装置
US20080116473A1 (en) * 2006-11-21 2008-05-22 Nichia Corporation Semiconductor light emitting device
JP2009099664A (ja) * 2007-10-15 2009-05-07 Nichia Corp 発光装置
JP2011171504A (ja) * 2010-02-18 2011-09-01 Stanley Electric Co Ltd 発光装置
JP2012186326A (ja) * 2011-03-07 2012-09-27 Nichia Chem Ind Ltd 半導体レーザ駆動装置の製造方法
WO2013175773A1 (ja) * 2012-05-22 2013-11-28 パナソニック株式会社 波長変換素子およびその製造方法ならびに波長変換素子を用いたled素子および半導体レーザ発光装置
WO2015020205A1 (ja) * 2013-08-09 2015-02-12 株式会社光波 発光装置
WO2015178223A1 (ja) * 2014-05-21 2015-11-26 日本電気硝子株式会社 波長変換部材及びそれを用いた発光装置
US20150357790A1 (en) * 2013-04-01 2015-12-10 Lg Electronics Inc. Laser light source device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286498A (ja) * 1999-03-31 2000-10-13 Fuji Photo Film Co Ltd 半導体レーザモジュール、及び半導体レーザモジュールの作成方法
EP1278086A1 (de) * 2001-07-18 2003-01-22 Alcatel Kugellinse und opto-elektronisches Modul mit derselben
US7462983B2 (en) * 2003-06-27 2008-12-09 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. White light emitting device
DE102005034793B3 (de) * 2005-07-21 2007-04-19 G.L.I. Global Light Industries Gmbh Lichtemittierende Halbleiterdiode hoher Lichtleistung
US8410681B2 (en) * 2008-06-30 2013-04-02 Bridgelux, Inc. Light emitting device having a refractory phosphor layer
US9151468B2 (en) * 2010-06-28 2015-10-06 Axlen, Inc. High brightness illumination devices using wavelength conversion materials
DE102013101598B9 (de) * 2013-02-18 2023-10-19 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements
JP6742684B2 (ja) * 2014-09-30 2020-08-19 日亜化学工業株式会社 光部品及びその製造方法ならびに発光装置及びその製造方法
US10938182B2 (en) * 2015-08-19 2021-03-02 Soraa Laser Diode, Inc. Specialized integrated light source using a laser diode

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183065U (ja) * 1984-11-07 1986-06-02
JP2003243761A (ja) * 2002-02-19 2003-08-29 Matsushita Electric Ind Co Ltd 半導体パッケージ
JP2004207551A (ja) * 2002-12-26 2004-07-22 Ricoh Co Ltd 光学装置およびその製造方法および光学装置部品およびその製造方法
WO2007105647A1 (ja) * 2006-03-10 2007-09-20 Nichia Corporation 発光装置
US20080116473A1 (en) * 2006-11-21 2008-05-22 Nichia Corporation Semiconductor light emitting device
JP2009099664A (ja) * 2007-10-15 2009-05-07 Nichia Corp 発光装置
JP2011171504A (ja) * 2010-02-18 2011-09-01 Stanley Electric Co Ltd 発光装置
JP2012186326A (ja) * 2011-03-07 2012-09-27 Nichia Chem Ind Ltd 半導体レーザ駆動装置の製造方法
WO2013175773A1 (ja) * 2012-05-22 2013-11-28 パナソニック株式会社 波長変換素子およびその製造方法ならびに波長変換素子を用いたled素子および半導体レーザ発光装置
US20150357790A1 (en) * 2013-04-01 2015-12-10 Lg Electronics Inc. Laser light source device
WO2015020205A1 (ja) * 2013-08-09 2015-02-12 株式会社光波 発光装置
WO2015178223A1 (ja) * 2014-05-21 2015-11-26 日本電気硝子株式会社 波長変換部材及びそれを用いた発光装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11131433B2 (en) 2018-08-20 2021-09-28 Nichia Corporation Fluorescent module and illumination device
US11585494B2 (en) 2018-08-20 2023-02-21 Nichia Corporation Fluorescent module and illumination device
JP6906721B1 (ja) * 2020-08-12 2021-07-21 三菱電機株式会社 半導体レーザ装置
WO2022034653A1 (ja) * 2020-08-12 2022-02-17 三菱電機株式会社 半導体レーザ装置
US11699890B2 (en) 2020-08-12 2023-07-11 Mitsubishi Electric Corporation Semiconductor laser machine

Also Published As

Publication number Publication date
US20180026421A1 (en) 2018-01-25
JP6514281B2 (ja) 2019-05-15
KR102346887B1 (ko) 2022-01-04
KR20180011024A (ko) 2018-01-31
DE102016113470A1 (de) 2018-01-25
US10431954B2 (en) 2019-10-01

Similar Documents

Publication Publication Date Title
JP6514281B2 (ja) レーザ構成要素およびレーザ構成要素を製造するための方法
US9595806B2 (en) Laser light-emitting apparatus
US7656307B2 (en) Vehicle lighting device and LED light source therefor
TWI307176B (en) Led-array
JP4254276B2 (ja) 発光装置およびその製造方法
JP4182784B2 (ja) 発光装置およびその製造方法
JP2016092364A (ja) 発光装置及び灯具
US20190207071A1 (en) Radiation-emitting component
US8227829B2 (en) Semiconductor light-emitting device
JP6074742B2 (ja) 光源ユニット及びこれを用いた車両用前照灯
US20230033309A1 (en) Semiconductor laser device
CN112636160B (zh) 激光器
JP6560902B2 (ja) 光源装置及びこれを用いた照明装置
JP6519163B2 (ja) 光源装置、この光源装置を備えた車両用灯具及びその光源装置の製造方法
JP7050045B2 (ja) パッケージ、発光装置、およびレーザ装置
CN112438000B (zh) 半导体发光装置及半导体发光装置的制造方法
KR101163850B1 (ko) 발광 소자 패키지
JP2007080867A (ja) 発光装置
JP5742629B2 (ja) 発光装置及びこれを備えた照明器具
KR100878398B1 (ko) 고출력 led 패키지 및 그 제조방법
JP2019075460A (ja) 半導体発光素子および半導体発光装置
WO2023074674A1 (ja) 車両用灯具
US20230420325A1 (en) Thermal pad structures for led packages with reduced sizes
JP2023089984A (ja) 発光装置
JP3128615U (ja) 発光ダイオード

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180829

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190411

R150 Certificate of patent or registration of utility model

Ref document number: 6514281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250