JP2018011648A - 測定装置および検出装置 - Google Patents

測定装置および検出装置 Download PDF

Info

Publication number
JP2018011648A
JP2018011648A JP2016141677A JP2016141677A JP2018011648A JP 2018011648 A JP2018011648 A JP 2018011648A JP 2016141677 A JP2016141677 A JP 2016141677A JP 2016141677 A JP2016141677 A JP 2016141677A JP 2018011648 A JP2018011648 A JP 2018011648A
Authority
JP
Japan
Prior art keywords
light emitting
unit
light
distance
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2016141677A
Other languages
English (en)
Inventor
哲雄 眞野
Tetsuo Mano
哲雄 眞野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2016141677A priority Critical patent/JP2018011648A/ja
Priority to US15/639,388 priority patent/US20180020961A1/en
Publication of JP2018011648A publication Critical patent/JP2018011648A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6844Monitoring or controlling distance between sensor and tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0242Operational features adapted to measure environmental factors, e.g. temperature, pollution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

【課題】測定対象の状態が変化した場合でも酸素飽和度を高精度に特定する。【解決手段】第1波長の光を測定部位に出射する第1発光部と、前記第1波長とは異なる第2波長の光を前記測定部位に出射する第2発光部と、前記測定部位の内部を通過した光を受光して検出信号を生成する受光部と、前記検出信号から酸素飽和度を算定する解析処理部とを具備し、前記第1発光部および前記第2発光部の各々による発光位置と前記受光部による受光位置との距離は可変である測定装置。【選択図】図2

Description

本発明は、酸素飽和度等の生体情報を測定するための技術に関する。
酸素飽和度等の生体情報を非侵襲で測定する各種の測定技術が従来から提案されている。例えば特許文献1には、生体を通過した発光体要素からの出射光を受光体要素により受光することで酸素飽和度を測定する構成が開示されている。所望の測定精度が実現されるように発光体要素と受光体要素との距離は選定される。測定対象からの受光レベルを示す検出信号のうち定常成分に対する変動成分(脈動成分)の信号成分比に応じて酸素飽和度を推定することが可能である。
特開2013−533774号公報
ところで、測定対象となる生体の状態は随時に変動する。例えば、低温環境では血流量が減少した低潅流状態となり得る。低潅流状態では検出信号の信号成分比が低下するから、酸素飽和度の測定精度が低下するという問題がある。以上の事情を考慮して、本発明の好適な態様は、測定対象の状態が変化した場合でも酸素飽和度を高精度に特定することを目的とする。
以上の課題を解決するために、本発明の好適な態様の測定装置は、第1波長の光を測定部位に出射する第1発光部と、第1波長とは異なる第2波長の光を測定部位に出射する第2発光部と、測定部位の内部を通過した光を受光して検出信号を生成する受光部と、検出信号から酸素飽和度を算定する解析処理部とを具備し、第1発光部および第2発光部の各々による発光位置と受光部による受光位置との距離は可変である。以上の構成では、第1発光部および第2発光部の各々による発光位置と受光部による受光位置との距離が可変であるから、測定部位の状態が変化した場合(例えば低潅流状態)でも酸素飽和度を高精度に特定することが可能である。
本発明の好適な態様において、解析処理部は、検出信号における定常成分に対する変動成分の信号成分比を算定する第1処理部と、信号成分比から酸素飽和度を特定する第2処理部とを含む。以上の態様では、検出信号における定常成分と変動成分との信号成分比を利用して酸素飽和度を高精度に特定することが可能である。
本発明の好適な態様の測定装置は、信号成分比が第1閾値を下回る場合に、発光位置と受光位置との距離を増加させる測定制御部を具備する。以上の態様では、信号成分比が第1閾値を下回る場合に発光位置と受光位置との距離が増加するから、例えば低潅流状態でも酸素飽和度を高精度に測定することが可能である。また、第1閾値を上回る第2閾値を信号成分比が上回る場合に、発光位置と受光位置との距離を減少させる構成によれば、第1発光部および第2発光部を発光させるために必要な電力を削減することが可能である。
本発明の好適な態様において、第1発光部および第2発光部の各々は、受光部からの距離が相違する複数の発光素子を含み、測定制御部は、第1発光部および第2発光部の各々について、複数の発光素子の何れかを選択的に発光させることで発光位置と受光位置との距離を変化させる。以上の態様では、複数の発光素子の何れかを選択的に発光させる簡易な構成により、発光位置と受光位置との距離を変化させることが可能である。
本発明の好適な態様において、受光部は、第1発光部および第2発光部からの距離が相違する複数の受光素子を含み、測定制御部は、複数の受光素子の何れかを選択することで発光位置と受光位置との距離を変化させる。以上の態様では、複数の受光素子の何れかを選択する簡易な構成により、発光位置と受光位置との距離を変化させることが可能である。なお、複数の受光素子の何れかを選択する動作は、例えば、検出信号の生成を実行する受光素子を複数の受光素子から選択する動作、または、複数の受光素子が生成した検出信号の何れかを選択する動作である。
本発明の好適な態様において、発光位置と受光位置との距離は、利用者による操作で変更可能であり、信号成分比が第1閾値を下回る場合に、発光位置と受光位置との距離を増加させる指示を利用者に報知する操作指示部を具備する。以上の態様では、信号成分比が第1閾値を下回る場合に発光位置と受光位置との距離を増加させる指示が利用者に報知されるから、低潅流状態でも酸素飽和度を高精度に測定することが可能である。また、第1閾値を上回る第2閾値を信号成分比が上回る場合に、発光位置と受光位置との距離を減少させる指示を利用者に報知する構成によれば、第1発光部および第2発光部を発光させるために必要な電力を削減することが可能である。
本発明の好適な態様における測定装置は、測定部位の皮膚温度または環境温度を参照温度として検出する温度検出部と、参照温度が閾値を下回る場合に、発光位置と受光位置との距離を増加させる測定制御部とを具備する。以上の態様では、参照温度が閾値を下回る場合に、発光位置と受光位置との距離が増加するから、例えば低潅流状態でも酸素飽和度を高精度に測定することが可能である。また、本発明の他の態様に係る測定装置は、測定部位の皮膚温度または環境温度を参照温度として検出する温度検出部と、参照温度が閾値を下回る場合に、発光位置と受光位置との距離を増加させる指示を利用者に報知する操作指示部とを具備する。以上の態様では、参照温度が閾値を下回る場合に、発光位置と受光位置との距離を増加させる指示が利用者に報知されるから、低潅流状態でも酸素飽和度を高精度に測定することが可能である。
本発明の好適な態様に係る検出装置は、酸素飽和度の測定に使用される検出信号を生成する検出装置であって、第1波長の光を測定部位に出射する第1発光部と、第1波長とは異なる第2波長の光を測定部位に出射する第2発光部と、測定部位の内部を通過した光を受光して検出信号を生成する受光部とを具備し、第1発光部および第2発光部の各々による発光位置と受光部による受光位置との距離は可変である。以上の構成では、第1発光部および第2発光部の各々による発光位置と受光部による受光位置との距離が可変であるから、測定部位の状態が変化した場合(例えば低潅流状態)でも、酸素飽和度を高精度に特定可能な検出信号を生成することが可能である。
本発明の第1実施形態に係る測定装置の側面図である。 測定装置の機能に着目した構成図である。 検出装置の平面図である。 解析処理部の構成図である。 信号成分比と測定誤差との関係を示すグラフである。 発受光間距離と信号成分比との関係を示すグラフである。 皮膚温度と信号成分比との関係を示すグラフである。 測定制御部が発受光間距離を設定する処理のフローチャートである。 酸素飽和度と変動比との関係を示すグラフである。 第2実施形態における検出装置の平面図である。 第3実施形態における検出装置の平面図および断面図である。 第3実施形態における測定装置の機能的な構成図である。 操作指示部が変更指示を利用者に報知する処理のフローチャートである。 第4実施形態における検出装置の平面図および断面図である。 第5実施形態における測定装置の構成図である。 第6実施形態における測定装置の構成図である。
<第1実施形態>
図1は、本発明の第1実施形態に係る測定装置100の側面図である。第1実施形態の測定装置100は、被験者の生体情報を非侵襲的に測定する生体計測機器であり、被験者の身体のうち測定対象となる部位(以下「測定部位」という)Mに装着される。第1実施形態の測定装置100は、筐体部12とベルト14とを具備する腕時計型の携帯機器であり、測定部位Mの例示である手首に帯状のベルト14を巻回することで被験者の手首に装着可能である。第1実施形態の測定装置100は、被験者の手首の表面に接触する。第1実施形態では酸素飽和度(SpO2)を生体情報として例示する。酸素飽和度は、被験者の血液中のヘモグロビンのうち酸素と結合したヘモグロビンの割合(%)を意味し、被験者の呼吸機能を評価するための指標である。
図2は、測定装置100の機能に着目した構成図である。図2に例示される通り、第1実施形態の測定装置100は、制御装置20と記憶装置22と表示装置24と操作装置26と検出装置28Aとを具備する。制御装置20および記憶装置22は筐体部12の内部に設置される。図1に例示される通り、表示装置24(例えば液晶表示パネル)は、筐体部12の表面(例えば測定部位Mとは反対側の表面)に設置され、測定結果を含む各種の画像を制御装置20による制御のもとで表示する。操作装置26は、利用者(例えば被験者または測定者)からの操作を受付ける入力機器である。例えば、利用者が操作可能な複数の操作子、または表示装置24の表示面に対する接触を検知するタッチパネルが操作装置26として好適に利用される。
図2の検出装置28Aは、測定部位Mの状態に応じた検出信号Pを生成するセンサーモジュールであり、例えば筐体部12のうち測定部位Mとの対向面に設置される。図2に例示される通り、第1実施形態の検出装置28Aは、第1発光部31と第2発光部32と受光部35と駆動回路37とA/D変換器38とを具備する。
第1発光部31および第2発光部32の各々は、測定部位Mに対して光を出射する光源である。第1発光部31は、波長λ1(第1波長の例示)の光を測定部位Mに出射する。第2発光部32は、波長λ1とは異なる波長λ2(第2波長の例示)の光を測定部位Mに出射する。第1実施形態では、第1発光部31が赤色光(例えばλ1=600nm〜800nm)を出射し、第2発光部32が近赤外光(例えばλ2=800nm〜1300nm)を出射する場合を便宜的に想定する。ただし、波長λ1および波長λ2の具体的な数値は以上の例示に限定されない。駆動回路37は、駆動電流の供給により第1発光部31および第2発光部32の各々を発光させる。
第1発光部31および第2発光部32の各々からの出射光は、測定部位Mに入射するとともに測定部位Mの内部で反射および散乱を繰返したうえで筐体部12側に出射して受光部35に到達する。すなわち、第1実施形態の検出装置28Aは、第1発光部31と第2発光部32と受光部35とが測定部位Mに対して一方側に位置する反射型の光学センサーである。受光部35は、測定部位Mから到達する光の受光レベルに応じた検出信号Pを生成する。拡張時と収縮時とで血管内の血液による吸光量は相違するから、測定部位Mからの受光レベルに応じて受光部35が生成する検出信号Pは、測定部位Mの内部の動脈の脈動成分(容積脈波)に対応した周期的な変動成分を含む脈波信号である。A/D変換器38は、受光部35が生成した検出信号Pをアナログからデジタルに変換する。
図3は、検出装置28Aの平面図である。筐体部12のうち測定部位Mとの対向面に、相互に直交するX軸とY軸とを想定する。図3に例示される通り、第1実施形態では、第1発光部31が1個の発光素子EAで構成され、第2発光部32が1個の発光素子EBで構成される。発光素子EAおよび発光素子EBの各々は、例えば発光ダイオード(LED:Light Emitting Diode)である。発光素子EAと発光素子EBとはY軸方向に配列する。
図3に例示される通り、第1実施形態の受光部35は、複数の受光素子R[n]で構成される(n=1,2,3)。各受光素子R[n]は、例えば、測定部位Mに対向する受光面で光を受光するフォトダイオード(PD:Photo Diode)である。複数の受光素子R[n]は、第1発光部31および第2発光部32からみてX方向の正側の領域に、相互に間隔をあけてX方向に配列する。したがって、発光素子EA(第1発光部31による発光位置)と複数の受光素子R[n]の各々(受光部35による受光位置)との距離は相違する。同様に、発光素子EB(第2発光部32による発光位置)と複数の受光素子R[n]の各々との距離は相違する。以上の構成において、複数の受光素子R[n]の各々が受光レベルに応じた検出信号Pを生成可能であるが、第1実施形態では、複数の受光素子R[n]の何れかが生成した検出信号Pが酸素飽和度の算定に選択的に利用される。なお、第1発光部31および第2発光部32と受光部35との間には、第1発光部31または第2発光部32から直接的に受光部35側に進行する光を遮光する遮光壁18が設置される。
図2の制御装置20は、CPU(Central Processing Unit)またはFPGA(Field-Programmable Gate Array)等の演算処理装置であり、測定装置100の全体を制御する。記憶装置22は、例えば不揮発性の半導体メモリーで構成され、制御装置20が実行するプログラムと制御装置20が使用する各種のデータとを記憶する。第1実施形態の制御装置20は、記憶装置22に記憶されたプログラムを実行することで、被験者の酸素飽和度を特定するための複数の機能(解析処理部42,情報報知部44,測定制御部46)を実現する。なお、制御装置20の機能を複数の集積回路に分散した構成、または、制御装置20の一部または全部の機能を専用の電子回路で実現した構成も採用され得る。また、図2では制御装置20と記憶装置22とを別体の要素として図示したが、記憶装置22を内包する制御装置20を例えばASIC(Application Specific Integrated Circuit)等により実現することも可能である。
解析処理部42は、検出装置28A(受光部35)が生成した検出信号Pから被験者の酸素飽和度を算定する。情報報知部44は、解析処理部42が算定した酸素飽和度を利用者に報知する。具体的には、情報報知部44は、酸素飽和度を測定結果として表示装置24に表示させる。なお、情報報知部44が音声出力で測定結果を利用者に報知することも可能である。解析処理部42による酸素飽和度の算定と情報報知部44による酸素飽和度の報知とは、例えば所定の時間毎に反復的に実行される。なお、酸素飽和度が所定の範囲外の数値に変動した場合に、情報報知部44が利用者に警告(呼吸機能の障害の可能性)を報知する構成も好適である。
第1実施形態の解析処理部42は、検出信号Pから算定される変動比Φと酸素飽和度との相関を利用して酸素飽和度を特定することが可能である。変動比Φは、以下の数式(1)で表現される通り、信号成分比C1に対する信号成分比C2の比率である。信号成分比C1は、第1発光部31が波長λ1の光(赤色光)を出射したときの検出信号Pの変動成分Q1(AC)と定常成分Q1(DC)との強度比である。信号成分比C2は、第2発光部32が波長λ2の光(近赤外光)を出射したときの検出信号Pの変動成分Q2(AC)と定常成分Q2(DC)との強度比である。変動成分Q1(AC)および変動成分Q2(AC)は、被験者の動脈の脈動に連動して周期的に変動する成分(脈波成分)であり、例えば検出信号Pの高域成分としてハイパスフィルターで抽出される。定常成分Q1(DC)および定常成分Q2(DC)は、時間的に定常的に維持される成分(直流成分)であり、例えば検出信号Pの低域成分としてローパスフィルターで抽出される。
Figure 2018011648
図4は、第1実施形態の解析処理部42の構成図である。図4に例示される通り、解析処理部42は、第1処理部421と第2処理部422とを含んで構成される。第1処理部421は、数式(1)の信号成分比C1および信号成分比C2を検出信号Pから算定する。第1実施形態では、検出装置28Aの駆動回路37が、脈拍と比較して充分に短い周期で第1発光部31と第2発光部32とを時分割で交互に発光させる。第1処理部421は、第1発光部31の発光時の検出信号Pから変動成分Q1(AC)と定常成分Q1(DC)とを算定し、定常成分Q1(DC)に対する変動成分Q1(AC)の強度比を信号成分比C1として算定する。同様に、第1処理部421は、第2発光部32の発光時の検出信号Pから変動成分Q2(AC)と定常成分Q2(DC)とを算定し、定常成分Q2(DC)に対する変動成分Q2(AC)の強度比を信号成分比C2として算定する。なお、第1発光部31および第2発光部32の消灯時(すなわち太陽光や照明光等の環境光のみの受光時)の受光レベルを検出信号Pから減算したうえで変動成分Q1(AC)および変動成分Q2(AC)と定常成分Q1(DC)および定常成分Q2(DC)とを算定することも可能である。
図4の第2処理部422は、第1処理部421が算定した信号成分比C1および信号成分比C2から酸素飽和度Sを特定する。具体的には、第2処理部422は、信号成分比C1と信号成分比C2とを適用した数式(1)の演算で変動比Φを算定し、変動比Φの各数値と酸素飽和度Sの各数値との対応が登録された相関テーブルTを参照して変動比Φに対応する酸素飽和度Sを特定する。相関テーブルTを利用した酸素飽和度Sの特定については後述する。
図5は、信号成分比C1および信号成分比C2と酸素飽和度Sの測定誤差[%]との関係を示すグラフである。図5から理解される通り、信号成分比C(C1,C2)が高いほど酸素飽和度Sの測定誤差が低減されるという傾向がある。すなわち、変動成分Q1(AC)が定常成分Q1(DC)に対して大きいほど、または、変動成分Q2(AC)が定常成分Q2(DC)に対して大きいほど、酸素飽和度Sの測定誤差は低減される。例えば、測定誤差を4%以下に低減するためには、0.2を上回る信号成分比C1および信号成分比C2が必要である。
他方、図6は、発受光間距離dと信号成分比C1および信号成分比C2との関係を示すグラフである。発受光間距離dは、発光位置と受光位置との間の距離を意味する。図6では、通常の潅流状態(以下「通常状態」という)と低潅流状態との各々について発受光間距離dと信号成分比C(C1,C2)との関係が併記されている。図6から理解される通り、発受光間距離dと信号成分比Cとは相互に相関する。具体的には、発受光間距離dが増加するほど信号成分比Cが上昇するという傾向がある。したがって、酸素飽和度Sの測定誤差を充分に低減し得る信号成分比Cを確保するためには、発受光間距離dを増加させる必要がある。他方、第1発光部31および第2発光部32から出射して測定部位Mの内部を通過した光を充分な強度で受光位置に到達させるためには、発受光間距離dが大きいほど、第1発光部31および第2発光部32に供給すべき駆動電流の電流量を増加させる必要がある。以上の説明から理解される通り、発受光間距離dを増加させるほど、測定精度が向上する一方で消費電力が増加するという傾向がある。
また、図6から理解される通り、低潅流状態では通常状態と比較して、同等の発受光間距離dに対する信号成分比Cが低いという傾向がある。すなわち、低潅流状態において所望の信号成分比Cを確保するためには、通常状態と比較して発受光間距離dを増加させる必要がある。
以上の説明から理解される通り、通常状態において所望の信号成分比Cが確保できるように発受光間距離dを比較的に短い寸法に固定的に設定した場合には、消費電力を低減できる反面、低潅流状態のもとで充分な信号成分比Cを確保できず、酸素飽和度Sの測定誤差が低下するという問題がある。他方、低潅流状態のもとで所望の信号成分比Cが確保できるように発受光間距離dを比較的に長い寸法に固定的に設定した場合には、酸素飽和度Sを高精度に測定できる反面、通常状態のもとで必要以上に消費電力を浪費するという問題がある。以上の傾向を背景として、第1実施形態では、被験者の潅流状態に応じて発受光間距離dを変化させることが可能である。具体的には、低潅流状態では、通常状態と比較して発受光間距離dを増加させる。図2の測定制御部46は、発受光間距離dを可変に制御する要素である。
図7は、測定部位Mの皮膚温度と信号成分比C1および信号成分比C2との関係を示すグラフである。皮膚温度が低下するほど被験者の潅流は低下する(すなわち血流量が減少する)から、図7の横軸に図示された皮膚温度は潅流の度合の指標として利用できる。図7に例示される通り、測定部位Mの皮膚温度(潅流の度合)と信号成分比Cとは相互に相関する。具体的には、測定部位Mの皮膚温度に連動して潅流が低下するほど、信号成分比Cが低下するという概略的な傾向が図7から確認できる。以上の傾向を考慮すると、解析処理部42が検出信号Pから算定する信号成分比Cを、測定部位Mの潅流の度合の指標として利用することが可能である。具体的には、信号成分比Cが低いほど測定部位Mの潅流が低下した状態であると評価できる。以上の傾向を考慮して、第1実施形態の測定制御部46は、信号成分比C1または信号成分比C2に応じて発受光間距離dを可変に制御する。
前述の通り、第1実施形態の受光部35は、複数の受光素子R[n]で構成される。測定制御部46は、受光部35の複数の受光素子R[n]のうち解析処理部42による酸素飽和度Sの特定に実際に利用する受光素子R[n]を選択することで発受光間距離dを変化させる。具体的には、図3に例示される通り、測定制御部46が受光素子R[1]を選択することで発受光間距離dは距離d1に設定される。同様に、受光素子R[2]の選択により発受光間距離dは距離d2に設定され、受光素子R[3]の選択により発受光間距離dは距離d3に設定される。
図8は、測定制御部46が発受光間距離dを設定する処理(受光素子R[n]を選択する処理)のフローチャートである。例えば操作装置26に対する操作で利用者が酸素飽和度Sの測定を指示した場合に図8の処理が開始される。
図8の処理を開始すると、測定制御部46は、信号成分比C(信号成分比C1または信号成分比C2)が閾値CTH1を下回るか否かを判定する(SA1)。信号成分比Cが閾値CTH1を下回る場合(SA1:YES)、すなわち測定部位Mが低潅流状態にあると推定できる場合、測定制御部46は、通常状態の場合と比較して発受光間距離dを増加させる(SA2)。具体的には、測定制御部46は、受光素子R[3]を選択することで発受光間距離dを距離d3に設定する。前述の通り、酸素飽和度Sの測定誤差を4%以内に低減するためには、信号成分比C1および信号成分比C2を0.2%以上に維持する必要がある。そこで、閾値CTH1(第1閾値の例示)は例えば0.2に設定される。図6から理解される通り、信号成分比Cが0.2である場合の発受光間距離dは約6mmであるから、距離d3は6mm以上(例えば7mm〜8mm)の寸法に設定される。以上の例示のように発受光間距離dが充分に確保されるから、低潅流状態でも充分な信号成分比Cを確保して高精度に酸素飽和度Sを測定することが可能である。
信号成分比Cが閾値CTH1を上回る場合(SA1:NO)、測定制御部46は、信号成分比C(信号成分比C1または信号成分比C2)が閾値CTH2を上回るか否かを判定する(SA3)。閾値CTH2(第2閾値の例示)は、閾値CTH1を上回る数値であり(CTH2>CTH1)、例えば0.4に設定される。信号成分比Cが閾値CTH2を上回る場合には、発受光間距離dを低潅流状態の場合と比較して短縮しても0.2%以上の信号成分比Cを確保することが可能である。そこで、信号成分比Cが閾値CTH2を上回る場合(SA3:YES)、測定制御部46は、低潅流状態の場合と比較して発受光間距離dを減少させる(SA4)。具体的には、測定制御部46は、受光素子R[1]を選択することで発受光間距離dを距離d1に設定する。
他方、信号成分比Cが閾値CTH1と閾値CTH2との間の数値(CTH1≦C≦CTH2)である場合(SA3:NO)、測定制御部46は、受光素子R[2]を選択することで発受光間距離dを距離d2に設定する(SA5)。なお、駆動回路37が第1発光部31および第2発光部32に供給する駆動信号の電流量を測定制御部46が信号成分比Cに応じて可変に制御することも可能である。具体的には、信号成分比Cが閾値CTH1を下回る場合(低潅流状態)には、閾値CTH1を上回る場合と比較して大きい電流量に駆動信号が設定される。他方、信号成分比Cが閾値CTH2を上回る場合には、閾値CTH2を下回る場合と比較して小さい電流量に駆動信号が設定される。
図9は、前掲の数式(1)で算定される変動比Φと酸素飽和度Sとの関係を例示するグラフである。図9では、発受光間距離dを変化させた複数の場合の各々について変動比Φと酸素飽和度Sとの関係が併記されている。変動比Φと酸素飽和度Sとが相互に相関するという前述の傾向が図9から確認できる。具体的には、変動比Φが大きいほど酸素飽和度Sは低いという概略的な傾向がある。また、変動比Φと酸素飽和度Sとの関係は発受光間距離dに応じて変動する。以上の傾向を考慮して、第1実施形態の記憶装置22は、図4に例示される通り、発受光間距離dの相異なる数値に対応する複数の相関テーブルTを記憶する。任意の1個の発受光間距離dに対応する相関テーブルTは、当該発受光間距離dのもとでの変動比Φと酸素飽和度Sとの各数値の対応(すなわち図9に例示された関係)が登録されたデータテーブルである。解析処理部42の第2処理部422は、相異なる発受光間距離dに対応する複数の相関テーブルTのうち、測定制御部46が選択した発受光間距離dに対応した相関テーブルTから、数式(1)で算定した変動比Φに対応する酸素飽和度Sを測定結果として特定する。
以上に例示した通り、第1実施形態では、発受光間距離dが可変であるから、測定部位Mの状態が変化した場合(例えば低潅流状態)でも酸素飽和度Sを高精度に測定することが可能である。第1実施形態では特に、酸素飽和度Sの特定に利用される信号成分比Cが発受光間距離dの選定に流用される。したがって、酸素飽和度Sの特定とは無関係の指標に応じて発受光間距離dを設定する構成と比較して、発受光間距離dを制御するための構成や処理が簡素化されるという利点がある。
第1実施形態では、信号成分比Cが閾値CTH1を下回る場合に発受光間距離dが増加するから、低潅流状態でも酸素飽和度Sを高精度に測定することが可能である。また、信号成分比Cが閾値CTH2を上回る場合には発受光間距離dが減少するから、第1発光部31および第2発光部32を発光させるために必要な電流量を削減することが可能である。
<第2実施形態>
本発明の第2実施形態を説明する。以下に例示する各態様において作用や機能が第1実施形態と同様である要素については、第1実施形態の説明で使用した符号を流用して各々の詳細な説明を適宜に省略する。
第2実施形態の測定装置100は、第1実施形態の検出装置28Aを図10の検出装置28Bに置換した構成である。図10に例示される通り、第2実施形態の第1発光部31は、X方向に配列する複数の発光素子EA[n]で構成され、第2発光部32は、X方向に配列する複数の発光素子EB[n]で構成される(n=1,2,3)。すなわち、複数の発光素子EA[n]の間で受光部35からの距離は相違し、複数の発光素子EB[n]の間で受光部35からの距離は相違する。他方、受光部35は1個の受光素子Rで構成される。第2実施形態の測定制御部46は、駆動回路37が駆動する発光素子EA[n]および発光素子EB[n]を選択する(複数の発光素子EA[n]の何れかおよび複数の発光素子EB[n]の何れかを選択的に発光させる)ことで発受光間距離dを可変に制御する。
具体的には、信号成分比Cが閾値CTH1を下回る場合(SA1:YES)、測定制御部46は、発光素子EA[3]および発光素子EB[3]を選択して駆動回路37に駆動させることで発受光間距離dを距離d3に設定する(SA2)。他方、信号成分比Cが閾値CTH2を上回る場合(SA3:YES)、測定制御部46は、発光素子EA[1]および発光素子EB[1]を選択して駆動回路37に駆動させることで発受光間距離dを距離d1に設定する(SA4)。また、信号成分比Cが閾値CTH1と閾値CTH2との間の数値である場合(SA3:NO)、測定制御部46は、発光素子EA[2]および発光素子EB[2]を選択して駆動回路37に駆動させることで発受光間距離dを距離d2に設定する。以上の例示から理解される通り、第2実施形態においても第1実施形態と同様の効果が実現される。
なお、複数の受光素子R[n]の何れかを選択する第1実施形態の構成と、複数の発光素子EA[n]の何れかおよび複数の発光素子EB[n]の何れかを選択する第2実施形態の構成との双方を採用することも可能である。具体的には、測定制御部46は、第1発光部31の複数の発光素子EA[n]の何れかと第2発光部32の複数の発光素子EB[n]の何れかとを選択し、かつ、受光部35の複数の受光素子R[n]の何れかを選択する。発光素子EA[n]と発光素子EB[n]と受光素子R[n]との組合せに応じて発受光間距離dが可変に設定される。
<第3実施形態>
第3実施形態では、第1実施形態の検出装置28Aが図11の検出装置28Cに置換される。検出装置28Cは、第1発光部31と第2発光部32と受光部35とに加えて支持体52と移動体54とを具備する。第1発光部31は1個の発光素子EAで構成され、第2発光部32は1個の発光素子EBで構成される。また、受光部35は1個の受光素子Rで構成される。
第1発光部31と第2発光部32とは移動体54に設置される。支持体52は移動体54を支持する。具体的には、移動体54は、X方向に移動可能な状態で支持体52に支持される。利用者は、移動体54を適宜に操作することで、支持体52に対してX方向の任意の位置に移動体54を移動させることが可能である。第1発光部31および第2発光部32は、移動体54とともにX方向に移動する。他方、支持体52に対する受光部35の位置は固定である。以上の説明から理解される通り、利用者は手動で発受光間距離dを変更することが可能である。
図12は、第3実施形態における測定装置100の機能に着目した構成図である。図12に例示される通り、第3実施形態の測定装置100の制御装置20は、第1実施形態と同様の解析処理部42および情報報知部44に加えて操作指示部48として機能する。すなわち、第3実施形態では第1実施形態の測定制御部46が操作指示部48に置換される。解析処理部42が検出信号Pから酸素飽和度Sを特定する処理、および、情報報知部44が測定結果を利用者に報知する処理は、第1実施形態と同様である。
操作指示部48は、発受光間距離dの変更の指示(以下「変更指示」という)を利用者に報知する。具体的には、操作指示部48は、解析処理部42が算定する信号成分比C(C1,C2)に応じた発受光間距離dの変更指示を表示装置24に表示させる。図13は、操作指示部48が変更指示を利用者に報知する処理のフローチャートである。例えば酸素飽和度Sの測定が利用者から指示された場合に図13の処理が開始される。
図13の処理を開始すると、操作指示部48は、信号成分比C(信号成分比C1または信号成分比C2)が閾値CTH1を下回るか否かを判定する(SB1)。信号成分比Cが閾値CTH1を下回る場合(SB1:YES)、すなわち測定部位Mが低潅流状態にあると推定できる場合、操作指示部48は、発受光間距離dを増加させる変更指示を利用者に報知する(SB2)。例えば、「発光位置を受光位置から離して下さい」等のメッセージが変更指示として表示装置24に表示される。変更指示を確認した利用者は、移動体54をX方向の負側に移動させることで発受光間距離dを増加させる。以上の手順で発受光間距離dが充分に確保されるから、低潅流状態でも充分な信号成分比Cを確保して高精度に酸素飽和度Sを測定することが可能である。発受光間距離dが増加した場合、駆動回路37は駆動信号の電流量を増加させる。
信号成分比Cが閾値CTH1を上回る場合(SB1:NO)、操作指示部48は、信号成分比C(信号成分比C1または信号成分比C2)が閾値CTH2を上回るか否かを判定する(SB3)。第1実施形態と同様に、閾値CTH2は、閾値CTH1を上回る数値(例えば0.4)に設定される。信号成分比Cが閾値CTH2を上回る場合(SB3:YES)、操作指示部48は、発受光間距離dを減少させる変更指示を利用者に報知する(SB4)。例えば、「発光位置を受光位置に近付けて下さい」等のメッセージが変更指示として表示装置24に表示される。変更指示を確認した利用者は、移動体54をX方向の正側に移動させることで発受光間距離dを減少させる。発受光間距離dが減少した場合、駆動回路37は駆動信号の電流量を減少させる。他方、信号成分比Cが閾値CTH1と閾値CTH2との間の数値である場合(SB3:NO)、操作指示部48は、利用者に変更指示を報知しない。したがって、発受光間距離dは変更されることなく維持される。
以上に例示した通り、第3実施形態では、第1実施形態と同様に、発受光間距離dが可変であるから、測定部位Mの状態が変化した場合(例えば低潅流状態)でも酸素飽和度Sを高精度に測定することが可能である。第3実施形態では特に、酸素飽和度Sの特定に利用される信号成分比Cが利用者に対する変更指示に流用される。したがって、酸素飽和度Sの特定とは無関係の指標に応じて変更指示の要否を判定する構成と比較して、変更指示を利用者に報知するための構成や処理が簡素化されるという利点がある。
第3実施形態では、信号成分比Cが閾値CTH1を下回る場合に、発受光間距離dを増加させる変更指示が利用者に付与されるから、低潅流状態でも酸素飽和度Sを高精度に測定することが可能である。また、信号成分比Cが閾値CTH2を上回る場合には、発受光間距離dを減少させる変更指示が利用者に付与されるから、第1発光部31および第2発光部32を発光させるために必要な電流量を削減することが可能である。
<第4実施形態>
第4実施形態では、第3実施形態の検出装置28Cが図14の検出装置28Dに置換される。検出装置28Dは、第1発光部31と第2発光部32と受光部35と支持体52と移動体54とを具備する。第1発光部31は、発光素子EAと導光部581とを具備する。導光部581は、発光素子EAからの出射光を測定部位M側に導く光学素子である。第2発光部32は、発光素子EBと導光部582とを具備する。導光部582は、発光素子EBからの出射光を測定部位M側に導く光学素子である。発光素子EAおよび発光素子EBは支持体52に設置され、導光部581および導光部582は移動体54に設置される。なお、導光部581と導光部582とを一体に構成することも可能である。受光部35は、第3実施形態と同様に1個の受光素子Rで構成される。
第3実施形態と同様に、移動体54は、X方向に移動可能な状態で支持体52に支持される。利用者は、移動体54を適宜に操作することで、支持体52に対してX方向の任意の位置に移動体54を移動させることが可能である。発光素子EAおよび発光素子EBの位置は固定である一方、導光部581および導光部582は移動体54とともにX方向に移動する。他方、支持体52に対する受光部35の位置は固定である。
第4実施形態では、導光部581が第1発光部31の発光位置に相当し、導光部582が第2発光部32の発光位置に相当する。したがって、第4実施形態の発受光間距離dは、導光部581および導光部582の各々と受光部35との距離である。以上の説明から理解される通り、第4実施形態では、第3実施形態と同様に、利用者が手動で発受光間距離dを変更することが可能である。
制御装置20(解析処理部42,情報報知部44,操作指示部48)の動作は第3実施形態と同様である。例えば、操作指示部48は、信号成分比Cが閾値CTH1を下回る場合に発受光間距離dの増加を利用者に指示し、信号成分比Cが閾値CTH2を上回る場合に発受光間距離dの減少を利用者に指示する。したがって、第4実施形態においても第3実施形態と同様の効果が実現される。
<第5実施形態>
第1実施形態から第4実施形態では、測定部位Mの潅流の度合の指標として信号成分比Cを利用したが、測定部位Mの潅流の度合は、測定部位Mの皮膚温度または環境温度(例えば測定装置100が使用される環境の温度)にも依存する。具体的には、皮膚温度または環境温度が低いほど測定部位Mの潅流は低下する。以上の事情を考慮して、第5実施形態および第6実施形態では、測定部位Mの潅流の度合に影響し得る皮膚温度または環境温度等の温度(以下「参照温度」という)を、測定部位Mの潅流の度合の指標として信号成分比Cの代わりに利用する。概略的には、第5実施形態は、第1実施形態の信号成分比Cを参照温度に代替した構成であり、第6実施形態は、第3実施形態の信号成分比Cを参照温度に代替した構成である。
図15は、第5実施形における測定装置100の構成図である。図15に例示される通り、第5実施形態の測定装置100は、第1実施形態と同様の要素に温度検出部70を追加した構成である。温度検出部70は、測定部位Mの皮膚温度または測定装置100の周囲の環境温度を参照温度KREFとして検出する温度センサーである。第5実施形態の測定制御部46は、温度検出部70が検出した参照温度KREFに応じて発受光間距離dを可変に制御する。
前述の通り、参照温度KREFが低いほど測定部位Mの潅流は低下するという傾向が想定される。以上の傾向を考慮して、第5実施形態の測定制御部46は、参照温度KREFが所定の閾値KTH1を下回る場合(すなわち測定部位Mが低潅流状態にあると推定される場合)に発受光間距離dを増加させる。図7から理解される通り、皮膚温度が30℃を下回る範囲では、信号成分比C1が0.2以下に抑制され、結果的に測定誤差を充分に低減することが困難となる。以上の傾向を考慮すると、閾値KTH1を30℃に設定し、皮膚温度である参照温度KREFが閾値KTH1を下回る場合に発受光間距離dを増加させる構成が好適である。他方、参照温度KREFが閾値KTH2(KTH2>KTH1)を上回る場合、測定制御部46は発受光間距離dを減少させる。
第5実施形態においても第1実施形態と同様に、測定部位Mの状態が変化した場合(例えば低潅流状態)でも酸素飽和度Sを高精度に測定できるという利点がある。なお、以上の説明では第1実施形態を基礎として第5実施形態を説明したが、温度検出部70が検出した参照温度KREFに応じて発受光間距離dを可変に制御する第5実施形態の構成は、図10の検出装置28Bを利用した第2実施形態にも同様に適用され得る。
<第6実施形態>
図16は、第6実施形における測定装置100の構成図である。図16に例示される通り、第6実施形態の測定装置100は、第3実施形態と同様の要素に温度検出部70を追加した構成である。温度検出部70は、第5実施形態と同様に、測定部位Mの皮膚温度または測定装置100の周囲の環境温度を参照温度KREFとして検出する温度センサーである。
第6実施形態の操作指示部48は、温度検出部70が検出した参照温度KREFに応じて発受光間距離dの変更指示を利用者に報知する。具体的には、参照温度KREFが所定の閾値KTH1を下回る場合(すなわち測定部位Mが低潅流状態にあると推定される場合)、測定制御部46は、発受光間距離dを増加させる変更指示を利用者に報知する。他方、参照温度KREFが閾値KTH2(KTH2>KTH1)を上回る場合、測定制御部46は、発受光間距離dを減少させる変更指示を利用者に報知する。
第6実施形態においても第3実施形態と同様に、測定部位Mの状態が変化した場合(例えば低潅流状態)でも酸素飽和度Sを高精度に測定できるという利点がある。なお、以上の説明では第3実施形態を基礎として第6実施形態を説明したが、温度検出部70が検出した参照温度KREFに応じて変更指示を利用者に報知する第6実施形態の構成は、図14の検出装置28Dを利用した第4実施形態にも同様に適用され得る。
<変形例>
以上に例示した各形態は多様に変形され得る。具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様を適宜に併合することも可能である。
(1)前述の各形態では、閾値CTH1および閾値CTH2を固定値に設定したが、所定の条件に応じて変動する可変値を閾値CTH1および閾値CTH2として利用することも可能である。例えば、測定装置100の動作モードに応じて閾値CTH1または閾値CTH2を可変に設定する構成が好適である。
(2)前述の各形態では、解析処理部42が相関テーブルTを利用して酸素飽和度Sを特定したが、酸素飽和度Sを特定する方法は以上の例示に限定されない。例えば、ランベルト・ベールの法則を利用して導出された演算式に変動比Φを適用することで、解析処理部42が酸素飽和度Sを演算することも可能である。
(3)第3実施形態および第4実施形態では、変更指示を表示装置24に表示させたが、変更指示を利用者に報知するための方法は以上の例示に限定されない。例えば、発光素子の点灯により変更指示を利用者に報知する構成、音声出力で変更指示を利用者に報知する構成、または、所定のパターンの振動を利用者に付与することで変更指示を利用者に報知する構成も採用され得る。
(4)第3実施形態および第4実施形態では、第1発光部31と第2発光部32とが設置された移動体54を利用者が手動で移動させる場合を例示したが、移動体54を移動させるための構成は以上の例示に限定されない。例えば、モーター等のアクチュエータを含む駆動機構を動作させることで測定制御部46が移動体54を移動させることも可能である。具体的には、測定制御部46は、信号成分比C(C1,C2)が閾値CTH1を下回る場合には、移動体54をX方向の負側に移動させることで発受光間距離dを増加させる。他方、信号成分比Cが閾値CTH2を上回る場合、測定制御部46は、移動体54をX方向の正側に移動させることで発受光間距離dを減少させる。なお、第3実施形態(図11)および第4実施形態(図14)では、第1発光部31および第2発光部32が受光部35に対して移動する構成を例示したが、以上の構成に代えて(または以上の構成とともに)、第1発光部31および第2発光部32に対して受光部35が移動し得る構成も好適である。
(5)前述の各形態では、測定装置100に搭載された解析処理部42が酸素飽和度Sを特定したが、測定装置100とは別個の装置により酸素飽和度Sを特定することも可能である。例えば、測定装置100と通信可能な端末装置(例えば携帯電話機またはスマートフォン)が酸素飽和度Sを特定および表示する構成が想定される。具体的には、端末装置は、測定装置100から検出信号Pを受信し、当該検出信号Pから、前述の各形態で例示した方法により酸素飽和度Sを算定する。以上の説明から理解される通り、解析処理部42および情報報知部44は測定装置100から省略され得る。測定制御部46を端末装置に設置することも可能である。以上の通り、解析処理部42、情報報知部44および測定制御部46の少なくともひとつを端末装置に設置した構成(例えば端末装置が実行されるアプリケーションで各要素が実現される構成)も採用され得る。また、記憶装置22および操作装置26の一方または双方を端末装置に設置することも可能である。
(6)前述の各形態では、被験者の手首に装着可能な測定装置100を例示したが、測定装置100の具体的な形態(装着位置)は任意である。例えば、被験者の身体に貼付可能なパッチ型,被験者の耳介に装着可能なイヤリング型,被験者の指先に装着可能な指装着型(例えば着爪型),被験者の頭部に装着可能なヘッドマウント型等、任意の形態の測定装置100が採用され得る。ただし、例えば指装着型等の測定装置100を装着した状態では日常生活に支障がある可能性が想定されるから、日常生活に支障なく常時的に酸素飽和度Sを測定するという観点からは、被験者の手首に装着可能な前述の各形態の測定装置100が特に好適である。なお、腕時計等の各種の電子機器に装着(例えば外付け)される形態の測定装置100も実現され得る。
(7)前述の各形態では酸素飽和度Sを測定したが、生体情報の種類は以上の例示に限定されない。例えば、脈拍や血流速,血圧を生体情報として測定する構成、および、血中グルコース濃度,ヘモグロビン濃度,血中酸素濃度,中性脂肪濃度等の各種の血液成分濃度を生体情報として測定する構成も採用され得る。なお、血流速を生体情報として測定する構成では、共振器による共振を経て射出される狭帯域でコヒーレントなレーザー光を出射するレーザー照射器が第1発光部31および第2発光部32として好適に利用される。
100…測定装置、12…筐体部、14…ベルト、20…制御装置、22…記憶装置、24…表示装置、26…操作装置、28A,28B,28C,28D…検出装置、31…第1発光部、32…第2発光部、35…受光部、37…駆動回路、38…A/D変換器、42…解析処理部、44…情報報知部、46…測定制御部、48…操作指示部、EA,EB,EA[n],EB[n]…発光素子、R,R[n]…受光素子、52…支持体、54…移動体、581,582…導光部、70…温度検出部。

Claims (11)

  1. 第1波長の光を測定部位に出射する第1発光部と、
    前記第1波長とは異なる第2波長の光を前記測定部位に出射する第2発光部と、
    前記測定部位の内部を通過した光を受光して検出信号を生成する受光部と、
    前記検出信号から酸素飽和度を算定する解析処理部とを具備し、
    前記第1発光部および前記第2発光部の各々による発光位置と前記受光部による受光位置との距離は可変である
    測定装置。
  2. 前記解析処理部は、
    前記検出信号における定常成分に対する変動成分の信号成分比を算定する第1処理部と、
    前記信号成分比から前記酸素飽和度を特定する第2処理部とを含む
    請求項1の測定装置。
  3. 前記信号成分比が第1閾値を下回る場合に、前記発光位置と前記受光位置との距離を増加させる測定制御部
    を具備する請求項2の測定装置。
  4. 前記測定制御部は、前記第1閾値を上回る第2閾値を前記信号成分比が上回る場合に、前記発光位置と前記受光位置との距離を減少させる
    請求項3の測定装置。
  5. 前記受光部は、前記第1発光部および前記第2発光部からの距離が相違する複数の受光素子を含み、
    前記測定制御部は、前記複数の受光素子の何れかを選択することで前記発光位置と前記受光位置との距離を変化させる
    請求項3または請求項4の測定装置。
  6. 前記第1発光部および前記第2発光部の各々は、前記受光部からの距離が相違する複数の発光素子を含み、
    前記測定制御部は、前記第1発光部および前記第2発光部の各々について、前記複数の発光素子の何れかを選択的に発光させることで前記発光位置と前記受光位置との距離を変化させる
    請求項3から請求項5の何れかの測定装置。
  7. 前記発光位置と前記受光位置との距離は、利用者による操作で変更可能であり、
    前記信号成分比が第1閾値を下回る場合に、前記発光位置と前記受光位置との距離を増加させる指示を利用者に報知する操作指示部
    を具備する請求項2の測定装置。
  8. 前記操作指示部は、前記第1閾値を上回る第2閾値を前記信号成分比が上回る場合に、前記発光位置と前記受光位置との距離を減少させる指示を利用者に報知する
    請求項7の測定装置。
  9. 前記測定部位の皮膚温度または環境温度を参照温度として検出する温度検出部と、
    前記参照温度が閾値を下回る場合に、前記発光位置と前記受光位置との距離を増加させる測定制御部と
    を具備する請求項1の測定装置。
  10. 前記測定部位の皮膚温度または環境温度を参照温度として検出する温度検出部と、
    前記参照温度が閾値を下回る場合に、前記発光位置と前記受光位置との距離を増加させる指示を利用者に報知する操作指示部と
    を具備する請求項1の測定装置。
  11. 酸素飽和度の測定に使用される検出信号を生成する検出装置であって、
    第1波長の光を測定部位に出射する第1発光部と、
    前記第1波長とは異なる第2波長の光を前記測定部位に出射する第2発光部と、
    前記測定部位の内部を通過した光を受光して検出信号を生成する受光部とを具備し、
    前記第1発光部および前記第2発光部の各々による発光位置と前記受光部による受光位置との距離は可変である
    検出装置。
JP2016141677A 2016-07-19 2016-07-19 測定装置および検出装置 Withdrawn JP2018011648A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016141677A JP2018011648A (ja) 2016-07-19 2016-07-19 測定装置および検出装置
US15/639,388 US20180020961A1 (en) 2016-07-19 2017-06-30 Measurement device and detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016141677A JP2018011648A (ja) 2016-07-19 2016-07-19 測定装置および検出装置

Publications (1)

Publication Number Publication Date
JP2018011648A true JP2018011648A (ja) 2018-01-25

Family

ID=60990221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016141677A Withdrawn JP2018011648A (ja) 2016-07-19 2016-07-19 測定装置および検出装置

Country Status (2)

Country Link
US (1) US20180020961A1 (ja)
JP (1) JP2018011648A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026612A1 (ja) * 2018-07-30 2020-02-06 ソニー株式会社 生体情報計測装置
JP7418872B2 (ja) 2020-01-17 2024-01-22 キャプメット・インコーポレイテッド 酸素飽和度測定デバイス、それに使用するように構成されたプローブ、および酸素飽和度測定方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3620106A1 (en) * 2018-09-10 2020-03-11 Koninklijke Philips N.V. Device for use in measuring blood pressure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026612A1 (ja) * 2018-07-30 2020-02-06 ソニー株式会社 生体情報計測装置
JP7418872B2 (ja) 2020-01-17 2024-01-22 キャプメット・インコーポレイテッド 酸素飽和度測定デバイス、それに使用するように構成されたプローブ、および酸素飽和度測定方法

Also Published As

Publication number Publication date
US20180020961A1 (en) 2018-01-25

Similar Documents

Publication Publication Date Title
US11116414B2 (en) Biological analysis device, biological analysis method, and program
JP6597410B2 (ja) 生体情報測定装置および生体情報測定方法
JP6519978B2 (ja) 生体情報検出装置及び電子機器
JP2018011648A (ja) 測定装置および検出装置
US11179045B2 (en) Blood pressure measurement device and blood pressure measurement method
JP6431697B2 (ja) 手首装着型パルスオキシメータ
WO2018163785A1 (ja) 測定装置及び測定方法
EP3593718A1 (en) Measurement device and measurement method
JP4385677B2 (ja) 生体情報計測装置
JP2018143747A (ja) 測定装置、測定方法及びプログラム
JP4534535B2 (ja) 生体評価装置、及び生体評価装置の制御方法
JP2018099409A (ja) 測定装置および測定方法
JP2018007907A (ja) 検出装置および測定装置
JP2018029870A (ja) 検出装置および検出方法
JP2019187637A (ja) 生体解析装置、生体解析方法およびプログラム
JP2017153879A (ja) 測定装置および測定方法
US10660552B2 (en) Detection device and detection method
JP2019033900A (ja) 生体解析装置、生体解析方法およびプログラム
JP2013202077A (ja) 脈拍計及びプログラム
JP7069598B2 (ja) 生体解析装置、生体解析方法およびプログラム
US20190059797A1 (en) Optical measuring apparatus and non-transitory computer readable medium
JP2019180823A (ja) 生体解析装置および生体解析方法
JP6996220B2 (ja) 生体解析装置、生体解析方法およびプログラム
JP2019208617A (ja) 生体解析装置、生体解析方法およびプログラム
JP7087301B2 (ja) 生体解析装置、生体解析方法およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190605

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20191002