JP2018009919A - Fluid measurement apparatus and method - Google Patents

Fluid measurement apparatus and method Download PDF

Info

Publication number
JP2018009919A
JP2018009919A JP2016140071A JP2016140071A JP2018009919A JP 2018009919 A JP2018009919 A JP 2018009919A JP 2016140071 A JP2016140071 A JP 2016140071A JP 2016140071 A JP2016140071 A JP 2016140071A JP 2018009919 A JP2018009919 A JP 2018009919A
Authority
JP
Japan
Prior art keywords
light
fluid
tube
receiving unit
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016140071A
Other languages
Japanese (ja)
Other versions
JP6546128B2 (en
Inventor
雄一 樋口
Yuichi Higuchi
雄一 樋口
啓 桑原
Hiroshi Kuwabara
啓 桑原
笠原 亮一
Ryoichi Kasahara
亮一 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2016140071A priority Critical patent/JP6546128B2/en
Publication of JP2018009919A publication Critical patent/JP2018009919A/en
Application granted granted Critical
Publication of JP6546128B2 publication Critical patent/JP6546128B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To further improve measurement accuracy while preventing increase of power consumption in velocity measurement using a speckle.SOLUTION: A light source 101 is provided around a tube 121 being a flow channel and irradiates fluid 122, which contains a plurality of scatterers 123, flowing in the tube 121 with coherent light at a predetermined irradiation angle. A light reception part 102 is provided around the tube 121 and receives light (scattering light) scattering by the scatterers contained in the fluid flowing in the tube 121 to perform photoelectric conversion by radiation of the coherent light from the light source 101. The light source 101 radiates the coherent light at an irradiation angle θ in the state in which light intensity (scattering light intensity) that the light reception part 102 receives light becomes maximum.SELECTED DRAWING: Figure 1

Description

本発明は、レーザ光を用いて流路を流れる流体の流量や流速を測定する流体測定装置および方法に関する。   The present invention relates to a fluid measuring apparatus and method for measuring the flow rate and flow velocity of a fluid flowing through a flow path using laser light.

流路を流れる流体の流量や流速を測定する技術が工業・医療分野などで幅広く利用されている。流量や流速を測定する装置としては、電磁流量計、渦流量計、コリオリ式流量計、レーザ流量計など様々な種類があり、用途に応じて使い分けられている。このうち、レーザ流量計は、レーザ光を用いることで、流路を流れる流体に接触することなく非接触で流量や流速を測定することが可能であるため、衛生的であることを必要とする用途や、既設の流路に流量計を挿入することができない用途などにおいて利用されている。   Techniques for measuring the flow rate and flow velocity of a fluid flowing through a channel are widely used in the industrial and medical fields. There are various types of devices for measuring flow rate and flow velocity, such as electromagnetic flowmeters, vortex flowmeters, Coriolis flowmeters, and laser flowmeters. Among these, the laser flowmeter needs to be hygienic because it can measure the flow rate and flow velocity without contact with the fluid flowing through the flow path by using laser light. It is used in applications and applications where a flow meter cannot be inserted into an existing flow path.

レーザ流量計としては、2光束式のレーザドップラー流量計がある(特許文献1参照)。この流量計では、まず、光源より出射したレーザ光をハーフミラーで2本のビームに分岐し、分岐した一方のビームをミラーに反射させ、2つのビームを流路中の一点に集光させる。流路内の流体に含まれる散乱体が集光点を通過すると光が散乱されるが、2本のビームからの散乱光は各々異なったドップラーシフトを受けている。   As a laser flow meter, there is a two-beam laser Doppler flow meter (see Patent Document 1). In this flow meter, first, the laser beam emitted from the light source is split into two beams by a half mirror, one of the branched beams is reflected by the mirror, and the two beams are condensed at one point in the flow path. When the scatterer included in the fluid in the flow path passes through the condensing point, the light is scattered, but the scattered light from the two beams undergoes different Doppler shifts.

このような状態の散乱光を、フォトダイオードなどで電気信号に変換すると、ヘテロダイン検波が行われてビート信号が観測される。観測されるビート信号の周波数スペクトルを算出してピーク周波数を抽出すると、散乱体の移動速度を求めることができる。流れが層流であった場合、流路を流れる流体の流路全域における平均流速や流量は、上述したことにより求めた散乱体の移動速度と比例関係となるため、流路に応じた比例定数を乗じて較正することで、流体の流速や流量を測定することができる。   When the scattered light in such a state is converted into an electric signal by a photodiode or the like, a heterodyne detection is performed and a beat signal is observed. By calculating the frequency spectrum of the observed beat signal and extracting the peak frequency, the moving speed of the scatterer can be obtained. When the flow is a laminar flow, the average flow velocity and flow rate of the fluid flowing through the flow channel are proportional to the moving speed of the scatterer obtained as described above, and therefore a proportional constant according to the flow channel. By multiplying and calibrating, the flow velocity and flow rate of the fluid can be measured.

上述した流体測定技術は、散乱体の移動速度の絶対値を計測することができるという優れた利点を有するが、ヘテロダイン検波を行うために一点に集光する2本のビームが必要となる。このため、複数の光学部品やこれらの高精度な位置合わせが要求され、装置が大型化する、また高コスト化するという問題がある。また、この技術は、流体中に含まれる散乱体の濃度が薄い場合に有効であり、散乱体の濃度が濃くなると、レーザ光が複数の散乱体によって多重散乱されてしまうため、ビート信号の観測が困難となるという問題がある。   The fluid measurement technique described above has an excellent advantage of being able to measure the absolute value of the moving speed of the scatterer, but requires two beams focused at one point in order to perform heterodyne detection. For this reason, a plurality of optical components and their highly accurate alignment are required, and there is a problem that the apparatus is increased in size and cost. This technique is effective when the concentration of scatterers contained in the fluid is low. When the concentration of scatterers is high, the laser light is multiple-scattered by multiple scatterers, so the beat signal is observed. There is a problem that becomes difficult.

レーザを用いた速度計測方法としては、スペックル法も利用されている。スペックル法は、粗面体や散乱体を含む流体などにレーザ光を照射したとき、不規則に散乱された光が干渉して生成されるランダムな斑点模様(=スペックル)を用いた速度計測法である。スペックルを生成する物体が移動する場合、スペックルも時間的に変動するため、例えばスペックルの2次元画像を取得し、スペックルの移動パタンを解析することで移動速度を求めることができる(非特許文献1参照)。この方法は、2次元的な画像の取得・解析が必要であることから、やはり装置が大型、高価になってしまうという問題がある。   A speckle method is also used as a speed measurement method using a laser. The speckle method uses a random speckle pattern (= speckle) that is generated by interference of irregularly scattered light when laser light is irradiated onto a fluid containing a rough surface or a scatterer. Is the law. When an object that generates speckles moves, speckles also vary with time. For example, a two-dimensional image of speckles is acquired, and a moving speed can be obtained by analyzing speckle movement patterns ( Non-patent document 1). Since this method requires acquisition and analysis of a two-dimensional image, there is still a problem that the apparatus becomes large and expensive.

光学系を簡易化する方法として、スペックルを二次元ではなく一点で計測する方法も考えられる。この場合、スペックルの変動に応じた不規則信号が観測され、観測される信号の自己相関関数から算出した時間相関長は、散乱体の移動速度と反比例の関係となることが知られている。また、時間相関長の代わりに、信号のパワースペクトルの傾きなどを利用することもできる。この原理は、粒子のブラウン運動の解析や、生体の皮膚血流の計測に利用されている(例えば特許文献2を参照)。   As a method for simplifying the optical system, a method of measuring speckles at one point instead of two dimensions is also conceivable. In this case, an irregular signal corresponding to speckle fluctuation is observed, and the time correlation length calculated from the autocorrelation function of the observed signal is known to be inversely proportional to the moving speed of the scatterer. . Also, the slope of the power spectrum of the signal can be used instead of the time correlation length. This principle is used for analyzing Brownian motion of particles and measuring skin blood flow in a living body (see, for example, Patent Document 2).

特開昭57−059173号公報JP-A-57-059173 特開平07−92184号公報Japanese Patent Application Laid-Open No. 07-92184

相津 佳永 他著、「レーザー計測の基礎I:速度計測」、レーザー研究、第27巻第8号、572〜578頁、1999年。Yoshinori Aizu et al., “Basics of Laser Measurement I: Velocity Measurement”, Laser Research, Vol. 27, No. 8, 572-578, 1999.

しかしながら、上述したスペックルを用いる速度計測法では、受光する散乱光強度は、レーザ光の強度に対して小さくなり、測定精度を高くするためには、レーザ光強度を高くすることになる。このため、測定における消費電力が増加してしまうという問題がある。   However, in the speed measurement method using the speckle described above, the intensity of scattered light received is smaller than the intensity of the laser light, and the laser light intensity is increased in order to increase the measurement accuracy. For this reason, there exists a problem that the power consumption in a measurement will increase.

本発明は、以上のような問題点を解消するためになされたものであり、スペックルを用いる速度計測において、消費電力の増加を抑制して測定精度をより高くすることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to increase the measurement accuracy by suppressing an increase in power consumption in speed measurement using speckles.

本発明に係る流体測定装置は、複数の散乱体を含む測定対象の流体が流れる管と、管の周囲に配置されて管を流れる流体に所定の照射角度で可干渉光を照射する光源と、管の周囲に配置され、光源からの可干渉光の照射により流体に含まれる散乱体で散乱された光を受光して光電変換する受光部と、受光部で光電変換された電気信号をもとに流体の流速および流量の少なくとも1つを算出して出力する演算部とを備え、光源は、受光部が受光する散乱された光の強度が最大となる状態の照射角度で可干渉光を照射する。   A fluid measurement apparatus according to the present invention includes a tube through which a fluid to be measured including a plurality of scatterers flows, a light source that radiates coherent light at a predetermined irradiation angle on a fluid that is disposed around the tube and flows through the tube, A light receiving unit that is arranged around the tube and receives light scattered by a scatterer included in the fluid by irradiation of coherent light from a light source and photoelectrically converts it, and an electric signal photoelectrically converted by the light receiving unit The light source emits coherent light at an irradiation angle in which the intensity of the scattered light received by the light receiving unit is maximized. To do.

上記流体測定装置において、管の表面で反射・散乱した反射光が受光部で受光されることを遮る遮光部を備えるようにするとよい。   In the fluid measuring device, it is preferable to provide a light shielding unit that blocks reflected light reflected and scattered by the surface of the tube from being received by the light receiving unit.

また、本発明に係る流体測定方法は、複数の散乱体を含む測定対象の流体が流れる管の周囲から、光源より可干渉光を照射する第1工程と、管の周囲に配置した受光部で光源からの可干渉光の照射により流体に含まれる散乱体で散乱された光を受光して光電変換する第2工程と、可干渉光の照射角度を受光部が受光する散乱された光の強度が最大となる最適状態に設定する第3工程と、最適状態で、受光部で光電変換された電気信号をもとに流体の流速および流量の少なくとも1つを算出して出力する第4工程とを備える。   The fluid measurement method according to the present invention includes a first step of irradiating coherent light from a light source from the periphery of a tube through which a fluid to be measured including a plurality of scatterers flows, and a light receiving unit disposed around the tube. A second step of receiving and photoelectrically converting light scattered by a scatterer included in the fluid by irradiation of coherent light from a light source, and intensity of the scattered light received by the light receiving unit with respect to the irradiation angle of the coherent light A third step of setting the optimum state in which the maximum is maximized, and a fourth step of calculating and outputting at least one of the flow velocity and the flow rate of the fluid based on the electrical signal photoelectrically converted by the light receiving unit in the optimum state, and Is provided.

上記流体測定方法において、第3工程および第4工程では、管の表面で反射・散乱した反射光が受光部で受光されることを遮る状態とするとよい。   In the fluid measuring method, in the third step and the fourth step, it is preferable that the reflected light reflected / scattered on the surface of the tube is blocked from being received by the light receiving unit.

上記流体測定装置において、演算部は、受光部で光電変換された電気信号の高周波成分を取り出す信号取り出し部と、信号取り出し部が取り出した高周波成分をもとに流体の流速に相関する特徴量を算出する特徴量算出部と、特徴量より流体の流速および流量の少なくとも1つを算出する算出部とを備える。   In the fluid measuring apparatus, the calculation unit includes a signal extraction unit that extracts a high-frequency component of the electrical signal photoelectrically converted by the light-receiving unit, and a feature quantity that correlates with the fluid flow velocity based on the high-frequency component extracted by the signal extraction unit. A feature amount calculation unit to calculate, and a calculation unit to calculate at least one of the flow velocity and flow rate of the fluid from the feature amount.

以上説明したように、本発明によれば、可干渉光の照射角度を受光部が受光する散乱された光の強度が最大となる最適状態に設定し、光源が、受光部が受光する光強度が最大となる状態の照射角度で可干渉光を照射するようにしたので、スペックルを用いる速度計測において、消費電力の増加を抑制して測定精度をより高くすることができるという優れた効果が得られる。   As described above, according to the present invention, the irradiation angle of coherent light is set to an optimum state in which the intensity of scattered light received by the light receiving unit is maximized, and the light source receives the light intensity received by the light receiving unit. Because the coherent light is irradiated at the irradiation angle in the state where the maximum is, in the speed measurement using the speckle, the excellent effect that the increase in power consumption can be suppressed and the measurement accuracy can be further improved. can get.

図1は、本発明の実施の形態における流体測定装置の構成を示す構成図である。FIG. 1 is a configuration diagram showing the configuration of the fluid measuring device according to the embodiment of the present invention. 図2は、本発明の実施の形態における流体測定装置を用いた流体測定方法を説明するためのフローチャートである。FIG. 2 is a flowchart for explaining a fluid measuring method using the fluid measuring device according to the embodiment of the present invention. 図3は、照射角度を説明するための説明図である。FIG. 3 is an explanatory diagram for explaining the irradiation angle. 図4は、演算部103の構成を示す構成図である。FIG. 4 is a configuration diagram illustrating the configuration of the calculation unit 103. 図5は、本発明の実施の形態における他の流体測定装置の構成を示す構成図である。FIG. 5 is a configuration diagram showing the configuration of another fluid measuring device according to the embodiment of the present invention.

以下、本発明の実施の形態について図を参照して説明する。図1は、本発明の実施の形態における流体測定装置の構成を示す構成図である。この流体測定装置は、光源101、受光部102、演算部103を備える。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing the configuration of the fluid measuring device according to the embodiment of the present invention. This fluid measuring device includes a light source 101, a light receiving unit 102, and a calculation unit 103.

光源101は、流路となる管121の周囲に配置され、複数の散乱体を含む管121を流れる流体に所定の照射角度で可干渉光を照射する。光源101は、例えば、半導体レーザから構成されている。管121は、光源光に対して透過性を有する材料から構成されている。管121は、例えば塩化ビニルから構成されている。図1において、管121は、管121の流路方向に平行な断面を示している。   The light source 101 is disposed around the tube 121 serving as a flow path, and irradiates the fluid flowing through the tube 121 including a plurality of scatterers with coherent light at a predetermined irradiation angle. The light source 101 is composed of, for example, a semiconductor laser. The tube 121 is made of a material that is transparent to the light source light. The tube 121 is made of, for example, vinyl chloride. In FIG. 1, the pipe 121 shows a cross section parallel to the flow path direction of the pipe 121.

受光部102は、管121の周囲に配置され、光源101からの可干渉光の照射により、管121を流れる流体122に含まれる散乱体123で散乱された光(散乱光)を受光して光電変換する。受光部102は、例えば、フォトダイオードである。演算部103は、受光部102で光電変換された電気信号をもとに流体122の流速および流量の少なくとも1つを算出して出力する。   The light receiving unit 102 is arranged around the tube 121, receives light (scattered light) scattered by the scatterer 123 included in the fluid 122 flowing through the tube 121 by irradiation of coherent light from the light source 101, and photoelectrically receives the light. Convert. The light receiving unit 102 is, for example, a photodiode. The calculation unit 103 calculates and outputs at least one of the flow velocity and the flow rate of the fluid 122 based on the electrical signal photoelectrically converted by the light receiving unit 102.

実施の形態における流体測定装置は、光源101が、受光部102が受光するドップラーシフトした散乱光強度が最大となる状態の照射角度θで可干渉光を照射する。測定対象内で散乱してドップラーシフトした光は、入射した位置を中心として放射される。このため、測定対象で光が入射した位置から近い距離に配置することで、ドップラーシフトした散乱光を多く取得できる。また、例えば皮膚表面で反射または散乱した光は、ドップラーシフトをしていないため、できるだけ受光しないことが望ましい。このため,図3に示すように、測定対象に対して光源101を傾けて光を斜入射させ,光が入射する位置から測定対象の法線方向に受光部102を配置することで、ドップラーシフトした散乱光101cの強度を最大にした状態で、反射・散乱光101bが低減できる。   In the fluid measuring apparatus according to the embodiment, the light source 101 irradiates the coherent light at the irradiation angle θ in a state where the Doppler shifted scattered light intensity received by the light receiving unit 102 is maximized. The light scattered and Doppler shifted in the measurement object is emitted around the incident position. For this reason, many Doppler shifted scattered light can be acquired by arrange | positioning in the distance close | similar from the position where light injected into the measuring object. Further, for example, light reflected or scattered on the skin surface is preferably not received as much as possible because it does not undergo Doppler shift. For this reason, as shown in FIG. 3, the light source 101 is tilted with respect to the measurement target so that light is obliquely incident, and the light receiving unit 102 is disposed in the normal direction of the measurement target from the position where the light is incident, thereby performing the Doppler shift. The reflected / scattered light 101b can be reduced with the intensity of the scattered light 101c having been maximized.

次に、上述した流体測定装置を用いた流体測定方法について、図2のフローチャートを用いて説明する。まず、ステップS201で、複数の散乱体123を含む測定対象の流体122が流れる管121の周囲から、光源101より可干渉光を照射する(第1工程)。   Next, a fluid measuring method using the above-described fluid measuring device will be described with reference to the flowchart of FIG. First, in step S201, coherent light is emitted from the light source 101 from around the tube 121 through which the fluid 122 to be measured including the plurality of scatterers 123 flows (first step).

次に、ステップS202で、管121の周囲に配置した受光部102で光源101からの可干渉光の照射により流体122に含まれる散乱体123で散乱された光を受光して光電変換する(第2工程)。   Next, in step S202, the light scattered by the scatterer 123 contained in the fluid 122 due to the irradiation of the coherent light from the light source 101 by the light receiving unit 102 arranged around the tube 121 is received and subjected to photoelectric conversion (first step). 2 steps).

次に、ステップS203で、可干渉光の照射角度を受光部102が受光するドップラーシフトした散乱光強度が最大となる最適状態に設定する(第3工程)。図3に示すように、光源101から出射されるビーム101aを、管121の軸方向(流路方向)に対して平行および垂直な状態より傾けて測定領域に入射させる。なお、受光部102の受光面は、管121の軸方向(流路方向)に対して並行に配置する。ビーム101aを上述したように傾けて入射させることで、管121の表面で反射した直接反射光(反射・散乱光)101bが受光部102に受光されない状態とし、加えて、受光部102に受光される散乱光101cの強度が最大となる状態に、照射角度θおよび各配置を決定する。   Next, in step S203, the irradiation angle of the coherent light is set to an optimum state in which the Doppler-shifted scattered light intensity received by the light receiving unit 102 is maximized (third step). As shown in FIG. 3, the beam 101 a emitted from the light source 101 is incident on the measurement region with an inclination from a state parallel and perpendicular to the axial direction (flow channel direction) of the tube 121. The light receiving surface of the light receiving unit 102 is disposed in parallel with the axial direction (flow channel direction) of the tube 121. By making the beam 101a tilted as described above, the directly reflected light (reflected / scattered light) 101b reflected by the surface of the tube 121 is not received by the light receiving unit 102, and in addition, is received by the light receiving unit 102. The irradiation angle θ and each arrangement are determined so that the intensity of the scattered light 101c to be maximized.

次に、ステップS204で、設定した最適状態で、受光部102で光電変換された電気信号をもとに流体122の流速および流量の少なくとも1つを算出して出力する(第4工程)。   Next, in step S204, at least one of the flow velocity and the flow rate of the fluid 122 is calculated and output based on the electric signal photoelectrically converted by the light receiving unit 102 in the set optimum state (fourth step).

演算部103は、図4に例示するように、信号取り出し部131、特徴量算出部132、較正値算出部133、較正部134を備える。信号取り出し部131は、受光部102で光電変換された電気信号の低周波成分および高周波成分を取り出す。   As illustrated in FIG. 4, the calculation unit 103 includes a signal extraction unit 131, a feature amount calculation unit 132, a calibration value calculation unit 133, and a calibration unit 134. The signal extraction unit 131 extracts a low frequency component and a high frequency component of the electric signal photoelectrically converted by the light receiving unit 102.

特徴量算出部132は、信号取り出し部131が取り出した高周波成分をもとに、管121を流れる流体122の流速に相関する特徴量を算出する。較正値算出部133は、信号取り出し部131が取り出した低周波成分をもとに較正パラメータを算出する。較正部134は、較正パラメータで特徴量を較正して流体122の流速および流量の少なくとも1つを算出する。   The feature amount calculation unit 132 calculates a feature amount that correlates with the flow velocity of the fluid 122 flowing through the pipe 121 based on the high-frequency component extracted by the signal extraction unit 131. The calibration value calculation unit 133 calculates a calibration parameter based on the low frequency component extracted by the signal extraction unit 131. The calibration unit 134 calibrates the feature amount with the calibration parameter and calculates at least one of the flow velocity and the flow rate of the fluid 122.

まず、光源101より干渉性を有する光源光を、流路となる管121を流れる流体122に照射する。流体122には光源光を散乱する散乱体123が含まれている、また、管121は光源光に対して透過性を有する。光源光が流体122内の散乱体123によって散乱されると、その一部は受光部102によって受光される。散乱体123の濃度が低い場合には大部分の散乱光は単散乱となるが、濃度が増加するにつれて複数回の散乱を経てフォトダイオードに到達することとなる。様々な経路で散乱された光が干渉する結果、スペックル(speckle)が生じ、受光部102においてその一部が観測される。   First, light source light having coherence from the light source 101 is irradiated to the fluid 122 flowing through the pipe 121 serving as a flow path. The fluid 122 includes a scatterer 123 that scatters the light source light, and the tube 121 is transmissive to the light source light. When the light source light is scattered by the scatterer 123 in the fluid 122, a part of the light is received by the light receiving unit 102. When the concentration of the scatterer 123 is low, most of the scattered light is single-scattered, but as the concentration increases, the light reaches the photodiode through multiple scattering. As a result of interference of light scattered in various paths, speckle is generated, and a part of the speckle is observed in the light receiving unit 102.

ここで、管121の断面が円形状であり、流れが層流である場合を仮定すると、管121内の流速分布は、管121の中心で流速が最大となり、管121の円周部に近づくにつれて流速が低下する状態となる。流体122の流れに伴い散乱体123が移動にすることによって、スペックルも時々刻々と変化する。このように変動するスペックルの一部を受光部102により受光して電気信号に変換する。   Here, assuming that the cross section of the pipe 121 is circular and the flow is a laminar flow, the flow velocity distribution in the pipe 121 has a maximum flow velocity at the center of the pipe 121 and approaches the circumferential portion of the pipe 121. As the flow rate decreases, the flow rate decreases. As the scatterer 123 moves in accordance with the flow of the fluid 122, the speckle also changes every moment. A part of the speckle that fluctuates in this way is received by the light receiving unit 102 and converted into an electrical signal.

なお、流量や流速を精度よく求められるようにするためには、受光部102によって受光される光には、光源101から受光部102に直接入射する光や、管121および流体122の表面において反射された光(直接反射光)は極力含まれないようにすることが望ましい。   In order to obtain the flow rate and flow velocity with high accuracy, the light received by the light receiving unit 102 is reflected directly on the light receiving unit 102 from the light source 101 or on the surfaces of the tube 121 and the fluid 122. It is desirable that the generated light (directly reflected light) is not included as much as possible.

例えば、図5に示すように、管121の表面で反射・散乱した直接反射光が受光部102で受光されることを遮る遮光部104を備えるようにするとよい。受光部102で散乱光を受光し、このドップラーシフトした散乱光強度が最大となる最適状態に設定するときに、管121の表面で反射した直接反射光が受光部102で受光されることを遮る状態とする。直接反射光が受光部102の一部の受光面に受光される状態であっても、直接反射光が受光部102で受光されることが防げるようになる。これにより、散乱光強度が最大となる選択範囲を広くすることが可能となる。   For example, as shown in FIG. 5, it is preferable to provide a light shielding unit 104 that blocks the direct reflection light reflected / scattered from the surface of the tube 121 from being received by the light receiving unit 102. When the scattered light is received by the light receiving unit 102 and the optimum state in which the Doppler shifted scattered light intensity is maximized, the direct reflected light reflected from the surface of the tube 121 is blocked from being received by the light receiving unit 102. State. Even when the directly reflected light is received by a part of the light receiving surface of the light receiving unit 102, it is possible to prevent the directly reflected light from being received by the light receiving unit 102. This makes it possible to widen the selection range in which the scattered light intensity is maximum.

受光部102が出力する電気信号は通常微弱であり、受光部102の出力電流はμAオーダ程度である。このため、前述したように、可干渉光の照射角度を受光部102が受光する散乱された光の強度が最大となる最適状態に設定した上で、測定を行う。また、最適状態とした状態で、信号取り出し部131において、トランスインピーダンスアンプなどの増幅回路を用いて増幅し、例えば1V程度の扱いやすいレベルの電圧信号に変換する。   The electrical signal output from the light receiving unit 102 is usually weak, and the output current of the light receiving unit 102 is on the order of μA. For this reason, as described above, the measurement is performed after setting the irradiation angle of the coherent light to the optimum state in which the intensity of the scattered light received by the light receiving unit 102 is maximized. In the optimum state, the signal extraction unit 131 amplifies the signal using an amplifier circuit such as a transimpedance amplifier, and converts it into a voltage signal having a level that is easy to handle, for example, about 1V.

次に、信号取り出し部131において、ローパスフィルタを通して信号の低周波成分のみを抽出し、ADC回路によりデジタル信号に変換し、低周波デジタル信号を取得する。ローパスフィルタのカットオフ周波数としては、例えば1Hz程度とすればよい。ADC回路のサンプリング周波数は、測定する流量や流速の値の更新速度に合わせて、例えば1〜100Hz程度とすればよい。   Next, in the signal extraction unit 131, only the low frequency component of the signal is extracted through a low-pass filter, converted into a digital signal by an ADC circuit, and a low frequency digital signal is acquired. The cut-off frequency of the low-pass filter may be about 1 Hz, for example. The sampling frequency of the ADC circuit may be set to about 1 to 100 Hz, for example, in accordance with the update rate of the measured flow rate or flow velocity value.

一方、増幅回路の出力は、交流増幅回路により交流成分のみをさらに増幅し、ADC回路によりデジタル信号に変換することで、高周波デジタル信号(高周波成分)を取得する。増幅回路の出力のDC電圧が1V程度であったとすると、通常、AC電圧はmVオーダと小さいため、10倍〜1000倍程度の利得を持つ交流増幅回路で増幅し、扱いやすいレベルの電圧信号にするとよい。ADC回路のサンプリング周波数は、高速であるほどより速い流速まで計測することができるようになる。例えば、サンプリング周波数は1MHzであればよい。   On the other hand, only the alternating current component is further amplified by the alternating current amplifier circuit and converted into a digital signal by the ADC circuit to obtain a high frequency digital signal (high frequency component). Assuming that the output DC voltage of the amplifier circuit is about 1V, the AC voltage is usually as small as mV. Therefore, it is amplified by an AC amplifier circuit having a gain of about 10 to 1000 times to obtain a voltage signal that is easy to handle. Good. The higher the sampling frequency of the ADC circuit, the faster the flow rate can be measured. For example, the sampling frequency may be 1 MHz.

上述したことにより取得した高周波デジタル信号より、特徴量算出部132、較正値算出部133、較正部134によるデジタル信号処理によって、流体122の流速や流量を算出する。   From the high-frequency digital signal acquired as described above, the flow rate and flow rate of the fluid 122 are calculated by digital signal processing by the feature amount calculation unit 132, the calibration value calculation unit 133, and the calibration unit 134.

低周波デジタル信号については、デジタル処理によりさらにローパスフィルタ(デジタルローパスフィルタ)をかけ、平均値を算出する。デジタルローパスフィルタとしては、移動平均法やIIRフィルタ、FIRフィルタなどの既知の方法を用いることができる。ここで求めた平均値は、受光部102が受光した散乱光の平均受光量に対応する値である。低周波成分より得る平均受光量をもとに、流体122の流量や流速を求めるための較正パラメータを算出する。この方法については後述する。   For the low frequency digital signal, a low pass filter (digital low pass filter) is further applied by digital processing to calculate an average value. As the digital low-pass filter, a known method such as a moving average method, an IIR filter, or an FIR filter can be used. The average value obtained here is a value corresponding to the average amount of scattered light received by the light receiving unit 102. Based on the average amount of light received from the low frequency component, a calibration parameter for obtaining the flow rate and flow velocity of the fluid 122 is calculated. This method will be described later.

次に、高周波デジタル信号から流体122の流速に相関する特徴量を算出する方法について説明する。なお、一定の断面積を有する管121内を隙間なく流体122が流れることを想定した場合、流速と流量は比例関係となるため、ここで求める特徴量は、流量に対しても相関する特徴量となる。   Next, a method for calculating the feature quantity correlated with the flow velocity of the fluid 122 from the high-frequency digital signal will be described. Note that when it is assumed that the fluid 122 flows through the pipe 121 having a constant cross-sectional area without a gap, the flow velocity and the flow rate are in a proportional relationship, and thus the feature amount obtained here is a feature amount that also correlates with the flow rate. It becomes.

高周波デジタル信号は、スペックルの変動を表しており、ここから流速に相関する特徴量を抽出する方法には様々な既知の方法がある。例えば、高周波デジタル信号の自己相関関数から時間相関長を算出する方法、信号が一定時間内に基準電位と交差する回数を求める方法、パワースペクトルを解析してその傾きを求める方法などである。ここでは、後述する平均受光量を利用した較正が最も有効に機能する特徴量として、パワースペクトルのパワーと周波数の積和を用いる例を示す。   The high-frequency digital signal represents speckle fluctuation, and there are various known methods for extracting a feature quantity correlated with the flow velocity from here. For example, there are a method for calculating a time correlation length from an autocorrelation function of a high-frequency digital signal, a method for determining the number of times a signal crosses a reference potential within a certain time, and a method for determining a slope by analyzing a power spectrum. Here, an example is shown in which the product sum of the power and the frequency of the power spectrum is used as the feature quantity for which the calibration using the average received light quantity described later functions most effectively.

流速に相関する特徴量νを算出するため、まず、高周波デジタル信号をフーリエ変換し、そのパワーを算出することでパワースペクトルを得る。パワースペクトルが得られたら、次に、パワーP(f)と周波数fの積和を、以下に示す式により所定の周波数範囲にわたって演算する。   In order to calculate the feature quantity ν correlated with the flow velocity, first, a high-frequency digital signal is Fourier-transformed, and a power spectrum is obtained by calculating its power. Once the power spectrum is obtained, the product sum of the power P (f) and the frequency f is calculated over a predetermined frequency range by the following equation.

Figure 2018009919
Figure 2018009919

上述したことにより算出したパワーと周波数の積和を演算した結果を実際の流量に対してプロットすることでグラフが作成できる。なお、パワーと周波数の積和によって算出した流速相関特徴量νが実際の流量や平均流速に対して非線型性を有する場合には、非線型性を補正する処理を加えてもよい。非線型性を生じる原因としては、例えば、増幅回路の周波数特性がフラットでない場合がある。非線型性の補正方法としては、「ν=Σ{P(f)×f×w(f)}」の式のように、パワーと周波数の積和を演算する際に、周波数毎に重み付け係数w(f)を乗じる方法がある。   A graph can be created by plotting the result of calculating the product sum of power and frequency calculated as described above against the actual flow rate. In addition, when the flow velocity correlation characteristic amount ν calculated by the product sum of power and frequency has nonlinearity with respect to the actual flow rate and the average flow velocity, processing for correcting the nonlinearity may be added. As the cause of the non-linearity, for example, the frequency characteristic of the amplifier circuit may not be flat. As a non-linearity correction method, a weighting coefficient is calculated for each frequency when calculating the sum of products of power and frequency as in the formula of “ν = Σ {P (f) × f × w (f)}”. There is a method of multiplying w (f).

例えば、信号取り出し部131における増幅回路のカットオフ周波数がfcut[Hz]であり、一次のローパスフィルタ特性を有する場合、重み付け関数に次式を用いることで、増幅回路の減衰特性を相殺し、相対流量の線型性を向上させることができる。 For example, when the cutoff frequency of the amplifier circuit in the signal extraction unit 131 is f cut [Hz] and has a first-order low-pass filter characteristic, the attenuation characteristic of the amplifier circuit is canceled by using the following equation for the weighting function: The linearity of the relative flow rate can be improved.

Figure 2018009919
Figure 2018009919

増幅回路の周波数特性がより複雑な場合であっても、その伝達関数の振幅特性を|H(f)|とした場合、「w(f)=1/|H(f)|2」を重み付け関数として用いることで、増幅回路の周波数特性に依存した相対流量の非線型性を補正することが可能である。 Even if the frequency characteristic of the amplifier circuit is more complicated, if the amplitude characteristic of the transfer function is | H (f) |, “w (f) = 1 / | H (f) | 2 ” is weighted. By using it as a function, it is possible to correct the nonlinearity of the relative flow rate depending on the frequency characteristics of the amplifier circuit.

また、「ν={Σ{P(f)×f}}G(Gは0より大きい実数)」の式のように、パワーと周波数の積和を演算した後に、累乗演算を行い流速相関特徴量νの非線型性を補正するようにしてもよい。また、「ν={Σ(P(f)×f×w(f))}G」のように、周波数毎に重み付け係数w(f)を乗じた状態で累乗演算を行い流速相関特徴量νの非線型性を補正するようにしてもよい。 Further, as shown in the equation “ν = {Σ {P (f) × f}} G (G is a real number larger than 0)”, after calculating the sum of products of power and frequency, the power is calculated and the flow velocity correlation feature The nonlinearity of the quantity ν may be corrected. In addition, as in “ν = {Σ (P (f) × f × w (f))} G ”, power calculation is performed in a state where the weighting coefficient w (f) is multiplied for each frequency, and the flow velocity correlation feature amount ν. The non-linearity may be corrected.

前述したグラフのプロットを線型近似して傾きとオフセットを求め、較正パラメータとすれば、算出した特徴量を流量に換算することが可能であるが、濃度が異なると傾きやオフセットが異なる値となっているため、様々な濃度状態の流体122に対して同一の補正係数を用いることはできない。スペックル変動をホモダイン検波する方法では、流体122に含まれる散乱体123の種類や数、測定に用いる光の波長に対する吸収係数の違いなどによって、得られる特徴量は様々な挙動を示す。   By calculating the slope and offset by linearly approximating the plot of the graph described above and using it as a calibration parameter, it is possible to convert the calculated feature value into a flow rate.However, if the concentration is different, the slope and offset will be different. Therefore, the same correction coefficient cannot be used for the fluid 122 having various concentrations. In the method of homodyne detection of speckle fluctuations, the obtained feature quantity exhibits various behaviors depending on the type and number of scatterers 123 included in the fluid 122, the difference in absorption coefficient with respect to the wavelength of light used for measurement, and the like.

上述した特徴量の挙動に対し、低周波成分より得た平均受光量の値を利用することで、濃度毎に異なる直線の切片と傾きの補正を行う。以下、この方法について説明する。   For the behavior of the above-described feature amount, by using the value of the average received light amount obtained from the low frequency component, the straight line intercept and the slope that are different for each density are corrected. Hereinafter, this method will be described.

発明者らにより、様々な流体122や流路について傾きとオフセットの平均受光量依存性を鋭意に調査した結果、以下に示す式で較正を行うことによって、流速相関特徴量νと平均受光量<I>をもとに、実流量Flowを近似的に算出できることが見いだされた。   As a result of intensive investigations by the inventors on the average received light amount dependency of inclination and offset for various fluids 122 and flow paths, by performing calibration using the following formula, the flow velocity correlation feature value ν and the average received light amount < Based on I>, it has been found that the actual flow rate Flow can be calculated approximately.

[較正算出式]
オフセット較正パラメータ:Offset=A×<I>+B
ゲイン較正パラメータ:Gain=F/(C×<I>E−D)
流速または流量:Flow=Gain×(ν−Offset)
(係数パラメータA〜Fは、A>0、B>=0、C>0、D>=0、E>0、F>0を満たす実数)
[Calibration formula]
Offset calibration parameter: Offset = A × <I> + B
Gain calibration parameter: Gain = F / (C × <I> E− D)
Flow rate or flow rate: Flow = Gain × (ν−Offset)
(The coefficient parameters A to F are real numbers satisfying A> 0, B> = 0, C> 0, D> = 0, E> 0, F> 0)

上記の較正算出式を用い、流速相関特徴量νを平均流速に換算することも可能である。前述したように、特定の断面積を有する流路を満たす状態で流体122が流れることを想定した場合、流量と平均流速は比例関係となり、流量を流路の断面積で割れば平均流速が求まる。例えば流路の断面積が10mm2であった場合、流量[mL/min]を平均流速[mm/sec]に変換するための係数は、「1000[mm3/mL]/60[sec/min]/10[mm2]≒1.67」であり、上述の係数パラメータのうち、Fを1.67とすることで流速相関特徴量νを平均流速に換算することができる。 It is also possible to convert the flow velocity correlation feature quantity ν into an average flow velocity using the above calibration calculation formula. As described above, when it is assumed that the fluid 122 flows in a state where a flow path having a specific cross-sectional area is satisfied, the flow rate and the average flow velocity are proportional to each other, and the average flow velocity is obtained by dividing the flow rate by the cross-sectional area of the flow channel. . For example, when the cross-sectional area of the flow path is 10 mm 2 , the coefficient for converting the flow rate [mL / min] to the average flow velocity [mm / sec] is “1000 [mm 3 / mL] / 60 [sec / min]. ] / 10 [mm 2 ] ≈1.67 ”, and among the coefficient parameters described above, by setting F to 1.67, the flow velocity correlation feature quantity ν can be converted into an average flow velocity.

ところで、上記の方法では濃度依存性を補正するために、濃度の値ではなく平均受光量を利用している。濃度増加に対して平均受光量は必ずしも単調増加とならない。したがって、平均受光量から濃度を一意に求めることはできないが、同一の平均受光量に対しては適切なオフセット較正パラメータとゲイン較正パラメータがほぼ同一となる現象を利用することで、流速相関特徴量νから流量や平均流速を算出することを可能としている。   By the way, in the above method, in order to correct the density dependency, the average received light amount is used instead of the density value. The average amount of received light does not necessarily increase monotonously with increasing density. Therefore, it is not possible to uniquely determine the density from the average received light amount, but for the same average received light amount, by using the phenomenon that the appropriate offset calibration parameter and gain calibration parameter are almost the same, the flow velocity correlation feature amount It is possible to calculate the flow rate and average flow velocity from ν.

以上に説明したように、本発明によれば、可干渉光の照射角度を受光部が受光する散乱された光の強度が最大となる最適状態に設定し、光源が、受光部が受光する散乱された光の強度が最大となる状態の照射角度で可干渉光を照射するようにしたので、スペックルを用いる速度計測において、消費電力の増加を抑制して測定精度をより高くすることができる。散乱光の受光強度が高くなるので、シグナルノイズ比をより高くすることができ、また、光源からの発光量をより小さくすることが可能となり、消費電力が抑制できるようになる。   As described above, according to the present invention, the irradiation angle of coherent light is set to an optimum state in which the intensity of scattered light received by the light receiving unit is maximized, and the light source is scattered by the light receiving unit. Since the coherent light is irradiated at the irradiation angle in a state where the intensity of the emitted light is maximized, in the speed measurement using the speckle, the increase in power consumption can be suppressed and the measurement accuracy can be further increased. . Since the received light intensity of scattered light is increased, the signal-to-noise ratio can be further increased, and the amount of light emitted from the light source can be further reduced, so that power consumption can be suppressed.

なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。   The present invention is not limited to the embodiment described above, and many modifications and combinations can be implemented by those having ordinary knowledge in the art within the technical idea of the present invention. It is obvious.

101…光源、101a…ビーム、101b…直接反射光、101c…散乱光、102…受光部、103…演算部、121…管、122…流体、123…散乱体。   DESCRIPTION OF SYMBOLS 101 ... Light source, 101a ... Beam, 101b ... Directly reflected light, 101c ... Scattered light, 102 ... Light-receiving part, 103 ... Calculation part, 121 ... Tube, 122 ... Fluid, 123 ... Scattering body.

Claims (5)

複数の散乱体を含む測定対象の流体が流れる管の周囲から、光源より可干渉光を照射する第1工程と、
前記管の周囲に配置した受光部で前記光源からの可干渉光の照射により前記流体に含まれる前記散乱体で散乱された光を受光して光電変換する第2工程と、
前記可干渉光の照射角度を前記受光部が受光する前記散乱された光の強度が最大となる最適状態に設定する第3工程と、
前記最適状態で、前記受光部で光電変換された電気信号をもとに前記流体の流速および流量の少なくとも1つを算出して出力する第4工程と
を備えることを特徴とする流体測定方法。
A first step of irradiating coherent light from a light source from around a tube through which a fluid to be measured including a plurality of scatterers flows;
A second step of receiving and photoelectrically converting light scattered by the scatterer included in the fluid by irradiation of coherent light from the light source at a light receiving unit disposed around the tube;
A third step of setting the irradiation angle of the coherent light to an optimum state in which the intensity of the scattered light received by the light receiving unit is maximized;
And a fourth step of calculating and outputting at least one of a flow velocity and a flow rate of the fluid based on an electrical signal photoelectrically converted by the light receiving unit in the optimum state.
請求項1記載の流体測定方法において、
前記第3工程および前記第4工程では、前記管の表面で反射・散乱した反射光が前記受光部で受光されることを遮る状態とする
ことを特徴とする流体測定方法。
The fluid measurement method according to claim 1,
In the third step and the fourth step, the fluid measurement method is characterized in that the reflected light reflected and scattered by the surface of the tube is blocked from being received by the light receiving unit.
複数の散乱体を含む測定対象の流体が流れる管と、
前記管の周囲に配置されて前記管を流れる前記流体に所定の照射角度で可干渉光を照射する光源と、
前記管の周囲に配置され、前記光源からの可干渉光の照射により前記流体に含まれる前記散乱体で散乱された光を受光して光電変換する受光部と、
前記受光部で光電変換された電気信号をもとに前記流体の流速および流量の少なくとも1つを算出して出力する演算部と
を備え、
前記光源は、前記受光部が受光する前記の散乱された光の強度が最大となる状態の照射角度で前記可干渉光を照射することを特徴とする流体測定装置。
A tube through which a fluid to be measured including a plurality of scatterers flows;
A light source disposed around the tube and irradiating the fluid flowing through the tube with coherent light at a predetermined irradiation angle;
A light receiving unit that is arranged around the tube and receives and photoelectrically converts light scattered by the scatterers included in the fluid by irradiation of coherent light from the light source;
A calculation unit that calculates and outputs at least one of a flow velocity and a flow rate of the fluid based on an electrical signal photoelectrically converted by the light receiving unit, and
The fluid measurement apparatus, wherein the light source irradiates the coherent light at an irradiation angle in a state where the intensity of the scattered light received by the light receiving unit is maximized.
請求項3記載の流体測定装置において、
前記管の表面で反射・散乱した反射光が前記受光部で受光されることを遮る遮光部を備える
ことを特徴とする流体測定装置。
The fluid measuring device according to claim 3, wherein
A fluid measuring apparatus comprising: a light shielding unit that blocks reflected light reflected / scattered on a surface of the tube from being received by the light receiving unit.
請求項3または4記載の流体測定装置において、
前記演算部は、
前記受光部で光電変換された電気信号の高周波成分を取り出す信号取り出し部と、
前記信号取り出し部が取り出した高周波成分をもとに前記流体の流速に相関する特徴量を算出する特徴量算出部と、
前記特徴量より前記流体の流速および流量の少なくとも1つを算出する算出部と
を備えることを特徴とする流体測定装置。
The fluid measuring device according to claim 3 or 4,
The computing unit is
A signal extraction unit for extracting a high-frequency component of the electrical signal photoelectrically converted by the light receiving unit;
A feature amount calculation unit that calculates a feature amount correlated with the flow velocity of the fluid based on the high-frequency component extracted by the signal extraction unit;
A fluid measurement device comprising: a calculation unit that calculates at least one of a flow velocity and a flow rate of the fluid from the feature amount.
JP2016140071A 2016-07-15 2016-07-15 Fluid measurement device and method Active JP6546128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016140071A JP6546128B2 (en) 2016-07-15 2016-07-15 Fluid measurement device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016140071A JP6546128B2 (en) 2016-07-15 2016-07-15 Fluid measurement device and method

Publications (2)

Publication Number Publication Date
JP2018009919A true JP2018009919A (en) 2018-01-18
JP6546128B2 JP6546128B2 (en) 2019-07-17

Family

ID=60995421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016140071A Active JP6546128B2 (en) 2016-07-15 2016-07-15 Fluid measurement device and method

Country Status (1)

Country Link
JP (1) JP6546128B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198774A1 (en) 2017-04-26 2018-11-01 東ソ-・エスジ-エム株式会社 Ultraviolet-resistant quartz glass and method for manufacturing same
CN113597536A (en) * 2019-03-29 2021-11-02 京瓷株式会社 Measurement device, measurement system, measurement method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759173A (en) * 1980-09-25 1982-04-09 Mitsubishi Electric Corp Laser doppler speedometer
JPS63265170A (en) * 1987-04-22 1988-11-01 Kobe Steel Ltd Flow-velocity measuring method for low temperature liquid
US5148229A (en) * 1989-05-06 1992-09-15 Rolls-Royce Plc Laser velocimetry technique for measuring the three dimensional velocity components of a particle in a fluid flow
US5587785A (en) * 1994-03-22 1996-12-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Laser doppler velocimeter
JP2010200970A (en) * 2009-03-03 2010-09-16 Nippon Telegr & Teleph Corp <Ntt> Optical sensor and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759173A (en) * 1980-09-25 1982-04-09 Mitsubishi Electric Corp Laser doppler speedometer
JPS63265170A (en) * 1987-04-22 1988-11-01 Kobe Steel Ltd Flow-velocity measuring method for low temperature liquid
US5148229A (en) * 1989-05-06 1992-09-15 Rolls-Royce Plc Laser velocimetry technique for measuring the three dimensional velocity components of a particle in a fluid flow
US5587785A (en) * 1994-03-22 1996-12-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Laser doppler velocimeter
JP2010200970A (en) * 2009-03-03 2010-09-16 Nippon Telegr & Teleph Corp <Ntt> Optical sensor and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198774A1 (en) 2017-04-26 2018-11-01 東ソ-・エスジ-エム株式会社 Ultraviolet-resistant quartz glass and method for manufacturing same
CN113597536A (en) * 2019-03-29 2021-11-02 京瓷株式会社 Measurement device, measurement system, measurement method, and program

Also Published As

Publication number Publication date
JP6546128B2 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
WO2013153664A1 (en) Fluid assessment device and method
JP5411499B2 (en) A method for measuring the relative movement of an object and an optical input device in two dimensions using a single self-mixing laser.
JP6737621B2 (en) Fluid measuring device
JP6935506B2 (en) How to process signals from coherent riders to reduce noise and related rider systems
JP2019525195A (en) Method for processing signals originating from coherent riders and associated rider systems
JP6461865B2 (en) Fluid measuring device
JP6546128B2 (en) Fluid measurement device and method
JP4018799B2 (en) Method and apparatus for measuring concentration of absorption component of scattering medium
WO2020158365A1 (en) Fluid measurement device
JP2018009923A (en) Fluid measurement device
JP6805118B2 (en) Fluid measuring device
JP6291557B2 (en) Fluid evaluation apparatus and method
JP6033934B2 (en) Fluid evaluation apparatus and method
JP6045100B2 (en) Blood flow measurement device
JP2018009921A (en) Fluid measurement device
JP2018009920A (en) Fluid measurement apparatus
JP2020071164A (en) Distance measuring device
JP7103521B2 (en) Fluid measuring device
Pereira et al. Optical methods for local pulse wave velocity assessment
Norgia et al. Laser diode for flow-measurement
Meier et al. Heterodyne Doppler global velocimetry
JP7380382B2 (en) range finder
JP2021067696A (en) Fluid evaluation device and method
JP2019168465A (en) Fluid evaluation device and method
JP2018105879A (en) Fluid evaluation device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190620

R150 Certificate of patent or registration of utility model

Ref document number: 6546128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150