JP2010200970A - Optical sensor and method for manufacturing the same - Google Patents

Optical sensor and method for manufacturing the same Download PDF

Info

Publication number
JP2010200970A
JP2010200970A JP2009049702A JP2009049702A JP2010200970A JP 2010200970 A JP2010200970 A JP 2010200970A JP 2009049702 A JP2009049702 A JP 2009049702A JP 2009049702 A JP2009049702 A JP 2009049702A JP 2010200970 A JP2010200970 A JP 2010200970A
Authority
JP
Japan
Prior art keywords
light
optical sensor
emitting element
receiving element
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009049702A
Other languages
Japanese (ja)
Inventor
Takanori Seiso
孝規 清倉
Junichi Shimada
純一 嶋田
Tsuneyuki Haga
恒之 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2009049702A priority Critical patent/JP2010200970A/en
Publication of JP2010200970A publication Critical patent/JP2010200970A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical sensor effectively receiving weak nonelastic scattered light and a method for manufacturing the optical sensor. <P>SOLUTION: The optical sensor is provided with a light emitting element 16 for emitting light, a light receiving element 17 for receiving interference light of nonelastic scattered light which is light from the light emitting element 16 scattered by a subject 100 and elastic scattered light, arranged on the same substrate 11 face where an electric wiring pattern is formed; includes a light blocking wall 18 arranged on the substrate 11 face so as to surround the light receiving element 17 and having an incident window for causing the interference scattered light to enter the light receiving face of the light receiving element 17; the light emitting element 16, the light blocking wall 18, and the light receiving element 17 are arranged so as to be adjacent to each other in the order. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光学センサ及びその製造方法に関し、特に流体中の微小な散乱体からの非弾性散乱光を利用して当該流体の流速、流量等の情報を測定する光学センサに関する。   The present invention relates to an optical sensor and a method of manufacturing the same, and more particularly to an optical sensor that measures information such as a flow rate and a flow rate of the fluid using inelastic scattered light from a minute scatterer in the fluid.

高齢化が進み、生活習慣病等を予防するため健康を管理することについての関心が高まっている。血液の流れが悪くなることによっておきる脳血栓及び心筋梗塞などの生活習慣病を早期かつ簡便に発見するために、光学センサを利用して血流などの生体情報の測定を行う生体情報測定装置が開発されている(例えば、特許文献1及び2参照。)。   With the aging of society, there is an increasing interest in managing health to prevent lifestyle-related diseases. Developed a biological information measuring device that measures biological information such as blood flow using an optical sensor in order to quickly and easily discover lifestyle-related diseases such as cerebral thrombosis and myocardial infarction that occur due to poor blood flow (For example, refer to Patent Documents 1 and 2).

図7及び図8に、生体情報測定装置に搭載されている従来の光学センサの一例を示す。図7は、従来の光学センサの概略構成図である。図8は、従来の光学センサの鳥瞰図である。基板11面に電気配線パターン102、103、104、105が形成されている。電気配線パターン102は受光素子17のアノード、電気配線パターン103は受光素子17のカソードに接続される。電気配線パターン102は、微小信号検出のために増幅器(図示せず)と接続されている。電気配線パターン105は発光素子16のアノード、電気配線パターン104は発光素子16のカソードに接続される。電気配線パターン105は、発光素子16の駆動回路へと接続される。   7 and 8 show an example of a conventional optical sensor mounted on the biological information measuring device. FIG. 7 is a schematic configuration diagram of a conventional optical sensor. FIG. 8 is a bird's-eye view of a conventional optical sensor. Electric wiring patterns 102, 103, 104, and 105 are formed on the surface of the substrate 11. The electric wiring pattern 102 is connected to the anode of the light receiving element 17, and the electric wiring pattern 103 is connected to the cathode of the light receiving element 17. The electrical wiring pattern 102 is connected to an amplifier (not shown) for detecting a minute signal. The electrical wiring pattern 105 is connected to the anode of the light emitting element 16, and the electrical wiring pattern 104 is connected to the cathode of the light emitting element 16. The electrical wiring pattern 105 is connected to the drive circuit of the light emitting element 16.

電気配線パターン104の上に半田膜(図示せず)を介して発光素子16が搭載されている。発光素子16上には電極があり、当該電極がワイヤボンディングによって電気配線パターン105に接続されている。発光素子16の駆動回路からの電流は、当該電極から発光素子16に注入される。電気配線パターン103の上に半田膜(図示せず)を介して受光素子17が搭載されている。受光素子17上には電極があり、当該電極がワイヤボンディングによって電気配線パターン102に接続されている。   The light emitting element 16 is mounted on the electric wiring pattern 104 via a solder film (not shown). There are electrodes on the light emitting element 16, and the electrodes are connected to the electric wiring pattern 105 by wire bonding. Current from the drive circuit of the light emitting element 16 is injected into the light emitting element 16 from the electrode. The light receiving element 17 is mounted on the electric wiring pattern 103 via a solder film (not shown). There are electrodes on the light receiving element 17, and the electrodes are connected to the electric wiring pattern 102 by wire bonding.

上記光学センサ101を用いた生体情報の測定法の一例として、ドップラーシフト法を説明する。この場合、被検体は生体であり、測定対象は毛細血管中を移動している赤血球となる。発光素子16に電気配線パターン105から電流を注入すると、発光素子16が発振し、発光素子16から光が出射される。発光素子16から出射した光は、光学センサ101外の生体表面に照射され、測定対象である赤血球で散乱された非弾性散乱光が発生する。また、静止した生体組織からは弾性散乱光が発生する。この非弾性散乱光と弾性散乱光は干渉し、この干渉光を受光素子17で受光することで、生体情報を測定する。   A Doppler shift method will be described as an example of a biological information measurement method using the optical sensor 101. In this case, the subject is a living body, and the measurement target is red blood cells that are moving in capillaries. When current is injected into the light emitting element 16 from the electric wiring pattern 105, the light emitting element 16 oscillates and light is emitted from the light emitting element 16. The light emitted from the light emitting element 16 is irradiated on the living body surface outside the optical sensor 101, and inelastically scattered light scattered by the red blood cells to be measured is generated. In addition, elastic scattered light is generated from a stationary biological tissue. The inelastic scattered light and the elastic scattered light interfere with each other, and the biological information is measured by receiving the interference light with the light receiving element 17.

ここで、光学センサ101を測定対象に近づけたとき、発光素子16からの光が静止した生体組織などでも散乱する。そのため、受光素子17が受光する散乱光には、角質層などの静止した生体組織による弾性散乱光と、測定対象である赤血球による非弾性散乱光が含まれる。非弾性散乱光の振動数は血流に応じてドップラーシフトをしており、静止した生体組織による弾性散乱光と干渉を起こす。この干渉光をホモダイン検波によって検出することで、血流量、血液量、血流速度、脈拍などの生体情報を測定することができる。   Here, when the optical sensor 101 is brought close to the measurement target, the light from the light emitting element 16 is scattered even in a living tissue that is stationary. Therefore, the scattered light received by the light receiving element 17 includes elastic scattered light from a stationary biological tissue such as a stratum corneum and inelastic scattered light from red blood cells to be measured. The frequency of inelastically scattered light is Doppler shifted according to the blood flow, causing interference with elastically scattered light by a stationary biological tissue. By detecting this interference light by homodyne detection, biological information such as blood flow volume, blood volume, blood flow velocity, and pulse can be measured.

ここで、測定対象が生体の毛細血管内の赤血球である場合、受光素子17で受光する非弾性散乱光は数100pW程度と非常に微弱である。そのため、発光素子16から直接光が受光素子17へ入射すると、受光素子17からの出力信号のSN比が悪くなり、非弾性散乱光の寄与がノイズに埋もれてしまうので、血流速度の検出ができない。そこで、基板11面には、発光素子16から受光素子17への直接光を避けるための遮光壁108が設けられている。   Here, when the measurement target is red blood cells in a capillary of a living body, the inelastic scattered light received by the light receiving element 17 is very weak, about several hundred pW. For this reason, when light directly enters the light receiving element 17 from the light emitting element 16, the SN ratio of the output signal from the light receiving element 17 is deteriorated, and the contribution of inelastically scattered light is buried in noise. Can not. Therefore, a light shielding wall 108 for avoiding direct light from the light emitting element 16 to the light receiving element 17 is provided on the surface of the substrate 11.

特開2002−330936号JP 2002-330936 A 特開2004−229920号JP 2004-229920 A 特開2007−175415号JP 2007-175415 A 特開2008−010832号JP 2008-010832 A 特開2008−145168号JP 2008-145168

M.D.Stern:In vivo evaluation of microcirculation by coherent light scattering,Nature,Vol.254,pp.56−58(1975)M.M. D. Stern: In vivo evaluation of microcirculation by coherent light scattering, Nature, Vol. 254, pp. 56-58 (1975)

しかし、従来の光学センサにおいては、発光素子と受光素子の間隔や発光素子と被検体との間隔は考慮されていなかった。また、遮光壁の形状も十分については考慮されていなかった。   However, in the conventional optical sensor, the distance between the light emitting element and the light receiving element and the distance between the light emitting element and the subject are not considered. Further, sufficient consideration has not been given to the shape of the light shielding wall.

そこで、本発明は、微弱な非弾性散乱光を効率よく受光可能な光学センサ及び当該光学センサの製造方法の提供を目的とする。   Therefore, an object of the present invention is to provide an optical sensor capable of efficiently receiving weak inelastic scattered light and a method for manufacturing the optical sensor.

上記目的を達成するために、発明者らは実験によって、微弱な非弾性散乱光が精度よく測定可能になるような発光素子、受光素子及び遮光壁の配置を発見した。   In order to achieve the above object, the inventors have found through experiments an arrangement of a light-emitting element, a light-receiving element, and a light-shielding wall so that weak inelastic scattered light can be accurately measured.

具体的には、本願発明の光学センサは、光を出射する発光素子と、前記発光素子からの光が被検体の内部を移動する測定対象で散乱された非弾性散乱光および被検体内部の静止した対象から散乱された弾性散乱光の干渉光を受光する受光素子と、が電気配線パターンの形成されている同一の基板面に配置されている光学センサであって、前記受光素子を囲むように前記基板面に設けられ、前記干渉光を前記受光素子の受光面に入射させる入射窓を有する遮光壁を備え、前記発光素子、前記遮光壁及び前記受光素子は、順に隣接して配置されていることを特徴とする。   Specifically, the optical sensor of the present invention includes a light emitting element that emits light, inelastically scattered light scattered by a measurement target in which light from the light emitting element moves inside the subject, and stationary inside the subject. An optical sensor disposed on the same substrate surface on which an electrical wiring pattern is formed, and receiving the interference light of the elastically scattered light scattered from the target, so as to surround the light receiving element The light-emitting element, the light-shielding wall, and the light-receiving element are arranged adjacent to each other in order. It is characterized by that.

発光素子、遮光壁及び受光素子が順に隣接して配置されているので、発光素子と受光素子を最も近づけることができる。これにより、測定対象からの微弱な非弾性散乱光を効率よく受光することができる。
また、遮光壁が発光素子からの直接光を遮光するので、発光素子及び受光素子を同一の基板面に設けることができる。これにより、光学センサの製造が容易になる。
Since the light emitting element, the light shielding wall, and the light receiving element are arranged adjacent to each other in order, the light emitting element and the light receiving element can be brought closest to each other. Thereby, the weak inelastic scattered light from a measuring object can be received efficiently.
Further, since the light shielding wall shields the direct light from the light emitting element, the light emitting element and the light receiving element can be provided on the same substrate surface. Thereby, manufacture of an optical sensor becomes easy.

本願発明の光学センサでは、前記発光素子と前記被検体との距離は、1.3mm以上2.8mm以下であることが好ましい。   In the optical sensor of the present invention, the distance between the light emitting element and the subject is preferably 1.3 mm or more and 2.8 mm or less.

本願発明の光学センサでは、前記基板面における前記発光素子と前記受光素子の距離は、500μm以下であることが好ましい。   In the optical sensor of the present invention, the distance between the light emitting element and the light receiving element on the substrate surface is preferably 500 μm or less.

本願発明の光学センサでは、前記遮光壁の前記基板面への投影形状が、回転対象形状であることが好ましい。
本発明により、遮光壁の製造が容易であるとともに、遮光壁の基板面への搭載が容易になる。従って、光学センサの製造が容易になる。
In the optical sensor of the present invention, it is preferable that the projected shape of the light shielding wall on the substrate surface is a shape to be rotated.
According to the present invention, the manufacture of the light shielding wall is facilitated and the light shielding wall can be easily mounted on the substrate surface. Therefore, the manufacture of the optical sensor is facilitated.

本願発明の光学センサでは、前記遮光壁は、非導電性材料からなることが好ましい。
本発明により。発光素子と受光素子を近づけることによるノイズの発生を防ぐことができる。
また、遮光壁の入射窓を被検体の表面に密着させた場合に、被検体の静電気によるノイズの発生を防ぐことができる。
In the optical sensor of the present invention, the light shielding wall is preferably made of a non-conductive material.
According to the present invention. Generation of noise due to the proximity of the light emitting element and the light receiving element can be prevented.
Further, when the entrance window of the light shielding wall is brought into close contact with the surface of the subject, it is possible to prevent the occurrence of noise due to static electricity of the subject.

本願発明の光学センサでは、前記基板面における前記発光素子と前記受光素子の距離は、略500μmであることが好ましい。   In the optical sensor of the present invention, the distance between the light emitting element and the light receiving element on the substrate surface is preferably about 500 μm.

本願発明の光学センサでは、前記基板面と前記被検体との距離は、略2.0mmであることが好ましい。   In the optical sensor of the present invention, the distance between the substrate surface and the subject is preferably approximately 2.0 mm.

本願発明の光学センサでは、前記遮光壁は、円筒形であり、前記円筒形の開口部の一方が前記基板面と固定され、前記円筒形の開口部の他方が前記入射窓となっていることが好ましい。
本発明により、遮光壁の製造が容易であるとともに、遮光壁の基板面への搭載が容易になる。従って、光学センサの製造が容易になる。
また、遮光壁の入射窓全体を被検体表面に密着させやすいので、遮光壁内への外光の入射を容易に防ぐことができる。
In the optical sensor of the present invention, the light shielding wall has a cylindrical shape, one of the cylindrical openings is fixed to the substrate surface, and the other of the cylindrical openings is the incident window. Is preferred.
According to the present invention, the manufacture of the light shielding wall is facilitated and the light shielding wall can be easily mounted on the substrate surface. Therefore, the manufacture of the optical sensor is facilitated.
In addition, since the entire entrance window of the light shielding wall is easily brought into close contact with the subject surface, it is possible to easily prevent external light from entering the light shielding wall.

本願発明の光学センサでは、前記遮光壁は、前記受光素子を立体的に覆うキャップ形状であり、前記入射窓の面積が前記基板面での面積よりも小さいことが好ましい。
入射窓に対して遮光壁で囲まれた内部が広がっているので、大きな散乱角で散乱した非弾性散乱光を受光素子で受光することができる。また、入射窓の面積が小さいことで、遮光壁内への外光の入射を効率よく防ぐことができる。従って、非弾性散乱光を効率よく受光することができる。
In the optical sensor according to the present invention, it is preferable that the light shielding wall has a cap shape that three-dimensionally covers the light receiving element, and an area of the incident window is smaller than an area on the substrate surface.
Since the inside surrounded by the light shielding wall extends with respect to the incident window, inelastically scattered light scattered at a large scattering angle can be received by the light receiving element. In addition, since the area of the incident window is small, it is possible to efficiently prevent external light from entering the light shielding wall. Accordingly, inelastically scattered light can be received efficiently.

上記目的を達成するために、本願発明の光学センサの製造方法は、本願発明の光学センサの製造方法であって、前記発光素子、前記遮光壁及び前記受光素子を、順に隣接して配置する配置工程を有することを特徴とする。   In order to achieve the above object, an optical sensor manufacturing method of the present invention is an optical sensor manufacturing method of the present invention, in which the light emitting element, the light shielding wall, and the light receiving element are arranged adjacently in order. It has the process.

遮光壁が発光素子からの直接光を遮光するので、発光素子及び受光素子を同一の基板面に設けることができる。これにより、光学センサの製造が容易になる。また、発光素子、遮光壁及び受光素子が順に隣接して配置されているので、測定対象からの微弱な非弾性散乱光を効率よく受光することができる。したがって、本発明により、測定対象からの微弱な非弾性散乱光を効率よく受光することができる光学センサを容易に製造することができる。   Since the light shielding wall blocks direct light from the light emitting element, the light emitting element and the light receiving element can be provided on the same substrate surface. Thereby, manufacture of an optical sensor becomes easy. In addition, since the light emitting element, the light shielding wall, and the light receiving element are arranged adjacent to each other in order, it is possible to efficiently receive weak inelastic scattered light from the measurement target. Therefore, according to the present invention, it is possible to easily manufacture an optical sensor that can efficiently receive weak inelastic scattered light from a measurement object.

なお、上記各発明は、可能な限り組み合わせることができる。   The above inventions can be combined as much as possible.

本発明によれば、発光素子、遮光壁及び受光素子が順に隣接して配置されるので、微弱な非弾性散乱光が精度よく測定可能な光学センサ及び当該光学センサの製造方法を提供することができる。   According to the present invention, since the light-emitting element, the light-shielding wall, and the light-receiving element are sequentially arranged adjacent to each other, it is possible to provide an optical sensor that can accurately measure weak inelastic scattered light and a method for manufacturing the optical sensor. it can.

本実施形態に係る光学センサを搭載した生体情報測定装置の概略構成図である。It is a schematic block diagram of the biological information measuring device carrying the optical sensor which concerns on this embodiment. 本実施形態に係る光学センサの拡大図である。It is an enlarged view of the optical sensor which concerns on this embodiment. 光学センサ及び増幅器を搭載したチップの拡大図であり、(a)は側面図、(b)は上面図である。It is an enlarged view of the chip | tip which mounts an optical sensor and an amplifier, (a) is a side view, (b) is a top view. 発光素子と受光素子の中心間隔に対する増幅器からの出力電圧の変化の一例を示す。An example of the change of the output voltage from the amplifier with respect to the center space | interval of a light emitting element and a light receiving element is shown. 基板面から被検体までの距離に対する散乱光強度の1次モーメント積分値の測定結果を示す。The measurement result of the primary moment integral value of the scattered light intensity with respect to the distance from the substrate surface to the subject is shown. 血流量の測定結果であり、(a)は市販の血流計を用いた場合、(b)は本実施例に係る血流計を用いた場合を示す。It is a measurement result of blood flow volume, (a) shows the case where a commercially available blood flow meter is used, (b) shows the case where the blood flow meter concerning a present Example is used. 従来の光学センサの概略構成図である。It is a schematic block diagram of the conventional optical sensor. 従来の光学センサの鳥瞰図である。It is a bird's-eye view of the conventional optical sensor.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

図1は、本実施形態に係る光学センサを搭載した生体情報測定装置の概略構成図である。本実施形態に係る光学センサを搭載した血流計は、本実施形態に係る光学センサ1と、増幅器2と、駆動演算装置3と、出力部4と、を備える。駆動演算装置3は、全体をLSIとして構成することが可能であり、光学センサ1及び増幅器2と合わせて一体として構成でき、人体等に容易に装着できる形状に構成することが可能である。   FIG. 1 is a schematic configuration diagram of a biological information measuring apparatus equipped with an optical sensor according to the present embodiment. A blood flow meter equipped with the optical sensor according to the present embodiment includes the optical sensor 1 according to the present embodiment, an amplifier 2, a drive arithmetic device 3, and an output unit 4. The drive arithmetic unit 3 can be configured as an LSI as a whole, can be configured integrally with the optical sensor 1 and the amplifier 2, and can be configured in a shape that can be easily mounted on a human body or the like.

光学センサ1は、測定対象に照射する光を出射し、測定対象からの非弾性散乱光と弾性散乱光の干渉光を受光し、当該干渉光を光電変換した電気信号を増幅器2に出力する。増幅器2は、光学センサ1からの電気信号を増幅して、駆動演算装置3に出力する。駆動演算装置3は、光学センサ1に光を出射させるとともに、増幅器2からの電気信号の演算処理を行う。この演算処理により、測定対象及び被検体からの干渉光を解析して測定結果を得る。測定対象が赤血球の場合、この測定結果は、例えば、血流量、血液量、血流速度、脈拍などの生体情報である。出力部4は、駆動演算装置3の測定結果を出力する。ここで、出力は、例えば、小型液晶ディスプレイへの表示である。   The optical sensor 1 emits light that irradiates the measurement target, receives interference light of inelastic scattered light and elastic scattered light from the measurement target, and outputs an electric signal obtained by photoelectrically converting the interference light to the amplifier 2. The amplifier 2 amplifies the electrical signal from the optical sensor 1 and outputs the amplified signal to the drive arithmetic device 3. The drive arithmetic device 3 causes the optical sensor 1 to emit light and performs arithmetic processing of the electric signal from the amplifier 2. By this calculation process, interference light from the measurement object and the subject is analyzed to obtain a measurement result. When the measurement target is red blood cells, this measurement result is biological information such as blood flow volume, blood volume, blood flow velocity, and pulse. The output unit 4 outputs the measurement result of the drive arithmetic device 3. Here, the output is, for example, a display on a small liquid crystal display.

駆動演算装置3は、AD変換器5と、駆動回路6と、デジタル信号プロセッサ(DSP)7と、電源供給部8と、インタフェース9と、を備える。駆動回路6は、光学センサ1に備わる発光素子を駆動させる。AD変換器5は、増幅器2からのアナログ電気信号をデジタル信号に変換する。DSP7は、AD変換器5からのデジタル信号を用いて演算処理を行う。電源供給部8は、光学センサ1、増幅器2及び駆動演算装置3などへの電源供給を行う。インタフェース9は、駆動演算装置3からの測定結果を出力部4へ出力する。   The drive arithmetic device 3 includes an AD converter 5, a drive circuit 6, a digital signal processor (DSP) 7, a power supply unit 8, and an interface 9. The drive circuit 6 drives the light emitting element provided in the optical sensor 1. The AD converter 5 converts the analog electric signal from the amplifier 2 into a digital signal. The DSP 7 performs arithmetic processing using the digital signal from the AD converter 5. The power supply unit 8 supplies power to the optical sensor 1, the amplifier 2, the drive arithmetic device 3, and the like. The interface 9 outputs the measurement result from the drive arithmetic device 3 to the output unit 4.

なお、本実施形態に係る光学センサの例として生体情報測定装置を挙げているが、本発明に係る光学センサは生体情報測定装置のみでなく、血圧計その他の光学センサに適用できる。例えば、被検体に代えて果物をおけば、果実糖度計として機能する。これは、果実の甘さ成分である蔗糖や果糖は、血糖成分であるグルコースと類似の波長に吸収を有するからである、   In addition, although the biological information measuring device is mentioned as an example of the optical sensor which concerns on this embodiment, the optical sensor which concerns on this invention is applicable not only to a biological information measuring device but to a blood pressure monitor and other optical sensors. For example, if fruit is used instead of the subject, it functions as a fruit sugar content meter. This is because sucrose and fructose, which are sweet components of fruits, have absorption at a wavelength similar to that of glucose, which is a blood sugar component.

本実施形態に係る光学センサ1について図2及び図3を用いて説明する。図2は、本実施形態に係る光学センサの拡大図である。図3は、光学センサ及び増幅器を搭載したチップの拡大図であり、(a)は側面図、(b)は上面図である。光学センサは、基板11と、発光素子16と、受光素子17と、電気配線パターン12、13、14と、遮光壁18と、を備える。   The optical sensor 1 according to the present embodiment will be described with reference to FIGS. FIG. 2 is an enlarged view of the optical sensor according to the present embodiment. FIG. 3 is an enlarged view of a chip on which an optical sensor and an amplifier are mounted, in which (a) is a side view and (b) is a top view. The optical sensor includes a substrate 11, a light emitting element 16, a light receiving element 17, electric wiring patterns 12, 13, and 14, and a light shielding wall 18.

絶縁性材料からなる基板11面に電気配線パターン12、13、14が形成されている。電気配線パターン12は、受光素子17のアノードに接続されるとともに、微小信号検出のための増幅器2に接続されている(図示せず)。電気配線パターン13は、発光素子16用のアノードに接続されるとともに、駆動回路(図1に示す符号6)に接続されている。電気配線パターン14は、発光素子16と受光素子17共用カソードに接続されるとともに、駆動回路(図1に示す符号6)と増幅器2のそれぞれに接続される(図示せず)。   Electrical wiring patterns 12, 13, and 14 are formed on the surface of the substrate 11 made of an insulating material. The electrical wiring pattern 12 is connected to the anode of the light receiving element 17 and to the amplifier 2 for detecting a minute signal (not shown). The electrical wiring pattern 13 is connected to the anode for the light emitting element 16 and is also connected to a drive circuit (reference numeral 6 shown in FIG. 1). The electric wiring pattern 14 is connected to the cathode shared by the light emitting element 16 and the light receiving element 17 and is also connected to each of the drive circuit (reference numeral 6 shown in FIG. 1) and the amplifier 2 (not shown).

発光素子16及び受光素子17は、電気配線パターン12、13、14の形成されている同一の基板11面に、配置されている。例えば、電気配線パターン14の上に、銀ペースト膜(図示せず)を介して配置される。ここで、発光素子16は、レーザダイオードであることが好ましい。さらに、基板11面に対して垂直方向に光を出射するため、発光素子16は面発光型であることが好ましい。また、受光素子17は、微弱な光を受光できることが好ましく、例えば、フォトダイオードであることが好ましい。   The light emitting element 16 and the light receiving element 17 are disposed on the same substrate 11 surface on which the electrical wiring patterns 12, 13, and 14 are formed. For example, it is disposed on the electric wiring pattern 14 via a silver paste film (not shown). Here, the light emitting element 16 is preferably a laser diode. Furthermore, in order to emit light in a direction perpendicular to the surface of the substrate 11, the light emitting element 16 is preferably a surface emitting type. The light receiving element 17 is preferably capable of receiving weak light, and is preferably a photodiode, for example.

受光素子17の上面にも電極があり、ワイヤボンディングによって、電気配線パターン12に接続される。発光素子16の上面にも電極があり、ワイヤボンディングによって、電気配線パターン13に接続される。電気配線パターン13には、駆動回路(図1に示す符号6)から電流が注入される。   Electrodes are also provided on the upper surface of the light receiving element 17 and connected to the electric wiring pattern 12 by wire bonding. There is also an electrode on the upper surface of the light emitting element 16, and it is connected to the electric wiring pattern 13 by wire bonding. A current is injected into the electrical wiring pattern 13 from a drive circuit (reference numeral 6 shown in FIG. 1).

ここで、被検体100が毛細血管内の赤血球の場合、ドップラーシフトにより強度変調された成分は、数100pW程度と非常に微弱なため、遮光壁18を設けないと信号のSN比が悪くなる。この遮光壁18がない状態では、微弱なドップラーシフトした非弾性散乱光成分の強度がノイズに埋もれてしまい、血流速度の測定ができない。そこで、本実施形態では、基板11に遮光壁18が設けられている。   Here, when the subject 100 is an erythrocyte in a capillary vessel, the component whose intensity is modulated by the Doppler shift is very weak, on the order of several hundred pW, and therefore the signal-to-noise ratio of the signal is deteriorated unless the light shielding wall 18 is provided. In the absence of the light shielding wall 18, the intensity of the weakly Doppler shifted inelastically scattered light component is buried in noise, and the blood flow velocity cannot be measured. Therefore, in the present embodiment, the light shielding wall 18 is provided on the substrate 11.

遮光壁18は、受光素子17を囲むように基板11面に設けられ、非弾性散乱光を受光素子17の受光面17aに入射させる入射窓を有する。入射窓は、被検体100側に設けられている開口部である。遮光壁18が円筒形などの筒状の場合、開口部の一方が基板11面に固定され、開口部の他方が入射窓となる。これにより、発光素子16からの直接光や遮光壁18の外部からの外光の受光素子17への入射を防ぐことができる。また、遮光壁18は、受光素子17を立体的に覆うキャップ形状であり、入射窓の面積が基板11面での面積よりも小さいことが好ましい。これにより、測定対象からの散乱光を効率よく受光することができる。   The light shielding wall 18 is provided on the surface of the substrate 11 so as to surround the light receiving element 17, and has an incident window for allowing inelastic scattered light to enter the light receiving surface 17 a of the light receiving element 17. The entrance window is an opening provided on the subject 100 side. When the light shielding wall 18 has a cylindrical shape such as a cylindrical shape, one of the openings is fixed to the surface of the substrate 11 and the other of the openings serves as an incident window. Thereby, it is possible to prevent the direct light from the light emitting element 16 and the external light from the outside of the light shielding wall 18 from entering the light receiving element 17. The light shielding wall 18 has a cap shape that covers the light receiving element 17 in three dimensions, and the area of the incident window is preferably smaller than the area of the substrate 11. Thereby, the scattered light from a measuring object can be received efficiently.

遮光壁18は非導電性材料からなることが好ましい。本実施形態では、発光素子16、遮光壁18及び受光素子17は隣接して配置されるので、遮光壁18に流れる電流によって発光素子16や受光素子17へのノイズが発生しやすい。例えば、入射窓が被検体100に密着した場合、被検体100に帯電していた電荷が発光素子16や受光素子17に流入する可能性がある。そのため、遮光壁18が非導電性材料からなることで、発光素子16や受光素子17へのノイズを防ぐことができる。   The light shielding wall 18 is preferably made of a non-conductive material. In the present embodiment, since the light emitting element 16, the light shielding wall 18, and the light receiving element 17 are disposed adjacent to each other, noise to the light emitting element 16 and the light receiving element 17 is likely to be generated by the current flowing through the light shielding wall 18. For example, when the entrance window is in close contact with the subject 100, the charge charged in the subject 100 may flow into the light emitting element 16 or the light receiving element 17. Therefore, noise to the light emitting element 16 and the light receiving element 17 can be prevented because the light shielding wall 18 is made of a non-conductive material.

発光素子16、遮光壁18及び受光素子17は、順に隣接して配置されている。例えば、図3(a)に示すように、受光素子17、遮光壁18及び発光素子16が、僅かな隙間を空けて配置される。この隙間は、受光素子17の受光面17aと発光素子16の発光面16aの距離aが最小となるように配置した場合の隙間である。このように、受光素子17の受光面17aと発光素子16の発光面16aの距離aが最小となるように配置することで、発光素子16からの光が被検体100で散乱した散乱光を受光素子17にて効率よく受光することができる。   The light emitting element 16, the light shielding wall 18, and the light receiving element 17 are disposed adjacent to each other in order. For example, as illustrated in FIG. 3A, the light receiving element 17, the light shielding wall 18, and the light emitting element 16 are arranged with a slight gap therebetween. This gap is a gap when the distance a between the light receiving surface 17a of the light receiving element 17 and the light emitting surface 16a of the light emitting element 16 is minimized. In this way, by arranging the distance a between the light receiving surface 17a of the light receiving element 17 and the light emitting surface 16a of the light emitting element 16 to be minimum, the scattered light in which the light from the light emitting element 16 is scattered by the subject 100 is received. The element 17 can receive light efficiently.

例えば、300μm角の発光素子16及び受光素子17と、厚さ100μmの遮光壁18を用いた場合を考える。この場合、基板11面における発光素子16と受光素子17の距離aは、最小で400μmとなる。このとき、必要な隙間がそれぞれ50μmであれば、基板11面における発光素子16と受光素子17の距離aは略500μmであることが好ましい。また、隙間を50μmよりも小さくできる場合は、基板11面における発光素子16と受光素子17の距離aは400μm以上500μm以下であることが好ましい。   For example, consider a case where a 300 μm square light emitting element 16 and light receiving element 17 and a light shielding wall 18 having a thickness of 100 μm are used. In this case, the distance a between the light emitting element 16 and the light receiving element 17 on the surface of the substrate 11 is 400 μm at the minimum. At this time, if each necessary gap is 50 μm, the distance a between the light emitting element 16 and the light receiving element 17 on the surface of the substrate 11 is preferably about 500 μm. When the gap can be made smaller than 50 μm, the distance a between the light emitting element 16 and the light receiving element 17 on the surface of the substrate 11 is preferably 400 μm or more and 500 μm or less.

遮光壁18を基板11上に安定して保持するため、遮光壁18は、基板11上で受光素子17を囲む枠の形状をなしていることが好ましい。また、光学センサは小型が好ましく、この場合の枠の典型的な大きさは内径が1mm以上3mm以下である。この大きさの枠を製作する場合、種々の形状が考えられる。もし枠の形状が長方形の場合、周囲4辺と上下のカット及び内部のくりぬきなどを加工する必要があるが、回転対象形状にすると旋盤などで容易に作製でき、製作に必要な工程数を大幅に減らすことができ安価となる。また、遮光壁18が回転対象形状以外の形状であれば、製造工程数の部品実装際において方向を定めるために回転動作が必要である。しかし、回転対象の形状であれば、回転動作は不要であり、製造工程を減らすことで安価となる。   In order to stably hold the light shielding wall 18 on the substrate 11, it is preferable that the light shielding wall 18 has a frame shape surrounding the light receiving element 17 on the substrate 11. The optical sensor is preferably small, and the typical size of the frame in this case has an inner diameter of 1 mm or more and 3 mm or less. When manufacturing a frame of this size, various shapes are conceivable. If the shape of the frame is rectangular, it is necessary to process the surrounding four sides, top and bottom cuts, and internal cutouts. However, if the shape is to be rotated, it can be easily manufactured with a lathe, greatly increasing the number of processes required for manufacturing. Can be reduced to a low price. Further, if the light shielding wall 18 has a shape other than the shape to be rotated, a rotating operation is necessary to determine the direction when mounting the number of manufacturing steps. However, if it is a shape to be rotated, a rotating operation is not necessary, and the cost is reduced by reducing the number of manufacturing steps.

そこで、遮光壁18の基板11面への投影形状は、回転対象形状であることが好ましい。回転対象形状は、例えば多角形や円形である。特に、遮光壁18は、円筒形であることが好ましい。枠の形状を円筒形にすることによって経済化を図ることができる。   Therefore, it is preferable that the projected shape of the light shielding wall 18 on the surface of the substrate 11 is a shape to be rotated. The shape to be rotated is, for example, a polygon or a circle. In particular, the light shielding wall 18 is preferably cylindrical. Economy can be achieved by making the shape of the frame cylindrical.

後述する実施例2にて説明するように、発光素子16と被検体100との距離は、1.3mm以上2.8mm以下であることが好ましい。また、基板11面と被検体100との距離は、略2.0mmであることが好ましい。そのため、遮光壁18の基板11面からの高さは、1.5mm以上3.0mm以下であることが好ましく、さらに略2.0mmであることが好ましい。これにより、遮光壁18の入射窓を被検体100に密着させれば、発光素子16と被検体100との距離を適切な一定の距離に保つことができるので、光学センサを用いて血流量が精度よく測定できる。   As will be described later in Example 2, the distance between the light emitting element 16 and the subject 100 is preferably 1.3 mm or more and 2.8 mm or less. In addition, the distance between the surface of the substrate 11 and the subject 100 is preferably approximately 2.0 mm. For this reason, the height of the light shielding wall 18 from the surface of the substrate 11 is preferably 1.5 mm or more and 3.0 mm or less, and more preferably approximately 2.0 mm. Thereby, if the entrance window of the light shielding wall 18 is brought into close contact with the subject 100, the distance between the light emitting element 16 and the subject 100 can be maintained at an appropriate constant distance. Accurate measurement.

本実施形態に係る光学センサの製造方法は、光学センサの基板11面に、発光素子16、遮光壁18及び受光素子17を、順に隣接して配置する配置工程を有することを特徴とする。例えば、電気配線パターン12、13、14が形成された基板11の上に、受光素子17、遮光壁18及び発光素子16が密着するように配置する。ここで、受光素子17、遮光壁18及び発光素子16を密着させた場合に受光素子17にノイズが生じたり、発光素子16の動作が不安定になったりする場合は、受光素子17と遮光壁18の間、又は発光素子16と遮光壁18の間、或いはそれぞれの間に、空隙を設ける。また、空隙を設ける代わりに、また、空隙と共に、非導電性材料からなる遮光壁18を用いることが好ましい。これにより、基板11面における発光素子16と受光素子17の距離aを最小にすることができる。   The method for manufacturing an optical sensor according to the present embodiment includes an arrangement step of sequentially arranging the light emitting element 16, the light shielding wall 18, and the light receiving element 17 on the surface of the substrate 11 of the optical sensor. For example, the light receiving element 17, the light shielding wall 18, and the light emitting element 16 are arranged in close contact with each other on the substrate 11 on which the electrical wiring patterns 12, 13, and 14 are formed. Here, when the light receiving element 17, the light shielding wall 18, and the light emitting element 16 are brought into close contact with each other, noise occurs in the light receiving element 17 or the operation of the light emitting element 16 becomes unstable. A gap is provided between the light-emitting elements 16 and the light-shielding walls 18 or between the light-emitting elements 16 and the light-shielding walls 18. Moreover, it is preferable to use the light shielding wall 18 made of a non-conductive material together with the gap instead of providing the gap. Thereby, the distance a between the light emitting element 16 and the light receiving element 17 on the surface of the substrate 11 can be minimized.

ここで、本実施形態では、発光素子16と受光素子17のカソードに共通の電気配線パターン14を用いている。これにより、基板11の配線が簡略化され、光学センサの小型化、低コスト化に寄与できる。また、基板11から図1に示す駆動演算装置3への信号線の本数が低減され部品点数が削減されるため、軽量化かつ低コスト化される。さらに、発光素子16と受光素子17をダイボンディングするときの許容誤差を大きく取れるため、製造時の歩留まりの向上が見込めるため、低コスト化できる。   Here, in the present embodiment, the common electric wiring pattern 14 is used for the cathodes of the light emitting element 16 and the light receiving element 17. Thereby, the wiring of the board | substrate 11 is simplified and it can contribute to size reduction and cost reduction of an optical sensor. Further, since the number of signal lines from the substrate 11 to the drive arithmetic unit 3 shown in FIG. 1 is reduced and the number of parts is reduced, the weight and cost are reduced. Furthermore, since a large tolerance can be obtained when die-bonding the light-emitting element 16 and the light-receiving element 17, an improvement in manufacturing yield can be expected, so that the cost can be reduced.

次に、図3を参照しながら本実施形態に係る光学センサの動作を説明する。発光素子16に電気配線パターン13から電流を注入すると、発光素子16が発振し、光を出射する。発光素子16から出射した光は、光学センサの外部に位置する被検体100に照射される。発光素子16を被検体100に近づけた場合、被検体100の内部に位置する測定対象や被検体100の表面で光散乱が生じ、非弾性散乱光及び弾性散乱光を含む散乱光が遮光壁18内に入射して受光素子17に入射する。受光素子17は、発光素子からの光が被検体100で散乱された非弾性散乱光と弾性散乱光が干渉した干渉光を受光する。   Next, the operation of the optical sensor according to the present embodiment will be described with reference to FIG. When current is injected into the light emitting element 16 from the electric wiring pattern 13, the light emitting element 16 oscillates and emits light. The light emitted from the light emitting element 16 is irradiated to the subject 100 located outside the optical sensor. When the light emitting element 16 is brought close to the subject 100, light scattering occurs on the measurement object located inside the subject 100 and the surface of the subject 100, and scattered light including inelastic scattered light and elastic scattered light is blocked by the light shielding wall 18. And enters the light receiving element 17. The light receiving element 17 receives interference light in which inelastic scattered light and elastic scattered light interfere with light from the light emitting element scattered by the subject 100.

この干渉光には、静止した被検体100からの弾性散乱光と、被検体100内の測定対象からの非弾性散乱光の干渉成分が含まれる。ここで、被検体100内の測定対象は、例えば、毛細血管中を移動している赤血球である。この場合、被検体100である生体は静止しており、非弾性散乱光は赤血球の移動によりドップラーシフトしているので、弾性散乱光と非弾性散乱光の干渉成分が干渉する。この干渉成分を周波数解析し、パワースペクトルの1次モーメント積分を求める。これにより、血流量を測定するために最適な条件を探ることができる。   This interference light includes interference components of elastic scattered light from a stationary subject 100 and inelastic scattered light from a measurement target in the subject 100. Here, the measurement target in the subject 100 is, for example, red blood cells moving in the capillary blood vessels. In this case, the living body which is the subject 100 is stationary, and the inelastic scattered light is Doppler shifted due to the movement of red blood cells, so that the interference components of the elastic scattered light and the inelastic scattered light interfere with each other. The interference component is frequency-analyzed to obtain the first moment integral of the power spectrum. Thereby, the optimal conditions for measuring the blood flow rate can be found.

また、被検体内部からの非弾性散乱光は微弱であり、その散乱光強度の変動成分は1%程度である。受光素子17の受光する散乱光強度が小さいと増幅器2の増幅率を10V/A程度に非常に高くする必要がある。しかし、増幅器2の増幅率を高くすると、増幅帯域が狭まるという問題が生じる。そのため、受光素子17に入射する散乱光の光信号強度を高める必要がある。このように、受光素子17からの信号強度が最大で、かつ1次モーメント積分が高い位置を探し出すことが重要である。 Further, the inelastic scattered light from the inside of the subject is weak, and the fluctuation component of the scattered light intensity is about 1%. If the intensity of scattered light received by the light receiving element 17 is small, the amplification factor of the amplifier 2 needs to be very high, such as about 10 8 V / A. However, when the amplification factor of the amplifier 2 is increased, there arises a problem that the amplification band is narrowed. Therefore, it is necessary to increase the optical signal intensity of the scattered light incident on the light receiving element 17. Thus, it is important to find a position where the signal intensity from the light receiving element 17 is maximum and the first moment integration is high.

本実施例では、図3に示す発光素子16と受光素子17の中心間隔aの最適値を実験により求めた。実験では、発光素子16及び受光素子17に300μm角のレーザダイオード及びフォトダイオードを用い、厚さ100μmの遮光壁18を用いた。そして、発光素子16と受光素子17の中心間隔aを変化させながら、増幅器2からの出力電圧を測定した。   In this example, the optimum value of the center distance a between the light emitting element 16 and the light receiving element 17 shown in FIG. In the experiment, a 300 μm square laser diode and a photodiode were used for the light emitting element 16 and the light receiving element 17, and a light shielding wall 18 having a thickness of 100 μm was used. The output voltage from the amplifier 2 was measured while changing the center distance a between the light emitting element 16 and the light receiving element 17.

発光素子16、遮光壁18及び受光素子17のすべてが接した場合、発光素子16と受光素子17の中心間隔aは300μmであった。発光素子16と受光素子17を実装するために必要な最小空間(遮光壁の両側50μm)を考慮すると、発光素子16と受光素子17の最小の中心間隔aは500μmとなる。したがって、この場合の発光素子16と受光素子17の最小の中心間隔aは500μmである。   When all of the light emitting element 16, the light shielding wall 18, and the light receiving element 17 were in contact, the center distance a between the light emitting element 16 and the light receiving element 17 was 300 μm. Considering the minimum space required for mounting the light emitting element 16 and the light receiving element 17 (50 μm on both sides of the light shielding wall), the minimum center distance a between the light emitting element 16 and the light receiving element 17 is 500 μm. Therefore, the minimum center distance a between the light emitting element 16 and the light receiving element 17 in this case is 500 μm.

図4に、発光素子と受光素子の中心間隔に対する増幅器からの出力電圧の変化の一例を示す。図4において、横軸は図3に示す発光素子16と受光素子17の中心間隔、縦軸は図3に示す増幅器2からの出力電圧を示す。このデータは出力光が0.5mWの条件で正規化を行っている。図4から明らかなように、発光素子16と受光素子17の中心間隔が狭いほど増幅器2からの出力電圧は高い。このため、発光素子16と受光素子17の中心間隔が狭いほど受光素子への散乱光の信号強度は高く、発光素子16と受光素子17の中心間隔が最小となる500μmで最適な測定ができることが判明した。   FIG. 4 shows an example of a change in the output voltage from the amplifier with respect to the center distance between the light emitting element and the light receiving element. In FIG. 4, the horizontal axis indicates the center distance between the light emitting element 16 and the light receiving element 17 shown in FIG. 3, and the vertical axis indicates the output voltage from the amplifier 2 shown in FIG. This data is normalized under the condition that the output light is 0.5 mW. As is apparent from FIG. 4, the output voltage from the amplifier 2 is higher as the center distance between the light emitting element 16 and the light receiving element 17 is smaller. For this reason, as the center distance between the light emitting element 16 and the light receiving element 17 is narrower, the signal intensity of the scattered light to the light receiving element is higher, and optimal measurement can be performed at 500 μm where the center distance between the light emitting element 16 and the light receiving element 17 is minimized. found.

本実施例では、図3に示す発光素子16と被検体100との距離bの最適値を実験により導き出した。実験では、発光素子16及び受光素子17に厚さ0.2mmのレーザダイオード及びフォトダイオードを用いた。そして、基板11と被検体100の距離cを変えながら、受光素子17で検出される散乱光の強度の時間変動のパワースペクトルの1次モーメント積分値を算出した。ここで、1次モーメント積分は、前述の通り血流量に比例するため指標となる。   In this example, the optimum value of the distance b between the light emitting element 16 and the subject 100 shown in FIG. In the experiment, a laser diode and a photodiode having a thickness of 0.2 mm were used for the light emitting element 16 and the light receiving element 17. Then, while changing the distance c between the substrate 11 and the subject 100, the first moment integral value of the power spectrum of the time variation of the intensity of the scattered light detected by the light receiving element 17 was calculated. Here, the first moment integral is an index because it is proportional to the blood flow as described above.

図5に、基板面から被検体までの距離に対する散乱光強度の1次モーメント積分値の測定結果を示す。図5において、横軸は基板面から被検体までの距離c、縦軸は1次モーメント積分値である。ここで、1次モーメント積分値は、受光素子17で受光した散乱光の平均強度の2乗で正規化している。グラフに示すように、距離cが2mm付近のときに1次モーメント積分値が最大となっている。このとき、発光素子及び受光素子の厚みが共に0.2mmであることから、発光素子及び受光素子と被検体100との距離(図3の符号b)が1.8mm付近の場合において血流量の最適な測定ができることが判明した。   FIG. 5 shows the measurement result of the first moment integrated value of the scattered light intensity with respect to the distance from the substrate surface to the subject. In FIG. 5, the horizontal axis represents the distance c from the substrate surface to the subject, and the vertical axis represents the first moment integral value. Here, the primary moment integral value is normalized by the square of the average intensity of the scattered light received by the light receiving element 17. As shown in the graph, the primary moment integral value is maximum when the distance c is around 2 mm. At this time, since the thicknesses of the light emitting element and the light receiving element are both 0.2 mm, the blood flow rate is reduced when the distance between the light emitting element and the light receiving element and the subject 100 (symbol b in FIG. 3) is about 1.8 mm. It has been found that optimal measurement can be performed.

また、1次モーメント積分値が0.08以上のときにピークが明確に現れ始めているので、距離cが1.3mmから3.8mmの範囲で効果が現れていると考えられる。このため、距離cは、1.3mm以上3.8mm以下であること、すなわち、発光素子及び受光素子と被検体との距離(図3の符号b)が1.1mm以上3.6mm以下であることが好ましい。   In addition, since the peak begins to appear clearly when the first moment integral value is 0.08 or more, it is considered that the effect appears when the distance c is in the range of 1.3 mm to 3.8 mm. For this reason, the distance c is 1.3 mm or more and 3.8 mm or less, that is, the distance between the light emitting element and the light receiving element and the subject (symbol b in FIG. 3) is 1.1 mm or more and 3.6 mm or less. It is preferable.

また、距離cが1.5mmと3.0mmのときに、1次モーメント積分値がほぼ同じになっているため、1次モーメント積分値は同等であるといってよい。このため、距離cが1.5mm以上3.0mm以下であること、すなわち、発光素子及び受光素子と被検体との距離(図3の符号b)が1.3mm以上2.8mm以下であることが好ましい。   Further, when the distance c is 1.5 mm and 3.0 mm, the primary moment integral values are substantially the same, so it can be said that the primary moment integral values are equivalent. For this reason, the distance c is 1.5 mm or more and 3.0 mm or less, that is, the distance between the light emitting element and the light receiving element and the subject (symbol b in FIG. 3) is 1.3 mm or more and 2.8 mm or less. Is preferred.

基板11面からの距離cが1.8mmのときに、1次モーメント積分値が最大となっている。そのため、発光素子16及び受光素子17と被検体100との距離bは、1.6であることが好ましい。   When the distance c from the surface of the substrate 11 is 1.8 mm, the primary moment integral value is maximum. Therefore, the distance b between the light emitting element 16 and the light receiving element 17 and the subject 100 is preferably 1.6.

本実施例では、図3に示す光学センサが実際に血流量の変動を観測できるかどうかを実験により確認した。実験では、人差し指に、市販の血流計及び本実施例に係る血流計の光学センサを両面テープで接着し、手首を絞めて阻血し、その後徐々に開放した際の血流量変化を観測した。   In this example, it was confirmed by experiments whether the optical sensor shown in FIG. 3 can actually observe fluctuations in blood flow. In the experiment, a commercially available blood flow meter and an optical sensor of the blood flow meter according to this example were adhered to the index finger with a double-sided tape, the wrist was squeezed to block blood, and then the blood flow change when gradually released was observed. .

図6は、血流量の測定結果であり、(a)は市販の血流計を用いた場合、(b)は本実施例に係る血流計を用いた場合を示す。変化の傾向はいずれもほぼ同等である。したがって、図3に示す光学センサは、実際に血流量の変動を観測できることが確認できた。   6A and 6B show measurement results of blood flow. FIG. 6A shows a case where a commercially available blood flow meter is used, and FIG. 6B shows a case where the blood flow meter according to the present embodiment is used. The trend of change is almost the same. Therefore, it was confirmed that the optical sensor shown in FIG. 3 can actually observe fluctuations in blood flow.

本発明の光学センサ及びその製造方法は、血圧計などの生体情報測定装置を製造等する医療機器産業及び健康・美容産業に適用することができる。   The optical sensor and the manufacturing method thereof of the present invention can be applied to the medical equipment industry and the health / beauty industry for manufacturing a biological information measuring device such as a blood pressure monitor.

1:光学センサ
2:増幅器
3:駆動演算装置
4:出力部
5:AD変換器
6:駆動回路
7:DSP
8:電源供給部
9:インタフェース
11:基板
12、13、14:電気配線パターン
16:発光素子
16a:発光面の中心
17:受光素子
17a:受光面の中心
18:遮光壁
100:被検体
101:光学センサ
102、103、104、105:電気配線パターン
108:遮光壁
1: Optical sensor 2: Amplifier 3: Drive arithmetic device 4: Output unit 5: AD converter 6: Drive circuit 7: DSP
8: Power supply unit 9: Interface 11: Boards 12, 13, 14: Electrical wiring pattern 16: Light emitting element 16a: Light emitting surface center 17: Light receiving element 17a: Light receiving surface center 18: Light shielding wall 100: Subject 101: Optical sensor 102, 103, 104, 105: Electric wiring pattern 108: Light shielding wall

Claims (10)

光を出射する発光素子と、
前記発光素子からの光が被検体の内部を移動する測定対象で散乱された非弾性散乱光および被検体内部の静止した対象から散乱された弾性散乱光の干渉光を受光する受光素子と、が電気配線パターンの形成されている同一の基板面に配置されている光学センサであって、
前記受光素子を囲むように前記基板面に設けられ、前記干渉光を前記受光素子の受光面に入射させる入射窓を有する遮光壁を備え、
前記発光素子、前記遮光壁及び前記受光素子は、順に隣接して配置されていることを特徴とする光学センサ。
A light emitting element that emits light;
A light receiving element that receives interference light of inelastically scattered light scattered from a measurement object in which light from the light emitting element moves inside the subject and elastic scattered light scattered from a stationary object inside the subject; An optical sensor disposed on the same substrate surface on which an electrical wiring pattern is formed,
A light-shielding wall provided on the substrate surface so as to surround the light-receiving element, and having an incident window for allowing the interference light to enter the light-receiving surface of the light-receiving element;
The optical sensor, wherein the light emitting element, the light shielding wall, and the light receiving element are arranged adjacent to each other in order.
前記発光素子と前記被検体との距離は、1.3mm以上2.8mm以下であることを特徴とする請求項1に記載の光学センサ。   The optical sensor according to claim 1, wherein a distance between the light emitting element and the subject is 1.3 mm or more and 2.8 mm or less. 前記基板面における前記発光素子と前記受光素子の距離は、500μm以下であることを特徴とする請求項1又は2に記載の光学センサ。   The optical sensor according to claim 1, wherein a distance between the light emitting element and the light receiving element on the substrate surface is 500 μm or less. 前記遮光壁の前記基板面への投影形状が、回転対象形状であることを特徴とする請求項1から3のいずれかに記載の光学センサ。   The optical sensor according to claim 1, wherein a projection shape of the light shielding wall onto the substrate surface is a shape to be rotated. 前記遮光壁は、非導電性材料からなることを特徴とする請求項1から4のいずれかに記載の光学センサ。   The optical sensor according to claim 1, wherein the light shielding wall is made of a nonconductive material. 前記基板面における前記発光素子と前記受光素子の距離は、略500μmであることを特徴とする請求項1、2、4又は5に記載の光学センサ。   The optical sensor according to claim 1, wherein a distance between the light emitting element and the light receiving element on the substrate surface is approximately 500 μm. 前記基板面と前記被検体との距離は、略2.0mmであることを特徴とする請求項1、3、4、5又は6に記載の光学センサ。   The optical sensor according to claim 1, 3, 4, 5, or 6, wherein a distance between the substrate surface and the subject is approximately 2.0 mm. 前記遮光壁は、円筒形であり、前記円筒形の開口部の一方が前記基板面と固定され、前記円筒形の開口部の他方が前記入射窓となっていることを特徴とする請求項1から7のいずれかに記載の光学センサ。   2. The light shielding wall is cylindrical, wherein one of the cylindrical openings is fixed to the substrate surface, and the other of the cylindrical openings is the incident window. 8. The optical sensor according to any one of 7 to 7. 前記遮光壁は、前記受光素子を立体的に覆うキャップ形状であり、前記入射窓の面積が前記基板面での面積よりも小さいことを特徴とする請求項1から7のいずれかに記載の光学センサ。   8. The optical device according to claim 1, wherein the light shielding wall has a cap shape that covers the light receiving element in three dimensions, and an area of the incident window is smaller than an area on the substrate surface. Sensor. 請求項1から9のいずれかに記載の光学センサの製造方法であって、
前記発光素子、前記遮光壁及び前記受光素子を、順に隣接して配置する配置工程を有することを特徴とする光学センサの製造方法。
A method for producing an optical sensor according to any one of claims 1 to 9,
The manufacturing method of the optical sensor characterized by having the arrangement | positioning process which arrange | positions the said light emitting element, the said light-shielding wall, and the said light receiving element adjacently in order.
JP2009049702A 2009-03-03 2009-03-03 Optical sensor and method for manufacturing the same Pending JP2010200970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009049702A JP2010200970A (en) 2009-03-03 2009-03-03 Optical sensor and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009049702A JP2010200970A (en) 2009-03-03 2009-03-03 Optical sensor and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010200970A true JP2010200970A (en) 2010-09-16

Family

ID=42963085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009049702A Pending JP2010200970A (en) 2009-03-03 2009-03-03 Optical sensor and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010200970A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015004912A1 (en) * 2013-07-12 2015-01-15 セイコーエプソン株式会社 Light detection unit and biological information detection device
JP2016123715A (en) * 2015-01-05 2016-07-11 セイコーエプソン株式会社 Biological information measurement module, and biological information measurement device
JP2017018772A (en) * 2016-11-02 2017-01-26 ローム株式会社 Biological sensor
JP2017187359A (en) * 2016-04-05 2017-10-12 日本電信電話株式会社 Fluid measurement device
JP2018009919A (en) * 2016-07-15 2018-01-18 日本電信電話株式会社 Fluid measurement apparatus and method
US10052039B2 (en) 2014-03-18 2018-08-21 Seiko Epson Corporation Light detection unit
JPWO2020261331A1 (en) * 2019-06-24 2020-12-30

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11104113A (en) * 1997-09-30 1999-04-20 Nippon Colin Co Ltd Peripheral circulation measuring system
JP2007175415A (en) * 2005-12-28 2007-07-12 Nippon Telegr & Teleph Corp <Ntt> Optical sensor and sensor part thereof
WO2007144817A1 (en) * 2006-06-12 2007-12-21 Koninklijke Philips Electronics N.V. Skin monitoring device, method of monitoring the skin, monitoring device, method of irradiating the skin, and use of an oled
JP2008010832A (en) * 2006-06-01 2008-01-17 Nippon Telegr & Teleph Corp <Ntt> Optical sensor, sensor chip, and biological information measuring device
JP2008145168A (en) * 2006-12-07 2008-06-26 Nippon Telegr & Teleph Corp <Ntt> Optical sensor and physiological data measuring instrument

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11104113A (en) * 1997-09-30 1999-04-20 Nippon Colin Co Ltd Peripheral circulation measuring system
JP2007175415A (en) * 2005-12-28 2007-07-12 Nippon Telegr & Teleph Corp <Ntt> Optical sensor and sensor part thereof
JP2008010832A (en) * 2006-06-01 2008-01-17 Nippon Telegr & Teleph Corp <Ntt> Optical sensor, sensor chip, and biological information measuring device
WO2007144817A1 (en) * 2006-06-12 2007-12-21 Koninklijke Philips Electronics N.V. Skin monitoring device, method of monitoring the skin, monitoring device, method of irradiating the skin, and use of an oled
JP2008145168A (en) * 2006-12-07 2008-06-26 Nippon Telegr & Teleph Corp <Ntt> Optical sensor and physiological data measuring instrument

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015004912A1 (en) * 2013-07-12 2015-01-15 セイコーエプソン株式会社 Light detection unit and biological information detection device
JP2015016194A (en) * 2013-07-12 2015-01-29 セイコーエプソン株式会社 Light detection unit and biological information detector
CN105358051A (en) * 2013-07-12 2016-02-24 精工爱普生株式会社 Light detection unit and biological information detection device
US9854984B2 (en) 2013-07-12 2018-01-02 Seiko Epson Corporation Optical detection unit and biological information detection device
US10052039B2 (en) 2014-03-18 2018-08-21 Seiko Epson Corporation Light detection unit
JP2016123715A (en) * 2015-01-05 2016-07-11 セイコーエプソン株式会社 Biological information measurement module, and biological information measurement device
JP2017187359A (en) * 2016-04-05 2017-10-12 日本電信電話株式会社 Fluid measurement device
JP2018009919A (en) * 2016-07-15 2018-01-18 日本電信電話株式会社 Fluid measurement apparatus and method
JP2017018772A (en) * 2016-11-02 2017-01-26 ローム株式会社 Biological sensor
JPWO2020261331A1 (en) * 2019-06-24 2020-12-30
WO2020261331A1 (en) * 2019-06-24 2020-12-30 日本電信電話株式会社 Fluid measurement device
JP7103521B2 (en) 2019-06-24 2022-07-20 日本電信電話株式会社 Fluid measuring device

Similar Documents

Publication Publication Date Title
JP2010200970A (en) Optical sensor and method for manufacturing the same
JP4475601B2 (en) Self-luminous sensor device and biological information detection method
JP4061409B2 (en) Sensor unit and biosensor
JP4724559B2 (en) Optical sensor and sensor unit thereof
RU2663633C2 (en) Device for measuring physiological parameter of user
JP5031895B2 (en) Self-luminous sensor device and manufacturing method thereof
JP5623504B2 (en) Sensing device for characteristics of body tissue
US20150112207A1 (en) Pulse wave sensor and biological information measuring device using the same
Kimura et al. Integrated laser Doppler blood flowmeter designed to enable wafer-level packaging
US20150190058A1 (en) Biological information detector and biological information measuring device
US20180360352A1 (en) Optosensor
JP2008010832A (en) Optical sensor, sensor chip, and biological information measuring device
JP4718324B2 (en) Optical sensor and sensor unit thereof
JP2008272085A (en) Blood-flow sensor
JP3651442B2 (en) Blood flow meter and blood flow sensor
JP4460566B2 (en) Optical sensor and biological information measuring device
JP5301618B2 (en) Optical sensor and sensor chip
JP2019136442A (en) Biological information measurement device
JP2019141470A (en) Biological information measurement device
JP7395848B2 (en) Biological information measuring device
JP4668234B2 (en) Blood flow measuring device
JP7264462B2 (en) biosensor
JP2018113293A (en) Light emitting device, biological information measuring device, and manufacturing method of light emitting device
US20210401300A1 (en) Biological information measuring device
JP2020018528A (en) Blood flow sensor and information processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121218