JP2018009920A - Fluid measurement apparatus - Google Patents

Fluid measurement apparatus Download PDF

Info

Publication number
JP2018009920A
JP2018009920A JP2016140074A JP2016140074A JP2018009920A JP 2018009920 A JP2018009920 A JP 2018009920A JP 2016140074 A JP2016140074 A JP 2016140074A JP 2016140074 A JP2016140074 A JP 2016140074A JP 2018009920 A JP2018009920 A JP 2018009920A
Authority
JP
Japan
Prior art keywords
fluid
flow velocity
light
tube
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016140074A
Other languages
Japanese (ja)
Other versions
JP6426665B2 (en
Inventor
雄一 樋口
Yuichi Higuchi
雄一 樋口
啓 桑原
Hiroshi Kuwabara
啓 桑原
笠原 亮一
Ryoichi Kasahara
亮一 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2016140074A priority Critical patent/JP6426665B2/en
Publication of JP2018009920A publication Critical patent/JP2018009920A/en
Application granted granted Critical
Publication of JP6426665B2 publication Critical patent/JP6426665B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To prevent deterioration in linearity between flow velocity measured at high-speed flow velocity and actual flow velocity.SOLUTION: A tube 101 becomes a flow channel in which fluid containing a plurality of scatterers flows and has a bent part 101a formed by being bent at a measurement area 111. A sensor head 102 including a light source 121 and a light reception part 122, is provided on an outer peripheral surface of the tube 101 on a recess side of the bent part 101a in the measurement area 111. The light source 121 irradiates the scatterers in the fluid flowing in the tube 101 with coherent light. The light reception part 122 receives light scattered by the scatterers contained in the fluid by radiation of the coherent light to perform photoelectric conversion.SELECTED DRAWING: Figure 1

Description

本発明は、レーザ光を用いて流路を流れる流体の流量や流速を測定する流体測定装置に関する。   The present invention relates to a fluid measuring device that measures the flow rate and flow velocity of a fluid flowing through a flow path using laser light.

流路を流れる流体の流量や流速を測定する技術が工業・医療分野などで幅広く利用されている。流量や流速を測定する装置としては、電磁流量計、渦流量計、コリオリ式流量計、レーザ流量計など様々な種類があり、用途に応じて使い分けられている。このうち、レーザ流量計は、レーザ光を用いることで、流路を流れる流体に接触することなく非接触で流量や流速を測定することが可能であるため、衛生的であることを必要とする用途や、既設の流路に流量計を挿入することができない用途などにおいて利用されている。   Techniques for measuring the flow rate and flow velocity of a fluid flowing through a channel are widely used in the industrial and medical fields. There are various types of devices for measuring flow rate and flow velocity, such as electromagnetic flowmeters, vortex flowmeters, Coriolis flowmeters, and laser flowmeters. Among these, the laser flowmeter needs to be hygienic because it can measure the flow rate and flow velocity without contact with the fluid flowing through the flow path by using laser light. It is used in applications and applications where a flow meter cannot be inserted into an existing flow path.

レーザ流量計としては、2光束式のレーザドップラー流量計がある(特許文献1参照)。この流量計では、まず、光源より出射したレーザ光をハーフミラーで2本のビームに分岐し、分岐した一方のビームをミラーに反射させ、2つのビームを流路中の一点に集光させる。流路内の流体に含まれる散乱体が集光点を通過すると光が散乱されるが、2本のビームからの散乱光は各々異なったドップラーシフトを受けている。   As a laser flow meter, there is a two-beam laser Doppler flow meter (see Patent Document 1). In this flow meter, first, the laser beam emitted from the light source is split into two beams by a half mirror, one of the branched beams is reflected by the mirror, and the two beams are condensed at one point in the flow path. When the scatterer included in the fluid in the flow path passes through the condensing point, the light is scattered, but the scattered light from the two beams undergoes different Doppler shifts.

このような状態の散乱光を、フォトダイオードなどで電気信号に変換すると、ヘテロダイン検波が行われてビート信号が観測される。観測されるビート信号の周波数スペクトルを算出してピーク周波数を抽出すると、散乱体の移動速度を求めることができる。流れが層流であった場合、流路を流れる流体の流路全域における平均流速や流量は、上述したことにより求めた散乱体の移動速度と比例関係となるため、流路に応じた比例定数を乗じて較正することで、流体の流速や流量を測定することができる。   When the scattered light in such a state is converted into an electric signal by a photodiode or the like, a heterodyne detection is performed and a beat signal is observed. By calculating the frequency spectrum of the observed beat signal and extracting the peak frequency, the moving speed of the scatterer can be obtained. When the flow is a laminar flow, the average flow velocity and flow rate of the fluid flowing through the flow channel are proportional to the moving speed of the scatterer obtained as described above, and therefore a proportional constant according to the flow channel. By multiplying and calibrating, the flow velocity and flow rate of the fluid can be measured.

上述した流体測定技術は、散乱体の移動速度の絶対値を計測することができるという優れた利点を有するが、ヘテロダイン検波を行うために一点に集光する2本のビームが必要となる。このため、複数の光学部品やこれらの高精度な位置合わせが要求され、装置が大型化する、また高コスト化するという問題がある。また、この技術は、流体中に含まれる散乱体の濃度が薄い場合に有効であり、散乱体の濃度が濃くなると、レーザ光が複数の散乱体によって多重散乱されてしまうため、ビート信号の観測が困難となるという問題がある。   The fluid measurement technique described above has an excellent advantage of being able to measure the absolute value of the moving speed of the scatterer, but requires two beams focused at one point in order to perform heterodyne detection. For this reason, a plurality of optical components and their highly accurate alignment are required, and there is a problem that the apparatus is increased in size and cost. This technique is effective when the concentration of scatterers contained in the fluid is low. When the concentration of scatterers is high, the laser light is multiple-scattered by multiple scatterers, so the beat signal is observed. There is a problem that becomes difficult.

レーザを用いた速度計測方法としては、スペックル法も利用されている。スペックル法は、粗面体や散乱体を含む流体などにレーザ光を照射したとき、不規則に散乱された光が干渉して生成されるランダムな斑点模様(=スペックル)を用いた速度計測法である。スペックルを生成する物体が移動する場合、スペックルも時間的に変動するため、例えばスペックルの2次元画像を取得し、スペックルの移動パタンを解析することで移動速度を求めることができる(非特許文献1参照)。この方法は、2次元的な画像の取得・解析が必要であることから、やはり装置が大型、高価になってしまうという問題がある。   A speckle method is also used as a speed measurement method using a laser. The speckle method uses a random speckle pattern (= speckle) that is generated by interference of irregularly scattered light when laser light is irradiated onto a fluid containing a rough surface or a scatterer. Is the law. When an object that generates speckles moves, speckles also vary with time. For example, a two-dimensional image of speckles is acquired, and a moving speed can be obtained by analyzing speckle movement patterns ( Non-patent document 1). Since this method requires acquisition and analysis of a two-dimensional image, there is still a problem that the apparatus becomes large and expensive.

光学系を簡易化する方法として、スペックルを二次元ではなく一点で計測する方法も考えられる。この場合、スペックルの変動に応じた不規則信号が観測され、観測される信号の自己相関関数から算出した時間相関長は、散乱体の移動速度と反比例の関係となることが知られている。また、時間相関長の代わりに、信号のパワースペクトルの傾きなどを利用することもできる。この原理は、粒子のブラウン運動の解析や、生体の皮膚血流の計測に利用されている(例えば特許文献2を参照)。   As a method for simplifying the optical system, a method of measuring speckles at one point instead of two dimensions is also conceivable. In this case, an irregular signal corresponding to speckle fluctuation is observed, and the time correlation length calculated from the autocorrelation function of the observed signal is known to be inversely proportional to the moving speed of the scatterer. . Also, the slope of the power spectrum of the signal can be used instead of the time correlation length. This principle is used for analyzing Brownian motion of particles and measuring skin blood flow in a living body (see, for example, Patent Document 2).

特開昭57−059173号公報JP-A-57-059173 特開平07−92184号公報Japanese Patent Application Laid-Open No. 07-92184

相津 佳永 他著、「レーザー計測の基礎I:速度計測」、レーザー研究、第27巻第8号、572〜578頁、1999年。Yoshinori Aizu et al., “Basics of Laser Measurement I: Velocity Measurement”, Laser Research, Vol. 27, No. 8, 572-578, 1999.

ところで、スペックルを一点で計測して得られた信号のパワースペクトルを利用して流量・流速を求める技術では、流速が速くなると測定される流速と実際の流速との間の線型性が低下するという問題がある。   By the way, in the technique for obtaining the flow rate / flow velocity using the power spectrum of the signal obtained by measuring speckles at one point, the linearity between the measured flow velocity and the actual flow velocity decreases as the flow velocity increases. There is a problem.

本発明は、以上のような問題点を解消するためになされたものであり、速い流速における測定される流速と実際の流速との間の線型性の低下が抑制できるようにすることを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to suppress a decrease in linearity between a measured flow velocity and an actual flow velocity at a high flow velocity. To do.

本発明に係る流体測定装置は、弾性体からなり複数の散乱体を含む流体が流れる管と、測定領域に形成された管が曲がる曲部と、測定領域の曲部の凹部側の管の外周面に配置され、管を流れる流体中の散乱体に可干渉光を照射する光源、および可干渉光の照射により流体に含まれる散乱体で散乱された光を受光して光電変換する受光部を備えるセンサヘッドと、受光部で光電変換された電気信号をもとに測定領域を通過する流体の流量を算出して出力する演算部とを備える。   The fluid measurement device according to the present invention includes a tube made of an elastic material through which a fluid including a plurality of scatterers flows, a curved portion where the tube formed in the measurement region is bent, and an outer periphery of the tube on the concave side of the curved portion of the measurement region. A light source that radiates coherent light to a scatterer in a fluid flowing through a pipe, and a light receiving unit that receives light scattered by the scatterer included in the fluid by irradiation of the coherent light and photoelectrically converts the light A sensor head, and a calculation unit that calculates and outputs a flow rate of the fluid that passes through the measurement region based on an electrical signal photoelectrically converted by the light receiving unit.

上記流体測定装置において、センサヘッドを平坦面上の測定領域に配置する基体部を備え、平坦面上の測定領域を通過する配管領域に管が配置され、センサヘッドに平坦面より離れる方向に押し上げられることで管の曲部が形成されている。   The fluid measuring device includes a base portion that places the sensor head in a measurement region on a flat surface, a pipe is disposed in a piping region that passes through the measurement region on the flat surface, and is pushed up in a direction away from the flat surface. As a result, a curved portion of the tube is formed.

上記流体測定装置において、演算部は、受光部で光電変換された電気信号の高周波成分を取り出す信号取り出し部と、信号取り出し部が取り出した高周波成分をもとに流体の流速に相関する特徴量を算出する特徴量算出部と、特徴量より流体の流速および流量の少なくとも1つを算出する算出部とを備える。   In the fluid measuring apparatus, the calculation unit includes a signal extraction unit that extracts a high-frequency component of the electrical signal photoelectrically converted by the light-receiving unit, and a feature quantity that correlates with the fluid flow velocity based on the high-frequency component extracted by the signal extraction unit. A feature amount calculation unit to calculate, and a calculation unit to calculate at least one of the flow velocity and flow rate of the fluid from the feature amount.

以上説明したように、本発明によれば、管に曲げ部を形成してこの凹部側にセンサヘッドを配置するようにしたので速い流速における測定される流速と実際の流速との間の線型性の低下が抑制できるという優れた効果が得られる。   As described above, according to the present invention, since the bent portion is formed in the tube and the sensor head is arranged on the concave portion side, the linearity between the measured flow velocity at the high flow velocity and the actual flow velocity. An excellent effect is obtained that the decrease in the thickness can be suppressed.

図1は、本発明の実施の形態における流体測定装置の構成を示す構成図である。FIG. 1 is a configuration diagram showing the configuration of the fluid measuring device according to the embodiment of the present invention. 図2は、演算部103の構成を示す構成図である。FIG. 2 is a configuration diagram illustrating a configuration of the calculation unit 103.

以下、本発明の実施の形態について図を参照して説明する。図1は、本発明の実施の形態における流体測定装置の構成を示す構成図である。この流体測定装置は、管101、センサヘッド102、演算部103を備える。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing the configuration of the fluid measuring device according to the embodiment of the present invention. This fluid measuring device includes a tube 101, a sensor head 102, and a calculation unit 103.

管101は、流路となり、例えば塩化ビニルなどの弾性体から構成され、複数の散乱体を含む流体が流れる。また、管101は、測定領域111において曲げられて曲部101aが形成されている。   The tube 101 serves as a flow path, is made of an elastic body such as vinyl chloride, and a fluid containing a plurality of scatterers flows. The tube 101 is bent in the measurement region 111 to form a curved portion 101a.

センサヘッド102は、光源121と受光部122とを備え、測定領域111の曲部101aの凹部側の管101の外周面に配置される。光源121は、管101を流れる流体中の散乱体に可干渉光を照射する。光源121は、例えば、半導体レーザから構成されている。受光部122は、可干渉光の照射により流体に含まれる散乱体で散乱された光を受光して光電変換する。受光部122は、例えば、フォトダイオードである。   The sensor head 102 includes a light source 121 and a light receiving unit 122, and is disposed on the outer peripheral surface of the tube 101 on the concave side of the curved portion 101 a of the measurement region 111. The light source 121 irradiates the scatterer in the fluid flowing through the tube 101 with coherent light. The light source 121 is composed of, for example, a semiconductor laser. The light receiving unit 122 receives light scattered by a scatterer included in the fluid by irradiation with coherent light, and performs photoelectric conversion. The light receiving unit 122 is, for example, a photodiode.

管101およびセンサヘッド102は、例えば、基体部104の平坦面上の配管領域に配置されている。基体部104の平坦面上で、センサヘッド102に平坦面より離れる方向に押し上げられることで管101の曲部101aが形成されている。基体部104の平坦面上に配置した管101を、測定領域111に開口領域を備える押さえ部105により基体部104の側に押さえつけることで、局部101aを形成すればよい。   For example, the pipe 101 and the sensor head 102 are disposed in a piping region on the flat surface of the base body 104. A curved portion 101 a of the tube 101 is formed by being pushed up by the sensor head 102 in a direction away from the flat surface on the flat surface of the base body portion 104. The local portion 101a may be formed by pressing the tube 101 disposed on the flat surface of the base portion 104 to the base portion 104 side by a pressing portion 105 having an opening region in the measurement region 111.

例えば、曲部101aでは、管101が、管101の軸線を含む基体部104平坦部に垂直な平面上で、基体部104より離れる方向に所定の曲率Aで曲がり、次いで、Uターンするように所定の曲率Bで曲がって基体部104の側に近づき、次に、平坦面に沿う状態に曲率Aで曲がる。   For example, in the bent portion 101a, the tube 101 bends with a predetermined curvature A in a direction away from the base portion 104 on a plane perpendicular to the flat portion of the base portion 104 including the axis of the tube 101, and then makes a U-turn. It bends with the predetermined curvature B, approaches the base portion 104 side, and then bends with the curvature A in a state along the flat surface.

演算部103は、受光部122で光電変換された電気信号をもとに測定領域111を通過する流体の流量を算出して出力する。演算部103は、例えば、図2に示すように、信号取り出し部131、特徴量算出部132、および算出部133を備える。信号取り出し部131は、受光部122で光電変換された電気信号の高周波成分を取り出す。特徴量算出部132は、信号取り出し部131が取り出した各高周波成分をもとに、管101を流れる流体の流速に相関する特徴量を算出する。   The calculation unit 103 calculates and outputs the flow rate of the fluid passing through the measurement region 111 based on the electrical signal photoelectrically converted by the light receiving unit 122. For example, as illustrated in FIG. 2, the calculation unit 103 includes a signal extraction unit 131, a feature amount calculation unit 132, and a calculation unit 133. The signal extraction unit 131 extracts a high frequency component of the electric signal photoelectrically converted by the light receiving unit 122. The feature amount calculation unit 132 calculates a feature amount that correlates with the flow velocity of the fluid flowing through the pipe 101 based on each high-frequency component extracted by the signal extraction unit 131.

まず、光源121より干渉性を有する光源光(可干渉光)を、流路となる管101の曲部101a(測定領域111)を流れる流体に照射する。流体には光源光を散乱する散乱体が含まれている、また、管101は光源光に対して透過性を有する。光源光が流体内の散乱体によって散乱されると、その一部は、受光部122によって受光される。散乱体の濃度が低い場合には大部分の散乱光は単散乱となるが、濃度が増加するにつれて複数回の散乱を経て受光部122に到達することとなる。様々な経路で散乱された光が干渉する結果、スペックル(speckle)が生じ、受光部122においてその一部が観測される。   First, light source light (coherent light) having coherence from the light source 121 is irradiated to the fluid flowing through the curved portion 101a (measurement region 111) of the tube 101 serving as a flow path. The fluid includes a scatterer that scatters the light source light, and the tube 101 is transmissive to the light source light. When the light source light is scattered by the scatterer in the fluid, a part of the light is received by the light receiving unit 122. When the concentration of the scatterer is low, most of the scattered light is single-scattered. However, as the concentration increases, the scattered light reaches the light receiving unit 122 through multiple scattering. As a result of interference of the light scattered in various paths, speckle is generated, and a part of the speckle is observed in the light receiving unit 122.

ここで、管101の断面が円形状であり、流れが層流である場合を仮定すると、管101内の曲部101aにおける流速分布は、センサヘッド102が配置されている凹部側で流速が最小となる。流体の流れに伴い散乱体が移動にすることによって、スペックルも時々刻々と変化する。このように変動するスペックルの一部を受光部122により受光して電気信号に変換する。   Here, assuming that the cross section of the tube 101 is circular and the flow is a laminar flow, the flow velocity distribution in the curved portion 101a in the tube 101 has a minimum flow velocity on the concave side where the sensor head 102 is disposed. It becomes. As the scatterer moves as the fluid flows, the speckles change from moment to moment. A part of the speckle that fluctuates in this way is received by the light receiving unit 122 and converted into an electrical signal.

なお、流量や流速を精度よく求められるようにするためには、受光部122によって受光される光には、光源121から受光部122に直接入射する光や、他の光源から受光部122に直接入射する光や、管101および流体の表面において反射された光は極力含まれないようにすることが望ましい。   In order to obtain the flow rate and flow velocity with high accuracy, the light received by the light receiving unit 122 includes light directly incident on the light receiving unit 122 from the light source 121 or directly from the other light sources to the light receiving unit 122. It is desirable that incident light and light reflected on the surface of the tube 101 and the fluid are not included as much as possible.

受光部122が出力する電気信号は通常微弱であり、受光部122の出力電流はμAオーダ程度であるため、信号取り出し部131において、トランスインピーダンスアンプなどの増幅回路を用いて増幅し、例えば1V程度の扱いやすいレベルの電圧信号に変換する。   Since the electric signal output from the light receiving unit 122 is usually weak and the output current of the light receiving unit 122 is on the order of μA, the signal extraction unit 131 amplifies the signal using an amplifier circuit such as a transimpedance amplifier. Convert the voltage signal to a level that is easy to handle.

次に、信号取り出し部131において、ローパスフィルタを通して信号の低周波成分のみを抽出し、ADC回路によりデジタル信号に変換し、低周波デジタル信号を取得する。ローパスフィルタのカットオフ周波数としては、例えば1Hz程度とすればよい。ADC回路のサンプリング周波数は、測定する流量や流速の値の更新速度に合わせて、例えば1〜100Hz程度とすればよい。   Next, in the signal extraction unit 131, only the low frequency component of the signal is extracted through a low-pass filter, converted into a digital signal by an ADC circuit, and a low frequency digital signal is acquired. The cut-off frequency of the low-pass filter may be about 1 Hz, for example. The sampling frequency of the ADC circuit may be set to about 1 to 100 Hz, for example, in accordance with the update rate of the measured flow rate or flow velocity value.

一方、増幅回路の出力は、交流増幅回路により交流成分のみをさらに増幅し、ADC回路によりデジタル信号に変換することで、高周波デジタル信号(高周波成分)を取得する。増幅回路の出力のDC電圧が1V程度であったとすると、通常、AC電圧はmVオーダと小さいため、10倍〜1000倍程度の利得を持つ交流増幅回路で増幅し、扱いやすいレベルの電圧信号にするとよい。ADC回路のサンプリング周波数は、高速であるほどより速い流速まで計測することができるようになる。例えば、サンプリング周波数は1MHzであればよい。   On the other hand, only the alternating current component is further amplified by the alternating current amplifier circuit and converted into a digital signal by the ADC circuit to obtain a high frequency digital signal (high frequency component). Assuming that the output DC voltage of the amplifier circuit is about 1V, the AC voltage is usually as small as mV. Therefore, it is amplified by an AC amplifier circuit having a gain of about 10 to 1000 times to obtain a voltage signal that is easy to handle. Good. The higher the sampling frequency of the ADC circuit, the faster the flow rate can be measured. For example, the sampling frequency may be 1 MHz.

上述したことにより取得した高周波デジタル信号より、特徴量算出部132によるデジタル信号処理によって特徴量を算出し、算出した特徴量より算出部133によるデジタル信号処理によって、流体の流速や流量を算出する。   From the high-frequency digital signal acquired as described above, the feature amount is calculated by digital signal processing by the feature amount calculation unit 132, and the flow velocity and flow rate of the fluid are calculated by digital signal processing by the calculation unit 133 from the calculated feature amount.

次に、高周波デジタル信号から流体の流速に相関する特徴量を算出する方法について説明する。なお、一定の断面積を有する管101内を隙間なく流体が流れることを想定した場合、流速と流量は比例関係となるため、ここで求める特徴量は、流量に対しても相関する特徴量となる。   Next, a method for calculating a feature quantity correlated with the fluid flow velocity from the high-frequency digital signal will be described. Note that when it is assumed that the fluid flows through the tube 101 having a constant cross-sectional area without any gap, the flow velocity and the flow rate are in a proportional relationship, and thus the feature amount obtained here is a feature amount that also correlates with the flow rate. Become.

高周波デジタル信号は、スペックルの変動を表しており、ここから流速に相関する特徴量を抽出する方法には様々な既知の方法がある。例えば、高周波デジタル信号の自己相関関数から時間相関長を算出する方法、信号が一定時間内に基準電位と交差する回数を求める方法、パワースペクトルを解析してその傾きを求める方法などである。ここでは、後述する平均受光量を利用した較正が最も有効に機能する特徴量として、パワースペクトルのパワーと周波数の積和を用いる例を示す。   The high-frequency digital signal represents speckle fluctuation, and there are various known methods for extracting a feature quantity correlated with the flow velocity from here. For example, there are a method for calculating a time correlation length from an autocorrelation function of a high-frequency digital signal, a method for determining the number of times a signal crosses a reference potential within a certain time, and a method for determining a slope by analyzing a power spectrum. Here, an example is shown in which the product sum of the power and the frequency of the power spectrum is used as the feature quantity for which the calibration using the average received light quantity described later functions most effectively.

流速に相関する特徴量νを算出するため、まず、高周波デジタル信号をフーリエ変換し、そのパワーを算出することでパワースペクトルを得る。パワースペクトルが得られたら、次に、パワーP(f)と周波数fの積和を、以下に示す式により所定の周波数範囲にわたって演算する。   In order to calculate the feature quantity ν correlated with the flow velocity, first, a high-frequency digital signal is Fourier-transformed, and a power spectrum is obtained by calculating its power. Once the power spectrum is obtained, the product sum of the power P (f) and the frequency f is calculated over a predetermined frequency range by the following equation.

Figure 2018009920
Figure 2018009920

上述したことにより算出したパワーと周波数の積和を演算した結果を実際の流量に対してプロットすることでグラフが作成できる。なお、パワーと周波数の積和によって算出した流速相関特徴量νが実際の流量や平均流速に対して非線型性を有する場合には、非線型性を補正する処理を加えてもよい。非線型性を生じる原因としては、例えば、増幅回路の周波数特性がフラットでない場合がある。非線型性の補正方法としては、「ν=Σ{P(f)×f×w(f)}」の式のように、パワーと周波数の積和を演算する際に、周波数毎に重み付け係数w(f)を乗じる方法がある。   A graph can be created by plotting the result of calculating the product sum of power and frequency calculated as described above against the actual flow rate. In addition, when the flow velocity correlation characteristic amount ν calculated by the product sum of power and frequency has nonlinearity with respect to the actual flow rate and the average flow velocity, processing for correcting the nonlinearity may be added. As the cause of the non-linearity, for example, the frequency characteristic of the amplifier circuit may not be flat. As a non-linearity correction method, a weighting coefficient is calculated for each frequency when calculating the sum of products of power and frequency as in the formula of “ν = Σ {P (f) × f × w (f)}”. There is a method of multiplying w (f).

例えば、信号取り出し部131における増幅回路のカットオフ周波数がfcut[Hz]であり、一次のローパスフィルタ特性を有する場合、重み付け関数に次式を用いることで、増幅回路の減衰特性を相殺し、相対流量の線型性を向上させることができる。 For example, when the cutoff frequency of the amplifier circuit in the signal extraction unit 131 is f cut [Hz] and has a first-order low-pass filter characteristic, the attenuation characteristic of the amplifier circuit is canceled by using the following equation for the weighting function: The linearity of the relative flow rate can be improved.

Figure 2018009920
Figure 2018009920

増幅回路の周波数特性がより複雑な場合であっても、その伝達関数の振幅特性を|H(f)|とした場合、「w(f)=1/|H(f)|2」を重み付け関数として用いることで、増幅回路の周波数特性に依存した相対流量の非線型性を補正することが可能である。 Even if the frequency characteristic of the amplifier circuit is more complicated, if the amplitude characteristic of the transfer function is | H (f) |, “w (f) = 1 / | H (f) | 2 ” is weighted. By using it as a function, it is possible to correct the nonlinearity of the relative flow rate depending on the frequency characteristics of the amplifier circuit.

また、「ν={Σ{P(f)×f}}G(Gは0より大きい実数)」の式のように、パワーと周波数の積和を演算した後に、累乗演算を行い流速相関特徴量νの非線型性を補正するようにしてもよい。また、「ν={Σ(P(f)×f×w(f))}G」のように、周波数毎に重み付け係数w(f)を乗じた状態で累乗演算を行い流速相関特徴量νの非線型性を補正するようにしてもよい。 Further, as shown in the equation “ν = {Σ {P (f) × f}} G (G is a real number larger than 0)”, after calculating the sum of products of power and frequency, the power is calculated and the flow velocity correlation feature The nonlinearity of the quantity ν may be corrected. In addition, as in “ν = {Σ (P (f) × f × w (f))} G ”, power calculation is performed in a state where the weighting coefficient w (f) is multiplied for each frequency, and the flow velocity correlation feature amount ν. The non-linearity may be corrected.

前述したグラフのプロットを線型近似して傾きとオフセットを求め、較正パラメータとすれば、算出した特徴量を流量に換算することが可能である。   By calculating the slope and offset by linearly approximating the plot of the graph described above and using it as a calibration parameter, it is possible to convert the calculated feature quantity into a flow rate.

実施の形態では、前述したように、曲部101aにおいて流速の遅くなる凹部側に配置したセンサヘッド102により流速測定を実施している。このため、測定される流速においては、測定箇所の実際の流速との間の線型性低下が抑制されるようになる。予め、流速既知の流体を測定することで求めた流速測定値により、流速測定値と実際の流速(平均流速)との相関を算出して補正値を求めておき、この補正値で実際の測定で得られた流速測定値を補正すれば、より正確な流速値が得られる。   In the embodiment, as described above, the flow velocity measurement is performed by the sensor head 102 arranged on the concave portion where the flow velocity becomes slower in the curved portion 101a. For this reason, in the measured flow velocity, the linearity fall between the actual flow velocity of a measurement location is suppressed. Calculate the correlation between the flow velocity measurement value and the actual flow velocity (average flow velocity) from the flow velocity measurement value obtained by measuring the fluid with a known flow velocity in advance, and use this correction value to determine the actual measurement. If the flow velocity measurement value obtained in step 1 is corrected, a more accurate flow velocity value can be obtained.

ここで、曲部101aの曲げ量が大きくなると、この領域における平均的な流速が、直線領域の流速とは異なる状態となる。このような状態では、正確な流速や流量が求められない。従って、局部101aの曲げ量は、局部101aにおける(管同一断面内の)平均流速が変化しない範囲とすることが重要である。   Here, when the bending amount of the curved portion 101a is increased, the average flow velocity in this region becomes different from the flow velocity in the linear region. In such a state, an accurate flow rate and flow rate are not required. Therefore, it is important that the amount of bending of the local portion 101a is within a range in which the average flow velocity in the local portion 101a (within the same cross section of the pipe) does not change.

以上に説明したように、本発明では、管に曲げ部を形成してこの凹部側にセンサヘッドを配置するようにしたので速い流速における測定される流速と実際の流速との間の線型性の低下が抑制できるようになる。   As described above, in the present invention, since the bent portion is formed in the tube and the sensor head is disposed on the concave side, the linearity between the measured flow velocity at the high flow velocity and the actual flow velocity is obtained. The decrease can be suppressed.

流速が速い場合においては、より広い帯域でパワースペクトルを求めることで、線型性の低下は抑制できるが、演算処理により高い性能が要求され、装置がより高価になるなるが、本発明によれば、非常に簡便な構成で、線型性の低下が抑制できるようになる。   In the case where the flow velocity is fast, by obtaining the power spectrum in a wider band, the decrease in linearity can be suppressed, but high performance is required by the arithmetic processing, and the device becomes more expensive. It is possible to suppress a decrease in linearity with a very simple configuration.

なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。   The present invention is not limited to the embodiment described above, and many modifications and combinations can be implemented by those having ordinary knowledge in the art within the technical idea of the present invention. It is obvious.

101…管、101a…曲部、102…センサヘッド、103…演算部、104…基体部、105…押さえ部、111…測定領域、121…光源、122…受光部。   DESCRIPTION OF SYMBOLS 101 ... Tube, 101a ... Curve part, 102 ... Sensor head, 103 ... Calculation part, 104 ... Base | substrate part, 105 ... Holding | suppressing part, 111 ... Measurement area | region, 121 ... Light source, 122 ... Light-receiving part.

Claims (3)

弾性体からなり複数の散乱体を含む流体が流れる管と、
測定領域に形成された前記管が曲がる曲部と、
前記測定領域の前記曲部の凹部側の前記管の外周面に配置され、前記管を流れる前記流体中の前記散乱体に可干渉光を照射する光源、および可干渉光の照射により前記流体に含まれる前記散乱体で散乱された光を受光して光電変換する受光部を備えるセンサヘッドと、
前記受光部で光電変換された電気信号をもとに前記測定領域を通過する前記流体の流量を算出して出力する演算部と
を備えることを特徴とする流体測定装置。
A tube made of an elastic material through which a fluid containing a plurality of scatterers flows;
A curved portion where the tube formed in the measurement region bends;
A light source that is disposed on the outer peripheral surface of the tube on the concave side of the curved portion of the measurement region and that irradiates the scatterer in the fluid flowing through the tube with coherent light, and irradiates the fluid with coherent light. A sensor head including a light receiving unit that receives and photoelectrically converts light scattered by the included scatterer;
A fluid measuring device comprising: an arithmetic unit that calculates and outputs a flow rate of the fluid passing through the measurement region based on an electrical signal photoelectrically converted by the light receiving unit.
請求項1記載の流体測定装置において、
前記センサヘッドを平坦面上の前記測定領域に配置する基体部を備え、
前記平坦面上の前記測定領域を通過する配管領域に前記管が配置され、
前記センサヘッドに前記平坦面より離れる方向に押し上げられることで前記管の前記曲部が形成されている
ことを特徴とする流体測定装置。
The fluid measurement device according to claim 1,
A base portion for disposing the sensor head in the measurement area on a flat surface;
The pipe is disposed in a piping region passing through the measurement region on the flat surface;
The fluid measuring device, wherein the curved portion of the tube is formed by being pushed up by the sensor head in a direction away from the flat surface.
請求項1または2記載の流体測定装置において、
前記演算部は、
前記受光部で光電変換された電気信号の高周波成分を取り出す信号取り出し部と、
前記信号取り出し部が取り出した高周波成分をもとに前記流体の流速に相関する特徴量を算出する特徴量算出部と、
前記特徴量より前記流体の流速および流量の少なくとも1つを算出する算出部と
を備えることを特徴とする流体測定装置。
The fluid measuring device according to claim 1 or 2,
The computing unit is
A signal extraction unit for extracting a high-frequency component of the electrical signal photoelectrically converted by the light receiving unit;
A feature amount calculation unit that calculates a feature amount correlated with the flow velocity of the fluid based on the high-frequency component extracted by the signal extraction unit;
A fluid measurement device comprising: a calculation unit that calculates at least one of a flow velocity and a flow rate of the fluid from the feature amount.
JP2016140074A 2016-07-15 2016-07-15 Fluid measurement device Active JP6426665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016140074A JP6426665B2 (en) 2016-07-15 2016-07-15 Fluid measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016140074A JP6426665B2 (en) 2016-07-15 2016-07-15 Fluid measurement device

Publications (2)

Publication Number Publication Date
JP2018009920A true JP2018009920A (en) 2018-01-18
JP6426665B2 JP6426665B2 (en) 2018-11-21

Family

ID=60993799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016140074A Active JP6426665B2 (en) 2016-07-15 2016-07-15 Fluid measurement device

Country Status (1)

Country Link
JP (1) JP6426665B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5865871A (en) * 1996-10-01 1999-02-02 Laser Metric, Inc. Laser-based forward scatter liquid flow meter
JP2007024720A (en) * 2005-07-19 2007-02-01 Lube Corp Flow oil monitoring device
WO2016092681A1 (en) * 2014-12-11 2016-06-16 愛知時計電機株式会社 Blood flow sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5865871A (en) * 1996-10-01 1999-02-02 Laser Metric, Inc. Laser-based forward scatter liquid flow meter
JP2007024720A (en) * 2005-07-19 2007-02-01 Lube Corp Flow oil monitoring device
WO2016092681A1 (en) * 2014-12-11 2016-06-16 愛知時計電機株式会社 Blood flow sensor

Also Published As

Publication number Publication date
JP6426665B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
JP5806390B2 (en) Fluid evaluation apparatus and method
JP6737621B2 (en) Fluid measuring device
Norgia et al. Low-cost optical flowmeter with analog front-end electronics for blood extracorporeal circulators
JP5868504B2 (en) Wind measurement coherent rider device
JP6461865B2 (en) Fluid measuring device
JP2009506449A (en) A method for measuring the relative movement of an object and an optical input device in two dimensions using a single self-mixing laser.
JP6546128B2 (en) Fluid measurement device and method
JP7010248B2 (en) Fluid measuring device
JP2018009923A (en) Fluid measurement device
JP6805118B2 (en) Fluid measuring device
JP4054759B2 (en) Method for measuring the properties of particles penetrating into the body, method for measuring properties of fluidic material, method for measuring particle velocity of fluidic material, and apparatus prepared to carry out the method of measurement
JP6426665B2 (en) Fluid measurement device
JP6291557B2 (en) Fluid evaluation apparatus and method
JP6045100B2 (en) Blood flow measurement device
JP6033934B2 (en) Fluid evaluation apparatus and method
JPH10246782A (en) Laser distance meter
JP2018009921A (en) Fluid measurement device
Pereira et al. Optical methods for local pulse wave velocity assessment
JP7103521B2 (en) Fluid measuring device
EP3394595B1 (en) System for determining the characteristics of a gas and related method for measuring such characteristics
Norgia et al. Laser diode for flow-measurement
RU2549251C1 (en) Method to measure speed of directed flow of liquid or gas
RU2421740C2 (en) Method of determining frequency of radio signals in acousto-optic receiver-frequency metre in linear operation mode of photodetector
JP7380382B2 (en) range finder
JP5467521B2 (en) Temperature distribution measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180201

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181010

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181025

R150 Certificate of patent or registration of utility model

Ref document number: 6426665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150