JP2018003322A - Column-beam junction structure, and manufacturing method of joint member - Google Patents

Column-beam junction structure, and manufacturing method of joint member Download PDF

Info

Publication number
JP2018003322A
JP2018003322A JP2016127964A JP2016127964A JP2018003322A JP 2018003322 A JP2018003322 A JP 2018003322A JP 2016127964 A JP2016127964 A JP 2016127964A JP 2016127964 A JP2016127964 A JP 2016127964A JP 2018003322 A JP2018003322 A JP 2018003322A
Authority
JP
Japan
Prior art keywords
joint
column
reinforcing bars
joining
joining member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016127964A
Other languages
Japanese (ja)
Other versions
JP6833263B2 (en
Inventor
悠 成田
Hisashi Narita
悠 成田
信一 飯塚
Shinichi Iizuka
信一 飯塚
基 金川
Motoi Kanagawa
基 金川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimatsu Construction Co Ltd
Original Assignee
Nishimatsu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimatsu Construction Co Ltd filed Critical Nishimatsu Construction Co Ltd
Priority to JP2016127964A priority Critical patent/JP6833263B2/en
Publication of JP2018003322A publication Critical patent/JP2018003322A/en
Application granted granted Critical
Publication of JP6833263B2 publication Critical patent/JP6833263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a column-beam junction structure that enables a plastic hinge generation position to be set at a desired position, along with a manufacturing method for a joint member that configures a connection structure such that the plastic hinge generation position is set at the desired position.SOLUTION: A column-beam junction structure is disposed between column members constituting a column of a structure, and includes: a column joint part 30 for joining with the column member; a beam joint part 31 for joining with a beam member protruding in a perpendicular direction from the column and constituting a beam; a joint member 40 having a plurality of reinforcing bars extending in the perpendicular direction inside the column joint part 30 and the beam joint part 31; and a plurality of joints 26 provided at an edge part of the beam joint part 31 or the beam member, for connecting the reinforcing bars of the connection member 40 with the reinforcing bars of the beam member. The plurality of reinforcing bars used with the joint member 40 is selected and the protruded length of the beam joint part 31 in the perpendicular direction is determined to suit a distance in the perpendicular direction from a side surface of the column and an edge part of the plurality of joints on a central side of the beam, when the joint member 40 has been connected with the beam member.SELECTED DRAWING: Figure 7

Description

本発明は、柱梁の接合構造および該接合構造を構成する接合部材の製造方法に関する。   The present invention relates to a joining structure of column beams and a method for manufacturing a joining member constituting the joining structure.

コンクリート構造物は、柱や梁を、鉄筋コンクリート(RC)により予め製作し、製作した部材を建て込み、接合部を現場打ちコンクリートで一体化することにより構築される。この予め部材を製作することを、プレキャスト(PCa)化するという。このPCa化により、大幅な工期の短縮が図られている。   A concrete structure is constructed by making columns and beams in advance using reinforced concrete (RC), building in the manufactured members, and integrating the joints with cast-in-place concrete. Making the member in advance is called precasting (PCa). By using PCa, the construction period is greatly shortened.

近年では、この接合部も、PCa化され、PCa化された接合部(接合部材)とPCa化された梁(梁部材)との接続は、図1に示すように、機械式継手10を用いて行われている。この工法は、柱梁接合部PCa化工法と呼ばれている。柱梁接合部PCa化工法では、柱11と梁12の接合部の損傷を回避するため、柱11に接合される梁12の端部(梁端部)から機械式継手10までの距離Lを、梁せいDの1.0〜1.5倍程度としている。この梁端部の位置は、最大曲げ応力が発生する断面を有する位置であることから、危険断面位置と呼ばれる。梁せいDは、梁12の上面から下面までの長さである。   In recent years, this joint is also made of PCa, and the connection between the joint made of PCa (joint member) and the beam made of PCa (beam member) uses a mechanical joint 10 as shown in FIG. Has been done. This method is called the column beam joint PCa conversion method. In the beam-column joint PCa chemical conversion method, in order to avoid damage to the joint between the column 11 and the beam 12, the distance L from the end (beam end) of the beam 12 joined to the column 11 to the mechanical joint 10 is set. The beam is about 1.0 to 1.5 times the beam D. Since the position of the beam end is a position having a cross section where the maximum bending stress is generated, it is called a dangerous cross section position. The beam D is a length from the upper surface to the lower surface of the beam 12.

接合部材14は、図2に示すように、柱11と同じ断面形状および面積を有する柱接合部15と、梁部材と接続するために水平方向に延びる梁接合部16とを有し、梁接合部16の端面17から鉄筋(接合部主筋)18が突出し、露出している。また、梁部材も、その端面から鉄筋(梁主筋)が突出し、露出している。この露出した接合部主筋18と梁主筋とを機械式継手10により接続し、その後、コンクリートを打設(現場打ち)して接合する。図1には、現場打ちする部分である現場打ち部13が示されている。   As shown in FIG. 2, the joining member 14 has a column joint portion 15 having the same cross-sectional shape and area as the column 11 and a beam joint portion 16 extending in the horizontal direction to connect to the beam member. A reinforcing bar (joint main bar) 18 protrudes from the end surface 17 of the portion 16 and is exposed. In addition, the rebar (beam main rebar) protrudes from the end face of the beam member and is exposed. The exposed joint main bar 18 and the beam main bar are connected by the mechanical joint 10, and then concrete is placed (in-situ) and joined. FIG. 1 shows a spot hitting portion 13 which is a spot hitting spot.

このように、上記距離Lが、梁せいの1.0〜1.5倍程度もあると、PCa化しても、柱接合部15から両方に延びる梁接合部16の長さが長いため、運搬車両の幅に納まらないという問題があった。また、コンクリートを現場打ちする必要があり、現場での型枠の組立て、コンクリートの打設が必要になるという問題もあった。   Thus, if the distance L is about 1.0 to 1.5 times the length of the beam, even if it is made PCa, the length of the beam joint 16 extending from both of the column joints 15 is long. There was a problem that it could not fit within the width of the vehicle. In addition, there is a problem that it is necessary to place concrete on-site, and it is necessary to assemble the formwork and to place concrete on site.

このような問題に鑑み、ヒンジリロケーションと呼ばれる手法を用い、接合部の損傷を回避しつつ継手位置を梁端部に設けることを可能とする方法が提案されている(例えば、特許文献1参照)。この方法は、図3に示すように、機械式継手10を柱の側面(柱面)に密着させ、梁の塑性ヒンジを発生させる位置Pを、梁の中央側の継手先端位置にするという方法である。塑性ヒンジとは、曲げ剛性が失われてヒンジのように回転することをいう。   In view of such a problem, a method has been proposed that enables a joint position to be provided at the beam end while avoiding damage to the joint using a technique called hinge relocation (see, for example, Patent Document 1). . In this method, as shown in FIG. 3, the mechanical joint 10 is brought into close contact with the side surface (column surface) of the column, and the position P where the plastic hinge of the beam is generated is set to the joint tip position on the center side of the beam. It is. The plastic hinge means that the bending rigidity is lost and it rotates like a hinge.

機械式継手10を梁部材19の端部に設けることで、コンクリートを打設して接合する必要がなくなり、また、図4に示すように、構造計算で採用する曲げ応力を、梁端部の最大モーメントM1から継手先端位置のモーメントM2に低減することができる。梁主筋の主筋量は、このモーメントM2を用いて決定することができるため、その主筋量を低減させることができる。また、水平方向に突出する梁接合部16を設けないので、運搬車両の幅に納めることが可能となる。   By providing the mechanical joint 10 at the end of the beam member 19, there is no need to cast and join the concrete, and as shown in FIG. 4, the bending stress employed in the structural calculation is The maximum moment M1 can be reduced to the moment M2 at the joint tip position. Since the main bar amount of the beam main bar can be determined using this moment M2, the main bar level can be reduced. Moreover, since the beam joint part 16 which protrudes in a horizontal direction is not provided, it becomes possible to fit in the width | variety of a transport vehicle.

特開2005−155058号公報Japanese Patent Laying-Open No. 2005-155058

しかしながら、上記の方法では、機械式継手10を柱面に密着させることで継手先端位置に塑性ヒンジを発生させるため、塑性ヒンジ発生位置は、機械式継手10の長さにのみ依存し、所望の位置に設定することができない。   However, in the above method, since the mechanical hinge 10 is brought into close contact with the column surface to generate a plastic hinge at the joint tip position, the plastic hinge generation position depends only on the length of the mechanical joint 10 and is desired. Cannot be set to position.

そこで、塑性ヒンジ発生位置を所望の位置に設定することが可能な柱梁の接合構造および塑性ヒンジ発生位置が所望の位置となるように接続構造を構成する接合部材を製造する方法の提供が望まれていた。   Therefore, it is desirable to provide a column beam joining structure capable of setting the plastic hinge occurrence position to a desired position and a method for manufacturing a joining member constituting the connection structure so that the plastic hinge occurrence position is a desired position. It was rare.

本発明は、上記の問題に鑑み、柱梁の接合構造であって、構造物の柱を構成する柱部材間に配設され、柱部材と接合するための柱接合部と、柱に対して垂直方向に突出し、梁を構成する梁部材と接合するための梁接合部と、柱接合部および梁接合部の内部を該垂直方向に延びる複数の鉄筋とを有する接合部材と、梁接合部の端部または梁部材の端部に設けられ、接合部材の各鉄筋と梁部材の各鉄筋とを接続する複数の継手とを含み、接合部材と梁部材とを接合した場合の柱の側面から梁の中央側の複数の継手の端部までの垂直方向の距離に応じて、接合部材に使用する複数の鉄筋が選定され、梁接合部の垂直方向への突出長さが決定される、接合構造が提供される。   In view of the above problems, the present invention provides a column-to-column connection structure, which is disposed between column members constituting the column of the structure, and is connected to the column junction portion for joining to the column member, and the column A beam joint that projects in the vertical direction and is joined to a beam member that constitutes the beam; a joint member that includes a column joint and a plurality of reinforcing bars extending in the vertical direction inside the beam joint; and a beam joint A plurality of joints that are provided at the ends or the ends of the beam member and connect the reinforcing bars of the joining member and the reinforcing bars of the beam member, and the beam from the side of the column when the joining member and the beam member are joined A joint structure in which a plurality of reinforcing bars to be used for a joining member are selected according to the distance in the vertical direction to the ends of a plurality of joints on the center side, and the projection length in the vertical direction of the beam joint is determined Is provided.

本発明によれば、塑性ヒンジ発生位置を所望の位置に設定することが可能となる。   According to the present invention, it is possible to set the plastic hinge generation position to a desired position.

従来の柱梁接合部PCa化工法について説明する図。The figure explaining the conventional column beam junction part PCa chemical conversion method. 従来のPCa化された接合部材を例示した図。The figure which illustrated the conventional joining member made into PCa. ヒンジリロケーションについて説明する図。The figure explaining hinge relocation. 地震時の梁の応力状態を例示した図。The figure which illustrated the stress state of the beam at the time of an earthquake. 柱梁の接合構造の第1の実施形態を示した図。The figure which showed 1st Embodiment of the junction structure of a column beam. 接合部材と梁部材に用いられる鉄筋の材種の組み合わせを例示した図。The figure which illustrated the combination of the kind of reinforcing bar used for a joining member and a beam member. 接合部材の構成例を示した図。The figure which showed the structural example of the joining member. 継手位置による応力状態の変化について説明する図。The figure explaining the change of the stress state by a joint position. 図5に示す接合構造を構築するための施工例を示した図。The figure which showed the construction example for building the junction structure shown in FIG. 柱梁の接合構造の第2の実施形態を示した図。The figure which showed 2nd Embodiment of the joining structure of a column beam. 図10に示す接合構造に用いられるU字形補強筋の配筋例を示した図。The figure which showed the bar arrangement example of the U-shaped reinforcement used for the joining structure shown in FIG. 接合部材の製造工程を示したフローチャート。The flowchart which showed the manufacturing process of the joining member.

図5は、柱梁の接合構造の第1の実施形態を示した図である。柱、梁、その接合部は、工場等で型枠内に複数の鉄筋を配置し、コンクリートを打設することにより予め製作される(PCa化)。それらを現場へ運搬し、現場で組み立て、構造物が構築される。構造物は、コンクリート構造物であれば、マンション、商用ビル、病院、学校の校舎等、いかなる構造物であってもよい。   FIG. 5 is a view showing a first embodiment of a column beam joining structure. Columns, beams, and their joints are pre-manufactured by placing a plurality of reinforcing bars in a formwork and placing concrete in a factory (PCa). They are transported to the site and assembled on site to construct a structure. The structure may be any structure such as a condominium, a commercial building, a hospital, or a school building as long as it is a concrete structure.

PCa化された柱(柱部材)は、鉛直方向に向けて配設され、鉛直方向に向いた面から複数の鉄筋(柱主筋)が突出している。PCa化された接合部(接合部材)は、柱部材の複数の柱主筋が挿通可能な穴を有し、その穴にその端部を通すことで、柱部材上に接合部材を配置する。   The PCa column (column member) is arranged in the vertical direction, and a plurality of reinforcing bars (column main bars) protrude from the surface facing the vertical direction. The joint part (joining member) made into PCa has a hole through which a plurality of pillar main bars of the pillar member can be inserted, and the joining member is arranged on the pillar member by passing the end portion through the hole.

なお、接合部材の穴には、シース管と呼ばれる金属製のパイプが予め設けられ、そのシース管内に柱主筋が通される。柱主筋とシース管との隙間、柱部材と接合部材との間の目地部には、早期に強度を発現するグラウト材を充填することにより一体化される。   Note that a metal pipe called a sheath tube is provided in advance in the hole of the joining member, and the column main reinforcement is passed through the sheath tube. The gap between the column main reinforcement and the sheath tube and the joint between the column member and the joining member are integrated by filling with a grout material that develops strength at an early stage.

接合部材の上部には、別の柱部材が接続されるが、その柱部材には、端部に複数の機械式継手が設けられており、接続部材を貫通した下側の柱部材の複数の柱主筋を複数の機械式継手により接続することで、上下2つの柱部材で接続部材を挟み込むようにして固定する。これを繰り返すことで、図5に示す柱20が構築される。図5では、既に柱部材と接続部材とが一体化されている。   Another column member is connected to the upper part of the joining member, and the column member is provided with a plurality of mechanical joints at the end, and a plurality of lower column members penetrating the connection member are provided. By connecting the column main bars with a plurality of mechanical joints, the connection member is sandwiched between the upper and lower column members and fixed. By repeating this, the pillar 20 shown in FIG. 5 is constructed. In FIG. 5, the column member and the connecting member are already integrated.

機械式継手は、ねじ節鉄筋継手、モルタル充填継手、端部ねじ加工継手、鋼管圧着継手のいずれであってもよい。ねじ節鉄筋継手は、鉄筋表面の節がねじ状に形成された異形鉄筋を、内部がねじ加工された管(カプラー)により接続し、その隙間にグラウト材を注入して固定する継手である。モルタル充填継手は、内部がリブ加工された管(スリーブ)と鉄筋との隙間に高強度モルタルを充填して接合する継手である。   The mechanical joint may be any of a threaded joint, a mortar filling joint, an end threaded joint, and a steel pipe crimp joint. The threaded reinforcing bar joint is a joint in which deformed reinforcing bars whose nodes on the surface of the reinforcing bar are formed in a screw shape are connected by a pipe (coupler) whose inside is threaded, and a grout material is injected and fixed in the gap. The mortar-filled joint is a joint in which a high-strength mortar is filled and joined in a gap between a pipe (sleeve) whose inside is ribbed and a reinforcing bar.

端部ねじ加工継手は、鉄筋の端部に接合したねじを相互に突き合わせ、長ナットにより接続した後、長ナットの両端を固定ナットで締め付けて締結する継手である。鋼管圧着継手は、スリーブを冷間で油圧により鉄筋の節に圧着して接合する継手である。   The end threaded joint is a joint in which screws joined to the end of a reinforcing bar are butted together and connected by a long nut, and then both ends of the long nut are tightened by a fixing nut. The steel pipe crimp joint is a joint that is joined by crimping a sleeve to a reinforcing bar joint by cold and hydraulic pressure.

接合部材は、複数のシース管のほか、柱20に対して垂直方向(地面に対して水平方向)に延びる複数の鉄筋(接合部主筋)を有している。以下、梁21が延びる方向を水平方向として説明する。接合部材は、柱面22とその裏側の柱面23の両方から水平方向へ向けて突出する梁接合部を有し、内部には複数の接合部主筋24を有している。梁部材は、水平方向に延びる複数の梁主筋25を有している。接合部材と梁部材は、各接合部主筋24と各梁主筋25とを継手26により接続することで接合される。   In addition to the plurality of sheath tubes, the bonding member has a plurality of reinforcing bars (joint main bars) extending in a direction perpendicular to the column 20 (a direction horizontal to the ground). Hereinafter, the direction in which the beam 21 extends will be described as the horizontal direction. The joining member has a beam joint that protrudes in the horizontal direction from both the column surface 22 and the column surface 23 on the back side, and has a plurality of joint main bars 24 inside. The beam member has a plurality of beam main bars 25 extending in the horizontal direction. The joining member and the beam member are joined by connecting each joint main bar 24 and each beam main bar 25 by a joint 26.

接合部主筋24は、接合部材と梁部材とを接合した場合の柱面22、23から梁21の中央側の複数の継手26の端部(先端)までの水平方向の距離、すなわち塑性ヒンジ発生位置Pに応じて選定される。接合部主筋24としては、梁主筋25の強度より高い、高強度鉄筋を選定することができる。柱面22、23から継手26に至るまでこの高強度鉄筋を使用することにより、柱面22、23で塑性ヒンジを発生させることなく、その高強度鉄筋に接続された継手26の先端で、地震時に塑性ヒンジを適切に発生させることができる。継手26は、柱部材で使用される機械式継手と同様のものを使用することができる。   The joint main reinforcement 24 is a horizontal distance from the column surfaces 22 and 23 to the ends (tips) of the plurality of joints 26 on the center side of the beam 21 when the joining member and the beam member are joined, that is, a plastic hinge is generated. It is selected according to position P. As the joint main bar 24, a high-strength reinforcing bar higher than the strength of the beam main bar 25 can be selected. By using this high-strength reinforcing bar from the column surfaces 22 and 23 to the joint 26, an earthquake occurs at the tip of the joint 26 connected to the high-strength reinforcing bar without generating a plastic hinge on the column surfaces 22 and 23. Sometimes plastic hinges can be generated properly. The joint 26 can be the same as the mechanical joint used in the column member.

接合部主筋24の材種と、梁主筋25の材種との組み合わせを、図6に例示する。図6中、SDは、表面に突起(リブ)を有する異形鉄筋であることを示し、SDに続く390等の数値は、降伏点(N/mm2)を示している。梁主筋25の材種が決定されていれば、上記位置Pおよび梁主筋25の材種に応じて選定することができ、決定されていなければ、上記位置Pに応じて梁主筋25も選定することができる。なお、鉄筋の強度は、降伏点が高いほど高いものである。このように鉄筋の強度に適切な差を設けることで、継手26の先端に適切に塑性ヒンジを発生させることができる。これらの組み合わせは、一例であり、継手26の先端に適切に塑性ヒンジを発生させることができれば、その他の組み合わせであってもよい。 A combination of the material type of the joint main reinforcement 24 and the material type of the beam main reinforcement 25 is illustrated in FIG. In FIG. 6, SD indicates a deformed reinforcing bar having protrusions (ribs) on the surface, and a numerical value such as 390 following SD indicates a yield point (N / mm 2 ). If the material type of the beam main bar 25 is determined, the beam main bar 25 can be selected according to the position P and the material type of the beam main bar 25. Otherwise, the beam main bar 25 is also selected according to the position P. be able to. In addition, the strength of the reinforcing bar is higher as the yield point is higher. Thus, by providing an appropriate difference in the strength of the reinforcing bars, a plastic hinge can be appropriately generated at the tip of the joint 26. These combinations are merely examples, and other combinations may be used as long as a plastic hinge can be appropriately generated at the tip of the joint 26.

このように梁21の所定位置で塑性ヒンジが発生し、梁21に損傷が集中し、梁21が回転することにより、柱20が回転するのを防ぎ、構造物の倒壊を防ぐことができる。   Thus, a plastic hinge is generated at a predetermined position of the beam 21, damage is concentrated on the beam 21, and the beam 21 rotates to prevent the column 20 from rotating and prevent the structure from collapsing.

梁接合部の水平方向への突出長さも、上記位置Pに応じて決定される。突出長さは、施工条件や設計条件等を考慮し、継手26が柱面22、23に密着しない、継手26の長手方向の長さより長く、従来の梁せいの1.0〜1.5倍の長さに継手26の長さを加算した長さより短くなるように決定することができる。   The protruding length of the beam joint portion in the horizontal direction is also determined according to the position P. The projecting length is longer than the length of the joint 26 in the longitudinal direction, in which the joint 26 is not in close contact with the column surfaces 22 and 23 in consideration of construction conditions, design conditions, etc., and is 1.0 to 1.5 times that of the conventional beam. The length of the joint 26 can be determined to be shorter than the length obtained by adding the length of the joint 26.

施工条件や設計条件としては、PCa化された部材を製作する工場、製作された部材を運搬する車両、運搬経路、現場での作業空間(スペース)等を挙げることができる。詳細には、工場で所持する型枠、採用する機械式継手、車両の幅、道路の幅やトンネルの高さ、柱間の距離等である。   Examples of construction conditions and design conditions include a factory that manufactures PCa-made members, vehicles that transport the manufactured members, transportation routes, and work spaces on the site. The details are the formwork possessed in the factory, the mechanical joints to be used, the width of the vehicle, the width of the road, the height of the tunnel, the distance between the columns, and the like.

従来の方法では、接合部材および梁部材のサイズが固定されてしまうので、特定の工場、特定の幅の車両、特定の継手、特定の経路を選定しなければならず、作業スペースを考慮しながら組み立てなければならなかった。例えば、もう少し短ければ、運搬車両に隙間なくPCa部材を積載することができるのに、少し長いために、大きな隙間が生じ、運搬個数も少なくなり、運搬効率が低いということがあった。しかしながら、本発明では、これらを考慮して、突出長さを最適な長さに調整することができるので、それらの選定の幅が広がり、作業をスムーズに進めることが可能となる。   In the conventional method, since the sizes of the joining member and the beam member are fixed, it is necessary to select a specific factory, a specific width vehicle, a specific joint, and a specific route, while considering the work space. I had to assemble it. For example, if the length is a little shorter, the PCa member can be loaded on the transporting vehicle without a gap, but because it is a little longer, a large gap is generated, the number of transports is reduced, and transport efficiency is low. However, in the present invention, the protrusion length can be adjusted to an optimum length in consideration of these, so that the range of selection is widened, and the operation can be performed smoothly.

決定された突出長さから継手26の長さを引いた値は、柱面22、23から継手26までの水平方向距離Xである。塑性ヒンジ発生位置Pを変化させると、距離Xも変化することから、この距離Xを変化させることで、塑性ヒンジ発生位置Pを調整することができる。   A value obtained by subtracting the length of the joint 26 from the determined protruding length is a horizontal distance X from the column surfaces 22 and 23 to the joint 26. When the plastic hinge generation position P is changed, the distance X also changes. Therefore, the plastic hinge generation position P can be adjusted by changing the distance X.

このように塑性ヒンジ発生位置Pを調整することができるので、構造計算に用いる曲げ応力を制御することができる。この制御により、意図的な応力を生じさせることができるので、設計の簡略化を図ることができる。また、図6に示すような様々なパターンを採用することができるため、設計の自由度が高く、また、材料の調達が容易である。   Since the plastic hinge generation position P can be adjusted in this way, the bending stress used for the structural calculation can be controlled. By this control, intentional stress can be generated, so that the design can be simplified. Further, since various patterns as shown in FIG. 6 can be adopted, the degree of freedom in design is high and the procurement of materials is easy.

また、継手26が接合部材または梁部材に設けられるため、継手26の部分にコンクリートを現場打設して部材を接合する必要がなく、現場でのコンクリート打設にかかる作業をなくし、省力化を図ることができる。さらに、工場で製作した良好なPCa部材を使用することで、構造物の躯体品質を向上させることができる。   Further, since the joint 26 is provided on the joining member or the beam member, it is not necessary to place the concrete on the joint 26 to join the member in the field, and the work for placing the concrete on the site is eliminated, thereby saving labor. Can be planned. Furthermore, by using a good PCa member manufactured at the factory, the frame quality of the structure can be improved.

ここで、図7を参照して、接合部材について詳細に説明する。図7(a)〜(c)は、接続部材の構成例を示した図である。図7に示す接合部材は、柱部材と接合するための柱接合部30と、水平方向に突出し、梁21を構成する梁部材と接合するための梁接合部31と、柱接合部30および梁接合部31の内部を水平方向に延びる複数の接合部主筋24とを備えている。図7には図示しないが、柱接合部30には、その縁部に沿って上記のシース管が設けられ、柱部材の柱主筋を貫通させることができるようになっている。   Here, the joining member will be described in detail with reference to FIG. FIGS. 7A to 7C are diagrams showing a configuration example of the connection member. The joining member shown in FIG. 7 includes a column joining part 30 for joining to the column member, a beam joining part 31 for projecting in the horizontal direction and joining to the beam member constituting the beam 21, and the column joining part 30 and the beam. A plurality of joint main bars 24 extending in the horizontal direction inside the joint 31 are provided. Although not shown in FIG. 7, the column joint portion 30 is provided with the above-described sheath tube along the edge portion thereof, and can penetrate the column main reinforcement of the column member.

図7(a)に示す例では、2つの梁接合部31の端部に、各接合部主筋24と梁主筋25とを接続する複数の継手26を有している。複数の継手26は、柱20の一部を構成する柱接合部30の側面から水平方向へ距離Xだけ離間している。この場合、梁部材の端面から複数の梁主筋25が突出していて、複数の梁主筋25の各々が複数の継手26の各々に挿入されることにより接続される。   In the example shown in FIG. 7A, a plurality of joints 26 that connect the joint main bars 24 and the beam main bars 25 are provided at the ends of the two beam joint parts 31. The plurality of joints 26 are spaced apart from each other by a distance X in the horizontal direction from the side surface of the column joint portion 30 constituting a part of the column 20. In this case, a plurality of beam main bars 25 project from the end face of the beam member, and each of the plurality of beam main bars 25 is connected by being inserted into each of the plurality of joints 26.

図7(b)に示す例では、2つの梁接合部31の端面32から接合部主筋24が突出している。この例では、2つの梁接合部31の水平方向への突出長さが距離Xとされている。この場合、接合部材の端面から複数の接合部主筋24が突出しているので、複数の接合部主筋24の各々を梁部材の端部に設けられる複数の継手26の各々に挿入することにより接続される。   In the example shown in FIG. 7B, the joint main bar 24 protrudes from the end surfaces 32 of the two beam joints 31. In this example, the projection length in the horizontal direction of the two beam joint portions 31 is the distance X. In this case, since the plurality of joint main bars 24 protrude from the end face of the joint member, the plurality of joint main bars 24 are connected by being inserted into each of the plurality of joints 26 provided at the end of the beam member. The

図7(c)に示す例は、一方の梁接合部31が、図7(a)に示すような継手26を有するもので、他方の梁接合部31が、図7(b)に示すような端面32から接合部主筋24が突出するものとされている。   In the example shown in FIG. 7C, one beam joint 31 has a joint 26 as shown in FIG. 7A, and the other beam joint 31 is shown in FIG. 7B. The joint main bar 24 protrudes from the end face 32.

ここで、図8を参照して、継手位置による曲げ応力の変化について説明する。図8(a)に示すように、継手位置を柱面22、23から離間させることにより、地震時の継手先端位置でのモーメントは、梁21の中央側に移動し、柱面位置の最大モーメントM1からモーメントM2のように小さくなる。このため、図8(b)に示すように、継手位置をさらに柱面22、23から離すことにより、モーメントM2からモーメントM3のように小さくすることができる。   Here, with reference to FIG. 8, the change of the bending stress by a joint position is demonstrated. As shown in FIG. 8A, by separating the joint position from the column surfaces 22 and 23, the moment at the joint tip position at the time of the earthquake moves to the center side of the beam 21, and the maximum moment of the column surface position is reached. It decreases from M1 to moment M2. For this reason, as shown in FIG. 8B, the joint position can be further reduced from the moment M2 to the moment M3 by separating the joint position from the column surfaces 22 and 23.

梁主筋25の主筋量は、継手先端位置のモーメントにより決定することができる。このため、継手位置を柱面22、23から離すことで梁主筋25の主筋量を低減させることができる。   The main bar amount of the beam main bar 25 can be determined by the moment of the joint tip position. For this reason, the main bar amount of the beam main bar 25 can be reduced by separating the joint position from the column surfaces 22 and 23.

このように継手位置を梁21の中央側に移動させる距離を調整することで、継手先端位置でのモーメントMを調整することができ、そのモーメントMを調整することで、梁主筋の主筋量を決定することができる。継手位置を移動させる距離は、上記の距離Xであり、施工条件や設計条件に応じて決定することができるので、例えば運搬上の制限を解消し、運搬計画の合理化を図ることができ、構造物のPCa化率を向上させることができる。   By adjusting the distance by which the joint position is moved to the center side of the beam 21 in this manner, the moment M at the joint tip position can be adjusted. Can be determined. The distance to move the joint position is the above-mentioned distance X, and can be determined according to the construction conditions and design conditions. For example, the transportation restrictions can be eliminated and the transportation plan can be rationalized. The PCa conversion rate of the product can be improved.

図9を参照して、柱20に配設された接合部材と梁部材との接合方法について説明する。図9(a)に示す例では、接合部材40は、梁接合部31および複数の接合部主筋24を有し、複数の接合部主筋24が梁接合部31の端面32から突出し、外部に露出している。梁部材41は、複数の梁主筋25を有し、複数の梁主筋25の端部には、複数の継手26が設けられている。複数の継手26は、梁部材41の端部であって、その端部から突出しないように埋設されている。   With reference to FIG. 9, the joining method of the joining member arrange | positioned at the pillar 20 and a beam member is demonstrated. In the example shown in FIG. 9A, the joining member 40 has a beam joint 31 and a plurality of joint main bars 24, and the plurality of joint main bars 24 protrude from the end surface 32 of the beam joint 31 and are exposed to the outside. doing. The beam member 41 has a plurality of beam main bars 25, and a plurality of joints 26 are provided at ends of the plurality of beam main bars 25. The plurality of joints 26 are embedded in the end portions of the beam member 41 so as not to protrude from the end portions.

梁部材41を接続する場合、梁部材41の長手方向を水平方向になるようにクレーン等で持ち上げて配置し、矢線に示す柱20に向けて移動させることにより、複数の継手26の各々に複数の接合部主筋24の各々を挿入する。そして、その隙間にグラウト材を注入し、接合部材40の梁接合部31の端面32と梁部材41の端面42とを当接させることにより接続することができる。   When connecting the beam member 41, the beam member 41 is lifted and arranged with a crane or the like so that the longitudinal direction of the beam member 41 is in the horizontal direction, and moved toward the column 20 indicated by the arrow line. Each of the plurality of joint main bars 24 is inserted. Then, the grout material is injected into the gap, and the end surface 32 of the beam joint portion 31 of the joining member 40 and the end surface 42 of the beam member 41 can be brought into contact with each other.

図9(b)に示す例では、接合部材40は、梁接合部31および複数の接合部主筋24を有し、梁接合部31の端部に、複数の接合部主筋24に接続された複数の継手26が設けられている。複数の継手26は、梁接合部31を備える接合部材40の端部であって、その梁接合部31から突出しないように埋設されている。梁部材41は、複数の梁主筋25を有し、複数の梁主筋25が梁部材41の端面42から突出している。   In the example shown in FIG. 9B, the joining member 40 has a beam joint 31 and a plurality of joint principal bars 24, and a plurality of joint members 40 connected to the plurality of joint principal bars 24 at the end of the beam joint 31. The joint 26 is provided. The plurality of joints 26 are embedded in the end portions of the joining member 40 including the beam joint portions 31 so as not to protrude from the beam joint portions 31. The beam member 41 has a plurality of beam main bars 25, and the plurality of beam main bars 25 protrude from the end face 42 of the beam member 41.

梁部材41を接続する場合、梁部材41の長手方向を水平方向になるようにクレーン等で持ち上げて配置し、矢線に示す柱20に向けて移動させることにより、複数の継手26の各々に複数の梁主筋25の各々を挿入する。そして、その隙間にグラウト材を注入し、接合部材40の梁接合部31の端面32と梁部材41の端面42とを当接させることにより接続することができる。   When connecting the beam member 41, the beam member 41 is lifted and arranged with a crane or the like so that the longitudinal direction of the beam member 41 is in the horizontal direction, and moved toward the column 20 indicated by the arrow line. Each of the plurality of beam main bars 25 is inserted. Then, the grout material is injected into the gap, and the end surface 32 of the beam joint portion 31 of the joining member 40 and the end surface 42 of the beam member 41 can be brought into contact with each other.

このように現場では、各主筋の端部を継手26に挿入し、グラウト材を注入することにより部材の接合が完了するため、型枠の設置作業やコンクリート打設という作業を省略することができ、施工性を向上させ、工期を短縮することができる。   In this way, since the end of each main bar is inserted into the joint 26 and the joining of the members is completed by injecting the grout material, the work of installing the formwork and placing the concrete can be omitted. The workability can be improved and the construction period can be shortened.

これまで接合部材40の接合部主筋24に高強度鉄筋のみを使用する例を参照して説明してきたが、接合部材40の強度を高めることができれば、いかなる方法でも採用することができる。例えば、柱梁の接合方法の第2の実施形態を示す図10に示すように、梁部材41の梁主筋25と同程度の強度を有する材種とし、別途、U字形等の任意の形状の補強筋43を設けることができる。補強筋43は、両方に突出する梁接合部31の端部近隣にまで延びるように内部に設けられる。すなわち、一方の梁接合部の端部近隣から他方の梁接合部の端部近隣にまで、水平方向に延びるように設けられる。   So far, the description has been made with reference to an example in which only the high-strength reinforcing bar is used for the joining portion main reinforcement 24 of the joining member 40. However, any method can be adopted as long as the strength of the joining member 40 can be increased. For example, as shown in FIG. 10 showing the second embodiment of the column beam joining method, a material type having the same strength as the beam main reinforcing bar 25 of the beam member 41 is used, and an arbitrary shape such as a U-shape is separately provided. A reinforcing bar 43 can be provided. The reinforcing bar 43 is provided inside so as to extend to the vicinity of the end portion of the beam joint portion 31 projecting to both. That is, it is provided to extend in the horizontal direction from the vicinity of the end of one beam joint to the vicinity of the end of the other beam joint.

図11を参照して、梁接合部31の断面における接合部主筋24および補強筋43の配置について説明する。図11(a)は、二段配筋の例を示し、図11(b)は、一段配筋の例を示す。   With reference to FIG. 11, the arrangement of the joint main bars 24 and the reinforcing bars 43 in the cross section of the beam joint 31 will be described. FIG. 11A shows an example of two-stage reinforcement, and FIG. 11B shows an example of one-stage reinforcement.

図11(a)に示す例では、梁接合部31の上面側に、縁部に沿って5本の接合部主筋24がコの字形に等間隔で設けられ、下面側にも、同じく縁部に沿って5本の接合部主筋24がコの字形に等間隔で設けられている。そして、その断面の中央部に、10本の接合部主筋24に挟まれる形で2本の補強筋43が設けられている。梁部材41は、梁接合部31の接合部主筋24の配置に合わせて、梁主筋25がコの字形に等間隔で設けられている。   In the example shown in FIG. 11A, five joint main bars 24 are provided at equal intervals along the edge on the upper surface side of the beam joint portion 31, and the edge portion is also provided on the lower surface side. 5 joint main bars 24 are provided in a U-shape at equal intervals. Two reinforcing bars 43 are provided at the center of the cross section so as to be sandwiched between the ten joint main bars 24. In the beam member 41, the beam main bars 25 are provided in a U-shape at equal intervals in accordance with the arrangement of the joint main bars 24 of the beam connection section 31.

また、図11(a)には、上面側および下面側の接合部主筋24をT字形に4本ずつとし、その断面の中央部の接合部主筋24の左右に補強筋43を2本ずつ配置された例も示されている。梁部材41は、梁接合部31の接合部主筋24の配置に合わせて、梁主筋25がT字形に等間隔で設けられている。接合部主筋24をこのように二段に配置する方法を二段配筋という。   Further, in FIG. 11A, the upper surface side and the lower surface side joint main bars 24 are each four in a T shape, and two reinforcing bars 43 are arranged on the left and right of the joint main bars 24 in the center of the cross section. An example is also shown. In the beam member 41, the beam main bars 25 are provided in a T-shape at equal intervals in accordance with the arrangement of the joint main bars 24 of the beam connection portion 31. A method of arranging the joint main bars 24 in two stages in this way is called two-stage bar arrangement.

図11(b)に示す例では、梁接合部31の上面側に、縁部に沿って一列に4本の接合部主筋24が等間隔で設けられ、下面側にも、同じく縁部に沿って一列に4本の接合部主筋24が等間隔で設けられている。そして、その断面の中央部の左右に、補強筋43が2本ずつ配置されている。梁部材41は、梁接合部31の接合部主筋24の配置に合わせて、梁主筋25が一列に等間隔で設けられる。接合部主筋24をこのように一段に配置する方法を一段配筋という。   In the example shown in FIG. 11 (b), four joint main bars 24 are provided at equal intervals on the upper surface side of the beam joint portion 31 along the edge portion, and also along the edge portion on the lower surface side. The four joint main bars 24 are provided at regular intervals in a row. Two reinforcing bars 43 are arranged on each side of the central portion of the cross section. In the beam member 41, the beam main bars 25 are provided in a line at equal intervals in accordance with the arrangement of the joint main bars 24 of the beam connection part 31. A method of arranging the joint main bars 24 in this way is called a one-stage bar arrangement.

ここでは一段配筋および二段配筋の例を示したが、三段以上に配筋してもよいし、他の形に等間隔で配置して配筋してもよい。補強筋43も、U字形に限られるものではなく、例えば棒状のものであってもよい。   Here, an example of a single-stage bar arrangement and a two-stage bar arrangement has been shown, but it may be arranged in three or more stages, or may be arranged in other shapes at equal intervals. The reinforcing bar 43 is not limited to the U shape, and may be, for example, a rod shape.

図12を参照して、柱梁の接合構造に用いられる接合部材40を製造(設計および製作)する方法について説明する。なお、個々のステップにおける作業の内容は、それぞれ良く知られたものであるため、その詳細な内容についての説明は省略する。ステップ1200から開始し、ステップ1205では、接合部材40を製作するPCa工場を選定する。PCa工場では、柱部材や梁部材41も製作することができる。   With reference to FIG. 12, a method for manufacturing (designing and manufacturing) the joining member 40 used for the joining structure of the column beam will be described. In addition, since the content of the operation | work in each step is a well-known thing, the description about the detailed content is abbreviate | omitted. Starting from step 1200, in step 1205, a PCa factory for manufacturing the joining member 40 is selected. In the PCa factory, column members and beam members 41 can also be manufactured.

ステップ1210では、製作した接合部材40等のPCa部材を運搬する運搬車両を決定する。ステップ1215では、運搬車両が目的地の現場まで走行する運搬経路を決定する。ステップ1220では、現場での作業スペースを確認する。例えば、PCa部材をクレーンで吊り上げて移動させる際の最も狭い空間の大きさ等を確認する。その空間を通らない大きさのPCa部材を製作しても意味がないからである。なお、これらのステップは、この順番で実施することに限られるものではなく、どのような順番で実施してもよい。   In step 1210, a transport vehicle that transports the PCa member such as the manufactured joining member 40 is determined. In step 1215, a transportation route on which the transportation vehicle travels to the destination site is determined. In step 1220, the work space at the site is confirmed. For example, the size of the narrowest space when the PCa member is lifted and moved by a crane is checked. This is because there is no point in manufacturing PCa members that do not pass through the space. Note that these steps are not limited to being performed in this order, and may be performed in any order.

以上のステップにより施工条件、設計条件を決定した後、ステップ1225へ進み、施工条件、設計条件に応じて、塑性ヒンジ発生位置Pを決定する。塑性ヒンジ発生位置Pの決定は、PCa工場等の情報をデータベースとして保持するコンピュータに、上記の選定したPCa工場等を施工条件等として入力することにより、該コンピュータが決定することができる。例えば、入力された条件のうち、どの条件が施工上最も厳しい条件になるかを判断し、判断した条件に基づき、塑性ヒンジ発生位置Pを決定することができる。具体的には、最も厳しい条件が運搬車両の幅となる場合、例えば運搬車両の幅を、接合部材40の水平方向の長さとし、その幅の両端を塑性ヒンジ発生位置Pとして決定することができる。なお、塑性ヒンジ発生位置Pの決定は、設計者が行ってもよく、その位置は、施工的に有利な条件となるように(厳しい条件を回避できるように)決定することができる。   After the construction and design conditions are determined by the above steps, the process proceeds to step 1225, and the plastic hinge generation position P is determined according to the construction and design conditions. The plastic hinge generation position P can be determined by inputting the selected PCa factory or the like as construction conditions into a computer that holds information about the PCa factory or the like as a database. For example, it is possible to determine which of the input conditions is the most severe condition in construction, and determine the plastic hinge generation position P based on the determined condition. Specifically, when the most severe condition is the width of the transport vehicle, for example, the width of the transport vehicle can be the horizontal length of the joining member 40, and both ends of the width can be determined as the plastic hinge generation position P. . The plastic hinge generation position P may be determined by the designer, and the position can be determined so as to be an advantageous condition for construction (so that a severe condition can be avoided).

ステップ1230で、決定した塑性ヒンジ発生位置Pに基づき、コンピュータが接合部主筋24を選定する。コンピュータは、データベースとして塑性ヒンジ発生位置Pに対応する接合部主筋24の材種の情報を保持しており、塑性ヒンジ発生位置Pが決定されたことを受けて、材種を選択することができる。なお、コンピュータは、図6に示す情報を保持し、接合部主筋24に加え、梁主筋25の選定、さらには継手26の選定も行うことができる。これも同様に、設計者が塑性ヒンジ発生位置Pに応じて接合部主筋、梁主筋、継手等を選択することもできる。   In step 1230, the computer selects the joint main reinforcement 24 based on the determined plastic hinge generation position P. The computer holds the information on the material type of the joint principal bar 24 corresponding to the plastic hinge generation position P as a database, and can select the material type in response to the determination of the plastic hinge generation position P. . The computer holds the information shown in FIG. 6, and can select the beam main bar 25 and the joint 26 in addition to the joint main bar 24. Similarly, the designer can select a joint main bar, a beam main bar, a joint, and the like according to the plastic hinge generation position P.

ステップ1235では、決定された接合部主筋24および選定された継手26等に基づき、梁接合部31の水平方向への突出長さを決定する。そして、必要な構造計算等を実施し、接合部材40を設計する。ステップ1240では、決定した突出長さに組み立てた型枠内に、設計した本数の、決定された材種の鉄筋を、設計した位置に配置し、必要に応じて継手26を取り付けて配置し、コンクリートを打設する。コンクリートは、必要に応じてバイブレータを使用して混入する空気を取り除き、その表面を、木ゴテ等を使用してならす。   In step 1235, the projection length in the horizontal direction of the beam joint 31 is determined based on the determined joint main reinforcement 24, the selected joint 26, and the like. Then, necessary structural calculations are performed and the joining member 40 is designed. In step 1240, the designed number of rebars of the determined grade are placed in the designed position in the form assembled to the determined protruding length, and the joint 26 is attached and arranged as necessary. Place concrete. As for concrete, remove the mixed air using a vibrator as necessary, and smooth the surface using a wooden trowel or the like.

ステップ1245では、型枠を覆うパネルやシートを使用し、パイプやシート内にパイプを引き込み、蒸気を供給してコンクリート表面に蒸気を吹き付けて蒸気養生を行う。ここでは、養生として蒸気養生を行うことを説明したが、蒸気養生に限定されるものではなく、湿潤養生等であってもよい。   In step 1245, a panel or sheet covering the mold is used, the pipe is drawn into the pipe or sheet, steam is supplied, and steam is blown to the concrete surface to perform steam curing. Here, the steam curing is described as the curing, but it is not limited to the steam curing and may be a wet curing or the like.

ステップ1250では、養生により強度が発現したコンクリートにより構成される接合部材40を脱型し、ステップ1255でその製作を終了する。なお、接合部材40は、必要な数だけステップ1240からステップ1250の工程を繰り返して製作することができる。   In step 1250, the joining member 40 made of concrete that has developed strength is removed from the mold, and in step 1255, the production ends. Note that the joining member 40 can be manufactured by repeating the steps 1240 to 1250 as many times as necessary.

上記のコンピュータとしては、CPU、ROM、RAM、HDD、通信I/F、入出力I/F、入力装置、表示装置を備えるPCやタブレット端末等を使用することができ、CPUがHDD等からRAMにプログラムを読み出し、そのプログラムを実行することにより、上記の塑性ヒンジ発生位置Pを決定する処理や構造計算等を実施することができる。   As the above computer, a CPU, ROM, RAM, HDD, communication I / F, input / output I / F, input device, PC or tablet terminal equipped with a display device can be used, and the CPU is changed from HDD to RAM. By reading the program and executing the program, the processing for determining the plastic hinge generation position P, the structure calculation, and the like can be performed.

これまで本発明の柱梁の接合構造および接合部材の製造方法について図面に示した実施形態を参照しながら詳細に説明してきたが、本発明は、上述した実施形態に限定されるものではなく、他の実施形態や、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。   So far, the column beam connection structure and the manufacturing method of the connection member of the present invention have been described in detail with reference to the embodiment shown in the drawings, but the present invention is not limited to the above-described embodiment, Other embodiments, additions, changes, deletions, and the like can be changed within the scope that can be conceived by those skilled in the art, and as long as the effects and effects of the present invention are exhibited in any aspect, the scope of the present invention is included. It is included.

10…機械式継手、11、20…柱、12、21…梁、14、40…接合部材、15、30…柱接合部、16、31…梁接合部、17…端面、18、24…接合部主筋、19、41…梁部材、22、23…柱面、25…梁主筋、26…継手、32、42…端面、43…補強筋 DESCRIPTION OF SYMBOLS 10 ... Mechanical coupling, 11, 20 ... Column, 12, 21 ... Beam, 14, 40 ... Joining member, 15, 30 ... Column joint, 16, 31 ... Beam joint, 17 ... End face, 18, 24 ... Joining Main bars, 19, 41 ... Beam members, 22, 23 ... Column faces, 25 ... Beam main bars, 26 ... Joints, 32, 42 ... End faces, 43 ... Reinforcing bars

Claims (5)

柱梁の接合構造であって、
構造物の柱を構成する柱部材間に配設され、前記柱部材と接合するための柱接合部と、前記柱に対して垂直方向に突出し、梁を構成する梁部材と接合するための梁接合部と、前記柱接合部および前記梁接合部の内部を前記垂直方向に延びる複数の鉄筋とを有する接合部材と、
前記梁接合部の端部または前記梁部材の端部に設けられ、前記接合部材の各鉄筋と前記梁部材の各鉄筋とを接続する複数の継手とを含み、
前記接合部材と前記梁部材とを接合した場合の前記柱の側面から前記梁の中央側の前記複数の継手の端部までの垂直方向の距離に応じて、前記接合部材に使用する複数の鉄筋が選定され、前記梁接合部の垂直方向への突出長さが決定される、接合構造。
It is a column beam connection structure,
A column joint portion that is disposed between the column members constituting the column of the structure and is joined to the column member, and a beam that projects in a direction perpendicular to the column and is joined to the beam member constituting the beam. A joining member having a joint, and a plurality of reinforcing bars extending in the vertical direction inside the column joint and the beam joint;
A plurality of joints that are provided at an end of the beam joint or at an end of the beam member and connect the reinforcing bars of the joint member and the reinforcing bars of the beam member;
A plurality of reinforcing bars used for the joining member according to the distance in the vertical direction from the side surface of the column when joining the joining member and the beam member to the ends of the joints on the center side of the beam Is selected, and the protruding length in the vertical direction of the beam joint is determined.
前記突出長さは、前記距離が前記継手の長さより長く、前記梁の上面から下面までの長さに前記継手の長さを加算した長さより短くなるように決定される、請求項1に記載の接合構造。   The protrusion length is determined so that the distance is longer than the length of the joint and shorter than a length obtained by adding the length of the joint to the length from the upper surface to the lower surface of the beam. Bonding structure. 前記接合部材に使用する複数の鉄筋は、前記梁部材に使用する複数の鉄筋より高い強度の鉄筋、または該梁部材に使用する複数の鉄筋と同じ強度の鉄筋と前記接合部材を補強するために追加される補強筋とを組み合わせたものが選定される、請求項1または2に記載の接合構造。   In order to reinforce the joint member with a plurality of reinforcing bars used for the joining member, reinforcing bars having a strength higher than that of the plurality of reinforcing bars used for the beam member, or reinforcing bars having the same strength as the plurality of reinforcing bars used for the beam member The joint structure according to claim 1 or 2, wherein a combination of reinforcing bars to be added is selected. 前記接合部材に使用する複数の鉄筋は、前記梁部材に使用する複数の鉄筋に応じて、または該梁部材に使用する複数の鉄筋とともに選定される、請求項1〜3のいずれか1項に記載の接合構造。   The plurality of reinforcing bars used for the joining member are selected according to the plurality of reinforcing bars used for the beam member or together with the plurality of reinforcing bars used for the beam member. The junction structure described. 構造物の柱を構成する柱部材間に配設され、前記柱部材と接合するための柱接合部と、前記柱に対して垂直方向に突出し、梁を構成する梁部材と接合するための梁接合部と、前記柱接合部および前記梁接合部の内部を前記垂直方向に延びる複数の鉄筋とを有する接合部材と、前記梁接合部の端部または前記梁部材の端部に設けられ、前記接合部材の各鉄筋と前記梁部材の各鉄筋とを接続する複数の継手とを含む、接合構造の前記接合部材を製造する方法であって、
前記接合部材と前記梁部材とを接合した場合の前記柱の側面から前記梁の中央側の複数の継手までの前記垂直方向の距離に応じて、前記接合部材に使用する複数の鉄筋を選定し、前記梁接合部の垂直方向への突出長さを決定する段階と、
前記突出長さとなるように組み立てた型枠内に、選定された前記複数の鉄筋を配置し、コンクリートを打設する段階と、
打設された前記コンクリートを養生する段階とを含む、接合部材の製造方法。
A column joint portion that is disposed between the column members constituting the column of the structure and is joined to the column member, and a beam that projects in a direction perpendicular to the column and is joined to the beam member constituting the beam. A joining member, a joining member having a plurality of reinforcing bars extending in the vertical direction inside the column joining part and the beam joining part, and provided at an end part of the beam joining part or an end part of the beam member, A method of manufacturing the joining member having a joining structure, including a plurality of joints connecting the reinforcing bars of the joining member and the reinforcing bars of the beam member,
A plurality of reinforcing bars to be used for the joining member are selected according to the distance in the vertical direction from the side surface of the column when joining the joining member and the beam member to a plurality of joints on the center side of the beam. Determining a vertical protrusion length of the beam joint;
Placing the selected plurality of reinforcing bars in a formwork assembled to have the protruding length, and placing concrete;
Curing the cast concrete, and a method for producing a joining member.
JP2016127964A 2016-06-28 2016-06-28 Column-beam joint structure and manufacturing method of joint members Active JP6833263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016127964A JP6833263B2 (en) 2016-06-28 2016-06-28 Column-beam joint structure and manufacturing method of joint members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016127964A JP6833263B2 (en) 2016-06-28 2016-06-28 Column-beam joint structure and manufacturing method of joint members

Publications (2)

Publication Number Publication Date
JP2018003322A true JP2018003322A (en) 2018-01-11
JP6833263B2 JP6833263B2 (en) 2021-02-24

Family

ID=60947704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016127964A Active JP6833263B2 (en) 2016-06-28 2016-06-28 Column-beam joint structure and manufacturing method of joint members

Country Status (1)

Country Link
JP (1) JP6833263B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019199761A (en) * 2018-05-17 2019-11-21 国立大学法人宇都宮大学 Plastic hinge structure of rc columnar structure and method for repairing plastic hinge part of rc columnar structure
JP2021055472A (en) * 2019-10-01 2021-04-08 五洋建設株式会社 Construction method of column-beam joint structure and column-beam joint structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287801A (en) * 1992-04-08 1993-11-02 Fujita Corp Bar arrangement structure of beam in rigid-frame structure made of precast iron reinforcing concrete
JP2005155058A (en) * 2003-11-21 2005-06-16 Kajima Corp Beam member of rc structure
JP2006022494A (en) * 2004-07-06 2006-01-26 Ohbayashi Corp Joint structure of precast concrete column and beam, column and beam frame structure including the joint structure, joining method, and precast concrete beam
WO2010037775A2 (en) * 2008-09-30 2010-04-08 Avanzini Prefabbricati S.R.L. Device for connection between prefabricated beams and columns
JP2015209634A (en) * 2014-04-23 2015-11-24 清水建設株式会社 Joining structure between column and beam
KR20160087217A (en) * 2015-01-13 2016-07-21 서울시립대학교 산학협력단 Precast concrete structure with monolithic beam-column connection and location adjustable plastic hinge

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287801A (en) * 1992-04-08 1993-11-02 Fujita Corp Bar arrangement structure of beam in rigid-frame structure made of precast iron reinforcing concrete
JP2005155058A (en) * 2003-11-21 2005-06-16 Kajima Corp Beam member of rc structure
JP2006022494A (en) * 2004-07-06 2006-01-26 Ohbayashi Corp Joint structure of precast concrete column and beam, column and beam frame structure including the joint structure, joining method, and precast concrete beam
WO2010037775A2 (en) * 2008-09-30 2010-04-08 Avanzini Prefabbricati S.R.L. Device for connection between prefabricated beams and columns
JP2015209634A (en) * 2014-04-23 2015-11-24 清水建設株式会社 Joining structure between column and beam
KR20160087217A (en) * 2015-01-13 2016-07-21 서울시립대학교 산학협력단 Precast concrete structure with monolithic beam-column connection and location adjustable plastic hinge

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
永井覚・丸田誠・高谷真次・山本幸正: "論文 梁端部でスリーブ継手補強された主筋を有する梁部材の構造性能", コンクリート工学年次論文集, vol. 29, no. 3, JPN6020008745, 2007, JP, pages 1753 - 1758, ISSN: 0004354827 *
阿部洋、山下真吾、上田忠男、木村秀樹、石川裕次: "高強度鉄筋SD590を用いた柱・梁接合部に関する実験研究(その1 実験概要)", 日本建築学会大会学術講演梗概集, JPN6020008747, September 2006 (2006-09-01), JP, pages 19 - 20, ISSN: 0004354828 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019199761A (en) * 2018-05-17 2019-11-21 国立大学法人宇都宮大学 Plastic hinge structure of rc columnar structure and method for repairing plastic hinge part of rc columnar structure
JP2021055472A (en) * 2019-10-01 2021-04-08 五洋建設株式会社 Construction method of column-beam joint structure and column-beam joint structure
JP7330048B2 (en) 2019-10-01 2023-08-21 五洋建設株式会社 Column-beam connection structure construction method and column-beam connection structure

Also Published As

Publication number Publication date
JP6833263B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
KR101740919B1 (en) Precast concrete wall and manufacturing method of the wall
KR101809687B1 (en) Joining Members of Steel Concrete Column and Steel Beam and Construction Method Thereof
JP2009114810A (en) Bar arrangement structure of concrete beam and method for execution of bar arrangement
JP6833263B2 (en) Column-beam joint structure and manufacturing method of joint members
JP2014055517A (en) Precast beam-column joint structure
JPH0518003A (en) Joining method of steel pipe concrete column and half-precast reinforced concrete column
JP2005030151A (en) Skeleton structure of building
JP7411749B2 (en) How to construct a concrete building
JP5750246B2 (en) Composite beam, building, and composite beam construction method
JP2022154690A (en) Connection structure
JP6174984B2 (en) Steel beam
JP6997657B2 (en) Construction method of column-beam joint structure and column-beam joint structure
JP6978894B2 (en) How to build a beam-column joint structure
JP6978901B2 (en) Joining structure and joining method of precast concrete beam members
JP2009108500A (en) Precast beam construction method, precast beam, precast beam joint structure, and building
JP3239867U (en) culvert structure
JP2006169837A (en) Column-beam joint structure of reinforced concrete construction
JP2020063634A (en) Junction structure and junction method for precast concrete beam member
KR101685632B1 (en) Shear connector to increase strength and ductility
KR101612637B1 (en) Hollow PC column for saving construction period, SRC column with the hollow PC, joint structure of SRC and beam and method for constructing frame of buildings
KR102182537B1 (en) Connecting structure and connecting method of PC wall members using welded wire mesh
KR102499318B1 (en) End reinforced steel frame
JP7425168B1 (en) How to build a composite structure
JP5364193B2 (en) Reinforcement method for concrete beams
JP2010065449A (en) Concrete beam with opening

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210202

R150 Certificate of patent or registration of utility model

Ref document number: 6833263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250