JP2005155058A - Beam member of rc structure - Google Patents

Beam member of rc structure Download PDF

Info

Publication number
JP2005155058A
JP2005155058A JP2003391876A JP2003391876A JP2005155058A JP 2005155058 A JP2005155058 A JP 2005155058A JP 2003391876 A JP2003391876 A JP 2003391876A JP 2003391876 A JP2003391876 A JP 2003391876A JP 2005155058 A JP2005155058 A JP 2005155058A
Authority
JP
Japan
Prior art keywords
joint
sleeves
column
beam member
reinforcements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003391876A
Other languages
Japanese (ja)
Inventor
Yoshio Fukada
良雄 深田
Yukimasa Ogiwara
行正 荻原
Makoto Maruta
誠 丸田
Shinji Takatani
真次 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2003391876A priority Critical patent/JP2005155058A/en
Publication of JP2005155058A publication Critical patent/JP2005155058A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a beam member of an RC structure in the vicinity of a column-beam joining part capable of freely forming a plastic hinge formed in a beam end part near the center of beams in a big earthquake. <P>SOLUTION: This beam member of the RC structure is constituted so that a plurality of joining reinforcements 3 and 3 are horizontally arranged in a connection part A of a column 1 by horizontally penetrating through this connection part A; a plurality of sleeves 4 and 4 are horizontally arranged in both end parts 3a and 3a of these joining reinforcements 3 as a steel pipe inside filling type joint; and main reinforcements 5 and 5 of the beams 2 and 2 and the joining reinforcements 3 and 3 are respectively joined via these sleeves 4 and 4. The sleeves 4 and 4 are respectively horizontally projected to both sides of the connection part A by the predetermined length L. A plurality of stirrup reinforcements 6 are wound between the sleeves 4 and 4 as shearing reinforcing bars, and are arranged at a predetermined interval in the axial direction of the sleeves 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本願発明は柱梁接合部近傍のRC構造の梁部材に関するものである。   The present invention relates to a beam member having an RC structure in the vicinity of a column beam joint.

一般に建物の構造設計は、構造力学的に最も不利な地震時を想定して各部材の応力が計算され、この応力に基いて各部材の断面が設計され、特にラーメン構造の場合、一般に梁の曲げ応力は梁端部が最も大きく、梁中央は梁端部に比較してきわめて小さい。   In general, in the structural design of buildings, the stress of each member is calculated assuming the most adverse earthquake in terms of structural mechanics, and the cross section of each member is designed based on this stress. The bending stress is the largest at the beam end, and the beam center is extremely small compared to the beam end.

また、各部材の断面設計は、例えばRC構造の梁の場合、梁端部に生じる大きな応力に対して梁端部の鉄筋量が設計されるが、配筋作業を簡略化して施工性の向上を図る等の観点から、梁の端部に比べて応力の小さい梁の中央部分にも梁端部と同じ量の鉄筋が配筋されることが多く、そのため梁中央部分には力学的に不必要な鉄筋が配筋されることになる。   The cross-sectional design of each member is, for example, in the case of RC structure beams, the amount of reinforcement at the beam end is designed against the large stress generated at the beam end. In many cases, the same amount of rebar is placed in the central part of the beam, which is less stressed than the end of the beam. Necessary reinforcing bars will be arranged.

また、柱と梁の設計に際しては、大地震時における建物の脆性破壊を防止して大地震から人命を守るという設計思想に基づき、梁曲げ降伏先行型の想定降伏機構を実現するように柱と梁の断面設計が行われている。   Also, when designing columns and beams, the column and beam are designed to realize a presumed yield mechanism of beam bending yielding based on the design philosophy of preventing brittle fracture of buildings during a large earthquake and protecting human lives from large earthquakes. The beam cross-section is being designed.

この設計思想を実現するため、梁端部は大地震時に塑性ヒンジを形成するように設計されるが、この塑性ヒンジには大きな変形を受けても耐力は低下しないという靱性が求められる。   In order to realize this design concept, the beam end portion is designed to form a plastic hinge at the time of a large earthquake, but this plastic hinge is required to have toughness that does not lower the yield strength even if it undergoes a large deformation.

また大地震時に、梁端部に塑性ヒンジが形成されるようにするためには、梁端部の耐力を柱の耐力以下にする必要があるが、梁の端部に設備用の配管などを通すための貫通孔を設ける場合、貫通孔の周囲に補強筋を配筋すると梁端部の耐力が向上してしまうことになる。
特開2001−279811号公報 特開平11−81452公報 特開平06−193196公報
In addition, in order to form a plastic hinge at the end of the beam in the event of a large earthquake, the beam end must have a proof strength less than that of the column. In the case where a through-hole for passing through is provided, if the reinforcing bars are arranged around the through-hole, the yield strength of the beam end portion is improved.
JP 2001-279811 A JP-A-11-81452 Japanese Patent Laid-Open No. 06-193196

しかし、梁端部の配筋量と比較して梁中央部分の配筋量が、計算上少ない場合でも、配筋作業を簡略化して施工性を高める等の理由により梁中央部分の配筋量と梁端部の配筋量を同じにすると、梁中央部分に力学的に不必要な鉄筋が配筋されることとなり、非常に不経済になる等の課題があった。   However, even if the amount of reinforcement at the center of the beam is small compared to the amount of reinforcement at the end of the beam, the amount of reinforcement at the center of the beam is for reasons such as simplifying the reinforcement work and improving workability. If the amount of bar arrangement at the end of the beam is the same, a mechanically unnecessary reinforcing bar will be arranged at the center of the beam, resulting in a very uneconomical problem.

また、梁の端部に配管用の貫通孔を設ける場合、貫通孔の周囲に補強筋を配筋する等して梁の端部を補強すると、梁端部の耐力が柱の耐力より著しく上昇してしまうため、梁曲げ降伏先行型の想定降伏機構の実現が困難になり、現時点では梁端部に設備配管用の貫通孔を設けることが困難であった。   Also, when providing a through hole for piping at the end of the beam, if the end of the beam is reinforced by placing reinforcing bars around the through hole, the strength of the end of the beam is significantly higher than the strength of the column. Therefore, it is difficult to realize an assumed yield mechanism of the beam bending yield-preceding type, and it is difficult to provide a through hole for equipment piping at the beam end at the present time.

請求項1記載のRC構造の梁部材は、柱梁接合部近傍のRC構造の梁部材において、前記梁部材の端部に配筋された梁主筋に機械式継手が設けられ、該機械式継手は柱梁接合部から梁中央側に所定長さを有して形成されてなることを特徴とするものである。   The RC structure beam member according to claim 1, wherein a mechanical joint is provided on a beam main bar arranged at an end of the beam member in an RC structure beam member in the vicinity of a column beam joint, and the mechanical joint is provided. Is formed to have a predetermined length from the beam-column joint to the beam center side.

本願発明は特に、梁の端部に配筋された梁主筋に機械式継手を設けることにより、大地震時の過大な応力によって梁端部に形成される塑性ヒンジを、必要に応じて梁端部から梁中央よりの該機械式継手先端付近に容易に形成することができる。   In particular, the present invention provides a mechanical hinge on the beam main bar arranged at the end of the beam so that the plastic hinge formed at the beam end due to excessive stress during a large earthquake can be It can be easily formed near the tip of the mechanical joint from the center of the beam.

また、該梁の設計用応力として梁端部に発生する応力ではなく、梁端部から梁中央よりの機械式継手先端付近に発生する応力を用いて梁端部の配筋量を設計することにより、施工性などの観点から梁の中央部分を含めて梁の全断面を梁端部の配筋量と同じに配筋する場合、梁の全配筋量を低減することができ、また配筋量の低減による施工コストの削減等を図ることができる。   Also, the amount of bar arrangement at the end of the beam should be designed not using the stress generated at the beam end as the design stress for the beam, but using the stress generated near the mechanical joint tip from the beam end to the center of the beam. Therefore, if the entire cross section of the beam including the central part of the beam is arranged in the same way as the bar arrangement at the end of the beam from the viewpoint of workability, etc., the total arrangement of the beam can be reduced. Construction costs can be reduced by reducing the amount of muscle.

また、梁の端部に配筋された梁主筋に、該梁主筋より降伏強度の大きい機械式継手が設けられていることで、大地震時の過大応力によっても梁の端部に塑性ヒンジは形成されず、梁の端部は弾性範囲内にとどまるため、梁端部に靱性性能は要求されない。   In addition, the beam reinforcement placed at the end of the beam is provided with a mechanical joint with a yield strength greater than that of the beam reinforcement, so that the plastic hinge can be attached to the end of the beam even under excessive stress during a large earthquake. It is not formed and the end of the beam remains in the elastic range, so that the toughness performance is not required at the end of the beam.

また、機械式継手の先端付近に形成される塑性ヒンジによって梁の耐力が決定されるため、貫通孔の補強によって梁端部の耐力が上昇しても、梁曲げ降伏先行型の想定降伏機構が維持され、特に問題になることもない。   In addition, since the strength of the beam is determined by the plastic hinge formed near the tip of the mechanical joint, even if the strength of the beam end increases due to reinforcement of the through-hole, the assumed yield mechanism of the beam bending yield precedence type It is maintained and does not become a problem.

請求項2記載のRC構造の梁部材は、請求項1記載のRC構造の梁部材において、機械式継手として梁主筋より降伏強度の大きい継手が設けられてなることを特徴とするものである。   The RC structure beam member according to claim 2 is characterized in that, in the RC structure beam member according to claim 1, a joint having a higher yield strength than the beam main bar is provided as a mechanical joint.

本願発明は、機械式継手として梁主筋より降伏強度の大きい継手を用いることにより、大地震時に梁端部に形成される塑性ヒンジを梁端部から梁中央よりの所定位置に確実に形成することができ、また、該機械式継手の長さを設定することにより塑性ヒンジの位置を自由に設定することができる。   In the present invention, by using a joint having a higher yield strength than the beam main bar as a mechanical joint, the plastic hinge formed at the end of the beam in the event of a large earthquake is reliably formed from the end of the beam to a predetermined position from the center of the beam. In addition, the position of the plastic hinge can be freely set by setting the length of the mechanical joint.

請求項3記載のRC構造の梁部材は、請求項1または2記載のRC構造の梁部材において、機械式継手としてねじ式継手、鋼管圧着式継手または鋼管内充填式継手が設けられてなることを特徴とするものである。なお、鋼管内充填式継手において用いられる充填材にはモルタル等を用いることができる。   The RC structure beam member according to claim 3 is the RC structure beam member according to claim 1 or 2, wherein a threaded joint, a steel pipe crimping joint, or a steel pipe filling joint is provided as a mechanical joint. It is characterized by. In addition, mortar etc. can be used for the filler used in a steel pipe filling type joint.

請求項4記載のRC構造の梁部材は、請求項1〜3のいずれかに記載のRC構造の梁部材において、機械式継手の表面に複数のリブが設けられてなることを特徴とするものである。   The RC structure beam member according to claim 4 is the RC structure beam member according to any one of claims 1 to 3, wherein a plurality of ribs are provided on the surface of the mechanical joint. It is.

機械式継手の表面にリブを設けることでコンクリートの付着性能を著しく高めることができるだけでなく、スターラップ筋を配筋する際、スターラップ筋の位置決めがし易く施工性がよい。また、必要かぶり厚さの確保に対して障害とならない。   By providing ribs on the surface of the mechanical joint, not only can the adhesion performance of the concrete be remarkably improved, but also when placing the stirrup bars, the stirrup lines can be easily positioned and the workability is good. Moreover, it does not become an obstacle to securing the necessary cover thickness.

請求項5記載のRC構造の梁部材は、請求項1〜4のいずれかに記載のRC構造の梁部材において、機械式継手が設けられた梁の端部に貫通孔が設けられてなることを特徴とするものである。   The RC structure beam member according to claim 5 is the RC structure beam member according to any one of claims 1 to 4, wherein a through hole is provided at an end of the beam provided with the mechanical joint. It is characterized by.

本願発明は、機械式継手によって梁の端部が柱梁仕口部と略同等の強度に補強されていることで、梁の端部に配管用などの貫通孔を特に補強筋を配筋せずに設けることができる。また、補強筋が必要である場合も、建物の想定降伏機構に影響を与えない。   In the present invention, the end of the beam is reinforced by a mechanical joint to a strength substantially equal to that of the column beam joint, so that a through-hole for piping or the like is arranged at the end of the beam, in particular, a reinforcing bar. It can be provided without. Also, if reinforcement is required, it does not affect the assumed yield mechanism of the building.

本願発明は、梁の端部に配筋された梁主筋に機械式継手を設けることで、大地震時の過大な地震力を受けた際に梁端部に形成される塑性ヒンジを、必要に応じて梁端部から梁中央よりの所定位置に容易に形成することができる。   The present invention requires a plastic hinge formed at the beam end when it receives an excessive seismic force during a large earthquake by providing a mechanical joint on the beam main bar arranged at the beam end. Accordingly, it can be easily formed at a predetermined position from the beam center from the beam end.

また、梁の設計用応力として梁端部の応力ではなく、梁端部から梁中央よりの機械式継手先端付近に発生する応力を用い、該応力に基いて梁端部の配筋量を設計することで、施工性などの観点から梁の中央部分を含めて全断面を梁端部の配筋量と同じに配筋する場合でも、梁の全配筋量を低減することができ、また配筋量の低減によるコスト削減等が図れる。   Also, instead of the stress at the beam end as the design stress for the beam, the stress generated near the mechanical joint tip from the beam end to the center of the beam is used, and the bar arrangement at the beam end is designed based on this stress. This makes it possible to reduce the total amount of beam reinforcement even if the entire cross section including the central part of the beam is arranged in the same way as the reinforcement at the beam end from the viewpoint of workability, etc. Cost can be reduced by reducing the amount of bar arrangement.

また、機械式継手の表面に複数のリブが設けられていることで、コンクリートの付着性能を著しく高めることができるだけでなく、スターラップ筋を配筋する際、スターラップ筋の位置決めがし易くなり施工性がよい。   In addition, since the ribs are provided on the surface of the mechanical joint, not only can the adhesion performance of the concrete be remarkably improved, but also when the stirrup bar is placed, the stirrup bar can be easily positioned. Workability is good.

また、梁の端部に配筋された梁主筋に機械式継手が設けられていることで、大地震時においても、梁端部は塑性ヒンジを形成することなく、弾性範囲内にとどまるため、梁端部に靱性性能は要求されない。   In addition, since the mechanical joint is provided in the beam main bar arranged at the end of the beam, the beam end stays within the elastic range without forming a plastic hinge even during a large earthquake, Toughness performance is not required at the beam end.

また、梁の耐力は機械式継手の先端付近に形成される塑性ヒンジによって設定されるため、貫通孔周囲の補強によって梁端部の耐力が上昇しても特に問題はない。   Further, since the proof strength of the beam is set by a plastic hinge formed near the tip of the mechanical joint, there is no particular problem even if the proof strength of the beam end is increased by reinforcement around the through hole.

さらに、複数階に跨がる1本の柱として連続して形成されたPCa柱に、各階の梁として本願発明の梁部材を適用すれば、該梁部材には継手金具などの突出するものがないため、軸組の組立工程を簡略化できるだけでなく、該梁部材の運搬や建て込みをスムーズに行うことができる。   Furthermore, if the beam member of the present invention is applied as a beam on each floor to a PCa column continuously formed as one column straddling a plurality of floors, a protruding member such as a joint metal fitting is projected on the beam member. Therefore, not only the assembly process of the shaft assembly can be simplified, but also the beam member can be transported and built smoothly.

図1(a)〜(c)は、プレキャスト(以下「PCa」という)構造の柱1とこの柱1の仕口部(梁接合部)Aの両側に対向して配置されたPCa構造の梁2,2との接合部を示す。   FIGS. 1A to 1C show PCa-structured beams arranged opposite to both sides of a column 1 having a precast (hereinafter referred to as “PCa”) structure and a joint portion (beam joint) A of the column 1. The junction part with 2 and 2 is shown.

図において、柱1の仕口部Aにこの仕口部Aを水平に貫通して複数の接合鉄筋3,3が水平に配筋され、この接合鉄筋3の両端部3a,3aに鋼管内充填式継手として複数のスリーブ4,4が水平に配置され、このスリーブ4,4を介して梁2,2の主筋5,5と接合鉄筋3,3がそれぞれ互いに接合されている。   In the figure, a plurality of joint reinforcing bars 3 and 3 are horizontally laid through the joint A of the pillar 1 horizontally, and both ends 3a and 3a of the joint 3 are filled in the steel pipe. A plurality of sleeves 4, 4 are horizontally arranged as a type joint, and the main bars 5, 5 of the beams 2, 2 and the joining rebars 3, 3 are joined to each other via the sleeves 4, 4.

スリーブ4,4は仕口部Aの両側にそれぞれ所定長さLだけ水平に突出しており、またスリーブ4,4間にせん断補強筋として複数のスターラップ筋6が巻き架けることによりスリーブ4の軸方向に所定間隔おきに配筋されている。   The sleeves 4, 4 protrude horizontally on the both sides of the joint A by a predetermined length L, and a plurality of stirrup bars 6 are wound around the sleeves 4, 4 as shear reinforcement bars, whereby the shaft of the sleeve 4 is wound. The bars are arranged at predetermined intervals in the direction.

なおこの場合、仕口部Aの接合鉄筋3として径の太い鉄筋や高強度鉄筋を配筋したり、あるいは接合鉄筋3の配筋量を増やしたりすることにより、仕口部Aおよび梁2端部が柱1に先行して脆性破壊しないように仕口部Aおよび梁2端部の剛性が著しく高められている。   In this case, the joint A and the end of the beam 2 can be obtained by arranging a thick reinforcing bar or a high-strength reinforcing bar as the joint rebar 3 of the joint A or increasing the amount of the joint rebar 3. The rigidity of the joint A and the end of the beam 2 is remarkably increased so that the portion does not brittle fracture prior to the column 1.

また、各スリーブ4には接合鉄筋3および主筋5より降伏強度の大きいものが用いられ、各スリーブ4の外周には円形鍔状の補強リブ4aがスリーブ4の軸方向に所定間隔おきに形成されている。   Each sleeve 4 has a yield strength higher than that of the joining reinforcing bar 3 and the main reinforcing bar 5, and circular flange-like reinforcing ribs 4 a are formed on the outer circumference of each sleeve 4 at predetermined intervals in the axial direction of the sleeve 4. ing.

また、スターラップ筋6は図1(b)に図示するように各スリーブ4の補強リブ4a,4a間に巻き架けられている。   Further, the stirrup muscle 6 is wound around the reinforcing ribs 4a and 4a of each sleeve 4 as shown in FIG.

この場合の主筋5とスターラップ筋6には丸鋼または異形鉄筋などが用いられ、またスリーブ4には鋳鉄管などが用いられ、スリーブ4の補強リブ4aはスリーブ4本体とともに一体に鋳造によって形成されているか、またはスリーブ4本体の外周に溶接する等して後から取り付けられている。   In this case, the main reinforcement 5 and the stirrup reinforcement 6 are made of round steel or deformed reinforcement, the sleeve 4 is made of cast iron pipe, and the reinforcing rib 4a of the sleeve 4 is integrally formed with the sleeve 4 body by casting. Or attached later by welding to the outer periphery of the sleeve 4 body.

また、スリーブ4を介して各接合鉄筋3と主筋5がそれぞれ互いに接合された後、スリーブ4、主筋5およびスターラップ筋6の周囲にコンクリート7が打設されている。なお、スリーブ4内には接合鉄筋3と主筋5を接合するための充填材としてモルタル等が充填されている。   Further, after the joining reinforcing bars 3 and the main reinforcing bars 5 are joined to each other via the sleeve 4, concrete 7 is placed around the sleeve 4, the main reinforcing bars 5 and the stirrup reinforcing bars 6. The sleeve 4 is filled with mortar or the like as a filler for joining the joining rebar 3 and the main reinforcement 5.

このような構成において、梁2の断面設計に際しては、例えば図3に図示するように、梁2の端部に発生する最大応力(M1 )ではなく、梁端部からやや梁中央よりのスリーブ4の先端付近に発生する応力(M2 )を梁2の設計用応力として、梁2端部の主筋5とスターラップ筋6の鉄筋量を設計し、これと同じ量の主筋5とスターラップ筋6を梁2の中央部を含めて梁2の全断面に配筋することにより、梁2の全断面に配筋される鉄筋量を低減することができる。 In such a configuration, when designing the cross section of the beam 2, for example, as shown in FIG. 3, not the maximum stress (M 1 ) generated at the end of the beam 2 but the sleeve slightly from the beam end to the center of the beam. 4, the stress (M 2 ) generated near the tip of the beam 2 is used as the design stress of the beam 2, and the amount of reinforcing bars of the main reinforcement 5 and the stirrup reinforcement 6 at the end of the beam 2 is designed. By arranging the reinforcing bars 6 in the entire cross section of the beam 2 including the central portion of the beam 2, the amount of reinforcing bars arranged in the entire cross section of the beam 2 can be reduced.

また、梁2の主筋5と接合鉄筋3は、梁2の端部においてスリーブ4により接合することにより、大地震時に梁2に過大な応力が発生したとしても、梁2の端部は弾性範囲内にあって塑性ヒンジを形成せず、梁2の端部からやや梁中央よりのスリーブ4の先端付近に塑性ヒンジが形成されるため、仕口部Aおよび梁2端部の脆性破壊を未然に防止することができる。   Further, the main reinforcement 5 of the beam 2 and the joining rebar 3 are joined by the sleeve 4 at the end of the beam 2, so that even if an excessive stress is generated in the beam 2 at the time of a large earthquake, the end of the beam 2 has an elastic range. The plastic hinge is formed in the vicinity of the end of the sleeve 4 slightly from the end of the beam 2 from the end of the beam 2 without forming the plastic hinge. Can be prevented.

また、梁2の端部と中央部を含め、梁2の全長に渡って同じ量の主筋5とスターラップ筋6を配筋することにより、梁2の断面設計および施工がきわめて容易となるだけでなく、配筋量を少なくできてコスト削減が図れる。   Further, by arranging the same amount of the main bar 5 and the stirrup bar 6 over the entire length of the beam 2 including the end and the center of the beam 2, the cross-section design and construction of the beam 2 can be made extremely easy. In addition, the amount of bar arrangement can be reduced and the cost can be reduced.

図2は、梁2の端部に配管用の貫通孔8が設けられている例を示し、貫通孔8は上下スリーブ4,4間に水平に形成され、その周囲に補強筋9が配筋されている。この場合、貫通孔8の周囲が補強筋9によって補強され、梁端部の剛性が著しく向上しても、塑性ヒンジは梁2の端部からやや梁中央よりのスリーブ4の先端付近に形成されるため、梁曲げ降伏先行型の想定降伏機構が維持され、仕口部Aおよび梁2端部の脆性破壊を未然に防止することができる。   FIG. 2 shows an example in which a through-hole 8 for piping is provided at the end of the beam 2. The through-hole 8 is formed horizontally between the upper and lower sleeves 4, 4, and reinforcing bars 9 are arranged around it. Has been. In this case, even if the periphery of the through-hole 8 is reinforced by the reinforcing bar 9 and the rigidity of the beam end is remarkably improved, the plastic hinge is formed from the end of the beam 2 to the vicinity of the end of the sleeve 4 slightly from the center of the beam. Therefore, the assumed yield mechanism of the beam bending yield-preceding type is maintained, and brittle fracture of the joint A and the end of the beam 2 can be prevented in advance.

本願発明は、RC構造の柱とRC構造の梁とからなるRC構造の柱梁接合部に用いられる。   The invention of the present application is used for an RC structure column beam joint composed of an RC structure column and an RC structure beam.

(a)はPCa構造の柱梁接合部を示す側面図、(b)は機械式継手の側面図、(c)は(b)におけるイ−イ線断面図である。(A) is a side view showing a beam-column joint portion of PCa structure, (b) is a side view of a mechanical joint, and (c) is a cross-sectional view taken along line II in (b). PCa構造の柱梁接合部を示す側面図である。It is a side view which shows the column beam junction part of PCa structure. 柱梁接合部の応力図である。It is a stress figure of a column beam junction part.

符号の説明Explanation of symbols

1 PCa構造の柱
2 PCa構造の梁
3 接合鉄筋
4 スリーブ(機械式継手)
4a 補強リブ(リブ)
5 梁の主筋
6 スターラップ筋
7 コンクリート
8 貫通孔
9 補強筋
A 仕口部
1 PCa structure column 2 PCa structure beam 3 Jointed rebar 4 Sleeve (mechanical joint)
4a Reinforcement rib (rib)
5 Beam main bar 6 Stirrup bar 7 Concrete 8 Through hole 9 Reinforcement bar A Joint

Claims (5)

柱梁接合部近傍のRC構造の梁部材において、前記梁部材の端部に配筋された梁主筋に機械式継手が設けられ、該機械式継手は柱梁接合部から梁中央側に所定長さを有して形成されてなることを特徴とするRC構造の梁部材。   In the RC structure beam member in the vicinity of the beam-to-column joint, a mechanical joint is provided in the beam main bar arranged at the end of the beam member, and the mechanical joint has a predetermined length from the beam-to-column joint to the beam center side. An RC structure beam member characterized by being formed with a thickness. 機械式継手として梁主筋より降伏強度の大きい継手が設けられてなることを特徴とする請求項1記載のRC構造の梁部材。   The RC structure beam member according to claim 1, wherein a joint having a yield strength larger than that of the beam main bar is provided as a mechanical joint. 機械式継手としてねじ式継手、鋼管圧着式継手または鋼管内充填式継手が設けられてなることを特徴とする請求項1または2記載のRC構造の梁部材。   The RC structure beam member according to claim 1, wherein a threaded joint, a steel pipe crimping joint, or a steel pipe filling joint is provided as the mechanical joint. 機械式継手の表面に複数のリブが設けられてなることを特徴とする請求項1〜3のいずれかに記載のRC構造の梁部材。   The RC structure beam member according to any one of claims 1 to 3, wherein a plurality of ribs are provided on a surface of the mechanical joint. 機械式継手が設けられた梁の端部に貫通孔が設けられてなることを特徴とする請求項1〜4のいずれかに記載のRC構造の梁部材。
The beam member having an RC structure according to any one of claims 1 to 4, wherein a through hole is provided at an end of the beam provided with the mechanical joint.
JP2003391876A 2003-11-21 2003-11-21 Beam member of rc structure Pending JP2005155058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003391876A JP2005155058A (en) 2003-11-21 2003-11-21 Beam member of rc structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003391876A JP2005155058A (en) 2003-11-21 2003-11-21 Beam member of rc structure

Publications (1)

Publication Number Publication Date
JP2005155058A true JP2005155058A (en) 2005-06-16

Family

ID=34718763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003391876A Pending JP2005155058A (en) 2003-11-21 2003-11-21 Beam member of rc structure

Country Status (1)

Country Link
JP (1) JP2005155058A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163082A (en) * 2013-02-22 2014-09-08 Takenaka Komuten Co Ltd Column-beam frame
JP2015214864A (en) * 2014-05-13 2015-12-03 高周波熱錬株式会社 Rebar structure and reinforced concrete structure
JP2018003322A (en) * 2016-06-28 2018-01-11 西松建設株式会社 Column-beam junction structure, and manufacturing method of joint member
CN108661245A (en) * 2018-05-23 2018-10-16 王昆 A kind of vertical sleeve and use its bean column node
JP2020143566A (en) * 2019-03-08 2020-09-10 大成建設株式会社 Column beam frame in reinforced concrete
CN115248112A (en) * 2022-07-28 2022-10-28 华南理工大学 Structure, device and method for testing flexural performance of frame beam support

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163082A (en) * 2013-02-22 2014-09-08 Takenaka Komuten Co Ltd Column-beam frame
JP2015214864A (en) * 2014-05-13 2015-12-03 高周波熱錬株式会社 Rebar structure and reinforced concrete structure
JP2018003322A (en) * 2016-06-28 2018-01-11 西松建設株式会社 Column-beam junction structure, and manufacturing method of joint member
CN108661245A (en) * 2018-05-23 2018-10-16 王昆 A kind of vertical sleeve and use its bean column node
CN108661245B (en) * 2018-05-23 2020-07-07 武汉东艺建筑设计有限公司 Assembled beam column node
JP2020143566A (en) * 2019-03-08 2020-09-10 大成建設株式会社 Column beam frame in reinforced concrete
JP7198692B2 (en) 2019-03-08 2023-01-04 大成建設株式会社 Reinforced concrete column beam structure
CN115248112A (en) * 2022-07-28 2022-10-28 华南理工大学 Structure, device and method for testing flexural performance of frame beam support

Similar Documents

Publication Publication Date Title
JP2000144905A (en) Mixed structural beam
JP4888915B2 (en) Building structure using composite structural beams with beam ends made of PC
JP6796335B2 (en) Reinforcing support member for reinforcing bar cage, reinforcing bar cage using this, and structure of reinforcing bar cage
JPH10196132A (en) Earthquake resistant reinforcing structure of column with wall
JP2005155058A (en) Beam member of rc structure
JP4936171B2 (en) Column structure in a complex structure building
JP5583382B2 (en) Concrete parts
JP6535704B2 (en) Column-beam frame
KR100430317B1 (en) Prefabricated Enclosed Steel Concrete Structures
JP3870180B2 (en) Beam-column joint structure
KR101736594B1 (en) Connecting sturcture between column and beam
JPH0988241A (en) Reinforcement fixing method in column-beam connecting section
JP5036065B2 (en) Pile head joint structure
JP2009197499A (en) Method for manufacturing precast rc column and rc column
JP6651147B1 (en) Carrying material
JP2009299267A (en) Structure and method for joining precast concrete structural members together
JPH0960194A (en) Precast concrete structure
JP7008313B2 (en) Manufacturing method of wall columns in precast concrete stairs
JP3938718B2 (en) Reinforced concrete beam structure
JP2006342497A (en) Foundation structure of steel column base
JP3900842B2 (en) Column-column connection structure of concrete-filled steel pipe columns
JP6968047B2 (en) Seismic retrofitting
JP2762906B2 (en) RC frame
JP2004270416A (en) Pile with large-diameter bearing plate, and structure for joining pile head thereof
JP2018178364A (en) Earthquake reinforcement structure for building and construction method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060703

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071210

A131 Notification of reasons for refusal

Effective date: 20080304

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080502

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20080701

Free format text: JAPANESE INTERMEDIATE CODE: A131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090901