JP2018003164A - スクラップからの金属回収方法 - Google Patents

スクラップからの金属回収方法 Download PDF

Info

Publication number
JP2018003164A
JP2018003164A JP2017187028A JP2017187028A JP2018003164A JP 2018003164 A JP2018003164 A JP 2018003164A JP 2017187028 A JP2017187028 A JP 2017187028A JP 2017187028 A JP2017187028 A JP 2017187028A JP 2018003164 A JP2018003164 A JP 2018003164A
Authority
JP
Japan
Prior art keywords
metal
scrap
suspension
recovering
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017187028A
Other languages
English (en)
Inventor
寿文 河村
Hisafumi Kawamura
寿文 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2017187028A priority Critical patent/JP2018003164A/ja
Publication of JP2018003164A publication Critical patent/JP2018003164A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

【課題】スクラップから金属を回収するに際して、安定的に継続して電解を行い、さらにその電解反応に係る析出電流効率が良好である金属の回収方法を提供する。
【解決手段】本発明は、金属または金属酸化物のスクラップから金属を回収する方法であって、前記スクラップを懸濁させた懸濁物に、回収対象の金属よりも卑な金属からなる遷移金属化合物を添加して、当該遷移金属化合物が添加された懸濁物を電解液として電解することにより、回収対象の金属を回収することを特徴とするスクラップからの金属回収方法である。
【選択図】なし

Description

本発明は、金属または金属酸化物のスクラップから金属を回収する方法に関する。
スクラップからの金属回収は、通常、酸アルカリ等での湿式処理が用いられ、さらに湿式処理の中には懸濁電解を用いる手法がある。当該懸濁電解には、通常、アルカリ溶融塩等が用いられている。このような技術として、例えば、特許文献1に、金属酸化物粉末の電解還元による金属の製造方法であって、該金属酸化物粉末を塩化カルシウム等の溶融塩中に懸濁させ陰極表面で還元することを特徴とする製造方法が開示されている(特許文献1の請求項1、実施例等)。また、特許文献1に記載されているように、電解還元を行う温度は、500℃以上という非常に特殊な高温での電解条件が採用されている(特許文献1の段落0043等)。
また、他の懸濁電解法として、電解液中で陰極底板の上に多数の金属粒子を沈めておき、陰極板を振動させることで粒子を撹拌し、この状態で電析を行う方法もある。これによれば、予め沈めておいた粒子にニッケル、銅などの非鉄金属が堆積し、粒子成長する。この粒子を取り出して金属の回収を行う。
特開2007−016293号公報
ところで、従来の金属回収方法によれば、電解により生成した金属水酸化物や金属酸化物が溶解できずに析出してしまい、安定的に継続して電気分解を行うことが困難であり、およびこのような析出物を浸出するにも電解液中でそれを行うことは困難である。
また、懸濁電解法では、回収対象の金属を含む懸濁物を電解液として用いることから、スラリーを電解することになり、粒子間抵抗の観点から電解反応による析出電流効率が良好であるとはいえず、エネルギー消費を抑えるという観点からも改良の余地はある。
そこで、本発明は、スクラップから金属を回収するに際して、安定的に継続して電解を行い、さらにその電解反応に係る析出電流効率が良好である金属の回収方法を提供することを目的とする。
本発明者は上述の課題について鋭意検討した結果、スクラップを懸濁電解処理する際に、回収対象の金属よりも卑な金属からなる遷移金属化合物を電解液に添加することにより、電解反応が安定して継続し、結果として電解反応による析出に係る電流効率が良好になることを見出して、本発明を完成するに至った。
すなわち、本発明は以下のとおりである。
(1)金属または金属酸化物のスクラップから金属を回収する方法であって、
前記スクラップを懸濁させた懸濁物に、回収対象の金属よりも卑な金属からなる遷移金属化合物を添加して、当該遷移金属化合物が添加された懸濁物を電解液として電解することにより、回収対象の金属を回収することを特徴とするスクラップからの金属回収方法。
(2)前記遷移金属化合物の金属元素が、Fe、Ni、Co、Mnのいずれかの一種であることを特徴とする(1)に記載の方法。
(3)前記スクラップがLi、Ni、Co、Mnを少なくとも二種類含むリチウムイオン二次電池用正極材であることを特徴とする(1)または(2)に記載の方法。
(4)前記スクラップが破砕されていることを特徴とする(1)〜(3)のいずれかに記載の方法。
本発明によれば、スクラップから金属を回収するに際して、安定的に継続して電解を行うことを可能にし、その結果その電析に係る電流効率が良好となる。
一つの側面から、本発明は、スクラップからの回収方法を提供する。
すなわち、本発明は、金属または金属酸化物のスクラップから金属を回収する方法であって、前記スクラップを懸濁させた懸濁物に、回収対象の金属よりも卑な金属からなる遷移金属化合物を添加して、当該遷移金属化合物が添加された懸濁物を電解液として電解することにより、回収対象の金属を回収することを特徴とするスクラップからの金属回収方法である。
本発明の対象となるスクラップは、金属または金属酸化物を含むものであれば特に限定されないが、Li、Ni、Co、Mnを少なくとも二種類含む電子材料、例えば半導体及び電子部品、液晶ディスプレイ、工具コーティング、ガラスコーティング、光ディスク、ハードディスク、太陽電池、リチウムイオン2次電池用正極材や当該正極材等に用いるスパッタリングターゲット材等由来のスクラップが挙げられる。このため、これらの構成材料に含まれている金属(例えば、Ag、Au、Co、Cr、Cu、Ga、Ge、In、Mn、Mo、Ni、Pd、Pt、Rh、Ru、Sn、Ta、Ti、W、それらの合金、それらの導電性酸化物等)が、本発明に係る回収対象となる金属である。具体的な金属の種類を、各種用途とともに以下に列挙する:
・半導体及び電子部品:Ag,Al,Au,AuAs,AuSb,AuSi,AuSn,Al23,Cr,Cu,CuCr,CrNiAl,CrSi,GeS2,Hf,Ir,Mo,Ni,NiV,OsRu,Pd,Pt,PtNi,Rh,Ru,Si,Ta,TaAl,Ti,WTi,WTiなど
・液晶ディスプレイ:Ag,Ag合金,Al,AlNd,Cr,InSn,ITO,Mo,MoW,Si,SiO2,Ta,Ti,W,ZnAl,ZAO(ZnO+Al23)など
・工具コーティング:Cr,CrAl,Ti,TiAlなど
・ガラスコーティング:Ag,Ag合金,Al,Bi,Cr,InSn,ITO,Nb,Nb25,NiCr,Si,SiO2,Sn,Ta25,Ti,W,ZAO(ZnO+Al23),Znなど
・光ディスク:Al23,C,Co合金,Cr,Fe合金,Ta,Tb合金,Te合金,Pt,Pt合金など
・ハードディスク:Al23,C,CoCr,CoCrTa,CoCrPt,Cr,Cr合金,Cr酸化物,MgO,Mo,NiAl,NiSi,SiC,Ta,Ta25,Ti酸化物,V,Wなど
・太陽電池:Ag,Al,CIG(Cu+In+Ga),CuGa,ITO,Mo,Ni/NiV,Sn,ZAO(ZnO+Al23)など
・リチウムイオン2次電池用正極材:正極材としてLiCoO2,LiNiO2,LiMn24,Li(CoxNiyMnz)O2〔x+y+z=1〕など、金属としてNi,Co,Mnなど、合金としてNiCoなど。
本発明に係る粉状スクラップからの金属の回収方法は、まず、処理対象となる粉状の金属又は粉状の導電性金属酸化物を含有する原料混合物を準備する。当該原料混合物としては、金属又は導電性金属酸化物のスクラップを粉砕した、いわゆるリサイクル材等が挙げられる。
次に、アノード及びカソード、電解液を備えた電解槽を準備し、電解液に上記粉状の金属又は粉状の導電性金属酸化物を含有する原料混合物を投入して懸濁させて、電解液を攪拌しながら電気分解を行う。電気分解を行うと、電解液中で懸濁している粉状の金属又は粉状の導電性金属酸化物が、カソードから供給された電子により還元されてカソード表面に析出する。次に、カソード表面に析出した金属を回収する。
また、電解液として用いる懸濁物は、鉱酸でスクラップを懸濁させて得られる。ここで、懸濁に用いる鉱酸は、硫酸、塩酸、硝酸などが挙げられ、中でも硫酸が好ましい。また、酸による懸濁の条件であるが、pHが3よりは小さくならない程度、また温度が70℃程度であることが好ましい。
次に、電解反応に際して添加する、回収対象の金属よりも卑な遷移金属化合物であるが、回収対象となる金属に応じて適宜選択される遷移金属を有するものである。遷移金属として、具体的には、Fe、Ni、Co、Mnのいずれかから選択される。
例えば、回収対象の金属がLi、Ni、Coである場合、これらよりも卑であるMnが遷移金属化合物の金属元素として用いることができる。また、遷移金属化合物は、この金属元素の酸化物、硫化物または硫酸塩、カルボン酸塩等の有機酸塩などが挙げられる。
回収対象の金属よりも卑な遷移金属を含む遷移金属化合物を添加することにより、安定した電解反応が継続する理由は明らかではないが、以下の理由が考えられる。
回収対象の金属が、電解により水酸化物や酸化物として電解液中に存在するようになる。そこで、添加された遷移金属により、水酸化物や酸化物の金属成分が還元され、還元された金属が電析される。一方で、還元に寄与した遷移金属が電解反応場で還元されることになり、還元された遷移金属が再度金属水酸化物や金属酸化物の還元に寄与することとなる。このようにして、電解反応により回収対象の金属が還元される環境が継続するためと考えられる。
また、遷移金属化合物は、回収対象の金属に対して1〜50質量%、好ましくは5〜20質量%の金属を含有する量で添加することが好ましい。この割合で遷移金属化合物を使用することにより、電解液中に生成する金属水酸化物や金属酸化物の中の金属が効率よく還元され、電解反応により析出するようになる。
これにより、従来における課題の一つとなっていた、電解析出に係る電流効率の改善を図ることができ、例えば積算電流値から見積もった電流効率が、80%以上とすることが可能になる。また、スクラップに含まれる回収対象金属を100%としたときの回収率に関しては、100%回収できることが理想ではあるが、100%に近くなるにつれ、効率が悪くなるため、例えば95%の回収率になるまで電解を継続させることが好ましい。
これにより、従来において、電解反応時に生じる水酸化物や酸化物となってスクラップから取り切れなかった金属の回収も可能になり、生産性が向上する。また、電解反応の析出に係る電流効率も上がるため、エネルギー効率が上がり、結果としてコストを下げることが可能になる。
以下、本発明の実施例を示すが、本発明は実施例に限定されるものではない。
(実施例1)
Li、Ni、Co、Mnの酸化物からなる正極材のスクラップ粉1kgを硫酸水溶液10Lに懸濁させた。その時のpHは4であった。続いてその懸濁液に硫酸マンガン200gを添加した。その懸濁液を電解液として、アノードに寸歩安定化電極(DSE)、カソードにTiを用いて、15Aの定電流にて60℃で懸濁電解を行った。このときの電流密度は5A/dm2程度であった。30時間後、カソードの電極表面に、NiとCoの合金が400g析出、Liは電解液に溶解した。積算電流値から見積もった析出電流効率は80%だった。
(実施例2)
添加剤を酸化Mnとする以外、実施例1と同様に懸濁電解を行った。30時間後、カソードの電極表面に、NiとCoの合金が400g析出、Liは電解液に溶解した。積算電流値から見積もった析出電流効率は80%だった。
(比較例1)
実施例1で、硫酸マンガンを添加しない以外は、同様に懸濁電解した。30時間後の析出合金は250gとなった。電流効率が50%だった。

Claims (3)

  1. 金属または金属酸化物のスクラップから金属を回収する方法であって、
    前記スクラップを懸濁させた懸濁物に、回収対象の金属よりも卑な金属からなる遷移金属化合物を添加して、当該遷移金属化合物が添加された懸濁物を電解液として電解することにより、回収対象の金属を回収することを特徴とするスクラップからの金属回収方法。
  2. 前記スクラップがLi、Ni、Co、Mnを少なくとも二種類含むリチウムイオン二次電池用正極材であることを特徴とする請求項1に記載の方法。
  3. 前記スクラップが破砕されていることを特徴とする請求項1又は2に記載の方法。
JP2017187028A 2017-09-27 2017-09-27 スクラップからの金属回収方法 Pending JP2018003164A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017187028A JP2018003164A (ja) 2017-09-27 2017-09-27 スクラップからの金属回収方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017187028A JP2018003164A (ja) 2017-09-27 2017-09-27 スクラップからの金属回収方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014069585A Division JP6228879B2 (ja) 2014-03-28 2014-03-28 スクラップからの金属回収方法

Publications (1)

Publication Number Publication Date
JP2018003164A true JP2018003164A (ja) 2018-01-11

Family

ID=60948585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017187028A Pending JP2018003164A (ja) 2017-09-27 2017-09-27 スクラップからの金属回収方法

Country Status (1)

Country Link
JP (1) JP2018003164A (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162789A (ja) * 1987-12-17 1989-06-27 Kamioka Kogyo Kk 担体上に担持された金属の回収方法及び装置
JPH04318185A (ja) * 1991-04-15 1992-11-09 Fuji Photo Film Co Ltd 除銀方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162789A (ja) * 1987-12-17 1989-06-27 Kamioka Kogyo Kk 担体上に担持された金属の回収方法及び装置
JPH04318185A (ja) * 1991-04-15 1992-11-09 Fuji Photo Film Co Ltd 除銀方法

Similar Documents

Publication Publication Date Title
JP6243614B2 (ja) 粉状スクラップからの金属の回収方法
JP4745400B2 (ja) Itoスクラップからの有価金属の回収方法
JP4916040B1 (ja) 電解採取用陽極および該陽極を用いた電解採取法
TWI406954B (zh) Method for recovering valuable metals from IZO waste
EP2508651B1 (en) Cobalt electrowinning method
CN101886178B (zh) 一种镍氢废旧电池的综合回收方法
TW200846503A (en) Methods of recovering valuable metal from scrap containing electrically conductive oxide
TW200844264A (en) Method of recovering valuable metal from scrap containing conductive oxide
JP4516617B2 (ja) 亜鉛の電解採取用陽極および電解採取法
CN105350028A (zh) 熔盐电解制备镍钛合金粉及其制备方法
JP6228879B2 (ja) スクラップからの金属回収方法
KR102211986B1 (ko) 스크랩으로부터의 금속의 회수 방법
JP6100525B2 (ja) 高純度金属又は合金のスクラップからの金属又は合金の回収方法
JP2011208216A (ja) インジウム及び錫の回収法
CN108163873A (zh) 一种从含磷酸锂废渣中提取氢氧化锂的方法
JP2018003164A (ja) スクラップからの金属回収方法
JP6419282B2 (ja) 粉状スクラップからの金属の回収方法
CN106574384B (zh) 利用电解沉积法制造钛的方法
JP5471735B2 (ja) スズ、タリウムの除去方法およびインジウムの精製方法
JP2014122369A (ja) 複合金属酸化物から金属を回収する方法
JP5544746B2 (ja) 金属インジウムの製造方法
JP3151195B2 (ja) コバルトの精製方法
US20150053574A1 (en) Metal electrowinning anode and electrowinning method
JP2016107329A (ja) 陽極の再生方法
Hamza Production of Metal Powder by Electrochemical Method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190416