JP2018002585A - 成形ガラスの製造方法及び加熱装置 - Google Patents

成形ガラスの製造方法及び加熱装置 Download PDF

Info

Publication number
JP2018002585A
JP2018002585A JP2017122035A JP2017122035A JP2018002585A JP 2018002585 A JP2018002585 A JP 2018002585A JP 2017122035 A JP2017122035 A JP 2017122035A JP 2017122035 A JP2017122035 A JP 2017122035A JP 2018002585 A JP2018002585 A JP 2018002585A
Authority
JP
Japan
Prior art keywords
glass
heating
glass substrate
storage body
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017122035A
Other languages
English (en)
Other versions
JP6915402B2 (ja
Inventor
新吾 圓道
Shingo Endo
新吾 圓道
藤井 誠
Makoto Fujii
誠 藤井
諭 金杉
Satoshi Kanasugi
諭 金杉
星介 木村
Seisuke Kimura
星介 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JP2018002585A publication Critical patent/JP2018002585A/ja
Application granted granted Critical
Publication of JP6915402B2 publication Critical patent/JP6915402B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/0086Heating devices specially adapted for re-forming shaped glass articles in general, e.g. burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/0013Re-forming shaped glass by pressing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/0026Re-forming shaped glass by gravity, e.g. sagging
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/0235Re-forming glass sheets by bending involving applying local or additional heating, cooling or insulating means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/04Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a continuous way
    • C03B29/06Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a continuous way with horizontal displacement of the products
    • C03B29/08Glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/734Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

【課題】ガラス割れの発生を防止しつつ、効率よくガラスを加熱して成形する成形ガラスの製造方法及び加熱装置を提供する。
【解決手段】加熱体20と、該加熱体20と被加熱体であるガラス基材40との間に配置され、波長0.5〜2.5μmにおける透過率が50%以上である蓄熱体30と、を有する加熱装置10を使用し、加熱体20によってガラス基材40を加熱し、成形する。
【選択図】図2

Description

本発明は、成形ガラスの製造方法及び加熱装置に関する。
一般的に、少なくとも一部に屈曲部を有する屈曲ガラスの製造は、成形型上に載置したガラス基材を軟化点まで加熱し、成形型に倣わせて変形させる成形工程を経て作製される。特許文献1では、成形面を有する型上にガラス基材を配置して輻射ヒータによりガラス基材を加熱し、成形面上にサギングして所望の表面形状を成形する方法が開示されている。また、特許文献2では、輻射ヒータと被加熱体との間に金属板を挿入し、輻射ヒータからの輻射熱を一旦金属板で保持、蓄熱した後に、被加熱体に再放射して、被加熱体を均一に加熱する方法が記載されている。
特許第5479468号公報 国際公開第2010/150801号
ところで、特許文献1のような製造方法では、輻射ヒータからの輻射熱がガラスに直接放射され、ガラスを急速加熱するため、ガラスが割れてしまう可能性がある。これは、輻射ヒータからの輻射熱が放射状に広がり、ガラスに直接放射されると、ガラスが不均一に加熱されるため、ガラス割れが発生すると考えられる。
一方、特許文献2では、輻射ヒータからの輻射熱を、一旦、輻射ヒータと被加熱体との間に設けた金属板で保持、蓄熱した後、被加熱体に再放射して加熱している。しかしながら、輻射ヒータからの輻射熱は金属板によって遮られ、金属板からの輻射熱によって被加熱体が加熱されるので、加熱時には、輻射ヒータによって金属板が温まるまでは被加熱体を温めることができず、冷却時には、輻射ヒータのスイッチを切った後も、金属板が冷えるまで被加熱体が冷却されず、被加熱体の熱応答性が悪く、生産効率が低下するという課題があり、改善の余地があった。
本発明は、前述した課題に鑑みてなされたものであり、その目的は、ガラス割れの発生を防止しつつ、効率よくガラスを加熱して成形する成形ガラスの製造方法及び加熱装置を提供することにある。
本発明の上記目的は、下記の構成により達成される。
(1) 加熱体と、該加熱体と被加熱体であるガラス基材との間に配置され、波長0.5〜2.5μmにおける透過率が50%以上である蓄熱体と、を有する加熱装置を使用し、
前記加熱体によって前記ガラス基材を加熱し、成形する、成形ガラスの製造方法。
(2) 前記蓄熱体の波長0.5〜2.5μmにおける透過率が93%以下である(1)に記載の成形ガラスの製造方法。
(3) 前記蓄熱体の0〜800℃における線膨張係数は、−30〜30(×10−7/℃)である、(1)又は(2)に記載の成形ガラスの製造方法。
(4) 前記蓄熱体の厚さが1〜10mmである、(1)〜(3)のいずれか1つに記載の成形ガラスの製造方法。
(5) 前記成形ガラスが一部に屈曲部を有する、(1)〜(4)のいずれか1つに記載の成形ガラスの製造方法。
(6) 前記成形ガラスは、モル%で表示した組成で、SiO2を50〜80%、Al23を0.1〜25%、Li2O+Na2O+K2Oを3〜30%、MgOを0〜25%、CaOを0〜25%およびZrO2を0〜5%含む、(1)〜(5)のいずれか一つに記載の成形ガラスの製造方法。
(7) 前記ガラス基材を予熱する予熱工程と、
前記ガラス基材を軟化する軟化工程と、
屈曲部を形成する成形工程と、
前記成形ガラスをアニールするアニール工程と、の少なくとも1つを備え、
前記予熱工程、前記軟化工程、前記成形工程、前記アニール工程のうち少なくとも1つの工程は、前記加熱装置を用いて行われる、(1)〜(6)のいずれか1つに記載の成形ガラスの製造方法。
(8) 前記加熱装置は、前記予熱工程に用いられ、
前記予熱工程において、前記ガラス基材は、前記蓄熱体が蓄熱した熱によって加熱された以後、前記加熱体によって加熱される、(7)に記載の成形ガラスの製造方法。
(9) 加熱体と、該加熱体と被加熱体であるガラス基材との間に配置され、波長0.5〜2.5μmにおける透過率が50%以上である蓄熱体と、を有する加熱装置。
(10) 前記蓄熱体の0〜800℃における線膨張係数は、−30〜30(×10−7/℃)である、(9)に記載の加熱装置。
(11) 前記蓄熱体の厚さが1〜10mmである、(9)または(10)に記載の加熱装置。
本発明の成形ガラスの製造方法によれば、加熱体と、該加熱体と被加熱体であるガラス基材との間に配置され、波長0.5〜2.5μmにおける透過率が50%以上である蓄熱体と、を有する加熱装置を使用し、加熱体によってガラス基材を加熱するので、加熱体から放射される輻射熱と、蓄熱体から放射される輻射熱および対流加熱と、によってガラス基材を加熱することで、ガラス基材の加熱を均一化して、加熱時のガラス割れを防止できる。また、蓄熱体を透過する加熱体からの輻射熱も利用でき、効率的にガラスを加熱できる。
また、本発明の加熱装置によれば、加熱体と、該加熱体と被加熱体であるガラス基材との間に配置され、波長0.5〜2.5μmにおける透過率が50%以上である蓄熱体と、を有するので、加熱体から放射される輻射熱と、蓄熱体から放射される輻射熱および対流加熱と、によってガラス基材を均一加熱でき、加熱時のガラス割れを防止できる。また、蓄熱体を透過する加熱体からの輻射熱も利用でき、効率的にガラス基材を加熱できる。
成形ガラスの製造工程を示すフローチャートである。 (a)及び(b)は、本発明に係る加熱装置であり、被加熱体を含めた構成部材の位置関係を示す模式図である。 (a)〜(c)は、図1に示す予熱工程の模式図である。 (a)及び(b)は、変形例の加熱装置であり、被加熱体を含めた構成部材の位置関係を示す模式図である。
以下、本発明に係る成形ガラスの製造方法、及び該製造方法で用いられる加熱装置の一実施形態を図面に基づいて詳細に説明する。
本実施形態の加熱装置は、ガラス基材を例えば、軟化点以上の温度(平衡粘性で106.5〜1012.5Pa・s)まで加熱して、一部に屈曲部を備える成形ガラスを製造するために用いられるものである。
平衡粘性は、例えばビーム曲げ法(ISO 7884−4:1987)や繊維引き伸ばし法(ISO 7884−3:1987)や平行平板粘度計(ASTM C 338−93:2003)や棒沈降式粘度計(ISO 7884−5:1987)を用いて測定することができる。
本実施形態の成形ガラスとは、ガラス基材の少なくとも1つの主面に凹凸により形成された模様を転写するなどの加工を施したガラスや、ガラス基材の少なくとも1つの主面に屈曲部を付与したガラス(屈曲ガラス)などを示す。成形ガラスは後述の成形法にて作製できる。本実施形態は、ガラス基材を均一加熱でき屈曲ガラスの作製に特に適している。
本実施形態のガラス基材を構成するガラス組成としては、例えば、ソーダライムガラス、アルミノシリケートガラス、アルミノボロシリケートガラス、リチウムダイシリケートガラスなどが使用できる。本実施形態の加熱装置は、ガラス基材にアルミノシリケートガラス、ボロシリケートガラスを使用した場合に特に優れている。これらのガラス基材は高ヤング率、高膨張係数を有し、これらのガラス基材を加熱すると高い熱応力が発生するため、従来の加熱装置による急速な加熱では割れやすい。本実施形態の加熱装置では、均一加熱できるためガラス基材面内の温度分布が低減でき、これらのガラス基材でも割れを抑制しつつ効率的に加熱できる。
ガラス組成の具体例としては、モル%で表示した組成で、SiO2を50〜80%、Al23を0.1〜25%、Li2O+Na2O+K2Oを3〜30%、MgOを0〜25%、CaOを0〜25%およびZrO2を0〜5%含むガラスが挙げられるが、特に限定されない。より具体的には、以下のガラスの組成が挙げられる。なお、例えば、「MgOを0〜25%含む」とは、MgOは必須ではないが25%まで含んでもよい、の意である。(i)のガラスはソーダライムシリケートガラスに含まれ、(ii)および(iii)のガラスはアルミノシリケートガラスに含まれる。
(i)モル%で表示した組成で、SiO2を63〜73%、Al23を0.1〜5.2%、Na2Oを10〜16%、K2Oを0〜1.5%、Li2Oを0〜5%、MgOを5〜13%及びCaOを4〜10%を含むガラス。
(ii)モル%で表示した組成が、SiO2を50〜74%、Al23を1〜10%、Na2Oを6〜14%、K2Oを3〜11%、Li2Oを0〜5%、MgOを2〜15%、CaOを0〜6%およびZrO2を0〜5%含有し、SiO2およびAl23の含有量の合計が75%以下、Na2OおよびK2Oの含有量の合計が12〜25%、MgOおよびCaOの含有量の合計が7〜15%であるガラス。
(iii)モル%で表示した組成が、SiO2を68〜80%、Al23を4〜10%、Na2Oを5〜15%、K2Oを0〜1%、Li2Oを0〜5%、MgOを4〜15%およびZrO2を0〜1%含有するガラス。
(iv)モル%で表示した組成が、SiO2を67〜75%、Al23を0〜4%、Na2Oを7〜15%、K2Oを1〜9%、Li2Oを0〜5%、MgOを6〜14%およびZrO2を0〜1.5%含有し、SiO2およびAl23の含有量の合計が71〜75%、Na2OおよびK2Oの含有量の合計が12〜20%であり、CaOを含有する場合その含有量が1%未満であるガラス。
なお、モル%で表示した組成は、微量含有成分を無視し、上記に記載の酸化物の合計に対する目的の酸化物の割合として算出する。
さらに、ガラスに着色を行い使用する際は、所望の化学強化特性の達成を阻害しない範囲において着色剤を添加してもよい。例えば、可視域に吸収を持つ、Co、Mn、Fe、Ni、Cu、Cr、V、Bi、Se、Ti、Ce、Er、およびNdの金属酸化物である、Co、MnO、MnO、Fe、NiO、CuO、CuO、Cr、V、Bi、SeO、TiO、CeO、Er、Nd等が挙げられる。
また、ガラス基材として着色ガラスを用いる場合、ガラス中に、酸化物基準のモル百分率表示で、着色成分(Co、Mn、Fe、Ni、Cu、Cr、V、Bi、Se、Ti、Ce、Er、およびNdの金属酸化物からなる群より選択される少なくとも1成分)を7%以下の範囲で含有してもよい。着色成分が7%を超えると、ガラスが失透しやすくなる。この含量は5%以下が好ましく、3%以下がより好ましく、1%以下がさらに好ましい。また、ガラス基材は、溶融の際の清澄剤として、SO、塩化物、フッ化物などを適宜含有してもよい。
次に、図1を参照して、成形ガラスの製造工程について、概略説明する。まず、ステップS1で、成形する素材としてガラス基材を準備し、該ガラス基材を支持台、下型、アームなどの適宜の手段で支持する。次いで、ステップS2で、ガラス基材を、例えば、略500℃まで予熱する(平衡粘性で1017Pa・s程度)。その後、ステップS3で、予熱が与えられたガラス基材を、成形型上に移動する。成形型上に載せられたガラス基材は、ステップS4で、例えば、略700〜750℃の軟化点以上の温度まで加熱され(平衡粘性で106.5〜1012.5Pa・s)、ステップS5で、成形型の成形面に倣わせて成形する。そして、ステップS6の冷却工程で、成形されたガラス基材を冷却した後、ステップS7のアニール工程で、例えば、略550℃のアニール温度(平衡粘性で1012.5〜1017Pa・s)で所定の時間保持することで、ガラス基材の内部応力を除去する。
本実施形態の加熱装置は、図1に示す、ガラス基材を予熱する予熱工程、ガラス基材を軟化する軟化工程、ガラス基材を成形する成形工程、ガラス基材を再加熱するアニール工程など、屈曲ガラスを成形する上記工程の少なくとも一つの工程で使用される。なお、加熱装置は、使用される工程に応じて、加熱温度など異なるため、特性が異なる条件、構成部材が適用される。
図2に示すように、本実施形態の加熱装置10は、輻射熱を放射する複数本(図に示す実施形態では3本)の加熱体(シーズヒータ)20と、該加熱体20と被加熱体であるガラス基材40との間に配置される蓄熱体30と、を備える。なお、図2では、ガラス基材40は、全面が平板なガラスとして示されているが、上述した工程に応じて、すでに屈曲部が形成されているガラス基材40も含まれる。
加熱体20としては、近赤外線ヒータや中赤外線ヒータなどの輻射ヒータが適用でき、好ましくは、加熱効率が高い、短波長赤外線ヒータが好適である。複数の加熱体20は、互いに平行に、水平方向に整列配置されている。
蓄熱体30は、波長0.5〜2.5μm(短波長領域)における熱線を、50%以上、好ましくは70%以上、更に好ましくは80%以上透過可能な素材が用いられる。透過率の上限は、93%以下が好ましい。加熱体20からの近赤外線などを蓄熱体30が適度に吸収し、蓄熱しやすくなり機能できるようになる。
透過率は、例えばISO 9050:2003またはJIS R 3106:1998に記載の計算手法にて算出することができる。
波長0.5〜2.5μmにおける透過率が50%以上と高いことで、加熱体20とガラス基材40との間に蓄熱体30が配置されるにも係わらず、加熱体20からの輻射熱で、直接、ガラス基材40を加熱できる。また、波長0.5〜2.5μmにおける透過率が93%以下と、蓄熱体30が適度な熱線吸収性を有することで、加熱体20からの輻射熱を適度に蓄熱できる。これにより蓄熱体30から再放射される輻射熱および対流加熱とで、ガラス基材40を加熱できる。
また、0〜800℃における蓄熱体30の線膨張係数は、−30〜30(×10−7/℃)、より好ましくは、−3〜3(×10−7/℃)である。線膨張係数が小さいことで、加熱体20の加熱による蓄熱体30自身の熱ひずみによる割れが抑制され、蓄熱体30の耐久性が改善され、加熱装置10自体の耐久性が向上する。特に0〜800℃における蓄熱体30の線膨張係数が−3〜3(×10−7/℃)であると、加熱体20による急加熱、急冷却に対し蓄熱体30が耐久性を有し、成形ガラスの生産効率を向上できる。
線膨張係数は、例えば押し棒式連続測定(ISO 7991:1987)または押し棒式2点温度(JIS R 3102:1995)または干渉計式(JIS R 3251:1995)の手法を用いて測定することができる。
蓄熱体30としては、例えば、ガラス、ガラスセラミック(結晶化ガラス)、石英などが使用でき、このうち、適度な熱線吸収性を有し、且つ線膨張係数が小さい、ガラスセラミックが好ましい。
また、蓄熱体30は、前記透過率と前記線膨張係数とを満たす素材が好ましく、以下のような組成を有するガラスセラミックを好ましく使用できる。
モル%で表示した組成で、SiO2を63〜70%、Al23を18〜25%、Li2Oを3〜5%、MgOを0.2〜1%、ZnOを0〜2%、BaOを0〜3%、TiOを1〜5%、ZrOを1〜3%、Pを0〜2%、NaOを0.1〜1%、KOを0.1〜1%、及びVを1〜2%を含むガラスセラミック。
蓄熱体30の厚さは、1〜10mmが好ましく、3〜6mmがより好ましい。蓄熱体30の厚さが1mm以上であると、機械的強度が得られ撓みが発生しにくくなり、厚さが10mm以下であると、加熱や加熱後の冷却に時間がかからず、作業効率が向上する。
次に、加熱体20、蓄熱体30、及びガラス基材40の位置関係について図2を参照して説明する。なお、ガラス基材40は、加熱体20の長手方向に沿って、矢印A方向から搬送されて加熱されるが、特に制限はない。
図2(a)に示すように、加熱体20の下面と蓄熱体30の上面との距離xは、0〜100mmが好ましく、0〜50mmがより好ましい。また、蓄熱体30の下面とガラス基材40の上面との距離yは、1〜100mmが好ましく、1〜50mmがより好ましい。距離x、yが下限以上であると均一加熱ができ、上限以下であると加熱効率が向上する。
加熱体20の長さaは、100〜5000mmが加熱体20の製作上から好ましく、500〜3000mmがより好ましい。
加熱体20の長手方向における加熱体20の端面と蓄熱体30の端面との距離b1,b2は、−100〜100mmが好ましく、−60〜60mmがより好ましい。なお、加熱体20の長さaが蓄熱体30の長さbより短くなるような場合、距離b1、b2をマイナスとして表現する。また、蓄熱体30を均一に加熱するためには、b1=b2とするのが好ましい。
また、加熱体20の長手方向における加熱体20の端面とガラス基材40の端面との距離c1,c2は、ガラス基材40面内の面内温度分布を均一にするため、0mm以上が好ましい。また、c1=c2とするのが好ましく、更に、b1,b2<c1,c2がより好ましい。
また、図2(b)に示すように、加熱体20の幅方向(ガラス基材40の搬送方向と直交する方向)における蓄熱体30の幅mは、100〜5000mmが好ましく、500〜3000mmがより好ましい。なお、説明の都合上、加熱体20の長手方向とガラス基材40の搬送方向とが平行としているが、これに限らず、直交してもよく、特に制限はない。
加熱体20の幅方向における蓄熱体30の端面とガラス基材40の端面との距離n1,n2は、−300〜300mmが好ましく、−150〜150mmがより好ましい。なお、蓄熱体30の長さmがガラス基材40の長さnより短くなるような場合、距離n1、n2をマイナスとして表現する。また、n1=n2とすれば、ガラス基材40を均一に加熱する上でさらに好ましい。
3本の加熱体20は、蓄熱体30の幅方向中央に対して対称に配置されるのがよい。隣り合う加熱体20同士の間隔をp1、p2とすると、これらは1〜100mmが好ましく、10〜50mmがより好ましい。これにより加熱体20による加熱が均一となり、蓄熱体30、ガラス基材40の均一加熱が良好となる。なお、加熱体20の本数は、説明の都合上、3本としているが、これに限らず、蓄熱体30、ガラス基材40の大きさ、加熱体20の性能に応じて適宜増減できる。
加熱体20の幅方向において、3本の加熱体20のうち両端の加熱体20の中心と、幅方向における蓄熱体30の端面との距離をq1、q2とすると、これらは−100〜100mmが好ましく、−50〜50mmがより好ましい。これにより蓄熱体30の温度均一性を向上でき、蓄熱体30を加熱装置内に固定するための保持部(不図示)などの過度な加熱を抑制できる。
次に、図3を参照して、本実施形態の加熱装置10が、予熱工程(図1参照)に適用される一例について説明する。図3(a)に示すように、1つ前に処理されるガラス基材40への予熱工程が終了した段階では、加熱体20への通電が遮断されており、蓄熱体30は余熱で略400℃となっている。この状態で、図3(b)に示すように、略20℃(常温)のガラス基材40が、アーム41で支持されて加熱体20の下方に挿入されると、ガラス基材40の温度は、蓄熱体30からの輻射熱と対流加熱とにより、200〜300℃に上昇する。
そして、ガラス基材40が200〜300℃程度に加熱された後、図3(c)に示すように、加熱体20への通電を開始すると、ガラス基材40は、蓄熱体30からの輻射熱および対流加熱と、蓄熱体30を透過して直接、ガラス基材40に作用する加熱体20からの輻射熱と、の両者によって、略500℃の予熱温度まで効率よく加熱される。なお、図3(b)に示すように常温のガラス基材40が加熱体20の下方に挿入されたと同時に、加熱体20への通電を開始してよい。
このように、ガラス基材40は、穏やかに段階的に加熱されるので、加熱時の熱ひずみによるガラス基材40の割れが防止できる。また、予熱終了後に加熱体20への通電を遮断すると、蓄熱体30に蓄熱されている熱量は、それほど多くないので、蓄熱体30は、次のガラス基材を予熱するのに好適な温度まで比較的速く冷却し、熱サイクルが短縮されて生産性が向上する。
上述したガラス基材40の加熱は、予熱工程に限定されず、加熱後のガラス基材40の最終温度は異なるものの、軟化工程、成形工程、アニール工程などの各工程に同様に適用できる。例えば、本実施形態の加熱装置10を成形工程に適用した場合、ガラス基材40は、略700〜750℃の軟化点以上の温度(平衡粘性で106.5〜1012.5Pa・s)まで加熱されて成形される。
なお、成形工程で使用される成形法としては、真空成形法や圧空成形法などの差圧成形法、自重成形法、プレス成形法などがあり、成形後のガラス形状に応じて、所望の成形法が選択される。
差圧成形法は、ガラス基材を軟化させた状態で表裏面に差圧を与えて、ガラス基材を変形して金型になじませて、所定の形状に成形する方法である。真空成形法では、成形後の成形ガラスの形状に応じた所定の金型上にガラス基材を設置し、該ガラス基材上にクランプ金型を設置し、ガラス基材の周辺をシールする。その後、金型とガラス基材との空間をポンプで減圧することにより、ガラス基材の表裏面に差圧を与えて成形する。
圧空成形法では、成形ガラスの形状に応じた所定の金型上にガラス基材を設置し、該ガラス基材上にクランプ金型を設置し、ガラス基材の周辺をシールする。その後、ガラス基材の上面に対して圧力を圧縮空気によって付与し、ガラス基材の表裏面に差圧を与えて成形する。なお、真空形成法と圧空成形法は互いに組み合わせて行ってもよい。
自重成形法は、成形ガラスの形状に応じた所定の金型上にガラス基材を設置した後、該ガラス基材を加熱して軟化させて、重力によりガラス基材を曲げて金型になじませて、所定の形状に成形する方法である。
プレス成形法は、成形ガラスの形状に応じた所定の金型(下型、上型)間にガラス基材を設置し、ガラス基材を軟化させた状態で、上下の金型間にプレス荷重を加えて、ガラス基材を曲げて金型になじませて、所定の形状に成形する方法である。
上述の成形法のうち差圧成形法および自重成形法は、成形ガラスを得る方法として特に好ましい。差圧成形法によれば、成形ガラスの第一面及び第二面のうち、第二面は成形金型と接触せずに成形できるため、傷、へこみなどの凹凸状欠点を減らせる。したがって、第二面を、組立体(アセンブリ)の外側の面、すなわち通常の使用状態において使用者が触れる面とすることが、視認性向上の観点から好ましい。
なお、成形ガラスの形状に応じて、上述の成形法のうち2種以上の成形法を併用してもよい。
以上説明したように、本実施形態の成形ガラスの製造方法によれば、加熱体20と、該加熱体20と被加熱体であるガラス基材40との間に配置され、波長0.5〜2.5μmにおける透過率が50%以上である蓄熱体30と、を有する加熱装置10を使用し、加熱体20によってガラス基材40を加熱するので、加熱体20から放射される輻射熱と、蓄熱体30から放射される輻射熱および対流加熱と、によってガラス基材40を加熱することで、ガラス基材40の加熱を均一化して、加熱時のガラス割れを防止できる。また、蓄熱体30を透過する加熱体20からの輻射熱により、効率的にガラス基材を加熱できる。
また、0〜800℃における蓄熱体30の線膨張係数は、−30〜30(×10−7/℃)であるので、加熱体20からの加熱による蓄熱体30自身の割れを防止できる。
また、ガラス基材40を予熱する予熱工程と、ガラス基材40を軟化する軟化工程と、ガラス基材40を成形する成形工程と、成形したガラス基材40を再加熱するアニール工程と、のうち少なくとも1つの工程は、加熱装置10を用いて行われるので、加熱装置10が用いられる工程でのガラス加熱を、ガラス割れを防止して効率的に行える。
また、加熱装置10が用いられる予熱工程において、ガラス基材40は、蓄熱体30が蓄熱した熱によって加熱され、さらに加熱体20によって加熱されるので、加熱時のガラス割れを防止できる。
また、本実施形態の加熱装置10によれば、加熱体20と、該加熱体20と被加熱体であるガラス基材40との間に配置され、波長0.5〜2.5μmにおける透過率が50%以上である蓄熱体30と、を有するので、加熱体20から放射される輻射熱と、蓄熱体30から放射される輻射熱および対流加熱と、によってガラス基材40を加熱することで、ガラス基材40の加熱を均一化して、加熱時のガラス割れを防止できる。また、蓄熱体30を透過する加熱体20からの輻射熱により、効率的にガラス基材を加熱できる。
(変形例)
図4は、変形例の加熱装置10Aの模式図である。変形例の加熱装置10Aは、加熱体20及び蓄熱体30が、ガラス基材40の上面側と下面側の両側に配置されている。なお、加熱体20、蓄熱体30、及びガラス基材40の位置関係については、上記実施形態の加熱装置10と同様である。また、加熱装置の加熱体20又は蓄熱体30は、ガラス基材40の下面側のみに配置されてもよい。
さらに、蓄熱体30は平板状に限らず、少なくとも一部に屈曲部を有していてもよい。屈曲部は、加熱体20の配置やガラス基材40の形状に応じて適宜調整してよい。またこの場合、加熱体20、蓄熱体30、ガラス基材40の位置関係は平坦部、屈曲部で間隔が同じになるように配置するなど適宜調整してよい。
尚、本発明は、前述した実施形態及び変形例に限定されるものではなく、適宜、変形、改良、等が可能である。
ガラス基材40は例えば、一枚の板状ガラスを使用できるが、複数枚の板状ガラスを並べて使用してもよい。この場合、加熱体20の端面とガラス基材40の端面との距離c1、c2などは、複数枚の板状ガラスのうち最も端に配置されたガラスの端面を、ガラス基材40の端面として代用できる。
さらに、ガラス基材40には以下のような工程・処理がされてもよい。
(研削・研磨加工工程)
平板状のガラス基材40や成形したガラス基材40など対象物の少なくとも一方の主面に研削加工や研磨加工を実施してもよい。
(端面加工・孔あけ加工工程)
ガラス基材40の端面は、面取加工などの処理がなされていてもよい。機械的な研削により一般的にR面取、C面取と呼ばれる加工を行うのが好ましいが、エッチングなどで加工を行ってもよく、特に限定されない。また、平板状のガラス基材40を予め端面加工してから成形工程を実施してもよい。
また成形工程前後問わず、ガラス基材40に孔あけ加工を行ってもよい。
(化学強化工程)
ガラス基材40は化学強化により表面に圧縮応力層を形成し、強度及び耐擦傷性が高められる。化学強化は、ガラス転移点以下の温度でイオン交換によりガラス表面のイオン半径が小さなアルカリ金属イオン(典型的には、Naイオン)を、イオン半径のより大きなアルカリ金属イオン(典型的には、Kイオン)に交換することで、ガラス表面に圧縮応力層を形成する処理である。化学強化処理は従来公知の方法によって実施でき、一般的には硝酸カリウム溶融塩にガラスを浸漬する。この浸漬回数は1回以上であり、異なった溶融塩の条件で2回以上実施してよい。この溶融塩に炭酸カリウムを10質量%程度混合して使用してもよい。これによりガラスの表層のクラックなどを除去でき高強度のガラスが得られる。化学強化時に硝酸カリウムに硝酸銀などの銀成分を混合することで、ガラスがイオン交換され銀イオンを表面に有し抗菌性を付与できる。
(表面処理工程)
ガラス基材40において必要に応じて各種表面処理層を形成する工程を実施してもよい。表面処理層としては、防眩処理層、反射防止処理層、防汚処理層などが挙げられ、これらを併用してもよい。ガラス基材40の第1の主面又は第2の主面のいずれの面でもよい。これらは成形工程後に形成されることが好ましいが、防眩処理層は成形工程前でもよい。
[防眩処理層]
防眩処理層とは主に反射光を散乱させ、光源の映り込みによる反射光の眩しさを低減する効果をもたらす層のことである。防眩処理層はガラス基材40の表面を加工して形成してもよく、別途堆積形成してもよい。防眩処理層の形成方法として、例えば、ガラス基材40の少なくとも一部に化学的(例、エッチング)あるいは物理的(例、サンドブラスト)な方法で表面処理を施し、所望の表面粗さの凹凸形状を形成する方法を使用できる。また、形成方法として、ガラス基材40の少なくとも一部に処理液を塗布あるいは噴霧して、板上に凹凸構造を形成してもよい。
さらに熱的な方法によりガラス基材40の少なくとも一部に凹凸構造を形成してもよい。
[反射防止処理層]
反射防止処理層とは反射率低減の効果をもたらし、光の映り込みによる眩しさを低減するほか、表示装置に使用した場合には、表示装置からの光の透過率を向上でき、表示装置の視認性を向上できる層のことである。
反射防止処理層が反射防止膜である場合、ガラス基材40の第1の主面または第2の主面に形成されることが好ましいが制限は無い。反射防止膜の構成としては光の反射を抑制できれば限定されず、例えば、波長550nmでの屈折率が1.9以上の高屈折率層と屈折率が1.6以下の低屈折率層とを積層した構成、もしくは膜マトリックス中に中空粒子や空孔を混在させた波長550nmでの屈折率が1.2〜1.4の層を含む構成とできる。
[防汚処理層]
防汚処理層とは表面への有機物、無機物の付着を抑制する層、または、表面に有機物、無機物が付着した場合においても、ふき取り等のクリーニングにより付着物が容易に除去できる効果をもたらす層のことである。
防汚処理層が防汚膜として形成される場合、ガラス基材40の第1の主面と第2の主面上またはその他表面処理層上に形成されることが好ましい。防汚処理層としては、得られるガラス基材40に防汚性を付与できれば限定されない。中でも含フッ素有機ケイ素化合物を加水分解縮合反応により得られる含フッ素有機ケイ素化合物被膜からなることが好ましい。
本発明の実施例について説明する。本発明は以下の実施例に限定されるものではない。
[成形ガラスの作製工程]
成形ガラスを、被加熱体であるガラス基材の準備(S1)、予熱工程(S2)、軟化工程(S4)、成形工程(S5)、冷却工程(S6)の手順により作製した。
[ガラス基材の準備(S1)]
ガラス基材40には、アルミノシリケートガラス(ドラゴントレイル(登録商標)、旭硝子社製)を用いた。
[加熱装置]
図2に示すような加熱体20と蓄熱体30とを備える加熱装置を使用し、前記ガラス基材40を後述の通り配置し成形ガラスを作製した。なお、ガラス基材40は、所望の成形ガラスが得られるような形状を有する金型上に載置した。
加熱体20としては短波長赤外線ヒータを使用した。
蓄熱体30としては、モル%で表示した組成で、SiO2を65.5%、Al23を22%、Li2Oを4.5%、MgOを0.5%、TiOを2%、ZrOを2.5%、Pを1%、NaOを0.5%、KOを0.3%などを含むガラスセラミックZを使用した。ガラスセラミックZは、波長0.5〜2.5μmにおける透過率が70〜93%であり、0〜800℃における線膨張係数が−3〜−1(×10−7/℃)であった。
ガラス基材40、加熱体20、および蓄熱体30は、図2に示すように配置した。具体的には、加熱体20の長さaは1100mm、蓄熱体30の長さbは1200mm、幅mは900mm、厚さは5mmとした。ガラス基材40の長さcは300mm、幅nは600mm、厚さは1mmとし、加熱体20の長手方向に3枚並べた。また、加熱体20の下面と蓄熱体30の上面との距離xは40mm、蓄熱体30の下面とガラス基材40の上面の距離yは40mmとした。
加熱体20の長手方向における端面と蓄熱体30の端面との距離b1、b2は両者とも−50mm、加熱体20の長手方向における端面とガラス基材40の端面との距離c1、c2は両者とも100mmとした。
幅方向における蓄熱体30の端面とガラス基材40の端面との距離n1、n2は両者とも150mmとした。また、加熱体20は21本使用し、加熱体20同士の間隔p1、p2は両者とも45mm、幅方向における蓄熱体30の端面と加熱体20の両端の加熱体20の中心との距離q1、q2は両者とも0mmとした。
[予熱工程(S2)]
予熱工程では予め蓄熱体30を400℃まで加熱しておき、ガラス基材40を加熱した蓄熱体30の下方に移動したと同時に加熱体20の昇温を開始した。前記ガラス基材40の平衡粘性が1017Pa・s程度になるように約550℃まで加熱した。
[軟化工程(S4)]
軟化工程では平衡粘性が10Pa・s程度になるようにさらに約800℃まで加熱した。
[成形工程(S5)]
前記軟化工程において所望の温度に維持できた後に、自重成形法を使用してガラス基材40を金型に沿わせ、成形を実施し成形ガラスとした。
[冷却工程(S6)]
前記成形工程を終了したのちに、加熱体20の通電を停止し、5分かけて成形装置および成形ガラスを550℃まで短時間で冷却した。
前記成形ガラスの作製工程により、同様の作業を10回実施した。得られた計30枚の成形ガラスの中に、成形ガラスは割れや欠けがなく、高い生産性を確認できた。また、加熱装置自体に、昇温および冷却を繰り返しても不具合はなく、ガラスセラミックZを使用した蓄熱体30が損傷することもなかった。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
10,10A 加熱装置
20 加熱体
30 蓄熱体
40 ガラス基材(ガラス)

Claims (11)

  1. 加熱体と、該加熱体と被加熱体であるガラス基材との間に配置され、波長0.5〜2.5μmにおける透過率が50%以上である蓄熱体と、を有する加熱装置を使用し、
    前記加熱体によって前記ガラス基材を加熱し、成形する、成形ガラスの製造方法。
  2. 前記蓄熱体の波長0.5〜2.5μmにおける透過率が93%以下である請求項1に記載の成形ガラスの製造方法。
  3. 前記蓄熱体の0〜800℃における線膨張係数は、−30〜30(×10−7/℃)である、請求項1又は2に記載の成形ガラスの製造方法。
  4. 前記蓄熱体の厚さが1〜10mmである、請求項1〜3のいずれか1項に記載の成形ガラスの製造方法。
  5. 前記成形ガラスが一部に屈曲部を有する、請求項1〜4のいずれか1項に記載の成形ガラスの製造方法。
  6. 前記成形ガラスは、モル%で表示した組成で、SiO2を50〜80%、Al23を0.1〜25%、Li2O+Na2O+K2Oを3〜30%、MgOを0〜25%、CaOを0〜25%およびZrO2を0〜5%含む、請求項1〜5のいずれか一項に記載の成形ガラスの製造方法。
  7. 前記ガラス基材を予熱する予熱工程と、
    前記ガラス基材を軟化する軟化工程と、
    前記ガラス基材に屈曲部を形成する成形工程と、
    前記成形ガラスをアニールするアニール工程と、の少なくとも1つを備え、
    前記予熱工程、前記軟化工程、前記成形工程、前記アニール工程のうち少なくとも1つの工程は、前記加熱装置を用いて行われる、請求項1〜6のいずれか1項に記載の成形ガラスの製造方法。
  8. 前記加熱装置は、前記予熱工程に用いられ、
    前記予熱工程において、前記ガラス基材は、前記蓄熱体が蓄熱した熱によって加熱された以後、前記加熱体によって加熱される、請求項7に記載の成形ガラスの製造方法。
  9. 加熱体と、該加熱体と被加熱体であるガラス基材との間に配置され、波長0.5〜2.5μmにおける透過率が50%以上である蓄熱体と、を有する、加熱装置。
  10. 前記蓄熱体の0〜800℃における線膨張係数は、−30〜30(×10−7/℃)である、請求項9に記載の加熱装置。
  11. 前記蓄熱体の厚さが1〜10mmである、請求項9または10に記載の加熱装置。
JP2017122035A 2016-06-27 2017-06-22 成形ガラスの製造方法 Active JP6915402B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016126653 2016-06-27
JP2016126653 2016-06-27

Publications (2)

Publication Number Publication Date
JP2018002585A true JP2018002585A (ja) 2018-01-11
JP6915402B2 JP6915402B2 (ja) 2021-08-04

Family

ID=60674972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017122035A Active JP6915402B2 (ja) 2016-06-27 2017-06-22 成形ガラスの製造方法

Country Status (2)

Country Link
US (1) US10336642B2 (ja)
JP (1) JP6915402B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102315418B1 (ko) * 2017-03-10 2021-10-22 삼성디스플레이 주식회사 표시 장치 윈도우 제조 방법 및 표시 장치 윈도우
CN112789253A (zh) * 2018-09-28 2021-05-11 康宁股份有限公司 具有改进的应力分布的基于玻璃的制品

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5479468A (en) 1977-12-08 1979-06-25 Fujitsu Ltd Method of producing ceramic multiicircuit layer board
DE10029522B4 (de) * 2000-06-21 2005-12-01 Schott Ag Vorrichtung zum homogenen Erwärmen von Gläsern und/oder Glaskeramiken, Verfahren und Verwendungen
WO2007058352A1 (ja) * 2005-11-18 2007-05-24 Hoya Corporation 成形品の製造方法、成形型およびその製造方法
US9010153B2 (en) 2008-07-02 2015-04-21 Corning Incorporated Method of making shaped glass articles
JPWO2010150801A1 (ja) 2009-06-26 2012-12-10 Hoya株式会社 成形品の製造方法および製造装置、ならびに眼鏡レンズの製造方法

Also Published As

Publication number Publication date
US20170369354A1 (en) 2017-12-28
JP6915402B2 (ja) 2021-08-04
US10336642B2 (en) 2019-07-02

Similar Documents

Publication Publication Date Title
CN107867792B (zh) 玻璃物品的制造方法和玻璃物品
JP7392233B2 (ja) 屈曲基材
JP2018020958A (ja) 成形型、成形装置、及び屈曲ガラスの製造方法
JP6689327B2 (ja) 超薄板化学強化ガラス物品およびそのようなガラス物品の製造方法
CN206385033U (zh) 层压制品及包含其的交通工具
CN107814478B (zh) 弯曲玻璃物品的制造方法和弯曲玻璃物品
JP5918148B2 (ja) 3次元精密成形用薄リチウムアルミノケイ酸ガラス
US20170121209A1 (en) Shaped glass articles and methods for forming the same
JP6866908B2 (ja) ガラス物品の製造方法
JP6679585B2 (ja) 高められた強度を有する合わせガラス
KR20110043633A (ko) 성형 유리 제품의 제조 방법
WO2011149694A1 (en) Ion-exchanging an ar coated glass and process
JP6977642B2 (ja) ガラス物品
US20100055395A1 (en) Method of Making Shaped Glass Articles
JP6915402B2 (ja) 成形ガラスの製造方法
WO2017082311A1 (ja) 風冷強化用ガラス、および風冷強化ガラス
WO2020262293A1 (ja) 強化ガラス板およびその製造方法
JP6583371B2 (ja) 屈曲ガラス物品の製造方法
JP7196855B2 (ja) 屈曲基材の製造方法及び屈曲基材の成形型
TW202402698A (zh) 具有高熔合流動速率及有利的配對成形溫度的硼鋁矽酸鹽玻璃組成物
JP2014201516A (ja) 化学強化ガラス板及び化学強化ガラス物品
CN113024129A (zh) 玻璃制品、用于制造其的设备和方法及包括其的显示装置
WO2017082312A1 (ja) 風冷強化用ガラス、および風冷強化ガラス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210628

R150 Certificate of patent or registration of utility model

Ref document number: 6915402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150