JP2017536777A - 画像センサユニット及び撮像装置 - Google Patents

画像センサユニット及び撮像装置 Download PDF

Info

Publication number
JP2017536777A
JP2017536777A JP2017529363A JP2017529363A JP2017536777A JP 2017536777 A JP2017536777 A JP 2017536777A JP 2017529363 A JP2017529363 A JP 2017529363A JP 2017529363 A JP2017529363 A JP 2017529363A JP 2017536777 A JP2017536777 A JP 2017536777A
Authority
JP
Japan
Prior art keywords
sensor
pixels
regions
sensor regions
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017529363A
Other languages
English (en)
Other versions
JP6701194B2 (ja
JP2017536777A5 (ja
Inventor
セイフイ,モジデ
サバテル,ネウス
ドラジツク,バルテル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson Licensing SAS
Original Assignee
Thomson Licensing SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Licensing SAS filed Critical Thomson Licensing SAS
Publication of JP2017536777A publication Critical patent/JP2017536777A/ja
Publication of JP2017536777A5 publication Critical patent/JP2017536777A5/ja
Application granted granted Critical
Publication of JP6701194B2 publication Critical patent/JP6701194B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/581Control of the dynamic range involving two or more exposures acquired simultaneously
    • H04N25/585Control of the dynamic range involving two or more exposures acquired simultaneously with pixels having different sensitivities within the sensor, e.g. fast or slow pixels or pixels having different sizes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/741Circuitry for compensating brightness variation in the scene by increasing the dynamic range of the image compared to the dynamic range of the electronic image sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

画像センサユニット(3)が、マイクロレンズ・アレイ(31)とセンサ(32)とを有している。センサは、マトリクス配列に配置された種々の感度を有する画素(322)をそれぞれ含む複数のセンサ領域(323)を含んでいる。複数のセンサ領域(323)の対応する位置に在る画素(322)は、同一の感度を有している。マイクロレンズ・アレイ(31)のマイクロレンズ(311)の各々は、センサ(32)の複数のセンサ領域(323)のうちの対応する1つに光を導くように配置されている。複数のセンサ領域(323)の各々のセンサ領域のマトリクス配列の第1の行又は列における画素(322c1)は第1の光感度を有しており、複数のセンサ領域(323)の各々のセンサ領域のマトリクス配列の第2の行又は列における画素(322c2、322c3)は、第1の光感度とは異なる第2の光感度を有しており、第1及び第2の光感度は、複数のセンサ領域(323)の各々のセンサ領域のマトリクス配列の第1及び第2の行又は列以外のマトリクス配列の行又は列における画素(322)の光感度とは異なる。【選択図】 図5

Description

本開示は、概して、画像センサユニット及びこのような画像センサユニットを含む撮像装置に関する。
プレノプティック・カメラ(plenoptic camera)は、メイン・レンズとセンサとの間にマイクロレンズ・アレイを配置することによって、センサを横切る各々の光束に沿って伝わる光の量を測定可能である。ライト・フィールド(light field)を後処理して、種々の視点からのシーンの画像を再構成できる。その結果、ユーザは、画像の焦点を変更できる。従来型のカメラと比べても、プレノプティック・カメラは、後処理によって種々の視点からのシーンの画像の再構成を実現するための付加的な光学的情報成分を得ることができる。
HDR(ハイ・ダイナミック・レンジ:High Dynamic Range)イメージングにおける課題は、ダイナミック・レンジの拡張を可能にするために、異なる露光でシーンの少なくとも2つの画像を捕捉することであろう。従って、従来型のカメラでは、動的なシーン(即ち、ビデオ)を満足な即ち十分に高度なダイナミック・レンジで処理することはできない。
他方、プレノプティック・イメージングは、同時にシーンの数枚の画像を捕捉する効率的な方法を初めて世に送り出し、静的な(即ち、スチルの)シーン又は動的なシーンの複数枚の画像を捕捉するツールを提供している。
プレノプティック・カメラによって捕捉されたシーンの画像は、ビューのデマルチプレクス、即ち、2次元(即ち、2D)の生画像(raw image)から4次元(即ち、4D)のライト・フィールド画像(light-field image)へのデータ変換を経る必要がある。このデマルチプレクス処理は、いわゆる「ビュー」、即ち、「視点画像(viewpoint image)」を作成するために、ある入射角で光線を捕捉する全ての画素が同一画像に格納されるように2Dの生画像の画素を再編成する。各々の視点画像は、異なる光線角度のもとでのシーンの投影である。1組の視点画像は、中央の視点画像がメイン・レンズのアパチャの中央部分を通過する光線を捕捉する画素を格納しているブロック・マトリクスを作ることができる。光線の角度情報は、マイクロレンズ画像(即ち、マイクロレンズの下でセンサ上に形成される画像)内での、中央の視点(マイクロレンズ画像の中心)に対応する画素に対する相対的な画素位置によって与えられる。
ブロック・マトリクスは、シーン内のオブジェクトの深度情報を推定するのに使用できる。深度情報が判ると、ある特定の画像処理方法によって、あらゆる視点画像上であらゆるオブジェクトを同時に操作できる。HDRイメージングは、そのような画像処理方法の一例である。シーンの深度マップが判ると、種々のマルチフレームHDRイメージング方法において、種々の光線角度からのシーンの種々の露光を用いて、捕捉された画像のダイナミック・レンジを拡張できる。
例えば、カラーCMOSで1.3メガピクセル(1280×1080)のハイ・ダイナミック・レンジ(HDR)のハイ・デフィニション・イメージ・センサである「OV10640」(http://www.ovt.com/products/sensor.php?id=151)は、一部の画素が低い感度応答を有するスプリット・ピクセル技術(split-pixel technology)を提案している。しかしながら、この提案されたスプリット・ピクセル技術は、結果として、カメラの達成可能な空間分解能が減少する。更に、隣接する画素が、種々の空間位置をサンプリングすることによって、HDRイメージング方法によって行われる後処理の精度を低減してしまう。
他方、トードール・ゲオルギエフ(Todor Georgiev)氏らの「Rich Image Capture with Plenoptic Cameras」ICCP2010では、プレノプティック・タイプ2を用いるHDRイメージングについての2つの方式が提案されている。第1の方式では、シーンの種々の露光を捕捉するためにマイクロレンズのアパチャ・サイズを変え、第2の方式では、マイクロレンズに放射される光の量を変えるためにメイン・レンズをフィルタ処理する。しかしながら、これらの提案された第1及び第2の方式によれば、各々のデマルチプレクス処理済みビューには、種々の露光で得られた画素が含まれており、固有の感度の画素は含まれていない。第2の方式は、トードール・ゲオルギエフ氏らの報告によれば、結果の品質の点で第1の方式よりも劣っている。更に、第1の方式によれば、ダイナミック・レンジの拡張は、アパチャ・サイズについての下限によって制限されてしまうことになり、これは、マイクロレンズのアパチャが小さいことにより、回折ボケ(diffraction blur)が生じるためである。
従って、空間分解能を下げずに、ワン・ショットでシーンの種々の露光を同時に捕捉することは、従来の方法では困難である。更に詳しくは、シーンの高い露光の捕捉と低い露光の捕捉とを同時に可能にすることは、従来の方法では困難である。
本開示の一態様によれば、画像センサユニットは、2次元のアレイ状に配置された複数のマイクロレンズを含むマイクロレンズ・アレイと、2次元のアレイ状に配置された複数の画素を含み、かつ、マイクロレンズ・アレイを通して光を受けるように構成されたセンサとを有し、センサは、2次元のアレイ状に配置された複数のセンサ領域であって、それぞれのセンサ領域がマトリクス配列に配置された異なる感度を有する画素を含んでいる複数のセンサ領域を含んでおり、複数のセンサ領域の対応する位置に在る画素は同一の感度を有しており、マイクロレンズ・アレイのマイクロレンズの各々は、センサの複数のセンサ領域のうちの対応する1つに光を導くように配置されており、複数のセンサ領域の各々のセンサ領域のマトリクス配列の第1の行又は列における画素は第1の光感度を有しており、複数のセンサ領域の各々のセンサ領域のマトリクス配列の第2の行又は列における画素は、第1の光感度とは異なる第2の光感度を有しており、第1及び第2の光感度は、複数のセンサ領域の各々のセンサ領域のマトリクス配列の第1及び第2の行又は列以外のマトリクス配列の行又は列における画素の光感度とは異なる。
本開示の別の態様によれば、撮像装置は、少なくともレンズを含む光学系と、上述の画像センサユニットとを有し、画像センサユニットのマイクロレンズ・アレイが、光学系を介して光を受けるように構成されている。
本開示の目的と利点は、特許請求の範囲の請求項に記載された構成要素と組み合わせとによって達成され実現されるであろう。
前述の概括的な説明および後述の詳しい説明は、例示的で解説的なものであり、特許請求の範囲の請求項に記載された本発明を限定するものではないことを理解されたい。
本開示の一実施形態における撮像装置の一例を例示する図である。 センサの感知表面上に配置されたセンシング領域の一例を概略的に例示する平面図である。 センサの感知表面上に配置されたセンシング領域の別の一例を概略的に例示する平面図である。 センサの一部の感知表面上に配置されたセンシング領域の第1の例示的な実施形態を概略的に例示する平面図である。 センサの一部の感知表面上に配置されたセンシング領域の第2の例示的な実施形態を概略的に例示する平面図である。
添付図面を参照して本開示の実施形態を説明する。
以下、画像センサユニット及び撮像装置を、本開示による各々の実施形態において説明する。
図1は、本開示の一実施形態における撮像装置の一例を例示する図である。この実施形態における撮像装置1は、例えば、プレノプティック・カメラを形成している。図1に例示された撮像装置1は、光学系2、画像センサユニット3及びプロセッサ4を含んでいてもよい。
光学系には、ディフューザ(散光器)21、メイン・レンズ22及びフィールド・レンズ23が含まれている。ディフューザ21は、オブジェクト100からの光をマイクロレンズ・アレイ31に到達する前に拡散する。このディフューザ21は、望ましい場合、省いてもよい。メイン・レンズ22は、オブジェクト(対象物体)100からの光をメイン・レンズ22のオブジェクト・フィールドにおいて受け入れ、この光をメイン・レンズ22のイメージ・フィールドを通して通過させる。フィールド・レンズ23は、メイン・レンズ22とマイクロレンズ・アレイ31との間に配置されており、メイン・レンズ22からの焦合された光を、無限遠から焦合されているように見えるように整える。
画像センサユニット3には、マイクロレンズ・アレイ31とセンサ32が含まれている。マイクロレンズ・アレイ31には、2次元のアレイに配置された複数のマイクロレンズ311が含まれている。センサ32には、その感知表面上に設けられたカラー・フィルタ321が含まれていてもよい。カラー・フィルタ321には、例えばベイヤー配列(Bayer arrangement)のような望ましい配列の赤色、緑色及び青色のそれぞれのフィルタが含まれ得る。このカラー・フィルタ321は、望ましい場合、省いてもよい。
図2は、センサの感知表面上に配置されたセンサ領域の一例を概略的に例示する平面図である。センサ32は、図2に例示されているように、2次元のアレイに配置された複数の画素322を含んでおり、オブジェクト100からの光をマイクロレンズ・アレイ31を介して受け取る。センサ32は複数のセンサ領域323を形成しており、これらの複数のセンサ領域323は、2次元のアレイに配置されており、それぞれ、M行×N列(ここで、MとNは2より大きい自然数)を含むマトリクス配列に配置されて互いに異なる感度を有する画素322を含んでいる。センサ領域323は、「マイクロレンズ画像」又は「ブロック」と呼ばれることもある。フィールド・レンズ23が存在する場合、各々のセンサ領域323の形状とサイズは同じであり、各々のセンサ領域323内の画素322の数と配置は同じである。この例において、複数のセンサ領域323は、行と列が伸延する方向において直線的に整列する矩形マトリクス配列に配置されている。複数のセンサ領域323の対応する位置における画素322は、現在利用可能なプレノプティック・カメラにおいては、同一の感度を有する。
複数のセンサ領域323のうちの各々のセンサ領域の少なくとも1つの行又は列内に在り、且つ、複数のセンサ領域323の対応する位置に配置され、且つ、複数のセンサ領域323のうちの各々のセンサ領域の中心付近に配置された画素322は、例示的な実施形態に関連して後述するように、同一感度を有し得る。ここで、画素の感度は、一般的に、「画素に到達するフォトン(光子)の数と出力信号との間の変換比率」と解釈できる。画素のフィル・ファクタ(fill factor)が考慮される場合、それは、「画素の感光部分に到達するフォトンの数と出力信号との間の変換比率」と定義される。画素のフィル・ファクタは、「画素の全体に対する感光部分の割合」と定義されてもよい。この定義は、画素の一部分が概ね画像センサの回路要素に割り当てられ、従って、画素の全体が光の検出に使用されるわけではなく、画素の感光部分のみが光の検出に寄与することに依拠している。
画素322の種々の感度は、種々の感度を有するように製造された画素322を用いて実現してもよい。種々の感度を有するように製造される画素は、例えば「http://image-sensors-world.blogspot.fr/2014/11/on-semi-presents-emccd-with-per-pixel.html」において説明されているように周知であり、そのような画素を、上述の種々の感度を有する画素322として使用することが可能である。
あるいは、その代わりに、図1に例示された、マイクロレンズ・アレイ31とセンサ32との間に配置されており、画素322の単一の感度を種々の感度に変えるフィルタ321A等を用いることによって、画素322に種々の感度を与えてもよい。フィルタ321Aは、実現されるべき画素322の種々の感度のパターンに応じたパターンを有するように製造してもよい。フィルタ321Aは、例えば、カラー・フィルタ321上に、或いは、センサ32の感知表面上に設けてもよい。更に、フィルタ321Aは、カラー・フィルタ321によって形成してもよく、即ち、カラー・フィルタ321の機能とフィルタ321Aの機能とを単一のフィルタ内で統合してもよい。
図3は、センサの感知表面上に配置されたセンサ領域の別の一例を概略的に例示する平面図である。図3において、図2における対応する部分と同じである部分は同じ参照番号で示されており、それらの説明は省略する。この例において、複数のセンサ領域323は、行と列が伸延する方向において千鳥配列に直線的に配置されている。
マイクロレンズ・アレイ31のマイクロレンズ311の各々は、センサ32の複数のセンサ領域323のうちの対応する1つのセンサ領域に光を導くように配置されている。更に、マイクロレンズ311のレンズ特性により、マイクロレンズ・アレイ31のマイクロレンズ311の各々は、センサ32の複数のセンサ領域323のうちの対応する1つのセンサ領域内の、図2と図3内において一点鎖線で示された円形部分(即ち、マイクロレンズ画像)324に光を導く。
この例において、センサ領域323は正方形の形状を有しており、円形部分324は、各々の対応する正方形のセンサ領域323内にぴったりと収まっている。望ましくは、円形部分324の外側輪郭線は、対応する正方形のセンサ領域323に対する内接円を形成している。従って、各々のセンシング領域323内の画素322の全てのうち、実質的に円形部分324内に位置する画素322のみが撮像に寄与する。換言すれば、各々の画素322の、撮像に寄与する画素部分(即ち、感知部分)は、実質的に円形部分324内に位置している。
複数のセンサ領域323の各々のセンサ領域の中心は、対応する円形部分324の中心、即ち、対応するマイクロレンズ311の画像の中心と一致する。
プロセッサ4は、任意の周知の適切なハードウェア、或いは、ソフトウェア、或いは、ハードウェアとソフトウェアの組み合わせによって形成してもよい。例えば、プロセッサ4は、処理回路のような専用ハードウェアによって形成してもよく、或いは、自己のメモリに格納されたプログラムを実行するCPU(Central Processing Unit:中央処理装置)のようなプログラム可能な処理装置によって形成してもよい。
プロセッサ4は、センサ32の複数のセンサ領域323の各々から出力され、種々の感度を有する画素322の信号を含む信号についての処理を行い得る。プロセッサ4の処理には、これらの信号をデジタル信号にデジタル化することと、これらのデジタル信号から、複数のセンサ領域323によって感知され、種々の視点に対応する複数の視点画像を抽出することと、が含まれ得る。プロセッサ4の処理には、更に、例えば複数の視点画像のうちの少なくとも2つを合成することが含まれ得る。プロセッサ4の処理は、例えば、センサ32から出力された信号からの深度情報の抽出を可能にして、その深度情報に基づいて3次元表示を可能にし得る。
センサ32における画素322の種々の感度の数Sは、公式S=m−(L1×L2)+L1によって表してもよく、ここで、mは、円形部分324において撮像に寄与する画素322の数を表し、L1は、それぞれ、同一感度を有する画素322によって形成される、複数のセンサ領域323のうちの各々のセンサ領域の行又は列の数を表し、L2は、同一感度を有する画素322によって形成される、複数のセンサ領域323のうちの各々のセンサ領域のL1個の行又は列の各々において撮像に寄与する画素322の数を表す。その結果、この実施形態は、プレノプティック・データの空間分解能を下げずにワン・ショットでシーンの異なる露光を同時に捕捉できる。更に詳しくは、この実施形態は、シーンの高露光捕捉と低露光捕捉とを同時に可能にすることができる。
シーンの異なる露光を同時に捕捉することによって、静的なシーン及び動的なシーンについてのHDR(ハイ・ダイナミック・レンジ:High Dynamic Range)の撮像が容易になる。この場合、ユーザは、例えば、低い光の露光と、手作業による露光モードの変更を考慮する必要がない。高露光捕捉と低露光捕捉は、全て、例えば1つの固定モードで行うことができ、プレノプティック・カメラは、広範囲な照度条件で機能できる。更に、例えば4色型色覚を持つ人たち(tetrachromatic people)用の画像捕捉は、プレノプティック・カメラにおいて容易に実施できる。
トードール・ゲオルギエフ(Todor Georgiev)氏らの「Rich Image Capture with Plenoptic Cameras」ICCP2010において提案されたようにマイクロレンズのアパチャを変える代わりに、本実施形態においては、センサ画素の配置を、画素の感度がセンサ上で多様となるように設計する。更に、カラーCMOSで1.3メガピクセル(1280×1080)のハイ・ダイナミック・レンジ(HDR)のハイ・デフィニション・イメージ・センサである「OV10640」(http://www.ovt.com/products/sensor.php?id=151)において提案されたスプリット・ピクセル技術(split-pixel technology)の低空間分解能とは異なり、本実施形態におけるようにプレノプティック・カメラ(即ち、ライト・フィールド・カメラ)の画素感度を変えることは、捕捉されたライト・フィールドの空間分解能及び/又は角度分解能に影響を及ぼさない。
従って、本実施形態において、センサには、光に対して幾つかの種々の感度を有する画素が含まれている。画素配置の設計についての制約条件を次の(i)〜(v)のようにしてもよい。代表的な実施形態では、各々のマイクロレンズの下で、即ち、各々のセンシング領域324において10×10=100個の画素を有する代表的なタイプ1のプレノプティック・カメラを検討する。その他の例によれば、各々のセンシング領域は、20×20、50×50、あるいは、100×100個の画素を備えていてもよい。
制約条件(i): 各々の視点画像を同一の感度を有する画素のみによって捕捉するために、センシング領域324の各々において、同一の相対的位置(即ち、マイクロレンズの中心に対しての同一の座標)に位置付けられており、従って、同一の視点画像に属している全ての画素は、同一の感度を有する。
制約条件(ii): 深度マップの計算を可能にするために、同一の露光についての少なくとも2つのビューが必要とされる。視差推定の精度を増すために、センシング領域の各々における少なくとも1つの完全な行又は列が、同一感度を有する画素によって形成されることが望ましい。この画素の感度パターンは、画素の正確な位置決めを可能にする。
図4は、センサの一部の感知表面上に配置されたセンシング領域の第1の例示的な実施形態を概略的に例示する平面図である。図4において、図3における対応する部分と同じである部分は同じ参照番号で示されており、それらの説明は省略する。センサ32の部分的な図における円形部分324は、マイクロレンズ画像に対応している。各々のセンシング領域323の、中心329の付近に在る中央の行は、同一感度を有し、図4内でハッチング(線影)によって示された1つのタイプの画素322c1のみによって形成されている。ここで、中央の行が中心329の付近に在るとは、その行の少なくとも1つの画素が中心329に接触している場合、或いは、その行の、中心329に最も近い画素が中心329の近傍に、例えば、中心329から、画素数の程度にも依存するが、数個の画素のうちの僅かな画素分だけ離れて位置している場合、であるとする。中央の行以外の行における画素322は、互に異なる感度を有している。更に、例えば、図4で「×」のマークで示されているような、各々のセンシング領域323(或いは、円形部分324)内で同じ相対的位置に位置付けられており、従って同一の視点画像に属する画素322は、同一感度を有している。従って、図4において太い実線で囲まれており、各々のマイクロレンズ311のもとの円形部分324内でのイメージングに寄付する64個の画素(322と322c1)のうち、8個の画素322c1のみが同一の感度を有しており、前述の公式から計算すれば、各々の円形部分324内での撮像に寄与する画素(322と322c1)は、64−(1×8)+1=57個の異なる感度を有し得る。
図4及び後述の図5において、太い線で囲まれた正方形領域のコーナーにおける画素は、これらの図では、円形部分324の内側に実質的に位置していないように見え得るが、説明の便宜上、この正方形領域内の64(=8×8)個の画素が撮像に寄与すると仮定する。
制約条件(iii): 種々の照度レベルで連続した画像捕捉を可能にするために、より多くの制約条件を画素配置設計に適用し得る。例えば、各々のセンシング領域内の複数の中央の行又は列の各々は、同一の感度を有する画素によって形成されることが望ましい。この画素の感度パターンも画素の正確な位置決めを必要とする。深度マップの推定は、照度レベルに関してシーンを最も良く捕捉する、中央の行又は列のうちの1つについて行われてもよい。
図5は、センサの一部の感知表面上に配置されたセンシング領域の第2の例示的な実施形態を概略的に例示する平面図である。図5において、図3における対応する部分と同じである部分は同じ参照番号で示されており、それらの説明は省略する。センサ32の部分的な図における円形部分324は、マイクロレンズ画像に対応している。各々のセンシング領域323の、中心329の付近に在る第1、第2及び第3の中央の行は、それぞれ、同一感度を有し、図5内でハッチング(線影)によって示された対応するタイプの画素322c1、322c2及び322c3のみによって形成されている。第1、第2及び第3の中央の行以外の行における画素322は、互に異なる感度を有している。画素322c1、322c2及び322c3の感度は、2つの極端な照明条件、即ち、それぞれ、高感度及び低感度に対応する非常に低い照度及び非常に高い照度と、これらの高感度と低感度との間の中間的な感度に対応する1つの中程度の照明条件と、を考慮することによって、決定してもよい。
従って、図5において太い実線で囲まれており、各々のマイクロレンズ311の下の円形部分324内での撮像に寄付する64個の画素(322、322c1、322c2及び322c3)のうち、8個の画素322c1が同一の感度を有し、8個の画素322c2が同一の感度を有し、8個の画素322c3が同一の感度を有しているが、画素322c1、322c2及び322c3の感度は互いに異なる。従って、前述の公式から計算すれば、各々の円形部分324内での撮像に寄与する画素(322、322c1、322c2及び322c3)は、64−(3×8)+3=43個の異なる感度を有し得る。
制約条件(iv): シーンの色コンテンツをサンプリングするために、カラー・フィルタ321をセンサ32上に設けてもよい。マイクロレンズの中心が判れば、例えば、各々のビューについて通常のベイヤー配列(即ち、パターン)が得られるようにカラー・フィルタ321を設計できる。このカラー・フィルタの設計は、各々のマイクロレンズ311の直径が正確な奇数の画素322に対応する場合に、実現し得る。マイクロレンズ311の直径が正確な偶数の画素322に対応する場合、1画素分の物理的なスペースがマイクロレンズ・グリッド上のマイクロレンズ311の相互間に形成され得る。推定された視差を用いたビューの色コンテンツの正確な復元のためには、例えば、Mozhdeh Seifi氏らの「Disparity-Guided Demosaicking of Light-Field Images」ICIP2014において提案された方法を実施してもよく、それにより、露光毎に複数のビューを得るために、感度数(即ち、感度レベル数)を更に低減できる。感度レベル数が例えば2で割られた場合でも、シーンの約20の異なる露光を捕捉でき、これは従来型カメラの能力の及ぶ範囲を遥かに越えている。
制約条件(v):4色型色覚を持つ人たち用のシーン捕捉を考慮に入れてもよい。4色型色覚を持つ人たちは、その数は非常に少ないが、4つの原色応答を持っている。従って、3つの色チャンネルのみの使用は、これらの人たちの要求を満たさないかもしれない。この場合にHDRプレノプティック・カメラを適応させるために、1つのビュー(或いは、もしかするとビューの1つの行又は列)を追加の色チャンネルにおける情報に含めてもよい。唯一の修正は、各々のマイクロレンズに対応する画素の前に適切なカラー・フィルタを用いることであり、依然として、シーンの約20の異なる露光を捕捉することが可能である。
上述のように、複数のセンサ領域323のうちの各々のセンサ領域の少なくとも1つの行又は列内に在り、且つ、複数のセンサ領域323の対応する位置に配置され、且つ、複数のセンサ領域323のうちの各々のセンサ領域の中心付近に配置された画素322は、同一の感度を有し得る。従って、各々のセンサ領域323において、画素322が同一の感度を有する隣接した行又は列の数は、図4に例示されているように1か、或いは、図5に例示されているように3か、或いは、2又は4以上であってもよく、画素322の感度は、そのような隣接した行又は列の相互間で異なる。
注目すべき点として、プレノプティック・カメラは、ワン・ショットでシーンの複数の露光を取得して、例えばビデオ・モードで容易に機能することができる。本実施形態では、プレノプティック・タイプ1の例を挙げて説明したが、例えばプレノプティック・タイプ2のカメラについても全く同じ手法を用いることができる。例えば、Raytrix GmbHによって製造されるR―Series 3Dカメラ(即ち、ライト・フィールド・カメラ)の場合では、プレノプティック関数が通常のグリッド上でサンプリングされないので、ビューのマトリクス配列を得るためにはデータの再グリッディング(re-gridding)が必要である。それにもかかわらず、センサをそれなりに設計することによって、種々のビューについてのシーンの種々の露光を得ることができる。
例示的な実施形態に、例えば「第1」又は「第2」を用いて番号付けしているが、これらの順序番号は、例示的な実施形態の優先順位を意味しているわけではない。その他の多くの変形形態及び修正形態は当業者に明らかであろう。
ここに挙げた全ての例と条件的な文言は、技術の促進のために本発明者によって提供された本発明と本発想とを理解することにおいて読者を手助けする教授目的のためのものであり、従って、本発明と本発想は、このような具体的に挙げた例及び条件に限定されないと解釈すべきであり、また、本明細書におけるこのような例の編成は、本原理の優劣の説明に関するものではない。以上、本開示の実施形態を詳細に説明したが、本発明の有効範囲から逸脱することなく種々の変更、置き換え、及び、修正を行い得ることを理解されたい。

Claims (9)

  1. 2次元のアレイ状に配置された複数のマイクロレンズ(311)を含むマイクロレンズ・アレイ(31)と、
    2次元のアレイ状に配置された複数の画素(322)を含み、かつ、前記マイクロレンズ・アレイを通して光を受けるように構成されたセンサ(32)と、
    を有する画像センサユニット(3)であって、
    前記センサは、2次元のアレイ状に配置された複数のセンサ領域(323)であって、それぞれのセンサ領域(323)がマトリクス配列に配置された異なる光感度を有する画素(322)を含んでいる、前記複数のセンサ領域(323)を含んでおり、
    前記複数のセンサ領域(323)の対応する位置に在る画素(322)は同一の光感度を有しており、
    前記マイクロレンズ・アレイ(31)のマイクロレンズ(311)の各々は、前記センサ(32)の前記複数のセンサ領域(323)のうちの対応する1つに光を導くように配置されており、
    前記複数のセンサ領域(323)の各々のセンサ領域の前記マトリクス配列の第1の行又は列における画素(322c1)が第1の光感度を有しており、
    前記複数のセンサ領域(323)の各々のセンサ領域の前記マトリクス配列の第2の行又は列における画素(322c2、322c3)が、前記第1の光感度とは異なる第2の光感度を有しており、
    前記第1及び第2の光感度は、前記複数のセンサ領域(323)の各々のセンサ領域の前記マトリクス配列の前記第1及び第2の行又は列以外の前記マトリクス配列の行又は列における画素(322)の光感度とは異なる、前記画像センサユニット。
  2. 前記複数のセンサ領域(323)の各々のセンサ領域の前記マトリクス配列の第3の行又は列における画素(322c3)が、前記第1及び第2の光感度とは異なる第3の光感度を有しており、
    前記第1、第2及び第3の光感度は、前記複数のセンサ領域(323)の各々のセンサ領域の前記第1、第2及び第3の行又は列以外の前記マトリクス配列の行又は列における画素(322)の光感度とは異なり、
    前記第1、第2及び第3の行又は列は、互いに隣接しており、かつ、前記複数のセンサ領域(323)の各々のセンサ領域の中央領域を貫いて伸延するように配置されている、請求項1に記載の画像センサユニット。
  3. 前記複数のセンサ領域(323)が、前記行と前記列の伸延する方向において直線的に整列するマトリクス配列に配置されている、請求項1又は2に記載の画像センサユニット。
  4. 前記複数のセンサ領域(323)が、前記行と前記列の伸延する方向において千鳥配列に直線的に配置されている、請求項1から3のいずれか1項に記載の画像センサユニット。
  5. 少なくともレンズ(22)を含む光学系(2)と、
    請求項1から4のいずれか1項に記載の画像センサユニット(3)と、
    を有する撮像装置(1)であって、
    前記画像センサユニット(3)の前記マイクロレンズ・アレイ(31)が、前記光学系(2)を通して光を受けるように構成されている、前記撮像装置。
  6. 前記光学系(2)はメイン・レンズ(22)を含んでおり、該メイン・レンズは、該メイン・レンズのオブジェクト・フィールドにおけるオブジェクト(100)からの光を受け入れ、かつ、この光を該メイン・レンズのイメージ・フィールドを通して通過させるように構成されている、請求項5に記載の撮像装置(1)。
  7. 前記センサ(32)の前記複数のセンサ領域(323)の各々から出力された信号であって、種々の感度を有する画素(322)の信号を含む前記信号についての処理を行うように構成されたプロセッサ(4)を更に有する、請求項5又は6に記載の撮像装置(1)。
  8. 前記プロセッサ(4)の前記処理は、
    前記信号をデジタル信号にデジタル化することと、
    前記複数のセンサ領域(323)によって感知された、種々の視点に対応している複数の視点画像を前記デジタル信号から抽出することと、
    を含む、請求項7に記載の撮像装置(1)。
  9. 前記プロセッサ(4)の前記処理は、
    前記複数の視点画像のうちの少なくとも2つを合成することを更に含む、請求項8に記載の撮像装置(1)。
JP2017529363A 2014-12-04 2015-12-01 画像センサユニット及び撮像装置 Active JP6701194B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14306949.0A EP3029931A1 (en) 2014-12-04 2014-12-04 Image sensor unit and imaging apparatus
EP14306949.0 2014-12-04
PCT/EP2015/078154 WO2016087415A1 (en) 2014-12-04 2015-12-01 Image sensor unit and imaging apparatus

Publications (3)

Publication Number Publication Date
JP2017536777A true JP2017536777A (ja) 2017-12-07
JP2017536777A5 JP2017536777A5 (ja) 2019-01-17
JP6701194B2 JP6701194B2 (ja) 2020-05-27

Family

ID=52302088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017529363A Active JP6701194B2 (ja) 2014-12-04 2015-12-01 画像センサユニット及び撮像装置

Country Status (6)

Country Link
US (1) US10027908B2 (ja)
EP (2) EP3029931A1 (ja)
JP (1) JP6701194B2 (ja)
KR (1) KR20170089876A (ja)
CN (1) CN107005640B (ja)
WO (1) WO2016087415A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106204654A (zh) * 2016-07-16 2016-12-07 谭琛 三维立体智能视觉系统
CN106488148B (zh) * 2016-11-01 2019-09-17 首都师范大学 一种超分辨率图像传感器及其构造方法
US10838250B2 (en) * 2018-02-07 2020-11-17 Lockheed Martin Corporation Display assemblies with electronically emulated transparency
US10129984B1 (en) * 2018-02-07 2018-11-13 Lockheed Martin Corporation Three-dimensional electronics distribution by geodesic faceting
CN110557552A (zh) * 2018-05-31 2019-12-10 联想企业解决方案(新加坡)有限公司 便携式图像采集设备
CN108924434B (zh) * 2018-06-29 2020-08-18 宁波大学 一种基于曝光变换的立体高动态范围图像合成方法
CN110891131A (zh) 2018-09-10 2020-03-17 北京小米移动软件有限公司 摄像头模组、处理方法及装置、电子设备、存储介质
CN109348114A (zh) * 2018-11-26 2019-02-15 Oppo广东移动通信有限公司 成像装置和电子设备
KR20200072136A (ko) 2018-12-12 2020-06-22 삼성전자주식회사 렌즈 어레이 카메라 및 렌즈 어레이 카메라의 구동 방법
US11490027B2 (en) * 2020-10-23 2022-11-01 Black Sesame Technologies Inc. Extended dynamic range image capture device based on a coded spatial light transmittance modulator
CN112600994B (zh) * 2020-12-02 2023-04-07 达闼机器人股份有限公司 物体探测装置、方法、存储介质和电子设备
CN113225485B (zh) * 2021-03-19 2023-02-28 浙江大华技术股份有限公司 图像采集组件、融合方法、电子设备及存储介质
KR20220156242A (ko) * 2021-05-18 2022-11-25 에스케이하이닉스 주식회사 이미지 처리 장치

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7084905B1 (en) 2000-02-23 2006-08-01 The Trustees Of Columbia University In The City Of New York Method and apparatus for obtaining high dynamic range images
DE10064184C1 (de) 2000-12-22 2002-04-04 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur Bilderzeugung unter Verwendung mehrerer Belichtungszeiten
CN100515040C (zh) * 2003-10-22 2009-07-15 松下电器产业株式会社 成像装置
US7193289B2 (en) * 2004-11-30 2007-03-20 International Business Machines Corporation Damascene copper wiring image sensor
US7911518B2 (en) 2005-02-01 2011-03-22 Samsung Electronics Co., Ltd. Variable exposure for color image sensor
US20060169870A1 (en) * 2005-02-01 2006-08-03 Silsby Christopher D Image sensor with embedded optical element
US20070018073A1 (en) * 2005-07-22 2007-01-25 Taiwan Semiconductor Manufacturing Co., Ltd. CMOS image sensor device with beehive pattern color sensor cell array
CN101127323B (zh) * 2006-08-15 2011-06-22 联华电子股份有限公司 图像感测元件及其制法
US7940311B2 (en) 2007-10-03 2011-05-10 Nokia Corporation Multi-exposure pattern for enhancing dynamic range of images
US8339475B2 (en) 2008-12-19 2012-12-25 Qualcomm Incorporated High dynamic range image combining
US8228417B1 (en) * 2009-07-15 2012-07-24 Adobe Systems Incorporated Focused plenoptic camera employing different apertures or filtering at different microlenses
US20130147979A1 (en) 2010-05-12 2013-06-13 Pelican Imaging Corporation Systems and methods for extending dynamic range of imager arrays by controlling pixel analog gain
US8749694B2 (en) 2010-08-27 2014-06-10 Adobe Systems Incorporated Methods and apparatus for rendering focused plenoptic camera data using super-resolved demosaicing
EP2566151A4 (en) * 2011-03-07 2014-01-29 Panasonic Corp IMAGE CAPTURE DEVICE AND DISTANCE CALCULATION DEVICE
US8717483B2 (en) * 2011-04-22 2014-05-06 Panasonic Corporation Imaging device, imaging system, and imaging method
US8948545B2 (en) 2012-02-28 2015-02-03 Lytro, Inc. Compensating for sensor saturation and microlens modulation during light-field image processing
JP6045208B2 (ja) * 2012-06-13 2016-12-14 オリンパス株式会社 撮像装置
US8975594B2 (en) * 2012-11-09 2015-03-10 Ge Aviation Systems Llc Mixed-material multispectral staring array sensor
JP2014175553A (ja) * 2013-03-11 2014-09-22 Canon Inc 固体撮像装置およびカメラ
US9955090B2 (en) * 2016-07-20 2018-04-24 Omnivision Technologies, Inc. High dynamic range image sensor with virtual high-low sensitivity pixels

Also Published As

Publication number Publication date
EP3029931A1 (en) 2016-06-08
US10027908B2 (en) 2018-07-17
JP6701194B2 (ja) 2020-05-27
KR20170089876A (ko) 2017-08-04
EP3228073A1 (en) 2017-10-11
CN107005640A (zh) 2017-08-01
US20170366765A1 (en) 2017-12-21
CN107005640B (zh) 2020-06-26
WO2016087415A1 (en) 2016-06-09

Similar Documents

Publication Publication Date Title
JP6701194B2 (ja) 画像センサユニット及び撮像装置
JP5929553B2 (ja) 画像処理装置、撮像装置、画像処理方法およびプログラム
US9681057B2 (en) Exposure timing manipulation in a multi-lens camera
US9881951B2 (en) Image sensors with phase detection pixels
US7812869B2 (en) Configurable pixel array system and method
JP5515396B2 (ja) 撮像装置
JP5825817B2 (ja) 固体撮像素子及び撮像装置
US9661306B2 (en) Solid-state imaging device and camera system
US10419664B2 (en) Image sensors with phase detection pixels and a variable aperture
JP2010154493A (ja) 撮像装置
KR20160065464A (ko) 컬러 필터 어레이, 이를 포함하는 이미지 센서 및 이를 이용한 적외선 정보 획득 방법
JP2015164284A (ja) 固体撮像素子、動き情報取得装置、および撮像装置
CN103688536A (zh) 图像处理装置、图像处理方法及程序
US20160241772A1 (en) Dynamic auto focus zones for auto focus pixel systems
US11375103B2 (en) Imaging device, image processing apparatus, and image processing method
WO2019026287A1 (ja) 撮像装置および情報処理方法
TW201517257A (zh) 在多透鏡陣列模組中之緊密間隔
US10410374B2 (en) Image sensors with calibrated phase detection pixels
WO2015091300A1 (en) Scanning imaging system with a novel imaging sensor with gaps for electronic circuitry
JP2016111678A (ja) 撮像素子、撮像装置、焦点検出装置ならびに画像処理装置およびその制御方法
CN103999449A (zh) 摄像元件
US9794468B2 (en) Image sensor, image capturing apparatus, focus detection apparatus, image processing apparatus, and control method of image capturing apparatus using pupil division in different directions
US11431898B2 (en) Signal processing device and imaging device
CN103503447A (zh) 拍摄装置及拍摄装置的控制程序
JP6491539B2 (ja) 撮像装置及びその制御方法、システムならびにプログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170821

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181129

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20181227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20191111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200501

R150 Certificate of patent or registration of utility model

Ref document number: 6701194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250