JP2017528111A - メタマテリアルを用いて電磁輻射を電気エネルギに変換するためのシステム - Google Patents
メタマテリアルを用いて電磁輻射を電気エネルギに変換するためのシステム Download PDFInfo
- Publication number
- JP2017528111A JP2017528111A JP2017519465A JP2017519465A JP2017528111A JP 2017528111 A JP2017528111 A JP 2017528111A JP 2017519465 A JP2017519465 A JP 2017519465A JP 2017519465 A JP2017519465 A JP 2017519465A JP 2017528111 A JP2017528111 A JP 2017528111A
- Authority
- JP
- Japan
- Prior art keywords
- rectenna
- metamaterial
- electric field
- desired frequency
- micrometers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005670 electromagnetic radiation Effects 0.000 title description 6
- 230000005855 radiation Effects 0.000 claims abstract description 21
- 230000005611 electricity Effects 0.000 claims abstract description 14
- 238000001816 cooling Methods 0.000 claims abstract description 4
- 230000005684 electric field Effects 0.000 claims description 30
- 238000012546 transfer Methods 0.000 claims description 8
- 230000007613 environmental effect Effects 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims description 3
- 239000012780 transparent material Substances 0.000 claims 2
- 230000008878 coupling Effects 0.000 abstract description 8
- 238000010168 coupling process Methods 0.000 abstract description 8
- 238000005859 coupling reaction Methods 0.000 abstract description 8
- 238000001228 spectrum Methods 0.000 abstract description 6
- 238000003306 harvesting Methods 0.000 abstract description 4
- 230000003595 spectral effect Effects 0.000 abstract description 4
- 239000011148 porous material Substances 0.000 abstract description 3
- 230000032258 transport Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 20
- 239000000463 material Substances 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 238000004088 simulation Methods 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000013461 design Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000000985 reflectance spectrum Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000005672 electromagnetic field Effects 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 3
- 239000002918 waste heat Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- -1 diesel Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000005457 Black-body radiation Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N11/00—Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
- H02N11/002—Generators
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/002—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/248—Supports; Mounting means by structural association with other equipment or articles with receiving set provided with an AC/DC converting device, e.g. rectennas
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Aerials With Secondary Devices (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Waveguide Connection Structure (AREA)
- Details Of Aerials (AREA)
- Photovoltaic Devices (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
Claims (17)
- 熱を電気に変換するシステムであって、
所望の周波数で強化電場を生成するよう調整された表面を有するメタマテリアルと、
前記強化電場に亘って配置されたレクテナであって前記生成された電場と相互作用するような距離に配置され、前記生成された電場から電気を生成するレクテナと、を備えるシステム。 - 前記メタマテリアルの前記表面は、前記表面に前記所望の周波数で前記強化電場を生成させるための寸法および間隔を伴う複数の孔を含み、
レクテナは各孔の上に配置される請求項1に記載のシステム。 - 各レクテナは、前記孔の上の近接場であって前記所望の周波数の半波長未満のところに配置される請求項2に記載のシステム。
- 前記レクテナは、
前記所望の周波数に調整されたアンテナであって前記生成された電場と相互作用することでアンテナ要素に電流を生成するアンテナと、
前記電流を直流に変換する移送構造と、を含む請求項1に記載のシステム。 - 他のデバイスに電力を供給するために前記直流電流を運ぶかまたは前記直流電流を電力蓄積デバイスへ運ぶための少なくともひとつのリードをさらに備える請求項1に記載のシステム。
- 前記レクテナを冷やすためのコールドシンクとして作用するコールドソースをさらに備える請求項1に記載のシステム。
- 前記メタマテリアルの前記表面と前記レクテナとの間に設けられた、熱絶縁性かつ輻射に対して透明な物質をさらに備える請求項1に記載のシステム。
- 前記レクテナはアンテナ要素を含み、さらに前記アンテナ要素をコールドソースに繋ぐための熱伝導性物質を含む請求項7に記載のシステム。
- 熱源からの熱損失を防ぐために前記熱伝導性物質の両側に熱絶縁性物質をさらに含む請求項8に記載のシステム。
- 前記孔の寸法および間隔は、前記メタマテリアルの前記表面に周期的パターンを形成する請求項1に記載のシステム。
- 前記メタマテリアルの前記表面は、前記表面に前記所望の周波数で前記強化電場を生成させるための寸法および間隔を伴う複数のポストを含む請求項1に記載のシステム。
- 前記レクテナのコールドシンクとして宇宙空間が用いられる請求項11に記載のシステム。
- 前記レクテナは、各ポストの上の近接場であって前記所望の周波数の半波長未満のところに配置される請求項11に記載のシステム。
- 前記ポストは、前記所望の周波数の前記波長の四分の一よりも大きな高さを有する請求項11に記載のシステム。
- 各ポストを囲む、熱絶縁性かつ輻射に対して透明な物質をさらに備える請求項11に記載のシステム。
- 帯域外エネルギを反射により除くための環境オーバコートをさらに備える請求項11に記載のシステム。
- 前記所望の周波数は、3マイクロメートルから5マイクロメートルおよび8マイクロメートルから12マイクロメートルのうちのひとつの帯域の波長を有する請求項11に記載のシステム。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462015121P | 2014-06-20 | 2014-06-20 | |
US62/015,121 | 2014-06-20 | ||
PCT/US2015/036817 WO2015196161A1 (en) | 2014-06-20 | 2015-06-19 | System for converting electromagnetic radiation to electrical energy using metamaterials |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019239124A Division JP2020080641A (ja) | 2014-06-20 | 2019-12-27 | メタマテリアルを用いて電磁輻射を電気エネルギに変換するためのシステム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017528111A true JP2017528111A (ja) | 2017-09-21 |
JP6640844B2 JP6640844B2 (ja) | 2020-02-05 |
Family
ID=54870558
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017519465A Expired - Fee Related JP6640844B2 (ja) | 2014-06-20 | 2015-06-19 | メタマテリアルを用いて電磁輻射を電気エネルギに変換するためのシステム |
JP2019239124A Ceased JP2020080641A (ja) | 2014-06-20 | 2019-12-27 | メタマテリアルを用いて電磁輻射を電気エネルギに変換するためのシステム |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019239124A Ceased JP2020080641A (ja) | 2014-06-20 | 2019-12-27 | メタマテリアルを用いて電磁輻射を電気エネルギに変換するためのシステム |
Country Status (8)
Country | Link |
---|---|
US (3) | US10374524B2 (ja) |
EP (1) | EP3158591B1 (ja) |
JP (2) | JP6640844B2 (ja) |
KR (2) | KR20210094154A (ja) |
CN (2) | CN106688105B (ja) |
AU (1) | AU2015276815A1 (ja) |
CA (1) | CA2952641A1 (ja) |
WO (1) | WO2015196161A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7471396B2 (ja) | 2019-12-09 | 2024-04-19 | シーピージー テクノロジーズ、 エルエルシー | ツェネック表面波発射のための異方性構成パラメータ |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9039401B2 (en) | 2006-02-27 | 2015-05-26 | Microcontinuum, Inc. | Formation of pattern replicating tools |
US9589797B2 (en) * | 2013-05-17 | 2017-03-07 | Microcontinuum, Inc. | Tools and methods for producing nanoantenna electronic devices |
WO2017132509A1 (en) * | 2016-01-27 | 2017-08-03 | University Of South Florida | Thermal rectifying antenna complex (trac) |
US10797537B2 (en) | 2016-03-15 | 2020-10-06 | Northeastern University | Distributed wireless charging system and method |
KR20190069411A (ko) * | 2016-09-14 | 2019-06-19 | 레드웨이브 에너지, 인코포레이티드 | 메타물질, 렉테나, 및 보상 구조들을 이용하여 전자기 방사를 전기 에너지로 변환하는 구조, 시스템 및 방법 |
EP3493283A1 (en) * | 2017-12-04 | 2019-06-05 | Université d'Aix Marseille | Plasmonic rectenna device and method of manufacturing |
EP3928379A1 (en) * | 2019-02-20 | 2021-12-29 | Redwave Energy, Inc. | System and method for making electronic structures and antenna coupled terahertz films with nanoimprint or roll-to-roll |
CN109904632B (zh) * | 2019-03-08 | 2020-09-15 | 四川大学 | 用于空间电磁波探测及能量收集的超表面整流天线阵列 |
CN111736239B (zh) * | 2020-07-21 | 2021-08-24 | 广州大学 | 可调谐太赫兹波极化旋转的柔性超材料及其使用方法 |
CN114512556B (zh) * | 2020-11-16 | 2023-11-03 | 北京索通新动能科技有限公司 | 一种基于非对称超材料结构的光电探测器 |
CN113067159B (zh) * | 2021-03-23 | 2022-01-28 | 北京大学 | 一种高效无限通道行波-表面波天线及其实现方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5043739A (en) * | 1990-01-30 | 1991-08-27 | The United States Of America As Represented By The United States Department Of Energy | High frequency rectenna |
US5455594A (en) * | 1992-07-16 | 1995-10-03 | Conductus, Inc. | Internal thermal isolation layer for array antenna |
US20110160542A1 (en) * | 2009-12-30 | 2011-06-30 | University Of Seoul Industry Cooperation Foundation | Waveguide |
JP4835334B2 (ja) * | 2006-09-06 | 2011-12-14 | 国立大学法人徳島大学 | 高周波信号伝送装置 |
WO2012008551A1 (ja) * | 2010-07-15 | 2012-01-19 | 旭硝子株式会社 | メタマテリアルの製造方法およびメタマテリアル |
US20120080073A1 (en) * | 2007-11-13 | 2012-04-05 | Battelle Energy Alliance, Llc | Devices, systems, and methods for harvesting energy and methods for forming such devices |
US20120241616A1 (en) * | 2007-04-30 | 2012-09-27 | Security Logic Ag | Meta materials integration, detection and spectral analysis |
JP2013197181A (ja) * | 2012-03-16 | 2013-09-30 | Asahi Kasei Corp | 表面平滑基材及びこれを用いた電子デバイス |
JP2014023069A (ja) * | 2012-07-20 | 2014-02-03 | Univ Of Tokushima | マイクロ波整流回路、それを備えたレクテナ回路および非接触コネクタ |
WO2014100707A1 (en) * | 2012-12-20 | 2014-06-26 | The Trustees Of Boston College | Methods and systems for controlling phonon-scattering |
US20140266967A1 (en) * | 2013-03-15 | 2014-09-18 | Omar Ramahi | Metamaterial Particles for Electromagnetic Energy Harvesting |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2498461A (en) | 1948-08-03 | 1950-02-21 | Nat Union Radio Corp | Detector for high energy radiation |
JPS4835334B1 (ja) | 1970-02-02 | 1973-10-27 | ||
JPS4835334A (ja) | 1971-09-07 | 1973-05-24 | ||
US5450053A (en) | 1985-09-30 | 1995-09-12 | Honeywell Inc. | Use of vanadium oxide in microbolometer sensors |
US4888061A (en) | 1988-09-01 | 1989-12-19 | Minnesota Mining And Manufacturing Company | Thin-film solar cells resistant to damage during flexion |
US5269851A (en) | 1991-02-25 | 1993-12-14 | United Solar Technologies, Inc. | Solar energy system |
JP3664057B2 (ja) | 2000-08-24 | 2005-06-22 | トヨタ自動車株式会社 | 熱光発電装置 |
US6534784B2 (en) | 2001-05-21 | 2003-03-18 | The Regents Of The University Of Colorado | Metal-oxide electron tunneling device for solar energy conversion |
US7329871B2 (en) | 2005-02-04 | 2008-02-12 | Stc.Unm | Plasmonic enhanced infrared detector element |
US20060210279A1 (en) | 2005-02-28 | 2006-09-21 | Hillis W D | Optical Antenna Assembly |
WO2007001977A2 (en) | 2005-06-20 | 2007-01-04 | Microcontinuum, Inc. | Systems and methods for roll-to-roll patterning |
US7436373B1 (en) | 2005-08-18 | 2008-10-14 | The United States Of America As Represented By The Secretary Of The Navy | Portable receiver for radar detection |
US7741933B2 (en) * | 2006-06-30 | 2010-06-22 | The Charles Stark Draper Laboratory, Inc. | Electromagnetic composite metamaterial |
US7468525B2 (en) | 2006-12-05 | 2008-12-23 | Spansion Llc | Test structures for development of metal-insulator-metal (MIM) devices |
US8294219B2 (en) | 2007-07-25 | 2012-10-23 | Intermolecular, Inc. | Nonvolatile memory element including resistive switching metal oxide layers |
US7792644B2 (en) | 2007-11-13 | 2010-09-07 | Battelle Energy Alliance, Llc | Methods, computer readable media, and graphical user interfaces for analysis of frequency selective surfaces |
US9472699B2 (en) | 2007-11-13 | 2016-10-18 | Battelle Energy Alliance, Llc | Energy harvesting devices, systems, and related methods |
US8115683B1 (en) | 2008-05-06 | 2012-02-14 | University Of South Florida | Rectenna solar energy harvester |
TWI473310B (zh) | 2008-05-09 | 2015-02-11 | Ind Tech Res Inst | 薄膜式熱電轉換元件及其製作方法 |
US8633373B2 (en) | 2008-05-12 | 2014-01-21 | Mtpv Power Corporation | Sub-micrometer gap thermophotovoltaic structure (MTPV) and fabrication method therefor |
CN102124405B (zh) | 2008-05-30 | 2015-08-26 | 欧帕鲁克斯有限公司 | 可调布拉格堆叠 |
US9018616B2 (en) | 2008-07-25 | 2015-04-28 | Ramot At Tel-Aviv University Ltd. | Rectifying antenna device with nanostructure diode |
CA2737041C (en) | 2008-08-20 | 2013-10-15 | Ravenbrick, Llc | Methods for fabricating thermochromic filters |
US8759776B2 (en) | 2008-12-31 | 2014-06-24 | Technion Research And Development Foundation Ltd. | Teramos-terahertz thermal sensor and focal plane array |
US8451189B1 (en) * | 2009-04-15 | 2013-05-28 | Herbert U. Fluhler | Ultra-wide band (UWB) artificial magnetic conductor (AMC) metamaterials for electrically thin antennas and arrays |
KR20100118383A (ko) | 2009-04-28 | 2010-11-05 | 한국전자통신연구원 | 전자파 에너지 수확 장치 |
US8053734B2 (en) * | 2009-04-30 | 2011-11-08 | Raytehon Company | Nano-antenna for wideband coherent conformal IR detector arrays |
US20100289342A1 (en) | 2009-05-12 | 2010-11-18 | William Eugene Maness | Space-Based Power Systems And Methods |
US20110062333A1 (en) | 2009-09-14 | 2011-03-17 | David Ben-Bassat | Electromagnetic based thermal sensing and imaging incorporating multi-pixel imaging arrays |
WO2011116463A1 (en) | 2010-03-24 | 2011-09-29 | Mina Danesh | Integrated photovoltaic cell and radio-frequency antenna |
CN102904045B (zh) | 2011-07-26 | 2015-07-01 | 深圳光启高等理工研究院 | 一种前馈式雷达天线 |
US9281206B2 (en) * | 2011-10-12 | 2016-03-08 | The Regents Of The University Of California | Semiconductor processing by magnetic field guided etching |
CN103094710B (zh) * | 2011-10-27 | 2016-06-29 | 深圳光启高等理工研究院 | 超材料天线 |
AU2012347504A1 (en) | 2011-12-09 | 2014-07-10 | Redwave Energy, Inc. | System and method for converting electromagnetic radiation to electrical energy |
CN103296768A (zh) * | 2012-02-29 | 2013-09-11 | 深圳光启创新技术有限公司 | 一种无线能量传输系统 |
US8847824B2 (en) | 2012-03-21 | 2014-09-30 | Battelle Energy Alliance, Llc | Apparatuses and method for converting electromagnetic radiation to direct current |
JP5694983B2 (ja) * | 2012-03-27 | 2015-04-01 | 日本碍子株式会社 | 赤外線ヒーター |
JP6156787B2 (ja) | 2012-07-25 | 2017-07-05 | パナソニックIpマネジメント株式会社 | 撮影観察装置 |
US9658155B2 (en) | 2012-12-17 | 2017-05-23 | Patrick K Brady | System and method for identifying materials using a THz spectral fingerprint in a media with high water content |
US8901507B2 (en) | 2013-02-20 | 2014-12-02 | Battelle Energy Alliance, Llc | Radiation sensitive devices and systems for detection of radioactive materials and related methods |
US9494464B2 (en) | 2013-02-20 | 2016-11-15 | Battelle Energy Alliance, Llc | Terahertz imaging devices and systems, and related methods, for detection of materials |
CA2917040A1 (en) | 2013-02-22 | 2014-08-28 | Patrick K. Brady | Structures, system and method for converting electromagnetic radiation to electrical energy |
US10323980B2 (en) | 2013-03-29 | 2019-06-18 | Rensselaer Polytechnic Institute | Tunable photocapacitive optical radiation sensor enabled radio transmitter and applications thereof |
US20140320378A1 (en) * | 2013-04-30 | 2014-10-30 | The Johns Hopkins University | Three dimensional self-folded microantenna |
US9581142B2 (en) * | 2013-06-19 | 2017-02-28 | The Regents Of The University Of Colorado, A Body Corporate | Radiating power converter and methods |
JP2015198063A (ja) * | 2014-04-03 | 2015-11-09 | 日本碍子株式会社 | 赤外線ヒーター |
US9935370B2 (en) | 2014-12-23 | 2018-04-03 | Palo Alto Research Center Incorporated | Multiband radio frequency (RF) energy harvesting with scalable antenna |
-
2015
- 2015-06-19 EP EP15808962.3A patent/EP3158591B1/en active Active
- 2015-06-19 CN CN201580033161.3A patent/CN106688105B/zh not_active Expired - Fee Related
- 2015-06-19 CA CA2952641A patent/CA2952641A1/en not_active Abandoned
- 2015-06-19 US US14/745,299 patent/US10374524B2/en not_active Expired - Fee Related
- 2015-06-19 KR KR1020217023128A patent/KR20210094154A/ko not_active Application Discontinuation
- 2015-06-19 KR KR1020177001748A patent/KR20170031148A/ko active IP Right Grant
- 2015-06-19 WO PCT/US2015/036817 patent/WO2015196161A1/en active Application Filing
- 2015-06-19 CN CN201811315653.3A patent/CN110061068A/zh active Pending
- 2015-06-19 JP JP2017519465A patent/JP6640844B2/ja not_active Expired - Fee Related
- 2015-06-19 AU AU2015276815A patent/AU2015276815A1/en not_active Abandoned
-
2019
- 2019-08-02 US US16/529,976 patent/US11070149B2/en active Active
- 2019-12-27 JP JP2019239124A patent/JP2020080641A/ja not_active Ceased
-
2021
- 2021-07-19 US US17/379,686 patent/US20210351723A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5043739A (en) * | 1990-01-30 | 1991-08-27 | The United States Of America As Represented By The United States Department Of Energy | High frequency rectenna |
US5455594A (en) * | 1992-07-16 | 1995-10-03 | Conductus, Inc. | Internal thermal isolation layer for array antenna |
JP4835334B2 (ja) * | 2006-09-06 | 2011-12-14 | 国立大学法人徳島大学 | 高周波信号伝送装置 |
US20120241616A1 (en) * | 2007-04-30 | 2012-09-27 | Security Logic Ag | Meta materials integration, detection and spectral analysis |
US20120080073A1 (en) * | 2007-11-13 | 2012-04-05 | Battelle Energy Alliance, Llc | Devices, systems, and methods for harvesting energy and methods for forming such devices |
US20110160542A1 (en) * | 2009-12-30 | 2011-06-30 | University Of Seoul Industry Cooperation Foundation | Waveguide |
WO2012008551A1 (ja) * | 2010-07-15 | 2012-01-19 | 旭硝子株式会社 | メタマテリアルの製造方法およびメタマテリアル |
JP2013197181A (ja) * | 2012-03-16 | 2013-09-30 | Asahi Kasei Corp | 表面平滑基材及びこれを用いた電子デバイス |
JP2014023069A (ja) * | 2012-07-20 | 2014-02-03 | Univ Of Tokushima | マイクロ波整流回路、それを備えたレクテナ回路および非接触コネクタ |
WO2014100707A1 (en) * | 2012-12-20 | 2014-06-26 | The Trustees Of Boston College | Methods and systems for controlling phonon-scattering |
US20140266967A1 (en) * | 2013-03-15 | 2014-09-18 | Omar Ramahi | Metamaterial Particles for Electromagnetic Energy Harvesting |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7471396B2 (ja) | 2019-12-09 | 2024-04-19 | シーピージー テクノロジーズ、 エルエルシー | ツェネック表面波発射のための異方性構成パラメータ |
Also Published As
Publication number | Publication date |
---|---|
EP3158591A4 (en) | 2018-03-14 |
US20190356247A1 (en) | 2019-11-21 |
KR20210094154A (ko) | 2021-07-28 |
EP3158591A1 (en) | 2017-04-26 |
AU2015276815A1 (en) | 2017-02-09 |
US20150372621A1 (en) | 2015-12-24 |
US10374524B2 (en) | 2019-08-06 |
CN110061068A (zh) | 2019-07-26 |
JP2020080641A (ja) | 2020-05-28 |
US11070149B2 (en) | 2021-07-20 |
CN106688105B (zh) | 2018-12-04 |
WO2015196161A1 (en) | 2015-12-23 |
JP6640844B2 (ja) | 2020-02-05 |
KR20170031148A (ko) | 2017-03-20 |
US20210351723A1 (en) | 2021-11-11 |
CN106688105A (zh) | 2017-05-17 |
EP3158591B1 (en) | 2020-10-28 |
CA2952641A1 (en) | 2015-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6640844B2 (ja) | メタマテリアルを用いて電磁輻射を電気エネルギに変換するためのシステム | |
Kotter et al. | Solar nantenna electromagnetic collectors | |
Vandenbosch et al. | Upper bounds for the solar energy harvesting efficiency of nano-antennas | |
Hussein et al. | Design of flower‐shaped dipole nano‐antenna for energy harvesting | |
Kotter et al. | Theory and manufacturing processes of solar nanoantenna electromagnetic collectors | |
JP6180429B2 (ja) | 電磁放射を電気的エネルギーに変換するためのシステム及び方法 | |
Abadal et al. | Chapter Electromagnetic Radiation Energy Harvesting–The Rectenna Based Approach | |
Chekini et al. | A novel plasmonic nanoantenna structure for solar energy harvesting | |
Hamied et al. | Design and analysis of hexagonal dipole nano-rectenna based on MIIM diode for solar energy harvesting | |
Sadashivappa et al. | Nanoantenna–a review | |
Zainud-Deen et al. | Single/dual-polarized infrared rectenna for solar energy harvesting | |
Corkish et al. | Efficiency of antenna solar collection | |
US20180131310A1 (en) | Thermal Emitter for Energy Conversion Technical Field | |
Novack et al. | Solar nantenna electromagnetic collectors | |
Yahyaoui et al. | Ambient Infrared Solar Energy Harvesting Using Log-Periodic Optical Rectenna at 28.3 THz | |
US9083278B2 (en) | Device for transforming electromagnetic IR energy from spatially incoherent, low-power density, broad-band radiation in spatially coherent, high-power density, quasi-monochromatic radiation | |
Lin et al. | Midinfrared radiation energy harvesting device | |
Mescia et al. | Earth Long-Wave Infrared Emission, New Ways to Harvest Energy | |
Liu et al. | Structural Design and Optimization of Optical Nano-Antenna Based on Bridge Structure | |
Apurva et al. | Solar Nanoantenna: Design and technology for dark frequency (electricity from Dark) | |
Sabaawi et al. | Auxiliary ring resonator for local field enhancement in solar rectennas | |
Amara et al. | II. VIVALDI NANO-ANTENNA | |
Krishnan et al. | Nanoscale Rectenna for Thermal Energy Conversion to Electricity | |
Thomas et al. | Design of Nano Square Spiral Antenna in Terahertz Region for Solar Energy Harvesting | |
Green et al. | Efficiency of antenna solar energy collection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180606 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190318 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190320 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20190617 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190917 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191226 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6640844 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
LAPS | Cancellation because of no payment of annual fees |