JP2017527449A - 放電加工工具の幾何学的制御および最良適合 - Google Patents

放電加工工具の幾何学的制御および最良適合 Download PDF

Info

Publication number
JP2017527449A
JP2017527449A JP2017513077A JP2017513077A JP2017527449A JP 2017527449 A JP2017527449 A JP 2017527449A JP 2017513077 A JP2017513077 A JP 2017513077A JP 2017513077 A JP2017513077 A JP 2017513077A JP 2017527449 A JP2017527449 A JP 2017527449A
Authority
JP
Japan
Prior art keywords
model
discharge machining
electrode
manufactured
scanned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017513077A
Other languages
English (en)
Inventor
アルシオーネ,マッシモ
バルタリ,クラウディオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuovo Pignone SpA
Nuovo Pignone SRL
Original Assignee
Nuovo Pignone SpA
Nuovo Pignone SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuovo Pignone SpA, Nuovo Pignone SRL filed Critical Nuovo Pignone SpA
Publication of JP2017527449A publication Critical patent/JP2017527449A/ja
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/14Electric circuits specially adapted therefor, e.g. power supply
    • B23H7/20Electric circuits specially adapted therefor, e.g. power supply for programme-control, e.g. adaptive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/04Electrodes specially adapted therefor or their manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/14Electric circuits specially adapted therefor, e.g. power supply
    • B23H7/18Electric circuits specially adapted therefor, e.g. power supply for maintaining or controlling the desired spacing between electrode and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/10Working turbine blades or nozzles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45221Edm, electrical discharge machining, electroerosion, ecm, chemical
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45225Making impellers, propellers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50285Tool geometry compensation, keep contact of tool on desired curve

Abstract

放電加工電極(11)の幾何形状を点検するための方法が説明される。方法は、・放電加工電極のネイティブ3Dモデル(21)を含むファイルを用意するステップと、・ネイティブ3Dモデルに基づいて、製造された放電加工電極(11)を用意するステップと、・製造された放電加工電極の画像の組を異なる位置で走査するステップと、それとともに、製造された放電加工電極の走査された3Dモデル(23)を生成するステップと、ネイティブ3Dモデル(21)と走査された3Dモデル(23)とを比較するステップと、放電加工の間に電極経路を補正するために放電加工装置の電極補償座標を生成するステップとを含む。【選択図】図4

Description

本開示は放電加工に関する。より詳細には、本発明は、遠心力ポンプおよび遠心圧縮機などの、ただしそれらに限定されないターボ機械の羽根車を機械加工するのに使用される電極または工具の製造に関する。
遠心ターボ機械の羽根車は、通常、ディスクまたはハブから延び、複数のベーンを画定する複数のブレードを有するディスクまたはハブを備え、ベーンを通って、ターボ機械によって処理された流体が流れる。いくつかの実施形態において、羽根車は、さらにシュラウドから構成され、シュラウドは、ディスクとシュラウドとの間に配列されたブレードによってディスクに接続される。
ある公知の方法によれば、遠心羽根車は、放電加工(以下EDMとも略称する)によって製造される。EDMとは、誘電液体の存在下で放電加工工具または電極と導電性被加工物との間の一連の繰り返し起こる放電によって金属が除去される熱浸食法のことである。放電は、電極と被加工物との間の電圧ギャップで起こる。放電によって発生した熱は、被加工物材料の粒子を蒸発させる。これらの粒子は、連続的に洗浄する誘電液体によってギャップから洗い落される。
EDMが使用されるとき、開始としての、鋼鉄または他の適切な材料製の円盤状の被加工物が、一連の放電加工工具または電極の反復動作を受ける。異なる形状の電極または工具が順々に使用される。第1の電極を有する第1の工具が、被加工物における空洞の機械加工を開始するのに使用される。次いで、異なる形状の工具が、完全なダクトが羽根車のディスクとシュラウドとの間に配列された連続的なブレードの間に形成されるまで順次使用される。
ブレード表面ならびに内部ディスクおよびシュラウド表面の形状および寸法は、流体力学および構造設計の検討に基づいて、正確でなければならず、羽根車のネイティブ3Dモデル(すなわち、CAD 3Dモデル)に対応しなければならない。ターボ機械の効率は、ターボ機械羽根車の機械加工精度に大きく依存する。
次いで、EDM電極は、銅または黒鉛などの、高い導電性および高い溶解温度を有する材料を使用するチップ除去によって製造される。EDM工具は、概して、電極と、電極が取り付けられた取付け支持体とから構成される。次いで、工具がEDM装置のラムまたは工具ホルダー上に取り付けられる。EDM装置のCNC制御軸が、EDM電極の形状に対応する形状を有する機械加工表面を作り出すために、被加工物に対して工具を移動させる。EDM電極の製造の間に発生した幾何学的誤差ならびに電極と取付け支持体との間の間違った結合による不整合は、結果として被加工物の不正確な機械加工となる。次いで、ターボ機械羽根車の場合、これは結果としてターボ機械の効率の悪さとなることがある。場合により、機械加工された羽根車は、厳格な設計許容差を満たさないので廃棄しなければならないことがある。
現在の技術によれば、EDM電極の幾何形状の精度は、CMM技術を使用して点検される。機械的プローブが、電極に対して所定の点の組で移動される。専用ソフトウェアがこれらの点の実際の位置が設計許容差を満たすかどうかを点検する。このEDM電極を点検する公知の方法は、特に、CMMが各EDM電極を点検するのに専用の部品プログラムが必要とされるので、高価であり、時間がかかる。さらに、公知のシステムの精度は満足のいくものでない。
したがって、EDM電極および工具の精度を点検するための、より効率の良い、より正確な、およびより時間のかからない方法が必要とされる。
独国特許出願公開第4331253号明細書
EDM電極をより効率的に点検する、放電加工電極の幾何形状を点検するための方法が本明細書に開示される。本明細書に開示される主題の実施形態によれば、方法は、
放電加工電極のネイティブ3Dモデルを含むファイルを用意するステップと、
ネイティブ3Dモデルに基づいて、製造された放電加工電極を用意するステップと、
製造された放電加工電極の画像の組を異なる位置で光走査するステップと、それとともに、製造された放電加工電極の走査された3Dモデルを生成するステップと、
ネイティブ3Dモデルと、走査された3Dモデルとを比較するステップと、放電加工の間に電極経路を補正するために放電加工装置の電極補償座標を生成するステップとを含む。
いくつかの実施形態によれば、方法は、
放電加工電極の表面上の点の組をネイティブ3Dモデルにおいて画定するステップと、
前記点を中心とする幾何学的要素の組、例えば球体をネイティブ3Dモデルにおいて生成するステップと、
前記点の組を放電加工電極の表面上に、製造された放電加工電極の走査された3Dモデルにおいて投影するステップと、
製造された放電加工電極の走査された3Dモデルの表面上に投影された前記点を中心とした幾何学的要素の組、例えば小球体を適用するステップと、
ネイティブ3Dモデル上の幾何学的要素と、製造された放電加工電極の走査された3Dモデル上の幾何学的要素との間の距離を最小にするために、ネイティブ3Dモデルに対して、製造された放電加工電極の走査された3Dモデルを変位させるステップとをさらに含むことができる。
いくつかの実施形態によれば、ネイティブ3Dモデルに対して、製造された放電加工電極の走査された3Dモデルを変位させるステップは、
製造された放電加工電極の走査された3Dモデルを回転軸を中心として回転させるステップと、
製造された放電加工電極の走査された3Dモデルを少なくとも1つの平行移動軸に沿って平行移動させるステップとを含む。
特徴および実施形態が本明細書において以下に開示され、本説明の一体部分を形成する添付の特許請求の範囲にさらに記載される。上記の簡単な説明は、後に続く詳細な説明をより良く理解することができるようにするために、および技術への本寄与をより良く認識することができるようにするために、本発明の様々な実施形態の特徴を記載する。もちろん、以下に説明され、添付の特許請求の範囲に記載される本発明の他の特徴がある。この点において、本発明のいくつかの実施形態を詳細に説明する前に、本発明の様々な実施形態がそれらの適用において構成の詳細および以下の説明に記載されるまたは図面に例示される構成部品の配列に限定されないことが理解される。本発明は、他の実施形態が可能であり、様々なやり方で実施しおよび実行することができる。また、本明細書に採用された述語および用語は、説明のためであり、制限的であるとみなしてはならないことを理解されたい。
したがって、本開示が基づく概念は、本発明のいくつかの目的を実行するための他の構造、方法、および/またはシステムを設計するための基盤として容易に利用することができることを当業者は理解するであろう。したがって、特許請求の範囲はそのような同等の構成をそれらが本発明の精神および範囲から逸脱しない限り含むものとみなされることが重要である。
開示される本発明の実施形態およびそれらの付随する利点の多くのより完全な認識は、同じものが添付の図面に関連して検討されたとき以下の詳細な説明を参照してより良く理解されることになるので、容易に得られるであろう。
放電加工を用いて機械加工されるターボ機械羽根車を概略的に示す図である。 放電加工を用いて機械加工されるターボ機械羽根車を概略的に示す図である。 放電加工工具を形成する、それぞれの支持体上に取り付けられた放電加工電極のネイティブ3Dモデルを示す図である。 本開示の方法を要約する概略図である。 放電加工電極の画像を走査するステップを概略的に示す図である。 光走査配列またはデバイスの傾斜および回転台を示す図である。 光走査配列またはデバイスの傾斜および回転台を示す図である。 光走査配列またはデバイスの設定ステップの間に得られた基準球および適格立方体の走査画像を示す図である。 図5、6Aおよび6Bの光走査デバイスにより電極を光走査する異なるステップを示す図である。 電極群の例示的な実施形態を示す図である。 それぞれ、ネイティブ3Dモデルの表面上のおよび製造されたEDM電極の走査された3Dモデルの表面上の球体の生成を示す図である。 方法の流れ図である。 方法の流れ図である。
例示的な実施形態の以下の詳細な説明は、添付の図面を参照する。異なる図面における同じ参照符号は、同じまたは同様の要素を識別する。さらに、図面は、必ずしも縮尺通りに描かれていない。また、以下の詳細な説明は、本発明を限定しない。その代わりに、本発明の範囲は、添付の特許請求の範囲によって定義される。
本明細書全体を通して「一実施形態」または「ある実施形態」または「いくつかの実施形態」への参照は、実施形態に関連して説明された特定の特徴、構造または特性が、開示される主題の少なくとも1つの実施形態に含まれることを意味する。したがって、本明細書全体を通して様々な場所における「1つの実施形態において」または「ある実施形態において」または「いくつかの実施形態において」という語句の出現は、必ずしも同じ実施形態を参照していない。さらに、特定の特徴、構造または特性は、1つまたは複数の実施形態において任意の適切なやり方で組み合わせることができる。
図1および2は、遠心圧縮機または遠心力ポンプの羽根車を製造するためのEDM(放電加工)工具の使用を概略的に示す。より詳細には、図1は、被加工物1の正面図を示し、被加工物1は、複数のブレード5の間のフローベーン7を画定する複数のブレード5を用いて羽根車3を得るために順々に使用される、異なる形状の1つまたは複数のEDM工具により機械加工される。
図2は、いったんブレード5が羽根車において機械加工された、羽根車の断面図を示す。参照符号9は、羽根車3を機械加工するために使用される複数のEDM工具のうちの1つを示す。
参照符号7S、7Pおよび7Hは、それぞれ、ベーン7の吸気表面、圧力表面およびハブ表面を示す。各ベーンは、図面に示していないが、ハブ表面7Hに対向するシュラウド表面をさらに備える。EDM工具9は、それに応じて、ベーン7の吸気表面、圧力表面、ハブ表面およびシュラウド表面を機械加工する表面を有する。
当業者に知られているように、羽根車の完全な機械加工は、通常、順々に異なる工具を使用することを必要とし、工具はブレード5およびフローベーン7を次第にそれらの最終形状に作り出す。遠心ターボ機械の羽根車のEDM製造は、当技術分野でよく知られており、本明細書では、より詳細に説明しない。
図3は、羽根車3を機械加工するのに使用することができる例示的なEDM工具の不等角投影図を示す。図3のEDM工具は、この場合も9と表示され、電極11と取付け支持体13とから構成することができる。電極11は、取付け支持体13上に取り付けられ、取付け支持体13に拘束される。いくつかの例示的な実施形態において、取付け支持体13は、第1の部分13Aと第2の部分13Bとから構成することができる。次いで、取付け支持体13は、図示していないが、EDM装置の工具ホルダーまたはラムに接続するように構成される。
EDM電極11は、例えば、EDM電極11のネイティブ3Dモデル、すなわち、EDM電極11のCNC 3Dモデルに基づいてCNC工作機械などを使用するチップ除去によって製造される。取付け支持体13も、ネイティブ3Dモデルに基づいて製造される。同じ支持体13を異なるEDM電極11に使用することができる。
電極11が製造され、取付け支持体13に組み付けられて、最終EDM工具9を形成すると、工具9の精度を点検しなければならない。EDM工具9は、一方において、幾何公差を満たさなければならず、すなわち、実際の製造されたEDM電極の幾何学的形状および寸法は、ネイティブ3Dモデルによって画定された理論的表面から所定の公差より大きくずれてはならない。
いくつかの実施形態によれば、すべての工具部分または表面が同じ程度の精度を満たす必要はない。一般的には、電極のいくつかの表面部分は、より厳格な公差、すなわち、ネイティブ3Dモデルによって画定された理論的形状からの制限されたずれを満足しなければならない。これらの表面部分は、通常、被加工物に機械加工された表面の最終形状に影響するものである。EDM電極11の他の表面部分は、被加工物に対して直接作用しないし、ネイティブ3Dモデルによって画定された理論的形状からの潜在的なずれが最終のEDM機械加工の結果に悪影響を与えないので、あまり重要ではない。いくつかの実施形態において、2つの具体的に異なる領域が、EDM電極11上に画定される。これらの領域は、それぞれ、指定された作業領域およびホルダー領域であり得る。作業領域は、被加工物に対して直接作用し、その表面が電極11を用いて機械加工される羽根車または他の製品の最終形状を直接決定するものである。ホルダー領域は、例えば、EDM電極11を取付け支持体上に取り付けるために使用される残りの領域である。
EDM電極11のネイティブ3Dモデルは、EDM電極11の各部分によって、すなわち、それぞれ、作業領域およびホルダー領域によって満たされる公差に関する情報を含むことができる。EDM電極11のネイティブ3Dモデルは、生成されたすべての異なるネイティブ3Dモデルの公差管理規則の再現性を保証するNX CAD自動化工具によって生産される。
EDM工具11が遠心ターボ機械羽根車の隣接したブレード間のベーンを製造するのに使用されるとき、作業領域は、ベーンの吸気表面および圧力表面を機械加工する動作電極表面を含む。追加の電極表面は、ベーンのシュラウド表面およびハブ表面を機械加工する。CAD自動化工具は、後でより詳細に説明されるように、製造されたEDM電極のその後の品質点検に使用されるホルダー領域および作業領域上の複数の点を自動的に画定することができる。
EDM装置に使用されるEDM電極11に関しては、EDM電極11を取付け支持体13上に正確に取り付けなければならない。取付け支持体13は、EDM装置の工具ホルダー上に工具の最終位置を画定する基準表面を有する。取付け支持体13上にEDM電極11を間違って位置決めすることにより、被加工物の不正確な機械加工が生じ、結局は、例えばターボ機械羽根車のブレード表面設計からのずれなどの誤差が最終製品の形状に生じる。
電極の精度を点検するための本明細書に開示される方法は、図4を参照して、以下のように要約されるが、追加のより詳細な情報が後で提供される。
EDM電極11は、それのネイティブ3Dモデルに基づいて製造されると、取付け支持体13上に取り付けられる。取付け支持体13およびそれの上に取り付けられたEDM電極11によって形成された工具は、光走査工程を受け、様々な位置における工具9の複数の画像が、光走査装置を用いて走査される。製造されたEDM電極11の3Dモデルが走査画像に基づいて生成される。製造されたEDM電極11の3Dモデルは、本明細書において以下に「走査された3Dモデル」として参照される。
光走査は、物体の3D形状を捕捉するためのよく知られた方法である。この方法を実装するデバイスは、通常、プロジェクタとカメラとを備える。プロジェクタ、典型的にはLCDプロジェクタまたは他の安定した光源は、光のパターンを被写体上に投影する。パターンプロジェクタからわずかにオフセットされたカメラは、被写体上のパターンの変形を捉え、視野におけるあらゆる点の距離を計算する。一度に1つの点を走査する代わりにこの方法を用いて、構造化光スキャナは、複数の点または視野全体を一挙に走査する。1秒の何分の1かで視野全体を走査することにより、運動による歪みの問題が低減しまたはなくなる。
光走査によって得られた、製造された電極11の走査された3Dモデルの目的は、
・ EDM電極11が幾何公差により機械加工されているかどうかを点検すること、
・ 組立て規則が順守されているかどうか、すなわち、EDM電極11が取付け支持体13上に正しく位置決めされ、正しく方向が合わされているかどうかを点検することの2要素からなる。
ネイティブ3Dモデルと、製造された実際のEDM電極11の走査された3Dモデルとを使用することによって、工作機械のオフセットが、組立て合わせ表面公差による誤りを正常な状態に戻すために作られ、品質および製造の使用者への報告書が生成される。
図4の概略図において、ネイティブ3Dモデルは、21に概略的に示され、走査された3Dモデルは23に概略的に示される。2つの3Dモデルは、例えば、コンピュータ25を用いて比較され、報告書27が生成される。報告書は工具補償29のオフセット値を含み、オフセット値は、経路を補正するためにEDM装置に提供され、経路に沿ってEDM工具9が取付け支持体13上のEDM電極11の位置決め誤差の可能性を補償するために被加工物の機械加工の間に移動される。報告書は、EDM電極11がネイティブ3Dモデルによって提供された公差を満足するか否に関する指示を含む、製造されたEDM電極11とネイティブ3Dモデルとの実際の寸法および形状の相違に関する情報も含む。EDM電極11が公差の範囲を満足しない場合、電極は廃棄される。
走査された3Dモデルの生成のために、いくつかの実施形態によれば、光走査配列またはデバイス30が提供され、図5に概略的に示すカメラ31などの少なくとも1つの光走査センサと、上にEDM電極11および関連した取付け支持体13が取り付けられた可動台33とを含む。可動台33は、図6A、6Bに詳細に示される。いくつかの実施形態において、可動台33は、回転軸Aおよび傾斜軸Bを中心として可動であるチャック35が備えられた回転および傾斜台であり得る。回転軸Aおよび傾斜軸Bは、相互に直角であり得る。EDM電極11およびその取付け支持体13が可動台33上に取り付けられると、様々な位置11においてEDM電極の複数の画像を撮影することができる。走査画像の数は、走査された3Dモデルを生成するのに十分である。いくつかの実施形態によれば、製造されたEDM電極11の走査された3Dモデルは、STL形式のファイルであり得る。画像の数、および画像が撮影されるEDM電極11の位置は、EDM電極11の形状に依存する。
実際の製造されたEDM電極11の走査された3Dモデルを生成するのに光走査配列30を使用することができるまでに、機械座標系(MCS:machine coordinate system)を生成しなければならず、機械座標系(MCS)は、それに続いて、走査された3Dモデルを同じ電極11のネイティブ3Dモデルの座標系に対して正しい空間位置に位置決めするのに使用される。
本明細書に開示される方法の例示的な実施形態によれば、MCSを生成するために、既知の形および寸法の複数の3次元物体を可動台33上に剛体的に取り付ける。いくつかの実施形態において、固体は既知の半径の球体である。添付の図面に示すように、例えば、図6A、6Bを参照すると、例えば、8つの球体37が設けられる。これらの球体37は、チャック35からある距離を置いて可動台33に剛体的に拘束され、可動台33が軸AおよびBを中心として回転され、傾斜されたときそれと一体に移動する。
いくつかの実施形態によれば、MCSを生成するために以下の手順が適用される。適格物体が、可動台33のチャック35に、点検される工具9がそれに続いて取り付けられる位置に対応する位置において取り付けられる。本明細書において理解されるように適格物体とは、既知の幾何学的形状および寸法を有する物体である。適格物体の寸法および形状特性は、ソフトウェアでマッピングされる。チャック35に対する適格物体の中心の位置は、適格物体がチャック上に取り付けられると、既知である。適格物体は、予備走査工程の対象として使用される。いくつかの実施形態において、適格物体は適格立方体である。
適格物体がチャック35上に固定されると、適格物体の複数の画像が光走査配列またはデバイス30のカメラ31を用いて走査される。各画像は、適格物体または立方体の一部分および基準球37の少なくとも一部を含む。こうして走査された画像は、光走査ソフトウェアを使用して適格物体または立方体および基準球37の走査された3Dモデルを生成するのに使用される。図7は、走査ソフトウェアによって生成された32と表示された適格物体または立方体および球体37の3Dモデルを概略的に示す。
適格物体32および関連した球体37の走査された3Dモデルが作られると、光走査デバイスまたは配列30のカスタム機能により、走査された3Dモデルがデフォルト位置/方向からチャックと中心を合わせた光走査配列の座標基準系上の位置/方向に移動する。これは、適格物体または立方体の点および表面が走査デバイスのソフトウェアでマッピングされ、座標基準系の原点またはゼロ点であるチャックの中心を基準とするので、可能とされる。したがって、チャックと中心を合わせた座標基準系の中心に対して球体の正確な位置および位置合せを決定することが可能である。
走査された3Dモデルが回転平行移動され、チャックの中心と中心を合わされると、光走査配列の基準系に対するすべての球体37の中心の位置が決定される。球体37の中心の位置は、本明細書において以下に説明するように、電極走査工程の間に使用される。
上記のように光走査配列30が設定されると、EDM電極11の走査工程を実施することができる。
電極走査工程は、電極11と取付け支持体13とから構成されたEDM工具9をチャック35上に固定することによって開始される。図8は、可動台33の複数の位置においてチャック35上に取り付けられたEDM工具9を示す。EDM電極11は、球体37の近くに、好ましくは、8つの球体37の組の内側の容積内に取り付けられる。EDM工具9(EDM電極11および取付け支持体13)によって形成されたシステムのおよび球体37の複数の画像が、製造された電極11の走査された3Dモデルを生成するために走査され、記憶される。
異なる形状および寸法の多数の電極11は、同じまたは異なる羽根車を製造するのに使用することができる。走査工程を最適化するために、EDM電極11は、電極群により分類することができる。同じ群に属するEDM電極11は、同様の幾何学的形状および寸法を有する。
走査される同様のEDM電極11の所与の群に関しては、異なる所定のフレームの組、すなわち、EDM電極11の画像が提供される。フレームの各組は、各々がチャック35の所与の空間位置に対応する複数の画像を含む。このようにして、EDM電極11ごとの最適化された最小数の画像が画定される。所与のEDM電極11の満足のいく光走査を得るのに必要なフレームの、すなわち、画像の数は、電極形状の複雑性に依存する。
所与のEDM電極11の各フレーム、すなわち、各画像は、EDM電極11の少なくとも一部分と、ある数の球体37とを含む。いくつかの実施形態において、少なくとも3つの球体37が、各走査画像において目に見える。
EDM電極11のすべてのフレーム、すなわち、すべての画像が走査されると、光走査ソフトウェアは、それらから、製造されたEDM電極11の走査された3Dモデルを生成し、それは球体37の3Dモデルも含む。
こうして生成された、走査された3Dモデルは、無作為に位置決めされ、方向が合わされる。方法の次のステップには、MCSに対して、製造されたEDM電極11および球体37の走査された3Dモデルを正しく位置決めすることが関与する。標準ソフトウェア機能は、走査された3Dモデルにおける球体37の各々の1つの中心を決定する。回転平行移動行列を用いて、走査された3Dモデルは、製造されたEDM電極11の走査された3Dモデルの球体37の中心が、上記のように、光走査配列30の設定ステップの間に生成された走査された3Dモデルにおいて同じ球体37の中心の位置に一致するまで方向が合わせ直され、位置決めし直される。
上記の手順の結果として、走査された3Dモデルは、MCSにおいて中心に置かれ、方向が合わされる。この基準系は、同じEDM電極11のネイティブ3Dモデルの同じ基準系である。
EDM電極11のネイティブ3Dモデルの方向および位置は、理論的に、走査された3Dモデルの方向および位置と同じである。しかし、取付け支持体13の公差および機械加工動作により、ならびに取付け誤差の可能性により、光走査デバイス30によって生成された走査された3Dモデルの実際の位置および方向は、同じEDM電極11のネイティブ3Dモデルによって画定された理論的位置および方向からわずかにずれることがある。
本明細書に開示される方法の次の手順では、これらのずれを工具のオフセットによって補償することができるか否かを決定する。
上述のように、複数の点は、EDM電極11のネイティブ3Dモデルのホルダー領域および作業領域上のCAD自動化工具によって画定されている。これらの点は、実際のEDM工具9とネイティブ3Dモデルによって画定された理論的EDM工具9との位置および方向の不一致を補償するのに必要な工具オフセット値を決定するのに使用される。
図8Aにおいて、EDM電極11のネイティブ3Dモデル上に適用される例示的な点41の組が示される。
EDM電極11のネイティブ3Dモデルの表面上のそのような点41の数および位置は、電極の形状ならびに関与する表面の臨界の高低により異なることがある。正しい機械加工に、より重要である表面が、より多数のそのような点により設けられる。いくつかの実施形態において、方法のこの段階で使用される点41は、EDM電極11の吸気側表面および圧力側表面上に配置される。
それに続くステップにおいて、複数の幾何学的要素が、ネイティブ3Dモデル上に、選択された点41において適用される。いくつかの実施形態において、これらの幾何学的要素は、小球体である。各々の小球体は、前記点41のうちのそれぞれの1つを中心とすることができる。図8Bにおいて、複数の前記小球体が、43において示される。各々の小球体は、識別番号IDが与えられ、直径を有する。いくつかの実施形態において、すべての小球体43は、同じ直径を有する。
光走査ソフトウェアにインポートされたEDM電極11のネイティブ3Dモデルにおける点41は、製造されたEDM電極11の走査された3Dモデルの表面上に投影される。投影は、選択された点41を通過し、走査された3Dモデルの表面と交わる直線(CAD表面に直角の)を生成することによって得られる。2つの3Dモデルが同一であり、完全に重なり合うとすると、ネイティブ3Dモデル上の点41は、製造されたEDM電極11の走査された3Dモデル上に投影された点41に一致するはずである。上述の相違および位置決め誤差の可能性により、ネイティブ3Dモデル上の点41のうちの少なくともいくつかが、走査された3Dモデル上に投影された対応する点と一致しない。
次のステップにおいて、光走査ソフトウェアは、各々が、投影された点41を中心とする、ネイティブ3Dモデルにおいて生成された小球体43のうちの1つに対応する、複数の小球体43を生成する。こうして光走査ソフトウェアによって、走査された3Dモデル上に生成された各々の小球体は、ネイティブ3Dモデルの対応する小球体と同じ直径を有する。実際の製造されたEDM電極11の走査された3Dモデル上の小球体は、上述の不一致により、ネイティブ3Dモデル上の小球体と一致しない。
ネイティブ3Dモデルと、製造されたEDM電極11の走査された3Dモデルとの不一致をオフセットする回転平行移動行列を生成するために、走査された3Dモデルは、ネイティブ3Dモデルに対して変位されて、小球体43の2つの組の間の距離を最小にする。変位は、通常、EDM装置の数値制御される軸に対応する軸に沿ってである。
いくつかの実施形態において、変位は、回転軸Zを中心とした回転と、2つの相互に直角の平行移動軸XおよびYに沿った平行移動とを含むことができる。Z軸は、EDM装置のチャック軸に対して平行であり、平行移動軸X、Yは、EDM装置の平行移動軸に対応することができる。
2つの3Dモデルの互いに対する回転および平行移動は、同時にまたは順次実施することができる。
ネイティブ3Dモデルに対する走査された3Dモデルの新たな相互の位置が達成されると、工程は1回または複数回方向を合わせ直すことができ、工程は2つの3Dモデルの最終相互位置に向かって収斂するが、小球体の距離のそれ以上の最小化を得ることはできない。
回転軸Zおよび2つの平行移動軸XおよびYによる全変位が、EDM装置におけるEDM工具9の経路を補正するオフセット値として使用される。事実、製造されたEDM電極11の走査された3Dモデルの軸を画定する行列は、ネイティブ3Dモデルによって画定された理論的行列と比較される。比較の結果は、Z軸を中心とした回転およびXおよびY軸に沿った平行移動である。これらの値は、EDM装置上にいったん取り付けられたEDM工具の軌道を補正するEDM装置の出力オフセット値として提供される。オフセット値は、ネイティブ3Dモデルによって画定されたその理論的位置に対する電極の不一致の可能性を補償する。
X、YおよびZ軸による回転および平行移動は、データ処理(図4参照)からの出力として提供され、分析されるEDM電極11に関連付けられた品質報告書の一部であり得る。
すでに述べたように、EDM電極11の形状および寸法公差も点検しなければならない。これは、小球体43がEDM電極11のネイティブ3Dモデルおよび走査された3Dモデル上を中心としている同じ点を使用する標準自由最良適合工程を使用して行われる。オフセット回転平行移動行列を計算する際に使用される小球体43の中心がEDM電極11の吸気側および圧力側表面上だけに適用された場合、追加の点41がEDM電極11のハブ側およびシュラウド側表面上に設けられる。
いくつかの実施形態によれば、走査ソフトウェアの自由最良適合機能は、EDM電極11の作業領域上に配置された点41を使用し、ホルダー領域上の点41は無視する。自由最良適合は、走査された3Dモデルの点41が同じEDM電極11のネイティブ3Dモデル上の対応する点41に合致するまで、製造されたEDM電極11の走査された3Dモデルの位置および方向を変更する。
2つの3Dモデルが最良適合されると、走査ソフトウェアの標準ソフトウェアルーチンが2つの3Dモデルを比較し、ネイティブ3Dモデル上に提供された製品製造情報を使用して、着色されたEDM電極11の描写を生成することができる。色の差異は表面誤差マップを示す。表面誤差マップは、例えば、PDFファイルなどのファイルの形で出力することができる。ファイルは、EDM電極11の作業領域上およびホルダー領域上で発見された最大誤差など、追加の情報を含むことができる。例えば,緑または赤色を発見された最大誤差を示すのに使用することができる。
図11A、11Bは、本明細書において上記に開示された方法の主要ステップを要約する流れ図を示す。
本明細書に説明した主題の開示された実施形態をいくつかの例示的な実施形態に関連して図面で示し、事細かくおよび詳細に上記に十分に説明してきたが、本明細書に記載した新規の教示、原理および概念ならびに添付の特許請求の範囲に列挙された主題の利点から実質的に逸脱することなく多くの修正、変更、および省略が可能であることが当業者には明らかであろう。したがって、開示された革新の適正な範囲は、すべてのそのような修正、変更、および省略を包含するように添付の特許請求の範囲の最も広い解釈によってのみ決定すべきである。さらに、任意の工程または方法ステップの順序または並びは、代替実施形態により変更しまたは並べ直すことができる。
1 被加工物
3 羽根車
5 ブレード
7 フローベーン
7H ハブ表面
7P 圧力表面
7S 吸気表面
9 EDM工具
11 EDM電極
13 取付け支持体
21 ネイティブ3Dモデル
23 走査された3Dモデル
25 コンピュータ
27 報告書
29 工具補償
31 カメラ
32 適格物体または立方体
33 可動台
35 チャック
37 球体、基準球
41 点
43 小球体
A 回転軸
B 傾斜軸

Claims (17)

  1. 放電加工電極(11)の幾何形状を点検するための方法であって、
    前記放電加工電極(11)のネイティブ3Dモデル(21)を含むファイルを用意するステップと、
    前記ネイティブ3Dモデル(21)に基づいて、製造された放電加工電極(11)を用意するステップと、
    前記製造された放電加工電極(11)の画像の組を異なる位置で走査するステップと、それとともに、前記製造された放電加工電極(11)の走査された3Dモデル(23)を生成するステップと、
    前記ネイティブ3Dモデル(21)と前記走査された3Dモデル(23)とを比較するステップと、放電加工の間に電極経路を補正するために放電加工装置の電極補償座標を生成するステップとを含む、方法。
  2. 前記放電加工電極(11)の表面上の点の組を前記ネイティブ3Dモデル(21)において画定するステップと、
    前記点を中心とする幾何学的要素の組を前記ネイティブ3Dモデル(21)において生成するステップと、
    前記点の組を前記放電加工電極(11)の表面上に、前記製造された放電加工電極(11)の前記走査された3Dモデル(23)において投影するステップと、
    前記製造された放電加工電極(11)の前記走査された3Dモデル(23)の表面上に投影された前記点を中心とする幾何学的要素の組を適用するステップと、
    前記ネイティブ3Dモデル(21)上の前記幾何学的要素と前記製造された放電加工電極(11)の前記走査された3Dモデル(23)上の前記幾何学的要素との間の距離を最小にするために、前記ネイティブ3Dモデル(21)に対して、前記製造された放電加工電極(11)の前記走査された3Dモデル(23)を変位させるステップとをさらに含む、請求項1記載の方法。
  3. 前記幾何学的要素が球体(37)であり、各球体(37)が前記点の組のうちの対応する1つを中心とする、請求項2記載の方法。
  4. 前記ネイティブ3Dモデル(21)に対して、前記製造された放電加工電極(11)の前記走査された3Dモデル(23)を変位させる前記ステップが、
    前記製造された放電加工電極(11)の前記走査された3Dモデル(23)を回転軸(A)を中心として回転させるステップと、
    前記製造された放電加工電極(11)の前記走査された3Dモデル(23)を少なくとも第1の平行移動軸に沿って平行移動させるステップとを含む、請求項2または3記載の方法。
  5. 前記第1の平行移動軸と前記回転軸(A)とが相互に直角である、請求項4記載の方法。
  6. 前記ネイティブ3Dモデル(21)に対して、前記製造された放電加工電極(11)の前記走査された3Dモデル(23)を回転させる前記ステップと平行移動させる前記ステップとが、前記ネイティブ3Dモデル(21)上と前記製造された放電加工電極(11)の前記走査された3Dモデル(23)上との前記幾何学的要素の間の距離が最小になるまで、反復して繰り返される、請求項1乃至5のいずれか1項記載の方法。
  7. 前記走査された放電加工電極(11)を放電加工装置上に取り付けるステップをさらに含み、前記製造された放電加工電極(11)の前記走査された3Dモデル(23)の前記変位を画定するパラメータが、前記放電加工装置に提供され、前記放電加工装置上に取り付けられた前記放電加工電極(11)を制御するためのオフセット値として前記放電加工装置によって使用される、請求項2乃至6のいずれか1項記載の方法。
  8. 前記回転軸(A)を中心とした前記回転変位、前記第1の平行移動軸に沿った前記第1の平行移動変位および第2の平行移動軸に沿った第2の平行移動変位が、前記放電加工電極(11)が装備された前記放電加工装置においてオフセット値として使用される、請求項5または6記載の方法。
  9. 前記放電加工電極(11)が、前記放電加工電極(11)を取付け支持体(13)に接続することが意図されたホルダー領域と、機械加工される被加工物と共同作業することが意図された作業領域とを備え、前記作業領域が、ターボ機械の羽根車ベーンの吸気表面(7S)と圧力表面(7P)とを機械加工するように構成された吸気表面(7S)と圧力表面(7P)とを備え、前記羽根車ベーンのシュラウド表面とハブ表面(7H)とを機械加工するように構成されたシュラウド表面とハブ表面(7H)とをさらに備え、前記幾何学的要素が、前記吸気表面(7S)上と前記圧力表面(7P)上とに配置されているが、前記シュラウド表面上と前記ハブ表面(7H)上とに配置されていない点上に適用される、請求項2乃至8のいずれか1項記載の方法。
  10. 前記製造された放電加工電極(11)の画像の組を走査する前記ステップが、前記製造された放電加工電極(11)を回転軸(A)を中心としておよび傾斜軸を中心として回転させ、傾斜させ、前記製造された放電加工電極(11)の画像をそれらの複数の位置で走査するステップを含む、請求項1乃至9のいずれか1項記載の方法。
  11. 前記製造された放電加工電極(11)の前記画像の組を走査する前記ステップが、前記製造された放電加工電極(11)と一体に移動する複数の要素の画像を走査するステップを含み、前記製造された放電加工電極(11)の前記走査された3Dモデル(23)が、前記要素を含み、前記ネイティブ3Dモデル(21)と前記製造された放電加工電極(11)の前記走査された3Dモデル(23)とを比較する前記ステップが、前記ネイティブ3Dモデル(21)および走査された3Dモデル(23)を、前記要素を使用する同じ機械座標系において互いに対して方向を合わせ、位置決めする予備ステップを含む、請求項1乃至10のいずれか1項記載の方法。
  12. 前記要素が球体(37)である、請求項11記載の方法。
  13. 前記ネイティブ3Dモデル(21)が、前記製造された放電加工電極(11)が合致しなければならない幾何公差範囲に関する情報を含み、前記方法が、前記製造された放電加工電極(11)の前記走査された3Dモデル(23)が前記公差範囲に合致するかどうかを点検するステップをさらに含む、請求項1乃至12のいずれか1項記載の方法。
  14. 異なる公差範囲が、前記ネイティブ3Dモデル(21)において、前記製造された放電加工電極(11)の異なる部分に適用される、請求項13記載の方法。
  15. 前記ネイティブ3Dモデル(21)と、前記製造された放電加工電極(11)の前記走査された3Dモデル(23)との自由最良適合が、前記走査された3Dモデル(23)が前記公差範囲に合致するかどうかを点検する前に実施される、請求項13または14記載の方法。
  16. 前記自由最良適合が、前記ネイティブ3Dモデル(21)上の複数の点と、前記製造された放電加工電極(11)の前記走査された3Dモデル(23)上の対応する点とを使用して実施される、請求項15記載の方法。
  17. 前記製造された放電加工電極(11)が、ホルダー領域と作業領域とを備え、前記作業領域が、機械加工される被加工物と共同作業するように構成され、配列され、前記ホルダー領域が、前記製造された放電加工電極(11)を取付け支持体(13)上に接続するように構成され、配列され、前記複数の点が、前記作業領域上に配列されるが、前記ホルダー領域上に配列されない、請求項16記載の方法。
JP2017513077A 2014-09-17 2015-09-16 放電加工工具の幾何学的制御および最良適合 Pending JP2017527449A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITFI2014A000210 2014-09-17
ITFI20140210 2014-09-17
PCT/EP2015/071215 WO2016042026A1 (en) 2014-09-17 2015-09-16 Geometric control and best fitting of electric discharge machining tools

Publications (1)

Publication Number Publication Date
JP2017527449A true JP2017527449A (ja) 2017-09-21

Family

ID=51951872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017513077A Pending JP2017527449A (ja) 2014-09-17 2015-09-16 放電加工工具の幾何学的制御および最良適合

Country Status (9)

Country Link
US (1) US10850339B2 (ja)
EP (1) EP3194102A1 (ja)
JP (1) JP2017527449A (ja)
KR (1) KR20170058390A (ja)
CN (1) CN107000091A (ja)
BR (1) BR112017004483A2 (ja)
CA (1) CA2959984A1 (ja)
RU (1) RU2017106913A (ja)
WO (1) WO2016042026A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022220018A1 (ja) 2021-04-15 2022-10-20 ダイキン工業株式会社 フッ素ゴム架橋用組成物、成形品およびシール材

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105904043B (zh) * 2016-06-06 2017-12-08 南京航空航天大学 错合型阴极进给环形供液的叶片全轮廓电解系统及方法
JP6382911B2 (ja) * 2016-11-01 2018-08-29 ファナック株式会社 ワイヤ放電加工機
US20180268614A1 (en) * 2017-03-16 2018-09-20 General Electric Company Systems and methods for aligning pmi object on a model
EP3511101B1 (de) * 2018-01-10 2020-09-23 Klingelnberg GmbH Verfahren zum prüfen eines schleifwerkzeugs und entsprechende vorrichtung
CN109062144B (zh) * 2018-09-20 2020-12-11 安徽马钢重型机械制造有限公司 一种引锭头加工系统及加工方法
CN112008411A (zh) * 2019-05-31 2020-12-01 重庆西门雷森精密装备制造研究院有限公司 一种虚拟加工的曲轴几何定心加工工艺及装备
WO2021101524A1 (en) * 2019-11-19 2021-05-27 Hewlett-Packard Development Company, L.P. Determining a preferred region of a scanner
CN113983977A (zh) * 2021-10-26 2022-01-28 深圳模德宝科技有限公司 基于ugnx的模具电极检测方法、装置和设备
CN114932281B (zh) * 2022-06-07 2023-07-28 江苏集萃精密制造研究院有限公司 航空发动机叶片精密电解用前后缘阴极三要素设计方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970780A (ja) * 1995-09-06 1997-03-18 Fanuc Ltd ロボットのツール形状補正方式
JP2010108176A (ja) * 2008-10-29 2010-05-13 Makino Milling Mach Co Ltd 加工システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03178731A (ja) * 1989-09-20 1991-08-02 Mitsubishi Electric Corp 放電加工装置
DE4331253A1 (de) * 1993-09-15 1995-03-16 Blohm Maschinenbau Gmbh Verfahren zum Erzeugen eines Profils an einem Werkstück
US6225589B1 (en) * 1999-03-15 2001-05-01 Stephen Bartok Electric discharge machining apparatus
IT1396512B1 (it) * 2009-10-21 2012-12-14 Nuovo Pignone Spa Metodo e dispositivo per compensazione di utensile
US8788083B2 (en) * 2011-07-22 2014-07-22 Pratt & Whitney Canada Corp. Compensation for process variables in a numerically-controlled machining operation
CN103240473B (zh) * 2012-02-07 2015-08-19 通用电气公司 电极及其制造方法
ES2629831T3 (es) * 2013-01-17 2017-08-16 Agie Charmilles Sa Máquina fresadora de descarga eléctrica
CN103084676A (zh) * 2013-02-05 2013-05-08 深圳大学 一种三维微细电火花电极制作方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970780A (ja) * 1995-09-06 1997-03-18 Fanuc Ltd ロボットのツール形状補正方式
JP2010108176A (ja) * 2008-10-29 2010-05-13 Makino Milling Mach Co Ltd 加工システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022220018A1 (ja) 2021-04-15 2022-10-20 ダイキン工業株式会社 フッ素ゴム架橋用組成物、成形品およびシール材

Also Published As

Publication number Publication date
RU2017106913A (ru) 2018-10-18
CA2959984A1 (en) 2016-03-24
BR112017004483A2 (pt) 2017-12-05
KR20170058390A (ko) 2017-05-26
US10850339B2 (en) 2020-12-01
RU2017106913A3 (ja) 2019-02-25
WO2016042026A1 (en) 2016-03-24
US20170259363A1 (en) 2017-09-14
CN107000091A (zh) 2017-08-01
EP3194102A1 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
JP2017527449A (ja) 放電加工工具の幾何学的制御および最良適合
JP7331015B2 (ja) 積層造形を使用したターボ機械の修理
CA2679851C (en) Method of making a part and related system
US8140179B2 (en) Method and apparatus for repairing turbine components
CN105855722B (zh) 基于激光偏振系统的曲面零件表面目标图形的加工方法
EP1760427B1 (en) Methods for measuring the nozzle flow area between gas turbine engine vanes
JP2022510538A (ja) 冷却孔の自動識別およびツールパスの生成
EP3689502B1 (en) Tooling assembly for magnetically aligning components in an additive manufacturing machine
CN113192116A (zh) 基于结构光相机的航空叶片厚度参数量测方法
CN114770517B (zh) 通过点云获取装置对机器人进行标定的方法以及标定系统
CN209820420U (zh) 一种叶形孔型面参数的视觉检测装置
CN105824237A (zh) 基于线激光传感器的自适应偏移控制方法
CN114638900A (zh) 用于激光扫描系统光学畸变和位姿的迭代式标定方法及系统
CN115415742A (zh) 一种导管焊接夹具的制造方法
CN113146027B (zh) 回转体内壁激光加工方法及系统
CN113551616A (zh) 一种圆锥阵列线激光三维测量仪
CN112629456A (zh) 涡轴发动机零部件复杂曲面自动测量系统及测量方法
Wang et al. An on-machine and vision-based depth-error measurement method for micro machine tools
CN109099836A (zh) 一种扫描精度在线监控系统及方法
Dung et al. Automatic weld bead detection on free-form surface parts for remanufacturing processes
CN115256950B (zh) 一种三维复印装置及其工作方法
JP2018128988A (ja) 測定データ生成装置、加工プログラム生成システム、測定データ生成方法
JP6894590B2 (ja) 基準点特定装置、加工プログラム生成システム、基準点特定方法
CN112743225A (zh) 非圆柱形回转件激光加工方法及系统
CN117053689A (zh) 基于测量点云和cad模型的叶片工件坐标系精确标定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200128