JP2022510538A - 冷却孔の自動識別およびツールパスの生成 - Google Patents

冷却孔の自動識別およびツールパスの生成 Download PDF

Info

Publication number
JP2022510538A
JP2022510538A JP2021512415A JP2021512415A JP2022510538A JP 2022510538 A JP2022510538 A JP 2022510538A JP 2021512415 A JP2021512415 A JP 2021512415A JP 2021512415 A JP2021512415 A JP 2021512415A JP 2022510538 A JP2022510538 A JP 2022510538A
Authority
JP
Japan
Prior art keywords
hole
cooling hole
projection
cooling
toolpath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021512415A
Other languages
English (en)
Other versions
JPWO2020068130A5 (ja
JP7455814B2 (ja
Inventor
ラマムルシー、ラジェフ
ジョージ ハーディング、ケヴィン
マシュー ロマス、ジョナサン
ブロムバーグ、ヴァディム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2022510538A publication Critical patent/JP2022510538A/ja
Publication of JPWO2020068130A5 publication Critical patent/JPWO2020068130A5/ja
Application granted granted Critical
Publication of JP7455814B2 publication Critical patent/JP7455814B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/04Texture mapping
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • G06T15/20Perspective computation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/40Scaling the whole image or part thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/536Depth or shape recovery from perspective effects, e.g. by using vanishing points
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/80Repairing, retrofitting or upgrading methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/607Preventing clogging or obstruction of flow paths by dirt, dust, or foreign particles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Abstract

部品を処理する方法は、部品36のコンピュータ支援設計(CAD)モデルを使用して、部品に配置された少なくとも1つの孔62の位置を識別するステップ2502と、取付システム56内の部品を位置合わせするステップ2504と、部品36を3Dスキャンするステップ2506と、部品を3Dスキャンするステップ2506からの少なくとも1つのデータに少なくとも部分的に基づいて、孔36の少なくとも1つの境界特徴を検出するステップ2520と、境界特徴に少なくとも部分的に基づいて、第1のツールパス92を生成するステップ2536と、を含む。【選択図】図4

Description

本開示は、一般に、ガスタービンの被冷却構造に関し、より具体的には、タービン翼形部に関連するシステムおよび方法に関する。
大型の高馬力な産業用ガスタービンエンジンでは、燃焼器内で発生した高温ガス流がタービンを通過して機械的仕事を生じる。タービンは、温度が次第に低下する高温ガス流と反応するステータベーンおよびロータブレードの1つまたは複数の列または段を含む。タービン、ひいてはエンジンの効率は、より高温のガス流をタービンに通すことによって高めることができる。しかしながら、タービン入口温度は、タービン、特に第1段のベーンおよびブレードの材料特性、ならびにこれらの第1段の翼形部に対する冷却能力の多寡によって制限されることがある。
第1段のロータおよびステータ構成要素は、最も高いガス流温度に曝され、ガス流がタービン段を通過するにつれて温度が徐々に低下する。冷却空気を内部冷却通路に通し、冷却空気を膜冷却孔を介して排出して冷却空気のブランケット層を提供し、高温ガス流から被冷却表面を保護することによって、第1段および第2段の翼形部(ブレードおよびベーン)を冷却しなければならない。
タービンロータブレード、固定ベーン、およびその中の冷却通路は、例えば、冷却通路が詰まったかどうかを判断するため、および/または部品の形状が意図された設計から逸脱したかどうかを判断するために、しばしば検査を必要とする。しかし、ガスタービンエンジンには多数のタービン翼形部(ブレードとベーン)があり、各翼形部内には冷却通路と孔が多数あることが多いため、各孔を手動で検査するのは時間のかかる作業である。
欧州特許出願公開第3168808号明細書
本開示の態様および利点は、以下の説明に一部が記載される、または本開示の実施を通じて理解することができる。
一実施形態では、部品を処理する方法は、部品36のコンピュータ支援設計(CAD)モデルを使用して、部品に配置された少なくとも1つの孔62の位置を識別するステップ2502と、取付システム56内の部品を位置合わせするステップ2504と、部品36を3Dスキャンするステップ2506と、部品36を3Dスキャンするステップ2506からの少なくとも1つのデータに少なくとも部分的に基づいて、孔36の少なくとも1つの境界特徴を検出するステップ2520と、境界特徴に少なくとも部分的に基づいて、第1のツールパス92を生成するステップ2536と、を含む。
本開示のこれらおよび他の特徴、態様および利点は、以下の説明および添付の特許請求の範囲を参照して、よりよく理解されよう。添付の図面は、本明細書に組み込まれて、本明細書の一部を構成し、本開示の実施形態を例示し、説明と共に本開示の原理を説明するのに役立つ。
完全かつ可能な開示は、その最良の形態を含み、当業者に向けられて、本明細書に記載されており、それは以下の添付の図面を参照している。
本明細書の実施形態を組み込むことができる典型的なガスタービンの概略図である。 例示的なタービンロータブレードの一部の拡大断面側面図である。 冷却孔を含む基板の一部の拡大図である。 翼形部、位置合わせシステム、および取付システムの例示的な図である。 翼形部の例示的な図である。 翼形部の例示的な図である。 翼形部の例示的な図である。 冷却孔を含む基板の一部の拡大図である。 冷却孔を含む基板の一部の拡大図である。 冷却孔を含む基板の一部の拡大図である。 冷却孔を含む基板の一部の拡大図である。 冷却孔を含む基板の一部の拡大図である。 冷却孔を含む基板の一部の拡大図である。 冷却孔を含む基板の一部の拡大図である。 冷却孔を含む基板の一部の拡大図である。 冷却孔を含む基板の一部の拡大図である。 冷却孔を含む基板の一部の拡大図である。 冷却孔を含む基板の一部の拡大図である。 冷却孔を含む基板の一部の拡大図である。 冷却孔の例示的な側面概略図である。 冷却孔を含む基板の一部の拡大図である。 冷却孔を含む基板の一部の拡大図である。 冷却孔を含む基板の一部の拡大図である。 冷却孔を含む基板の一部の拡大図である。 ツールパスの上面図である。 ツールパスの底面図である。 ツールパスの側面図である。 本開示の様々な実施形態による、構成要素を修復する方法を示す図である。
本明細書および図面における符号の反復使用は、本開示の同じまたは類似の特徴もしくは要素を表すことを意図している。
以下で、本実施形態の態様を詳しく参照するが、その1つまたは複数の例が添付の図面に示されている。詳細な説明は、図面の特徴を参照するために、数字および文字の符号を使用する。図面および説明における同様のまたは類似の表記は、本実施形態の同様のまたは類似の部分を指すために使用されている。本明細書で使用される「第1の」、「第2の」、および「第3の」という用語は、1つの構成要素を別の構成要素から区別するために交換可能に使用されてもよく、個々の構成要素の位置または重要性を示すものではない。「上流」または「後方」、ならびに「下流」または「前方」という用語は、流体経路における流体の流れに関する相対的な方向を指す。例えば、「上流」または「後方」は、流体が流れてくる方向を指し、「後部」と呼ばれることもある。「下流」または「前方」は、流体が流れていく方向を指し、「前部」と呼ばれることもある。「半径方向に」という用語は、特定の構成要素の軸方向中心線に略垂直な相対的な方向を指し、「軸方向に」という用語は、特定の構成要素の軸方向中心線に略平行な相対的な方向を指す。「円周方向の」および「接線方向の」という用語は、回転タービンまたは圧縮機ロータの円周と整列した方向を指すことがある。
本明細書および特許請求の範囲を通してここで使用される、近似を表す文言は、関連する基本的機能に変化をもたらすことなく、差し支えない程度に変動し得る任意の量的表現を修飾するために適用することができる。したがって、「およそ」、「約」、および「実質的に」などの1つまたは複数の用語によって修飾された値は、明記された厳密な値に限定されるものではない。少なくともいくつかの例では、近似を表す文言は、値を測定するための機器の精度に対応する場合がある。ここで、ならびに本明細書および特許請求の範囲の全体を通じて、範囲限界を組み合わせてもよいし、および/または置き換えてもよい。文脈または文言が特に指示しない限り、このような範囲は識別され、本明細書に含まれるすべての部分範囲を含む。
各例は、本実施形態を説明するために提供されており、本実施形態を限定するためではない。実際、本実施形態の範囲または趣旨を逸脱せずに、修正および変形が本実施形態において可能であることは、当業者にとって明らかであろう。例えば、一実施形態の一部として図示または説明された特徴を別の実施形態で使用し、さらに別の実施形態を得ることができる。したがって、本実施形態は、添付の特許請求の範囲およびそれらの均等物の範囲内にあるそのような修正および変形を包含することが意図されている。本実施形態の例示的な態様は、説明の目的でガスタービンに関して一般的に説明されるが、当業者であれば、本実施形態の態様を任意のターボ機械に適用することができ、特許請求の範囲に具体的に列挙しない限り、産業用ガスタービンに限定されないことを容易に理解するであろう。産業用、船舶用、または陸上用のガスタービンが本明細書に示され説明されているが、本明細書に示され説明される本開示は、特許請求の範囲に特に明記されない限り、陸上用および/もしくは産業用ならびに/または船舶用のガスタービンに限定されない。例えば、本明細書に記載される本開示は、限定はしないが、航空機転用タービンまたは船舶用ガスタービンならびに航空機エンジンタービンおよび/または航空用エンジンを含む任意のタイプのタービンに使用され得る。
ここで図面を参照すると、同様の参照符号は同様の構成要素を指し、図1は、本実施形態の様々な態様を組み込むことができるガスタービン10の例を示している。図示するように、ガスタービン10は、一般に、圧縮機セクション12を含み、圧縮機セクション12は、ガスタービン10の上流端に配置された入口14と、圧縮機セクション12を少なくとも部分的に囲むケーシング16とを有する。ガスタービン10は、圧縮機セクション12から下流に少なくとも1つの燃焼器20を有する燃焼セクション18と、燃焼セクション18から下流のタービンセクション22とをさらに含む。図示するように、燃焼セクション18は、複数の燃焼器20を含むことができる。シャフト24は、ガスタービン10を通って軸方向に延在する。図1は、半径方向94、軸方向92および円周方向90を示している。
動作中、空気26は、圧縮機セクション12の入口14に引き込まれ、次第に圧縮されて圧縮空気28を燃焼セクション18に供給する。圧縮空気28は、燃焼セクション18に流入し、燃焼器20において燃料と混合されて可燃性混合物を形成する。可燃性混合物は、燃焼器20で燃焼され、それにより燃焼器20からタービンノズル34の第1段32を横切ってタービンセクション22に流れ込む高温ガス30を生成する。タービンセクションは、一般に、タービンノズル34の隣接する列によって軸方向に分離されたロータブレード36の1つまたは複数の列を含む。ロータブレード36は、ロータディスクを介してロータシャフト24に結合される。ロータシャフト24は、エンジン中心線CLを中心として回転する。タービンケーシング38は、ロータブレード36およびタービンノズル34を少なくとも部分的に包囲する。ロータブレード36の列の各々または一部は、タービンケーシング38内に配置されるシュラウドブロックアセンブリ40によって同心状に囲まれてもよい。高温ガス30は、タービンセクション22を通って流れる際に急速に膨張する。熱および/または運動エネルギーが高温ガス30からロータブレード36の各段に伝達され、それによりシャフト24が回転して機械的仕事が生じる。シャフト24は、発電機(図示せず)などの負荷に結合されて電気を発生することができる。加えて、または代わりに、シャフト24を使用して、ガスタービンの圧縮機セクション12を駆動することができる。
図2は、軸方向前方の前縁44から軸方向後方の後縁46まで、かつ半径方向内側根元48から半径方向外側先端42まで延在する例示的なタービンロータブレードすなわち翼形部36の拡大断面側面図を提示している。翼形部36は、高温ガス経路の半径方向内側境界を画定するプラットフォーム50を含む。翼形部36はまた、膜冷却孔(図示せず)などの冷却孔を配置することができる少なくとも1つの基板52を含む。冷却孔を含む基板は、前縁44、後縁46、先端42を含む翼形部の任意の部分、ならびに翼形部の正圧側および/または翼形部の負圧側にあってもよい。図2の翼形部36は、本明細書に記載のシステムおよび方法を説明するための例示的な構成要素として使用され、タービンベーン、タービンノズル、燃焼器ライナー、シュラウド、ならびに冷却孔が配置された基板および/または表面を含む他の構成要素にも適用される。
図3は、冷却孔54を含む翼形部36の基板52の一部を示している。コンピュータ支援設計(CAD)モデルを使用して、冷却孔54の位置を特定することができる。各冷却孔54は、CADにおいて、円筒60によって表すことができ、ここで、円筒60のz軸の中心線は、冷却孔54の中心の位置および配向と整列している。円筒60の直径は、冷却孔54のボア直径と一致するようなサイズにすることができる。したがって、冷却孔54の形状の多くの態様は、円筒を使用してCADで表すことができる。他の実施形態では、楕円形、台形、三角形、長方形、および/または他の形状のプリズムを使用して、冷却孔54の形状を表すことができ、使用される形状は、冷却孔54の断面形状に依存してもよい。図3はまた、冷却孔54の近くで、z軸が局所表面または基板52に垂直になるように位置合わせされ得るx-y-z座標系を示している。z軸のゼロ点または原点(および一般にx-y-z座標系のゼロ点)は、冷却孔54の内部中心として選択され得る。
図4は、前縁44、後縁46、翼形部先端42、翼形部根元46、および翼形部プラットフォーム50を含む例示的な翼形部36を示す。図4の実施形態では、いくつかの冷却孔54が、翼形部36の基板52に配置されている。図4は、x-y-z座標系に対して位置合わせされている翼形部36、および取付システム56を示している。例えば、x軸は、翼形部プラットフォームの円周方向縁部に沿って定義されてもよく、y軸は、プラットフォームの軸方向縁部に沿って定義されてもよく、z軸は、前縁および/または翼形部36の他の半径方向に延在する部分に沿って整列されてもよい。他の座標系も定義することができる。6軸ロボットアーム58および/または他の位置合わせツールを使用して、x-y-z座標系が翼形部上で正確に位置合わせされるように、取付システム56に対して翼形部36を位置合わせすることができる。翼形部36、取付システム56、およびx-y-z座標系のロボットによる位置合わせは、6軸ロボットアーム58に搭載されたカメラによって提供されるカメラビュー、ならびにキャリパー、深さゲージ、近接ゲージ、ジャイロスコープ、マーカー、位置特定機構、および/または翼形部36上の位置合わせ機構を含む他の計測器を使用して実行され得る。使用できる他のタイプのゲージまたはプローブは、構造化された光プローブ、点共焦点プローブ、コノスコピックプローブ、または干渉プローブを含み、ロボットと組み合わせて、または固定された配置で位置合わせを確立する。さらに、精密な機械的固定具を使用して、部品モデルに従って既知のデータ点を使用して部品を位置合わせすることができる。翼形部36、取付システム56、およびx-y-z座標系の位置合わせに続いて、翼形部36の初期3Dスキャンを、3Dスキャナを使用して行うことができる。3Dスキャナは、レーザーストライプシステム、三角測量ベースの構造化光システム、位相シフトベースの白色光スキャナ、点スキャニング共焦点システム、レーザーレーダーシステム、立体写真測量システム、デプスフロムフォーカスベースのカメラシステム、メカニカルタッチベースのシステム、または上記の任意の組み合わせで構成され得る。位置合わせおよびスキャンシステムは、単一のシステムに組み合わせることができ、または2つ以上の個別のシステムであってもよい。別個の位置合わせおよびスキャンシステムおよび/または機械を使用することにより、各システムが単一の目的のみを果たすことが可能になり得、これにより、各システムの精度の改善が可能になり得る。さらに、別個の位置合わせおよびスキャンシステムおよび/または機械を使用することにより、システムが独立しておよび/または同時に動作することができるので、プロセス全体の改善が可能になり得る。
図5は、図4の3Dスキャナを介して受信された測定データに対して傾斜している翼形部36を示している。言い換えると、3Dスキャナによって取得された3D測定データは、図4で確立された孔のx-y-z座標系と一致するように変換される。スキャナによって取得された3D測定データは、非構造化3D点群から、例えば、点の3D三角測量などによって、局所法線および接続性などの地域近傍情報を有する構造化された3D点群データに変換され得る。このような構造化されたデータクラウドは、3Dメッシュ、データメッシュ、3Dデータメッシュ、および/または3D測定データメッシュと呼ばれることがあり、データ構造を保持するために、ステレオリソグラフィ(.stl)、VRML、またはWavefrontデータフォーマットを含む様々なファイルフォーマットを使用して、スキャナから他の処理システムに転送され得る。
図6は、翼形部基板52内に配置されたいくつかの冷却孔54と、いくつかの冷却孔内に配置された円筒60と、を含む翼形部36を示している。3Dスキャナによって取得された3D測定データは、3D測定データからの各データが、それが関連付けられている冷却孔54の円筒60の体積の内側または外側のいずれかにあるように、円筒座標系に転置される。3D測定データの円筒座標への変換は、検査座標系を孔座標系と関連付ける行列変換を含む様々な方法により実行することができる。
図7は、さらなる処理のために選択された冷却孔62を含む翼形部36を示している。冷却孔62は、特定の基準または複数の基準を超える円筒60(図示せず)の容積内の3D測定データを含む様々な基準を使用して選択され得る。例えば、冷却孔62は、3D測定データが、円筒の容積内(したがって、冷却孔62内)に、残留および/またはすり減ったサーマルバリアコーティング(TBC)などの異物、ならびに他の異物の存在を示唆している場合に選択され得る。別の言い方をすれば、異物の体積が所定のしきい値体積(例えば、円筒容積のパーセンテージ)を超える場合、冷却孔62は、さらなる処理のために選択され得る。同様に、冷却孔62はまた、3D測定データが、ある範囲の冷却孔の深さ(すなわち、円筒座標系のz軸に対して)に異物が存在することを示唆する場合には、さらなる処理のために選択され得る。さらなる処理のために選択された任意の冷却孔62に対して、少なくとも1つの追加の3Dスキャンを実行することができる。その他の異物には、すり減ったボンドコート、環境バリアコーティング(EBC)、堆積物、汚染物質、汚染物質、酸化、およびその他の材料が含まれる場合がある。可能性のある損傷、材料の欠落、または重大な位置ずれのために、孔が選択される場合もある。
図8は、翼形部36(図示せず)の基板52内に配置された冷却孔62の拡大図を示している。冷却孔62は、冷却孔が基板52の平面と交差する冷却孔出口部分に、1つまたは複数の側壁64、ならびに1つまたは複数の下流側角部68を含むことができる。冷却孔62はまた、冷却孔計量セクションと冷却孔出口との間の遷移を画定する傾斜部分66を含むことができる。傾斜部分66は、実質的に平面であってもよく、空気力学的形状を有してもよい。冷却孔62はまた、中央ボア部分70を含むことができる。
図9は、図8の冷却孔62の拡大図を示しており、その上部に点群データがマッピングされている。点群は、点間の隣接、表面フィッティング、またはその他の数学的モデル接続に関して、接続または順序付けが確立された関連付ける点がない一連の測定データ点である。各点について知られている唯一の情報は、その点のX-Y-Z座標である。公称モデル形状に基づいて個々の点を曲線または小さな表面領域の数学的な表面にロフトし、これらの表面を使用して幾何学的特徴を決定する従来のアプローチではなく、この点データのみを使用して局所化された傾向または変化を評価する。適合した数学的表面の使用は時間がかかり、数学的表面モデル内の他の非孔特徴部の形状または位置のために、点群データ内に存在する非常に局所化された特徴を失うかバイアスをかける可能性がある。点群データは、さらなる処理のために、および他のプロセスを介して、選択された冷却孔62での2回目以降の3Dスキャン中に収集され得る。点群データは、各場所の表面に垂直な方向の配向を表すことができる。同様に、点群データは、法線表面配向の変化を表すことができる。したがって、点群データを使用して、表面法線配向がすぐ近くの他の点(基板52および傾斜部分66などの平面部分など)に対して一定である領域を識別することができる。点群データを使用して、下流側角部68および側壁64など、表面法線配向が急速に変化している領域を特定することができる。点群データを使用して、冷却孔の中央ボア部分70など、表面法線配向が存在しない領域を特定することができる。点群データを使用して、基板52などの3Dスキャン方向(例えば、z軸)に対して表面法線配向が直交する領域を特定することができる。記載したように点群データを使用することで、数学的に適合した表面に影響を与える可能性のある部品上の他の特徴によるバイアスまたは平均化の影響を受けずに、冷却孔62の形状の複数の属性を特定することができ、これにより、測定された冷却孔の形状が公称冷却孔の形状または予想される位置から逸脱している場合でも、冷却孔62の境界を特定する複数の方法が可能となる。
図10は、点群データおよび基板表面の正規性を使用して基板52および大まかな孔境界72を識別する際の第1のパスを含む、図8および図9の冷却孔62の拡大図を示す。
図11は、図8~図10の冷却孔62の拡大図を示しており、下流側角部および/または傾斜部分の点群データを使用する孔境界72、基板52を用いた孔境界72の改善されたマッピングと、点群データおよび基板表面の正規性を用いた大まかな孔境界72と、を含む。
図12は、基板52などの法線表面配向を有する部分、ならびに第1の非法線表面部分74および第2の非法線表面部分76を含む冷却孔62の表現の拡大図を示す。
図13は、基板52などの法線表面配向を有する部分、ならびに第1の非法線表面部分74および第2の非法線表面部分76を含む冷却孔62の表現の拡大図を示す。図13では、冷却孔自由縁部73の一部が、基板52などの法線表面配向を有する部分と、第1および第2の非法線表面部分74、76の少なくとも1つとの間の遷移または縁部で識別される。冷却孔自由縁部73は、円筒座標系に照らして、公称部品形状の形状と一致する形状を有することができる。図13では、冷却孔自由縁部73は、基板52と第1の非法線表面74との間の遷移で識別される。遷移が公称部品データの形状と一致しないか、または配向が一致しないため、基板52と第2の非法線表面76との間の遷移では、冷却孔自由縁部73は識別されない。第3の非法線表面77もまた識別され、また、基準に一致する冷却孔自由縁部73を含まない。別の言い方をすれば、法線部分と非法線部分との間の遷移の形状および配向の両方を使用して、冷却孔境界を識別することができる。冷却孔自由縁部73は、冷却孔境界72(図示せず)と一致する場合と一致しない場合がある。例えば、法線表面配向を有する部分と非法線表面配向を有する部分との間の遷移を画定する冷却孔自由縁部73は、冷却孔62内にある場合があり、したがって、冷却孔境界を定義しない場合がある。これは、冷却孔境界72がデブリ、コーティング、および/またはファウラントの1つまたは複数の層で覆われており、したがって、正常な表面配向を有するように見えるが、少なくとも1つの冷却孔自由縁部73(すなわち、法線表面配向と非法線表面配向との間の遷移)が冷却孔62内の深さに配置されている場合に生じ得る。このように、冷却孔自由縁部73は、冷却孔境界72の特徴的な孔形状の一部(例えば片側)のみを冷却孔自由縁部73が含むことに起因して、スケーリング(自由縁部が冷却孔62内の深さまたは冷却孔62上の高さで発生することによる)および/または並進を必要とする冷却孔境界72の近似であってもよい。
さらに図13を参照すると、第2の非法線表面部分76(すなわち、法線表面配向を有すると「予想される」基板の位置で)は、基板の浸食、剥離、異物の堆積、異物の損傷、ならびに他の形態の変質および/または劣化に起因する可能性がある。冷却孔62の表現は、法線配向を有しているように見え、したがって冷却孔62を囲む基板52の一部であるように見えるが、冷却孔62の表現のうち、冷却孔62自体によって占有されることが予想される部分に位置する、埋め込まれた法線部分80を含んでもよい。冷却孔62内の部分は周囲の基板52の「ように見える」可能性があるため、冷却孔自由縁部73の形状を公称部品データの形状と正確に一致させることができない場合がある。図8~図11、ならびに図12および図13は、他の可能な目的の中で、冷却孔62の初期境界または大まかな境界を特定する目的で、測定された表面正規性データ、公称部品データ形状、および所定の座標系に対するそれらの配向を使用する方法を示している。
図14は、図12および図13の冷却孔境界72(図示せず)の近似の改善を示し、予想される冷却孔境界の特徴的な船体形状の投影82を、冷却孔自由縁部73を含む測定された3Dデータにマッピングする。特徴的な船体形状は、丸みを帯びた縁部を有する対称台形として説明できる。投影82は、冷却孔自由縁部73に最もよく一致するように、サイズを拡大または縮小することができる。例えば、冷却孔62内に堆積物が存在する場合、冷却孔自由縁部73は、図示しない冷却孔境界72(すなわち、例えば、深さがゼロで、または基板52と共平面である平面内で冷却孔62と基板52との交点)とは異なる大きさに見えることがある。冷却孔62の輪郭は、様々な深さで同じ特徴的な形状を含んでいてもよく、サイズが拡大または縮小されているだけである(例えば、膜冷却孔の拡散部分の断面積および/または流路面積が、孔が基板52に遷移するにつれて増加し続けることによる)。さらに、所定の許容範囲内での円筒座標系に対する投影の配向に基づくスケーリングもまた望ましい場合がある。したがって、冷却孔自由縁部73と一致するように投影82をスケーリングすることが必要な場合がある。投影82はまた、図14に示すように、特徴的な形状のために船体として説明され得る。
図15は、別の改善を含み、冷却孔自由縁部73と、互いに重畳された特徴的な船体形状の投影82のみを示す。この重ね合わせにより、少なくとも1つのオフセット84を定義することができる。オフセット84は、冷却孔特徴部の公称位置と対応する測定データの位置との間の空間変位として定義することができる。オフセットは、任意の軸(横方向、縦方向、軸方向)に対する並進、および/または円筒座標系に対する配向に一致する回転を含んでもよい。さらに、複数のオフセットを定義することができる。
図16は、特徴的な船体形状の投影80と、図15からのオフセット84を特徴的な船体形状の投影80に適用するオフセット船体86と、を示している。図16はまた、基板52によって規定される平面で冷却孔境界72を近似する第2の投影88を示している。別の言い方をすれば、特徴的な船体形状およびオフセット船体86の投影80は、基板52によって規定される平面とは異なる深さおよび/または高さで発生することができ、その差は、第2の投影88によって近似および説明され得る。
図17は、特徴的な船体形状の投影80、オフセット船体86、および測定データの3Dメッシュに重畳された第2の投影88を示し、これはまた、法線表面配向を有する部分として示される基板52を示す。図17は、第2の投影88(冷却孔境界72の改善された近似である)を測定データの3D点に重ね合わせた後に、法線表面配向の部分が投影された孔境界内にあることを示す。別の言い方をすれば、表面正規性のために(したがって冷却孔境界72の外側に)基板52の一部である可能性が高いと以前に識別された測定データの部分は、近似を改善した後に冷却孔境界72内にあると実際に決定された。したがって、基板52の一部として最初に識別されたものは、改善時に、冷却孔62内の漂遊物または異物として再識別される。したがって、冷却孔自由縁部73、特徴的な船体形状の投影80、オフセット船体86、および図13~図17に示すように測定データの3Dメッシュに重畳された第2の投影88を使用して、冷却孔境界72のより正確な精緻化が、冷却孔境界を識別するために表面正規性データのみに依存する方法論と比較して可能である。
図18は、第2の投影88内にあった法線表面の部分(すなわち、冷却孔境界72の近似)が除去された後の冷却孔62の改善された近似を示している。第2および第3の非法線表面76、77もまた、改善された冷却孔境界72の外側として識別され、したがって、冷却孔62の一部を形成しない。
図19は、第2の投影88の内側にある法線表面の一部(または冷却孔境界の近似)、および第2の投影88の外側にある第2および第3の非法線表面76、77(図示せず)を除去した後の、高次の適合または近似を用いた冷却孔62の改善された近似を示している。これらの外れ値の表面を削除すると、冷却孔境界のさらに改善された近似が可能になる。そのため、外れ値データを破棄した後に、適合の順序を繰り返しおよび/または段階的に増やすことにより、さらなる改善が可能になり得る。
図20は、計量セクション96、拡散セクション98への遷移を画定するスロート100、および基板52を含む例示的な冷却孔62の側面図を示す。冷却孔62は、中心線102およびピアス点104を含む。ピアス点104は、冷却孔の中心線102と基板52の平面との交点で定義される。ピアス点104は、孔座標系の原点またはゼロ点として使用することができる。ピアス点104はまた、冷却孔境界近似(例えば、第2の投影88)を、冷却孔境界が定義される平面(すなわち、基板52)に固定するために使用され得る。
図21は、第2の投影88が実際の冷却孔境界に変換される前の、冷却孔62、基板52、および第2の投影88を示している。
図22は、第2の投影88が実際の冷却孔境界に変換された後の、冷却孔62、基板52、および第2の投影88を示している。第2の投影88は、実際の冷却孔境界に一致するように最適に変形され得るように、図の平面内で並進および回転され得る。さらに、第2の投影88は、図20に示すピアス点104を使用して、正しい仰角または平面に固定され得る。
図23は、複数の曲線92から構築されたツールパス90を示しており、曲線92は第2の投影88から構築されている。第2の投影88は、冷却孔境界72の全周の改善された近似を提供し、それは次に複数の深さで適用される。第2の投影88が適用される各深さは、複数の曲線92のうちの1つによって表され、各曲線は、特徴的な船体形状を含むことができ、第2の投影88の冷却孔62の中心と同心であり得る。
図24は、冷却孔62および基板52を含む3Dスキャン測定データを含む翼形部36の表面に重畳された複数の深さ(図23に示す)での第2の投影88から生じるツールパス90を示す。ツールパス90は、オフセットデータを使用して法線表面平面内で並進および/または回転され、円筒座標系を使用して冷却孔62の対応する部分と位置合わせされる。
図25~図27は、それぞれ、第2の投影88(すなわち、冷却孔境界72の改善された近似)および様々な深さでの複数の曲線92を含む改善されたツールパス94の上面図、底面図、および側面図を示す。図25~図27の改善されたツールパス94はまた、図23および図24のツールパス90を冷却孔部品の形状データと交差および/または組み合わせることによって構築される部分を含む。例えば、冷却孔部品の形状データは、冷却孔スロート100で拡散セクション98に遷移する計量セクション96を含んでもよい。
図28は、本明細書に開示した実施形態による部品を修復する方法2500を示している。ステップ2502で、方法2500は、冷却孔を識別し、CADで冷却孔座標系を定義するステップを含む。冷却孔座標系は、冷却孔の中心軸位置および軸配向、ならびに冷却孔ボアの直径を定義する円筒60を含むことができる。ステップ2504で、方法2500は、6軸ロボット28などの位置合わせツールを使用して、部品を取付システム56と位置合わせするステップを含む。部品座標系は、部品形状に基づく任意の実施形態を含むことができる。例えば、部品座標系は、x、y、およびz軸を、ターボ機械で使用される部品(タービンブレードまたはタービンノズルなど)の円周方向、軸方向、および半径方向にマッピングすることができる。他の座標系も可能である。ステップ2506で、方法2500は、部品を3Dスキャンするステップを含む。ステップ2508で、方法2500は、ステップ2506のスキャンからの3D測定データを部品形状データと位置合わせするステップ、ならびに非構造化測定点群から三角メッシュなどの3D構造化点群データを構築するステップを含む。ステップ2510で、方法2500は、3D測定データ(すなわち、スキャンからのデータ)を部品座標系から孔座標系に変換するステップを含む。ステップ2512で、方法2500は、さらなる処理のために所定のしきい値をパスする冷却孔62を識別するステップを含む。所定のしきい値は、円筒60の容積内に重要な材料(すなわち、例えば、特定の体積パーセントを超える)を含む冷却孔を識別するステップを含むことができる。
引き続き図28を参照すると、ステップ2514で、方法2500は、ステップ2512でさらなる処理のために選択された冷却孔のみの第2の3Dスキャンを実行するステップを含むことができる。あるいは、ステップ2514で、方法2500は、元のスキャンからのデータを使用して(すなわち、ステップ2506で)、選択された冷却孔に対応するデータを再処理するステップを含むことができる。ステップ2516で、本方法は、第2のスキャンからの表面正規性データおよび/または第1のスキャンからの3D測定データを部品形状データに重畳するステップを含む。ステップ2518で、方法2500は、冷却孔62および周囲の基板52の法線表面および非法線表面を識別するために点群データをフィルタリングするステップを含む。ステップ2520で、方法2500は、表面正規性データを使用して大まかな孔境界を決定するステップを含むことができる。大まかな孔境界を決定するステップは、3Dスキャンデータを、下流側角部68、傾斜部分66、および少なくとも1つの冷却孔自由縁部73などの公称冷却孔特性と一致させるステップを含むことができる。ステップ2522で、方法2500は、冷却孔の形状特性を使用して、近似された冷却孔境界を3D測定データメッシュにマッピングするステップを含む。ステップ2524で、方法2500は、公称冷却孔境界を3D測定データメッシュに投影するステップを含むことができる。ステップ2526で、方法2500は、公称冷却孔境界と測定された冷却孔境界との間のオフセットを決定するステップを含むことができる。オフセットは、基板52によって規定されたプレート内の回転および/または並進、ならびに平行平面(孔内または基板52より上の高さでの測定データを説明するため)を含むことができる。
さらに図28を参照すると、ステップ2528で、本方法は、オフセットおよび/または孔の深さデータ(すなわち、測定データが対応する深度)に基づいて投影をスケーリングするステップを含むことができる。ステップ2530で、本方法は、X、Y、およびZ方向のそれぞれにおいて実際に検出された境界に一致するようにスケーリングされた投影88を変換するために、ピアス点を使用して、スケーリングされた投影88を3D測定データメッシュまたは構造化点群に投影するステップを含むことができる。ステップ2532で、本方法は、外れ値データを除去するステップを含むことができる。外れ値データは、スケーリングされた投影88内で識別された法線表面データ(すなわち、冷却孔境界近似)、ならびにスケーリングされた(または第2の)投影88の外側にある非法線表面データ(すなわち、「ように見える」が実際には基板の一部に位置するデータ)を含むことができる。ステップ2534で、方法2500は、より高次の適合を使用して冷却孔境界を改善するステップを含むことができる。ステップ2536で、方法2500は、オフセットデータおよびスケーリングされた投影88を使用してツールパスを生成するステップを含むことができる。ステップ2538で、方法2500は、ツールパスを3D測定データメッシュに投影するステップを含むことができる。ステップ2540で、本方法は、ツールパスを部品形状データと交差および/または組み合わせて、改善されたツールパスを生成するステップを含むことができる。ステップ2542で、本方法は、改善されたツールパスを使用して部品を修復するステップを含むことができる。部品を修復するステップは、冷却孔、冷却孔境界、冷却孔壁、および/または基板の部分を穿孔、フライス加工、他の形態の機械加工、再コーティング、再表面加工、および/または改質するステップを含むことができる。別の言い方をすれば、修復プロセスは、アディティブおよび/またはサブトラクティブな冷却孔復元プロセスを含むことができる。他の修復方法も使用することができる。さらに、翼形部、部品、および/または冷却孔の部分の改質は、積層造形法、および他のプロセスにより実行されてもよい。方法2500はまた、他のステップおよびサブステップを含んでもよい。いくつかの実施形態では、方法2500のすべてのステップが実行されるわけではない。さらに、方法2500の様々なステップは、図28に示されているものとは異なる順序で実行されてもよい。
ここで記載した方法、システム、および実施形態は、広範囲の冷却孔の形状をクリアまたはマスキングする迅速かつ自動化されたプロセスを可能にし、それらは、手動の冷却孔のクリアランスおよび復元の労働集約的なプロセスを完全に排除することができる。また、スキャン情報を用いて冷却孔の特徴情報を直接計算することで、各部品のデジタルスレッドおよびツインを確立することができ、これにより、実際の孔の位置と境界データに基づいてより正確な部品ライフィングモデルを生成するための、ファミリ内のいくつかの部品の冷却孔の形状情報の統計的調査が可能になる。部品上の冷却孔の位置と境界形状を自動的に識別し、多軸ロボットが各冷却孔内またはその周辺に材料を正確かつ適応的に堆積または除去することを可能にする一組のツールパス命令を生成することにより、本明細書に記載された方法およびシステムは、部品修復プロセスを合理化すると同時に、前記修復プロセスおよび結果としての修復された部品の品質を向上させることができる。本明細書で説明するプロセスは、エンジン構成要素(例えば、タービンブレードまたはノズル)の公称設計形状を、構成要素の物理的インスタンスからの3次元スキャンデータと組み合わせて利用する。
本明細書は、最良の形態を含む本実施形態を開示し、また、いかなる当業者も本実施形態を実施できるようにするために、実施例を用いており、そのような実施は任意の装置またはシステムを製作し使用し、任意の組み込まれた方法を実行することを含む。本開示の特許可能な範囲は、特許請求の範囲によって定義され、当業者が想到する他の実施例を含むことができる。このような他の実施例は、それらが特許請求の範囲の文言と異ならない構造要素を含む場合、または特許請求の範囲の文言と実質的な差異を有さない均等な構造要素を含む場合、特許請求の範囲内であることを意図している。
10 ガスタービン
12 圧縮機セクション
14 入口
16 ケーシング
18 燃焼セクション
20 燃焼器
22 タービンセクション
24 ロータシャフト
26 空気
28 圧縮空気、6軸ロボット
30 高温ガス
32 第1段
34 タービンノズル
36 翼形部、部品
38 タービンケーシング
40 シュラウドブロックアセンブリ
42 半径方向外側先端、翼形部先端
44 前縁
46 後縁、翼形部根元
48 半径方向内側根元
50 翼形部プラットフォーム
52 翼形部基板
54 冷却孔
56 取付システム
58 6軸ロボットアーム
60 円筒
62 冷却孔
64 側壁
66 傾斜部分
68 下流側角部
70 中央ボア部分
72 冷却孔境界
73 冷却孔自由縁部
74 第1の非法線表面部分
76 第2の非法線表面部分
77 第3の非法線表面
80 投影
82 投影
84 オフセット
86 オフセット船体
88 第2の投影
90 ツールパス、円周方向
92 曲線、第1のツールパス
94 半径方向、ツールパス
96 計量セクション
98 拡散セクション
100 冷却孔スロート
102 中心線
104 ピアス点
2500 方法

Claims (20)

  1. 部品(36)を処理する方法(2500)であって、
    前記部品(36)のコンピュータ支援設計(CAD)モデルを使用して、前記部品(36)に配置された少なくとも1つの孔(62)の位置を識別するステップ(2502)と、
    取付システム(56)内の前記部品(36)を位置合わせするステップ(2504)と、
    前記部品(36)を3Dスキャンするステップ(2506)と、
    前記部品(36)を3Dスキャンするステップ(2506)からの少なくとも1つのデータに少なくとも部分的に基づいて、前記少なくとも1つの孔(36)の少なくとも1つの境界特徴を検出するステップ(2520)と、
    前記少なくとも1つの境界特徴に少なくとも部分的に基づいて、第1のツールパス(92)を生成するステップ(2536)と、
    を含む方法(2500)。
  2. 前記第1のツールパス(92)に従って少なくとも部分的に前記部品(36)を修復するステップをさらに含み、
    前記部品(36)を修復するステップは、穿孔、フライス加工、機械加工、再コーティング、再表面加工、および改質のうちの少なくとも1つをさらに含み、
    前記少なくとも1つの孔は冷却孔(54、62)を含む、請求項1に記載の方法(2500)。
  3. 孔座標系を定義するステップをさらに含み、
    前記孔座標系は円筒座標系を含み、前記円筒座標系の円筒(60)の中心線は、前記少なくとも1つの孔の中心線の位置および配向を表し、
    前記円筒(60)の直径は、前記少なくとも1つの孔のボア直径を表す、
    請求項1に記載の方法(2500)。
  4. 取付システム内で前記部品(36)を位置合わせするステップは、多軸ロボットアームを介して取付システム内で前記部品(36)を位置合わせするステップをさらに含む、請求項1に記載の方法(2500)。
  5. 少なくとも1つの孔を選択するステップをさらに含み、
    選択された前記少なくとも1つの孔は、少なくとも1つの所定のしきい値を満たし、
    前記選択された少なくとも1つの孔に対して第2の3Dスキャンが実行される、
    請求項1に記載の方法(2500)。
  6. 前記部品(36)を3Dスキャンするステップからのデータを使用して構造化された3D点群を生成するステップをさらに含み、
    前記少なくとも1つの孔は冷却孔(54、62)を含み、
    前記少なくとも1つの冷却孔(54、62)の少なくとも1つの境界特徴を検出するステップは、冷却孔下流側角部、冷却孔傾斜部分、冷却孔側壁、および冷却孔自由縁部(73)のうちの少なくとも1つを検出するステップをさらに含む、請求項1に記載の方法(2500)。
  7. 冷却孔傾斜部分を検出するステップをさらに含み、
    前記冷却孔傾斜部分は、前記冷却孔(54、62)の計量部分と前記部品(36)の基板との間の遷移を形成する、請求項6に記載の方法(2500)。
  8. 冷却孔自由縁部(73)を検出するステップをさらに含み、
    前記冷却孔自由縁部(73)は、前記部品(36)の非法線表面と前記部品(36)の基板との間の遷移を形成し、
    前記部品(36)の基板は法線表面配向を有する、請求項6に記載の方法(2500)。
  9. 前記少なくとも1つの孔の少なくとも1つの境界特徴を検出するステップは、前記第2の3Dスキャンからの表面正規性データを使用して少なくとも1つの境界特徴を検出するステップをさらに含む、請求項5に記載の方法(2500)。
  10. 元の3Dスキャンおよび前記第2の3Dスキャンのうちの少なくとも一方からの構造化された3D点群上に公称孔境界の第1の投影を重畳するステップをさらに含む、請求項5に記載の方法(2500)。
  11. 前記公称孔境界は船体形状である、請求項10に記載の方法(2500)。
  12. 公称孔境界の前記第1の投影と前記構造化された3D点群との間に少なくとも1つのオフセット(84)を定義するステップをさらに含み、
    少なくとも1つのオフセット(84)は、並進および回転のうちの少なくとも一方を含む、請求項10に記載の方法(2500)。
  13. 第2の投影(88)を生成するために前記少なくとも1つのオフセット(84)を使用して前記第1の投影を改良およびスケーリングするステップであって、前記第2の投影(88)は前記第1の投影のスケーリングされたバージョンである、ステップと、
    前記第2の3Dスキャンからの前記構造化された3D点群上に公称孔境界の前記第2の投影(88)を重畳するステップと、
    をさらに含む、請求項12に記載の方法(2500)。
  14. 少なくとも1つの外れ値データ点を削除するステップをさらに含み、
    前記少なくとも1つの外れ値データ点は、前記第2の投影(88)内に配置された法線表面配向を有する前記構造化された3D点群の第1の部分、および前記第2の投影(88)の外側に配置された非法線表面配向を有する前記構造化された3D点群の第2の部分のうちの少なくとも一方を含む、
    請求項13に記載の方法(2500)。
  15. 前記少なくとも1つの外れ値データの除去に続いて前記第2の投影(88)を再スケーリングするステップをさらに含む、請求項14に記載の方法(2500)。
  16. 第1のツールパス(92)を生成するステップは、前記第2の投影(88)に少なくとも部分的に基づいて前記第1のツールパス(92)を生成するステップをさらに含む、請求項13に記載の方法(2500)。
  17. 前記構造化された3D点群上に前記第1のツールパス(92)をマッピングするステップをさらに含む、請求項16に記載の方法(2500)。
  18. 第2のツールパスを生成するために、前記第1のツールパス(92)を前記少なくとも1つの孔の少なくとも1つの部品形状データと組み合わせるステップをさらに含み、
    前記第2のツールパスは前記第1のツールパス(92)の改善されたバージョンであり、
    前記第1のツールパス(92)に従って前記部品(36)を少なくとも部分的に修復するステップは、前記第2のツールパスに少なくとも部分的に基づいて修復するステップをさらに含む、
    請求項17に記載の方法(2500)。
  19. 前記少なくとも1つの孔の前記少なくとも1つの部品形状データは、
    計量セクション(96)と、
    前記計量セクション(96)の下流側の拡散セクション(98)と、
    スロート部分(100)と、
    を含み、
    前記スロート部分(100)は、前記計量セクション(96)と前記拡散セクション(98)との間で遷移する、
    請求項18に記載の方法(2500)。
  20. 少なくとも1つの外れ値データ点を削除するステップと、
    前記少なくとも1つの外れ値データを削除した後に、前記第2の投影(88)を再スケーリングするステップと、
    をさらに含み、
    前記少なくとも1つの外れ値データ点は、前記第2の投影(88)内に配置された法線表面配向を有する前記構造化された3D点群の第1の部分、および前記第2の投影(88)の外側に配置された非法線表面配向を有する前記構造化された3D点群の第2の部分のうちの少なくとも一方を含み、
    前記少なくとも1つの孔は冷却孔(54、62)を含み、
    前記少なくとも1つの冷却孔(54、62)の少なくとも1つの境界特徴を検出するステップは、冷却孔下流側角部、冷却孔傾斜部分、冷却孔側壁、および冷却孔自由縁部(73)のうちの少なくとも1つを検出するステップをさらに含み、
    前記公称孔境界は船体形状である、
    請求項19に記載の方法(2500)。
JP2021512415A 2018-09-28 2018-09-28 冷却孔の自動識別及びツールパスの生成 Active JP7455814B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2018/053613 WO2020068130A1 (en) 2018-09-28 2018-09-28 Automated identification of cooling holes and toolpath generation

Publications (3)

Publication Number Publication Date
JP2022510538A true JP2022510538A (ja) 2022-01-27
JPWO2020068130A5 JPWO2020068130A5 (ja) 2022-11-14
JP7455814B2 JP7455814B2 (ja) 2024-03-26

Family

ID=64049683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021512415A Active JP7455814B2 (ja) 2018-09-28 2018-09-28 冷却孔の自動識別及びツールパスの生成

Country Status (5)

Country Link
US (1) US20210383030A1 (ja)
EP (1) EP3857027A1 (ja)
JP (1) JP7455814B2 (ja)
CN (1) CN112639251A (ja)
WO (1) WO2020068130A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11329391B2 (en) * 2015-02-27 2022-05-10 Viasat, Inc. Enhanced directivity feed and feed array
US11840032B2 (en) * 2020-07-06 2023-12-12 Pratt & Whitney Canada Corp. Method of repairing a combustor liner of a gas turbine engine
US11542831B1 (en) 2021-08-13 2023-01-03 Raytheon Technologies Corporation Energy beam positioning during formation of a cooling aperture
US11673200B2 (en) 2021-08-13 2023-06-13 Raytheon Technologies Corporation Forming cooling aperture(s) using electrical discharge machining
US11603769B2 (en) 2021-08-13 2023-03-14 Raytheon Technologies Corporation Forming lined cooling aperture(s) in a turbine engine component
US11898465B2 (en) 2021-08-13 2024-02-13 Rtx Corporation Forming lined cooling aperture(s) in a turbine engine component
US11732590B2 (en) 2021-08-13 2023-08-22 Raytheon Technologies Corporation Transition section for accommodating mismatch between other sections of a cooling aperture in a turbine engine component
US11913119B2 (en) 2021-08-13 2024-02-27 Rtx Corporation Forming cooling aperture(s) in a turbine engine component
US11813706B2 (en) 2021-08-13 2023-11-14 Rtx Corporation Methods for forming cooling apertures in a turbine engine component
CN115179065B (zh) * 2022-06-20 2023-12-08 成都飞机工业(集团)有限责任公司 一种进气道类复材工装模板加工支撑结构及余量调整方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144091A (ja) * 2002-10-23 2004-05-20 General Electric Co <Ge> ブレードの翼形部を修理するために自動感知しかつ自動機械加工するためのシステム及び方法
JP2014163898A (ja) * 2013-02-27 2014-09-08 Mitsubishi Heavy Ind Ltd 施工対象物の孔位置取得方法、及びこれを用いた遮熱コーティング方法
JP2017090456A (ja) * 2015-11-11 2017-05-25 ゼネラル・エレクトリック・カンパニイ 成形された冷却孔の自動測定方法及びシステム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040265488A1 (en) * 2003-06-30 2004-12-30 General Electric Company Method for forming a flow director on a hot gas path component
EP1767743A1 (de) 2005-09-26 2007-03-28 Siemens Aktiengesellschaft Verfahren zum Herstellen eines zu beschichtenden Gasturbinen-Bauteils mit freigelegten Öffnungen, Vorrichtung zur Durchführung des Verfahrens und beschichtbare Turbinenschaufel mit Filmkühlöffnungen
US8380338B2 (en) * 2008-04-29 2013-02-19 Huffman Corporation Method and apparatus for stripping holes in a metal substrate
CN102608954A (zh) * 2012-03-26 2012-07-25 西安交通大学 一种基于测量数据的刀具轨迹直接生成方法
US9251582B2 (en) * 2012-12-31 2016-02-02 General Electric Company Methods and systems for enhanced automated visual inspection of a physical asset
US10556305B2 (en) * 2016-02-03 2020-02-11 The Boeing Company Aligning parts using multi-part scanning and feature based coordinate systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144091A (ja) * 2002-10-23 2004-05-20 General Electric Co <Ge> ブレードの翼形部を修理するために自動感知しかつ自動機械加工するためのシステム及び方法
JP2014163898A (ja) * 2013-02-27 2014-09-08 Mitsubishi Heavy Ind Ltd 施工対象物の孔位置取得方法、及びこれを用いた遮熱コーティング方法
JP2017090456A (ja) * 2015-11-11 2017-05-25 ゼネラル・エレクトリック・カンパニイ 成形された冷却孔の自動測定方法及びシステム

Also Published As

Publication number Publication date
CN112639251A (zh) 2021-04-09
EP3857027A1 (en) 2021-08-04
WO2020068130A1 (en) 2020-04-02
JP7455814B2 (ja) 2024-03-26
US20210383030A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
JP7455814B2 (ja) 冷却孔の自動識別及びツールパスの生成
US7578178B2 (en) Method of inspecting turbine internal cooling features using non-contact scanners
US7797828B2 (en) Adaptive machining and weld repair process
CA2731756C (en) Method for repairing and/or upgrading a component, especially of a gas turbine
Gao et al. An integrated adaptive repair solution for complex aerospace components through geometry reconstruction
CA2679851C (en) Method of making a part and related system
US7472478B2 (en) Adaptive machining and weld repair process
EP1760427B1 (en) Methods for measuring the nozzle flow area between gas turbine engine vanes
US20070019213A1 (en) Systems and methods for determining the location and angular orientation of a hole with an obstructed opening residing on a surface of an article
CN108344372B (zh) 制作和监测具有一体式应变指示器的部件的方法
US11407067B2 (en) Method for repairing a part
JP2017129571A (ja) タービンコンポーネントをモニタするための方法
US20240059036A1 (en) Method of repairing a combustor liner of a gas turbine engine
KR102543861B1 (ko) 일체형 스트레인 인디케이터를 갖는 부품을 제조하는 방법
JPWO2020068130A5 (ja)
EP3109479B1 (en) Multi coordinate reference for positioning bladed drum
JP2017090458A (ja) 構成部品を監視するためのシステムおよび方法
US20240139892A1 (en) A method of manufacturing a turbomachinery component
EP3135427B1 (en) Method, apparatus and computer program for repairing aerofoils of gas turbine engines
Poyraz et al. Investigation of Free-Form Surface Reconstruction Techniques for Reverse Engineering of Worn-Out Gas Turbine Blades: A Case Study
US20230306163A1 (en) Inspection systems and methods with airfoil sheaths
US20240110481A1 (en) Methods of machining turbine components using a reference surface
CA3211230A1 (en) Adaptive component overhaul using structured light scan data

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210430

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210430

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221104

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20221104

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20221104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231108

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20231110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20231111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20231121

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240313

R150 Certificate of patent or registration of utility model

Ref document number: 7455814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150