JP2017520391A - Method of preparing dechlorinated caustic sludge mixture from caustic sludge by ammonia soda method and its application - Google Patents

Method of preparing dechlorinated caustic sludge mixture from caustic sludge by ammonia soda method and its application Download PDF

Info

Publication number
JP2017520391A
JP2017520391A JP2016568449A JP2016568449A JP2017520391A JP 2017520391 A JP2017520391 A JP 2017520391A JP 2016568449 A JP2016568449 A JP 2016568449A JP 2016568449 A JP2016568449 A JP 2016568449A JP 2017520391 A JP2017520391 A JP 2017520391A
Authority
JP
Japan
Prior art keywords
caustic sludge
powder
dechlorinated
sandstone
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016568449A
Other languages
Japanese (ja)
Other versions
JP6404948B2 (en
Inventor
医博 楊
医博 楊
文瑛 郭
文瑛 郭
海鴻 莫
海鴻 莫
恒昌 王
恒昌 王
Original Assignee
華南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華南理工大学 filed Critical 華南理工大学
Publication of JP2017520391A publication Critical patent/JP2017520391A/en
Application granted granted Critical
Publication of JP6404948B2 publication Critical patent/JP6404948B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

アンモニアソーダ法による苛性スラッジから脱塩素苛性スラッジ混合物を調製する方法であって、ステップ1、戻り砂石を破砕し研磨して、戻り砂石粉を得ることと、ステップ2、焼成した酸化カルシウムを消化させるように、前記戻り砂石粉を水中に0.5から14日間浸し、そして、消化後の戻り砂石粉と、苛性スラッジ及び水とを混合し、そこでは、各材料の質量比として、消化後の戻り砂石粉と苛性スラッジとの乾燥質量比は2:8乃至5:5であり、水の質量は消化後の戻り砂石粉及び苛性スラッジの合計乾燥質量の1.5乃至8倍であること、或いは、焼成した酸化カルシウムを消化させるように、前記戻り砂石粉と、苛性スラッジ及び水とを混合し、水中に0.5から14日間浸し、そこでは、各材料の質量比として、消化後の戻り砂石粉と苛性スラッジとの乾燥質量比は2:8乃至5:5であり、水の質量は消化後の戻り砂石粉及び苛性スラッジの合計乾燥質量の1.5乃至8倍であることと、ステップ3、加圧濾過処理を行い、塩素イオン含有量が、混合物中の固体の合計質量の0.30%未満である脱塩素苛性スラッジ混合物を獲得することと、を含む。本発明の方法によれば、脱塩素効果がよく、処理工程が簡単であり、省エネ且つ環境保護効果を有する。【選択図】なしA method for preparing a dechlorinated caustic sludge mixture from caustic sludge by the ammonia soda method, step 1, crushing and polishing the return sandstone to obtain a return sandstone powder, step 2, digesting the calcined calcium oxide The return sandstone powder is soaked in water for 0.5 to 14 days, and the digested return sandstone powder is mixed with caustic sludge and water, where the mass ratio of each material is The dry mass ratio of the returned sandstone powder to caustic sludge is 2: 8 to 5: 5, and the mass of water is 1.5 to 8 times the total dry mass of the returned sandstone powder and caustic sludge after digestion. Alternatively, the returned sandstone powder is mixed with caustic sludge and water so as to digest the calcined calcium oxide, and immersed in water for 0.5 to 14 days, where the mass ratio of each material is determined after digestion. The dry mass ratio of the returned sandstone powder and caustic sludge is 2: 8 to 5: 5, and the mass of water is 1.5 to 8 times the total dry mass of the returned sandstone powder and caustic sludge after digestion. Step 3, performing a pressure filtration treatment to obtain a dechlorinated caustic sludge mixture in which the chloride ion content is less than 0.30% of the total mass of solids in the mixture. According to the method of the present invention, the dechlorination effect is good, the treatment process is simple, and it has an energy saving and environmental protection effect. [Selection figure] None

Description

本発明は、産業廃棄物処分に関し、特に、アンモニアソーダ法による苛性スラッジ及び戻り砂石の処理方法並びにその応用方法に関する。   The present invention relates to industrial waste disposal, and more particularly, to a method for treating caustic sludge and returned sandstone by an ammonia soda method and an application method thereof.

純炭酸ソーダは基本的な化学原料として、主に建築材料、化学工業、化学農薬、非鉄金属、紡績など工業で使用され、国民経済において重要な位置を有し、「化学工業の母」と呼ばれる。現在、純炭酸ソーダの生産方法として、主に天然アルカリ法、アンモニアソーダ法、及びコンバインドソーダ法があり、我国において、純炭酸ソーダは主にアンモニアソーダ法で生産される。   Pure sodium carbonate is used as a basic chemical raw material in industries such as building materials, chemical industry, chemical pesticides, non-ferrous metals, and spinning, and has an important position in the national economy, and is called the mother of the chemical industry. . Currently, there are mainly natural alkali method, ammonia soda method and combined soda method as production methods of pure sodium carbonate. In Japan, pure sodium carbonate is mainly produced by ammonia soda method.

苛性スラッジは、アンモニアソーダ法によって純炭酸ソーダを生産する過程において発生する工業廃棄物であり、苛性スラッジの主成分は、炭酸カルシウム、硫酸カルシウム、及びアルミニウム、鉄、又はケイ素の酸化物であり、そして、塩化物を大量に含んでいる。1トンの純炭酸ソーダを生産すると、約350kgの苛性スラッジが発生し、我国において、毎年苛性スラッジの産量は300万トンを超える。   Caustic sludge is industrial waste generated in the process of producing pure sodium carbonate by the ammonia soda method, and the main components of caustic sludge are calcium carbonate, calcium sulfate, and oxides of aluminum, iron, or silicon, And it contains a large amount of chloride. When one ton of pure sodium carbonate is produced, about 350 kg of caustic sludge is generated. In Japan, the annual production of caustic sludge exceeds 3 million tons.

苛性スラッジは、高アルカリ性、高塩化物イオン含有量の特性を有するため、その取引が世界的な課題となっている。苛性スラッジを合理的に利用するために、国内外において広く研究されている。その利用方法として、主にエンジニアリングソイルとして、土の埋め立て、ダム構築、路盤及び路面舗装の建設などに用いられる。また、苛性スラッジを、土壌改良剤、排煙脱硫剤、石膏、セメント、高膨張性ゲル材料、建設モルタル、苛性スラッジブリック、苛性スラッジフライアッシュブリック、アスファルト充填材、ゴム充填材、人工リーフなどに調製することが研究されている。しかし、如何に効率的に苛性スラッジ中の塩素イオン含有量を下げるかはまだ画期的に示されておらず、処理後の苛性スラッジ中の塩素イオンの高含有量は、それの様々な分野での応用に影響を与える。しかし、どのように効果的に塩化物イオンのアルカリ残留物を減らしたとしても、再処理でのブレークスルーされていない苛性塩素イオン含有量は、様々な分野での応用に与える影響は余りに高過ぎる。   Caustic sludge has characteristics of high alkalinity and high chloride ion content, and its trade has become a global issue. In order to make efficient use of caustic sludge, it has been extensively studied both at home and abroad. As its usage, it is mainly used as engineering soil for land reclamation, dam construction, roadbed and road pavement construction. In addition, caustic sludge can be used for soil conditioner, flue gas desulfurization agent, gypsum, cement, high expansion gel material, construction mortar, caustic sludge brick, caustic sludge fly ash brick, asphalt filler, rubber filler, artificial leaf, etc. Preparation has been studied. However, how to effectively reduce the chlorine ion content in caustic sludge has not yet been epoch-making, and the high content of chlorine ions in the caustic sludge after treatment is not limited to its various fields. It affects the application in However, no matter how effective it is to reduce the alkaline residue of chloride ions, the unbreakable caustic chloride content in reprocessing is too high to have application in various fields .

国内外の苛性スラッジの処理技術を見ると、20世紀80年代に、米国は天然ソーダの加工技術を把握してから、急速に米国内の全てのアンモニアソーダ工場が廃止された。カナダ、韓国、日本でもアンモニアソーダ工場が段階的に廃止されてきた。しかし、我国においては、天然ソーダの蓄蔵量が少ないため、全てのアンモニアソーダ工場を廃止することは不可能である。現在、我国のアンモニアソーダ工場では、苛性スラッジの処理方法として、依然として、主に陸上積放又はシノトランス干拓という二つの方法があり、いずれも深刻な環境汚染問題を引き起こしてしまう。   Looking at caustic sludge treatment technology at home and abroad, in the 80s of the 20th century, after the United States grasped the processing technology of natural soda, all ammonia soda plants in the United States were rapidly abolished. In Canada, Korea and Japan, ammonia soda factories have been phased out. However, in Japan, it is impossible to abolish all ammonia soda factories because of the small amount of natural soda stored. At present, in the ammonia soda factory in Japan, there are still two main methods for treating caustic sludge: land discharge or sinotrans reclamation, both of which cause serious environmental pollution problems.

現在、もっとも有効な苛性スラッジの脱塩素方法として、水洗浄による脱塩素方法があるが、水洗浄の効率は低く、また、多数回の洗浄が必要となり、大量の水を消耗してしまうため、その応用に深刻な影響を与える。水の使用量を削減するために、塩素含有量が比較的高めにコントロールされ、通常、一回の水洗浄で、加圧濾過後の苛性スラッジの塩素含有量は、約1.5%にコントロールされる。苛性スラッジの有効な脱塩素方法は、純炭酸ソーダ業界の持続可能な発展を制限する重大な問題となっている。   Currently, there is a dechlorination method by water washing as the most effective dechlorination method of caustic sludge, but the efficiency of water washing is low, and many washings are required, and a large amount of water is consumed. The application will be seriously affected. In order to reduce the amount of water used, the chlorine content is controlled to be relatively high, and usually the chlorine content of caustic sludge after pressure filtration is controlled to about 1.5% after a single water wash. Is done. The effective dechlorination method of caustic sludge has become a serious problem that limits the sustainable development of the pure sodium carbonate industry.

純炭酸ソーダ工場の固体廃棄物は、苛性スラッジ以外に、戻り砂石もあり、1トンの純炭酸ソーダを生産する際に、約165kgの戻り砂石が生じる。その主成分は、炭酸カルシウムであり、長い間、道路の舗装やセメントキルン原料などの用途で使用されている。その利用価値は低いが、ほとんど消費することができる。ただし、道路の舗装質量に対する要求の厳格化やセメントキルン工場の廃棄に伴い、その利用率が下がってしまっているため、新しい用途を見つけなければならない。   Solid waste in a pure sodium carbonate factory includes return sandstone in addition to caustic sludge, and when producing 1 ton of pure sodium carbonate, about 165 kg of return sandstone is produced. Its main component is calcium carbonate, which has been used for a long time in applications such as road paving and cement kiln raw materials. Its utility value is low, but it can be almost consumed. However, due to stricter demands on road pavement mass and disposal of cement kiln factories, the utilization rate has declined, so new applications must be found.

本発明の目的は、優れた脱塩素効果を有する、アンモニアソーダ法による苛性スラッジから脱塩素苛性スラッジ混合物を調製する方法を提供することである。   The object of the present invention is to provide a method for preparing a dechlorinated caustic sludge mixture from caustic sludge by the ammonia soda process having an excellent dechlorination effect.

本発明の目的は、下記の実施態様によって実現される。   The object of the present invention is realized by the following embodiments.

アンモニアソーダ法による苛性スラッジから脱塩素苛性スラッジ混合物を調製する方法であって、下記のステップを含む:
ステップ1、戻り砂石を破砕し研磨して、戻り砂石粉を得ることと、
ステップ2、焼成した酸化カルシウムを消化させるように、前記戻り砂石粉を水中に0.5から14日間浸し、そして、消化後の戻り砂石粉と、苛性スラッジ及び水とを混合し、そこでは、各材料の質量比として、消化後の戻り砂石粉と苛性スラッジとの乾燥質量比は2:8乃至5:5であり、水の質量は消化後の戻り砂石粉及び苛性スラッジの合計乾燥質量の1.5乃至8倍であること、
或いは、
焼成した酸化カルシウムを消化させるように、前記戻り砂石粉と、苛性スラッジ及び水とを混合し、水中に0.5から14日間浸し、そこでは、各材料の質量比として、消化後の戻り砂石粉と苛性スラッジとの乾燥質量比は2:8乃至5:5であり、水の質量は消化後の戻り砂石粉及び苛性スラッジの合計乾燥質量の1.5乃至8倍であることと、
ステップ3、加圧濾過処理を行い、塩素イオン含有量が、混合物中の固体の合計質量の0.30%未満である脱塩素苛性スラッジ混合物を獲得すること。
A method for preparing a dechlorinated caustic sludge mixture from caustic sludge by an ammonia soda process comprising the following steps:
Step 1, crushing and polishing the return sandstone to obtain the return sandstone powder,
Step 2, soaking the returned sandstone powder in water for 0.5 to 14 days to digest the calcined calcium oxide, and mixing the digested return sandstone powder with caustic sludge and water, As the mass ratio of each material, the dry mass ratio of the return sandstone powder and caustic sludge after digestion is 2: 8 to 5: 5, and the mass of water is the total dry mass of the return sandstone powder and caustic sludge after digestion. 1.5 to 8 times,
Or
In order to digest the calcined calcium oxide, the return sandstone powder, caustic sludge and water are mixed and immersed in water for 0.5 to 14 days, where the mass ratio of each material is the return sand after digestion. The dry mass ratio of stone powder to caustic sludge is 2: 8 to 5: 5, and the mass of water is 1.5 to 8 times the total dry mass of return sandstone powder and caustic sludge after digestion,
Step 3, pressure filtration treatment is performed to obtain a dechlorinated caustic sludge mixture whose chloride ion content is less than 0.30% of the total mass of solids in the mixture.

更に、前記ステップ2において、前記戻り砂石粉を浸しながら、断続的に攪拌する。   Further, in the step 2, stirring is performed intermittently while immersing the returned sandstone powder.

更に、前記ステップ2において、前記戻り砂石粉の50%以下を、フライアッシュ、石灰石粉、炉スラグ粉、鉱スラグ粉、鉄鋼スラグ粉、粉末フライのうちの1種又は1種以上に替える。   Furthermore, in the said step 2, 50% or less of the said return sand stone powder is changed into 1 type (s) or 1 or more types in fly ash, limestone powder, furnace slag powder, mineral slag powder, steel slag powder, and powdered fly.

更に、前記ステップ2の第1の態様は、また、消化後の戻り砂石粉中の水酸化カルシウムを先に分離回収して、純炭酸ソーダの生産に用いるステップを含む。   Further, the first aspect of Step 2 also includes a step of separating and recovering calcium hydroxide in the returned sandstone powder after digestion and using it for the production of pure sodium carbonate.

本発明の他の目的は、上記の脱塩素苛性スラッジ混合物を利用する応用方法を提供することであり、その実施態様は、下記の通りである。   Another object of the present invention is to provide an application method utilizing the above-mentioned dechlorinated caustic sludge mixture, the embodiment of which is as follows.

上記に記載の方法によって調製される脱塩素苛性スラッジ混合物を、セメントの混和材料、コンクリート及びモルタルの鉱物混和材料、エンジニアリングソイル(Engneering soil)、充填剤、排煙脱硫剤、土壌処理剤、吸着剤並びに担体として利用する応用方法。   A dechlorinated caustic sludge mixture prepared by the method described above is used for cement admixture, concrete and mortar mineral admixture, engineering soil, filler, flue gas desulfurizing agent, soil treatment agent, adsorbent. And application methods used as carriers.

前記脱塩素苛性スラッジ混合物を、セメントの混和材料、コンクリート及びモルタルの鉱物混和材料、エンジニアリングソイル、充填剤、排煙脱硫剤、土壌処理剤、吸着剤並びに担体として利用する時に、まず乾燥し破砕して、そして研削加工を行い、粉末状の脱塩素苛性スラッジ混合物を獲得する。   When the dechlorinated caustic sludge mixture is used as a cement admixture, concrete and mortar mineral admixture, engineering soil, filler, flue gas desulfurization agent, soil treatment agent, adsorbent and carrier, it is first dried and crushed. And then grinding to obtain a powdered dechlorinated caustic sludge mixture.

更に、前記脱塩素苛性スラッジ混合物を、セメントの混和材料、コンクリート及びモルタルの鉱物混和材料として利用する時に、前記脱塩素苛性スラッジ混合物が30%未満又は30%のゲル材料に替えられる。   Further, when the dechlorinated caustic sludge mixture is utilized as a cement admixture, concrete and mortar mineral admixture, the dechlorinated caustic sludge mixture is replaced with less than 30% or 30% gel material.

苛性スラッジの粒子径は小さく、粒子径は、大体数μmから数十μmの間であって、且つ、その中に空隙を多く含むため、加圧濾過後の苛性スラッジの含水率と塩素イオンの含有量は高い。苛性スラッジ中の塩素イオンは、主に水中に存在しているため、粒子分布によって材料を調整すれば、空隙率を下げることができ、加圧濾過後の苛性スラッジの塩素イオンの含有量を下げることができる。純炭酸ソーダ工場の固体廃棄物を十分に処理するため、水で消化後の戻り砂石粉を粒子分布用の材料として用いて材料を調整する。酸化カルシウムが消化するため、水での消化後の戻り砂石粉の表面は粗くて、より効率的に塩素イオンの含有量を下げることができる。   The particle size of the caustic sludge is small, and the particle size is generally between several μm to several tens of μm and contains many voids therein. Therefore, the moisture content of the caustic sludge after pressure filtration and the chloride ion The content is high. Chlorine ions in caustic sludge are mainly present in water, so if the material is adjusted by particle distribution, the porosity can be lowered, and the chloride ion content of caustic sludge after pressure filtration is lowered. be able to. In order to sufficiently treat the solid waste of a pure sodium carbonate factory, the material is prepared by using the returned sandstone powder after digestion with water as a material for particle distribution. Since calcium oxide is digested, the surface of the returned sandstone powder after digestion with water is rough, and the content of chloride ions can be reduced more efficiently.

従来技術と比べると、本発明は、下記のメリットを有する。
(1)本発明によれば、脱塩素効果がよく、1回水洗浄し加圧濾過処理した結果、塩素イオン含有量(固体の合計質量で計算)は0.30%未満であって、従来技術による1回水洗浄した加圧濾過処理の結果より、塩素の含有量を大幅に下げた。
(2)塩素イオン含有量が低いため、各種の用途に用いられ、効率的に苛性スラッジの処理問題を解決でき、セメントの混和材料、コンクリート及びモルタルの鉱物混和材料、エンジニアリングソイル、充填剤、排煙脱硫剤、土壌処理剤など多分野に応用でき、また、苛性スラッジの多孔構造によって、吸着剤、担体などの分野にも応用できる。
(3)同時に、純炭酸ソーダ工場に生じるもう1つの大きな固体廃棄物である戻り砂石を消耗することもでき、廃棄物を再利用するとの目的を達成でき、そして、生じた水酸化カルシウムを純炭酸ソーダ生産に用いることができる。
Compared with the prior art, the present invention has the following merits.
(1) According to the present invention, the dechlorination effect is good, and as a result of washing with water once and pressure filtration treatment, the chlorine ion content (calculated by the total mass of the solid) is less than 0.30%. The chlorine content was greatly reduced from the result of the pressure filtration treatment after washing with water once by the technology.
(2) Since the chlorine ion content is low, it can be used in various applications and can efficiently solve the problem of caustic sludge treatment. It can be used for cement admixture, concrete and mortar mineral admixture, engineering soil, filler, waste It can be applied to various fields such as smoke desulfurization agents and soil treatment agents, and can also be applied to fields such as adsorbents and carriers by the porous structure of caustic sludge.
(3) At the same time, it is possible to consume another large solid waste returned sandstone generated in a pure sodium carbonate factory, achieve the purpose of recycling the waste, and use the generated calcium hydroxide. It can be used for production of pure sodium carbonate.

以下、実施例により、本発明を更に詳細に説明するが、本発明は、下記の実施形態に限られるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to the following embodiment.

実施例1
アンモニアソーダ法による苛性スラッジから脱塩素苛性スラッジ混合物を調製する方法であって、下記のステップを含む:
ステップ1、まずは、戻り砂石を破砕し研磨して、戻り砂石粉を得て、
ステップ2、焼成した酸化カルシウムを消化させるように、戻り砂石粉を断続的に攪拌しながら水中に0.5日間浸して、そして、消化後の戻り砂石粉と、苛性スラッジ及び水とを混合して、そこでは、各材料の質量比として、消化後の戻り砂石粉と苛性スラッジとの乾燥質量比は2:8であり、水の質量は消化後の戻り砂石粉及び苛性スラッジの合計乾燥質量の8倍であって、
ステップ3、加圧濾過処理を行って、塩素イオン含有量が、混合物中の固体の合計質量の0.28%である脱塩素苛性スラッジ混合物を獲得した。
Example 1
A method for preparing a dechlorinated caustic sludge mixture from caustic sludge by an ammonia soda process comprising the following steps:
Step 1, First, the returned sandstone is crushed and polished to obtain the returned sandstone powder.
Step 2, soaking the returned sandstone powder in water with intermittent stirring for 0.5 days so as to digest the calcined calcium oxide, and mixing the returned sandstone powder after digestion with caustic sludge and water Therefore, as the mass ratio of each material, the dry mass ratio of the return sandstone powder and caustic sludge after digestion is 2: 8, and the mass of water is the total dry mass of the return sandstone powder and caustic sludge after digestion. 8 times,
Step 3, pressure filtration treatment was performed to obtain a dechlorinated caustic sludge mixture having a chloride ion content of 0.28% of the total mass of solids in the mixture.

本実施例において、フライアッシュ、石灰石粉、炉スラグ粉、鉱スラグ粉、鉄鋼スラグ粉、粉末フライのうちの1種又は1種以上で、前記戻り砂石粉の50%以下を替えることができる。   In this embodiment, one or more of fly ash, limestone powder, furnace slag powder, mineral slag powder, steel slag powder, and powdered fly can be used to replace 50% or less of the returned sandstone powder.

本実施例において、消化後の戻り砂石粉中の水酸化カルシウムを先に分離回収して、純炭酸ソーダの生産に用いることができる。   In this example, calcium hydroxide in the returned sandstone powder after digestion can be separated and recovered first and used for the production of pure sodium carbonate.

実施例2
アンモニアソーダ法による苛性スラッジから脱塩素苛性スラッジ混合物を調製する方法であって、下記のステップを含む:
ステップ1、まずは、戻り砂石を破砕し研磨して、戻り砂石粉を得て、
ステップ2、焼成した酸化カルシウムを消化させるように、戻り砂石粉を断続的に攪拌しながら水中に3日間浸して、そして、消化後の戻り砂石粉と、苛性スラッジ及び水とを混合して、そこでは、各材料の質量比として、消化後の戻り砂石粉と苛性スラッジとの乾燥質量比は3:7であり、水の質量は消化後の戻り砂石粉及び苛性スラッジの合計乾燥質量の7倍であって、
ステップ3、加圧濾過処理を行って、塩素イオン含有量が、混合物中の固体の合計質量の0.08%である脱塩素苛性スラッジ混合物を獲得した。
Example 2
A method for preparing a dechlorinated caustic sludge mixture from caustic sludge by an ammonia soda process comprising the following steps:
Step 1, First, the returned sandstone is crushed and polished to obtain the returned sandstone powder.
Step 2, soaking the returned sandstone powder in water with intermittent stirring for 3 days so as to digest the calcined calcium oxide, and mixing the digested return sandstone powder with caustic sludge and water, There, as a mass ratio of each material, the dry mass ratio of the return sandstone powder and caustic sludge after digestion is 3: 7, and the mass of water is 7 of the total dry mass of the return sandstone powder and caustic sludge after digestion. Double,
Step 3, pressure filtration treatment was performed to obtain a dechlorinated caustic sludge mixture whose chloride ion content was 0.08% of the total mass of solids in the mixture.

本実施例において、フライアッシュ、石灰石粉、炉スラグ粉、鉱スラグ粉、鉄鋼スラグ粉、粉末フライのうちの1種又は1種以上で、前記戻り砂石粉の50%以下を替えることができる。   In this embodiment, one or more of fly ash, limestone powder, furnace slag powder, mineral slag powder, steel slag powder, and powdered fly can be used to replace 50% or less of the returned sandstone powder.

本実施例において、消化後の戻り砂石粉中の水酸化カルシウムを先に分離回収して、純炭酸ソーダの生産に用いることができる。   In this example, calcium hydroxide in the returned sandstone powder after digestion can be separated and recovered first and used for the production of pure sodium carbonate.

実施例3
アンモニアソーダ法による苛性スラッジから脱塩素苛性スラッジ混合物を調製する方法であって、下記のステップを含む:
ステップ1、まずは、戻り砂石を破砕し研磨して、戻り砂石粉を得て、
ステップ2、焼成した酸化カルシウムを消化させるように、戻り砂石粉を断続的に攪拌しながら水中に7日間浸して、そして、消化後の戻り砂石粉と、苛性スラッジ及び水とを混合して、そこでは、各材料の質量比として、消化後の戻り砂石粉と苛性スラッジとの乾燥質量比は5:5であり、水の質量は消化後の戻り砂石粉及び苛性スラッジの合計乾燥質量の3倍であって、
ステップ3、加圧濾過処理を行って、塩素イオン含有量が、混合物中の固体の合計質量の0.05%である脱塩素苛性スラッジ混合物を獲得した。
Example 3
A method for preparing a dechlorinated caustic sludge mixture from caustic sludge by an ammonia soda process comprising the following steps:
Step 1, First, the returned sandstone is crushed and polished to obtain the returned sandstone powder.
Step 2, soaking the returned sandstone powder in water with intermittent stirring for 7 days so as to digest the calcined calcium oxide, and mixing the returned sandstone powder after digestion with caustic sludge and water, There, as a mass ratio of each material, the dry mass ratio of the return sandstone powder and caustic sludge after digestion is 5: 5, and the mass of water is 3 of the total dry mass of the return sandstone powder and caustic sludge after digestion. Double,
Step 3, pressure filtration treatment was performed to obtain a dechlorinated caustic sludge mixture having a chloride ion content of 0.05% of the total mass of solids in the mixture.

本実施例において、フライアッシュ、石灰石粉、炉スラグ粉、鉱スラグ粉、鉄鋼スラグ粉、粉末フライのうちの1種又は1種以上で、前記戻り砂石粉の50%以下を替えることができる。   In this embodiment, one or more of fly ash, limestone powder, furnace slag powder, mineral slag powder, steel slag powder, and powdered fly can be used to replace 50% or less of the returned sandstone powder.

本実施例において、消化後の戻り砂石粉中の水酸化カルシウムを先に分離回収して、純炭酸ソーダの生産に用いることができる。   In this example, calcium hydroxide in the returned sandstone powder after digestion can be separated and recovered first and used for the production of pure sodium carbonate.

実施例4
アンモニアソーダ法による苛性スラッジから脱塩素苛性スラッジ混合物を調製する方法であって、下記のステップを含む:
ステップ1、まずは、戻り砂石を破砕し研磨して、戻り砂石粉を得て、
ステップ2、焼成した酸化カルシウムを消化させるように、戻り砂石粉を断続的に攪拌しながら水中に14日間浸して、そして、消化後の戻り砂石粉と、苛性スラッジ及び水とを混合して、そこでは、各材料の質量比として、消化後の戻り砂石粉と苛性スラッジとの乾燥質量比は5:5であり、水の質量は消化後の戻り砂石粉及び苛性スラッジの合計乾燥質量の1.5倍であって、
ステップ3、加圧濾過処理を行って、塩素イオン含有量が、混合物中の固体の合計質量の0.09%である脱塩素苛性スラッジ混合物を獲得した。
Example 4
A method for preparing a dechlorinated caustic sludge mixture from caustic sludge by an ammonia soda process comprising the following steps:
Step 1, First, the returned sandstone is crushed and polished to obtain the returned sandstone powder.
Step 2, soaking the returned sand stone powder in water for 14 days with intermittent stirring so as to digest the calcined calcium oxide, and mixing the return sand stone powder after digestion with caustic sludge and water, There, as the mass ratio of each material, the dry mass ratio of the return sandstone powder and caustic sludge after digestion is 5: 5, and the mass of water is 1 of the total dry mass of the return sandstone powder and caustic sludge after digestion. .5 times,
Step 3, pressure filtration treatment was performed to obtain a dechlorinated caustic sludge mixture whose chloride ion content was 0.09% of the total mass of solids in the mixture.

本実施例において、フライアッシュ、石灰石粉、炉スラグ粉、鉱スラグ粉、鉄鋼スラグ粉、粉末フライのうちの1種又は1種以上で、前記戻り砂石粉の50%以下を替えることができる。   In this embodiment, one or more of fly ash, limestone powder, furnace slag powder, mineral slag powder, steel slag powder, and powdered fly can be used to replace 50% or less of the returned sandstone powder.

本実施例において、消化後の戻り砂石粉中の水酸化カルシウムを先に分離回収して、純炭酸ソーダの生産に用いることができる。   In this example, calcium hydroxide in the returned sandstone powder after digestion can be separated and recovered first and used for the production of pure sodium carbonate.

実施例5
アンモニアソーダ法による苛性スラッジから脱塩素苛性スラッジ混合物を調製する方法であって、下記のステップを含む:
ステップ1、まずは、戻り砂石を破砕し研磨して、戻り砂石粉を得て、
ステップ2、焼成した酸化カルシウムを消化させるように、前記戻り砂石粉と、苛性スラッジ及び水とを混合して、水中に0.5日間浸して、そこでは、各材料の質量比として、消化後の戻り砂石粉と苛性スラッジとの乾燥質量比は2:8であり、水の質量は消化後の戻り砂石粉及び苛性スラッジの合計乾燥質量の8倍であって、
ステップ3、加圧濾過処理を行って、塩素イオン含有量が、混合物中の固体の合計質量の0.28%である脱塩素苛性スラッジ混合物を獲得した。
Example 5
A method for preparing a dechlorinated caustic sludge mixture from caustic sludge by an ammonia soda process comprising the following steps:
Step 1, First, the returned sandstone is crushed and polished to obtain the returned sandstone powder.
Step 2. Mix the returned sandstone powder with caustic sludge and water so that the calcined calcium oxide is digested and soak in water for 0.5 days, where the mass ratio of each material is The dry mass ratio of the returned sandstone powder to the caustic sludge is 2: 8, and the water mass is 8 times the total dry mass of the returned sandstone powder and the caustic sludge after digestion,
Step 3, pressure filtration treatment was performed to obtain a dechlorinated caustic sludge mixture having a chloride ion content of 0.28% of the total mass of solids in the mixture.

本実施例において、フライアッシュ、石灰石粉、炉スラグ粉、鉱スラグ粉、鉄鋼スラグ粉、粉末フライのうちの1種又は1種以上で、前記戻り砂石粉の50%以下を替えることができる。   In this embodiment, one or more of fly ash, limestone powder, furnace slag powder, mineral slag powder, steel slag powder, and powdered fly can be used to replace 50% or less of the returned sandstone powder.

実施例6
ステップ1、まずは、戻り砂石を破砕し研磨して、戻り砂石粉を得て、
ステップ2、焼成した酸化カルシウムを消化させるように、前記戻り砂石粉と、苛性スラッジ及び水とを混合して、水中に3日間浸して、そこでは、各材料の質量比として、消化後の戻り砂石粉と苛性スラッジとの乾燥質量比は3:7であり、水の質量は消化後の戻り砂石粉及び苛性スラッジの合計乾燥質量の7倍であって、
ステップ3、加圧濾過処理を行って、塩素イオン含有量が、混合物中の固体の合計質量の0.08%である脱塩素苛性スラッジ混合物を獲得した。
Example 6
Step 1, First, the returned sandstone is crushed and polished to obtain the returned sandstone powder.
Step 2, so that the calcined calcium oxide is digested, the returned sandstone powder, caustic sludge and water are mixed and soaked in water for 3 days, where the mass ratio of each material returns after digestion. The dry mass ratio of sandstone powder and caustic sludge is 3: 7, and the mass of water is 7 times the total dry mass of return sandstone powder and caustic sludge after digestion,
Step 3, pressure filtration treatment was performed to obtain a dechlorinated caustic sludge mixture whose chloride ion content was 0.08% of the total mass of solids in the mixture.

本実施例において、フライアッシュ、石灰石粉、炉スラグ粉、鉱スラグ粉、鉄鋼スラグ粉、粉末フライのうちの1種又は1種以上で、前記戻り砂石粉の50%以下を替えることができる。   In this embodiment, one or more of fly ash, limestone powder, furnace slag powder, mineral slag powder, steel slag powder, and powdered fly can be used to replace 50% or less of the returned sandstone powder.

実施例7
脱塩素苛性スラッジ混合物をセメントの混和材料として用いた。脱塩素苛性スラッジから、脱塩素苛性スラッジに対する含水率250%のサスペンションを配合して使用した。脱塩素苛性スラッジで10%(ドライベース)のセメントを替えて、水とゲルの比率を変化させない場合、セメントの強度を保ったとともに、構造体における鋼材腐食を引き起こすことは無かった。
Example 7
A dechlorinated caustic sludge mixture was used as a cement admixture. From the dechlorinated caustic sludge, a suspension having a water content of 250% with respect to the dechlorinated caustic sludge was blended and used. When 10% (dry base) cement was replaced with dechlorinated caustic sludge and the ratio of water and gel was not changed, the strength of the cement was maintained and steel corrosion in the structure was not caused.

実施例8
脱塩素苛性スラッジ混合物を乾燥し破砕して、そして研削加工を行って、得られた粉末状の脱塩素苛性スラッジ混合物をセメントの混和材料として用いた。そこでは、前記粉末状の脱塩素苛性スラッジ混合物の粒子径は、80μmのメッシュを残すが5%未満であり、その用量は30%であって、鉱スラグ粉の用量は22%であって、セメントクリンカーの用量は45%であって、石膏の用量は3%であった。セメントの性能は、建築セメント12.5級の要件を満たし、比較的高い保水性を有し、保水率は96.5%であった。
Example 8
The dechlorinated caustic sludge mixture was dried, crushed and ground, and the resulting powdered dechlorinated caustic sludge mixture was used as a cement admixture. There, the particle size of the powdered dechlorinated caustic sludge mixture is less than 5% while leaving an 80 μm mesh, the dose is 30%, the dose of mineral slag powder is 22%, The cement clinker dose was 45% and the gypsum dose was 3%. The performance of the cement met the requirements of building cement 12.5 grade, had a relatively high water retention, and the water retention rate was 96.5%.

実施例9
脱塩素苛性スラッジ混合物を乾燥し破砕して、そして研削加工を行って、得られた粉末状の脱塩素苛性スラッジ混合物を粒子径によりグレーディングして、粒子径3μm未満の粉末状の脱塩素苛性スラッジ混合物をゴム充填剤として用いて、粒子径3μm以上の粉末状の脱塩素苛性スラッジ混合物を排煙脱硫剤として用いた。脱塩素苛性スラッジ混合物の多孔性を利用して、ゴムの機械的機能と排煙脱硫剤の効率を上げることができた。排煙脱硫剤として使用される場合、従来に使用された原料である石灰岩粉末を替えることができ、省エネ且つ環境保護の効果を有する。
Example 9
The dechlorinated caustic sludge mixture is dried, crushed and ground, and the resulting powdery dechlorinated caustic sludge mixture is graded according to the particle size to obtain a powdery dechlorinated caustic sludge having a particle size of less than 3 μm. The mixture was used as a rubber filler, and a powdery dechlorinated caustic sludge mixture having a particle diameter of 3 μm or more was used as a flue gas desulfurizing agent. By utilizing the porosity of the dechlorinated caustic sludge mixture, the mechanical function of the rubber and the efficiency of the flue gas desulfurization agent could be increased. When used as a flue gas desulfurization agent, the limestone powder which is a raw material used conventionally can be replaced, and it has the effect of energy saving and environmental protection.

実施例10
脱塩素苛性スラッジ混合物をエンジニアリングソイルとして使用する場合、直接土塁に用いられ、そして、その塩素イオンの含有量が低いため、環境に被害を引き起こすことがなかった。
Example 10
When a dechlorinated caustic sludge mixture is used as an engineering soil, it was used directly on the earth, and its low chlorine ion content did not cause environmental damage.

上記実施例は、本発明を実現するための最も有効な実施態様であり、本発明の実施態様は、上記実施例に限られるものではない。本発明の趣旨を逸脱しない範囲内での様々な変更、修正、置換、組み合わせ、簡易化は、等価の置き換えと理解されるべきであり、本発明の範囲に含まれることとする。   The above embodiment is the most effective embodiment for realizing the present invention, and the embodiment of the present invention is not limited to the above embodiment. Various changes, modifications, substitutions, combinations, and simplifications within a scope that does not depart from the spirit of the present invention are to be understood as equivalent replacements and are included in the scope of the present invention.

(付記)
(付記1)
ステップ1、戻り砂石を破砕し研磨して、戻り砂石粉を得ることと、
ステップ2、焼成した酸化カルシウムを消化させるように、前記戻り砂石粉を水中に0.5から14日間浸し、そして、消化後の戻り砂石粉と、苛性スラッジ及び水とを混合し、そこでは、各材料の質量比として、消化後の戻り砂石粉と苛性スラッジとの乾燥質量比は2:8乃至5:5であり、水の質量は消化後の戻り砂石粉及び苛性スラッジの合計乾燥質量の1.5乃至8倍であること、
或いは、
焼成した酸化カルシウムを消化させるように、前記戻り砂石粉と、苛性スラッジ及び水とを混合し、水中に0.5から14日間浸し、そこでは、各材料の質量比として、消化後の戻り砂石粉と苛性スラッジとの乾燥質量比は2:8乃至5:5であり、水の質量は消化後の戻り砂石粉及び苛性スラッジの合計乾燥質量の1.5乃至8倍であることと、
ステップ3、加圧濾過処理を行い、塩素イオン含有量が、混合物中の固体の合計質量の0.30%未満である脱塩素苛性スラッジ混合物を獲得することと、を含むことを特徴とする、
アンモニアソーダ法による苛性スラッジから脱塩素苛性スラッジ混合物を調製する方法。
(Appendix)
(Appendix 1)
Step 1, crushing and polishing the return sandstone to obtain the return sandstone powder,
Step 2, soaking the returned sandstone powder in water for 0.5 to 14 days to digest the calcined calcium oxide, and mixing the digested return sandstone powder with caustic sludge and water, As the mass ratio of each material, the dry mass ratio of the return sandstone powder and caustic sludge after digestion is 2: 8 to 5: 5, and the mass of water is the total dry mass of the return sandstone powder and caustic sludge after digestion. 1.5 to 8 times,
Or
In order to digest the calcined calcium oxide, the return sandstone powder, caustic sludge and water are mixed and immersed in water for 0.5 to 14 days, where the mass ratio of each material is the return sand after digestion. The dry mass ratio of stone powder to caustic sludge is 2: 8 to 5: 5, and the mass of water is 1.5 to 8 times the total dry mass of return sandstone powder and caustic sludge after digestion,
Performing a pressure filtration treatment to obtain a dechlorinated caustic sludge mixture in which the chloride ion content is less than 0.30% of the total mass of solids in the mixture,
A method for preparing a dechlorinated caustic sludge mixture from caustic sludge by the ammonia soda method.

(付記2)
前記ステップ2において、前記戻り砂石粉を浸しながら、断続的に攪拌することを特徴とする、付記1に記載のアンモニアソーダ法による苛性スラッジから脱塩素苛性スラッジ混合物を調製する方法。
(Appendix 2)
The method for preparing a dechlorinated caustic sludge mixture from caustic sludge by the ammonia soda method according to appendix 1, wherein the step 2 is performed by intermittently stirring the return sandstone powder.

(付記3)
前記ステップ2において、前記戻り砂石粉の50%以下を、フライアッシュ、石灰石粉、炉スラグ粉、鉱スラグ粉、鉄鋼スラグ粉、粉末フライのうちの1種又は1種以上で替えることを特徴とする、付記1又は2に記載のアンモニアソーダ法による苛性スラッジから脱塩素苛性スラッジ混合物を調製する方法。
(Appendix 3)
In the step 2, 50% or less of the returned sandstone powder is replaced with one or more of fly ash, limestone powder, furnace slag powder, mineral slag powder, steel slag powder, and powdered fly. A method for preparing a dechlorinated caustic sludge mixture from caustic sludge by the ammonia soda method according to appendix 1 or 2.

(付記4)
前記ステップ2の第1の態様は、更に、消化後の戻り砂石粉中の水酸化カルシウムを先に分離回収して、純炭酸ソーダの生産に用いるステップを含むことを特徴とする、付記1に記載のアンモニアソーダ法による苛性スラッジから脱塩素苛性スラッジ混合物を調製する方法。
(Appendix 4)
The first aspect of the step 2 further includes a step of separating and recovering calcium hydroxide in the return sandstone powder after digestion first and using it for the production of pure sodium carbonate. A method for preparing a dechlorinated caustic sludge mixture from caustic sludge by the ammonia soda method described.

(付記5)
付記1乃至4の何れか1つに記載の方法によって調製される脱塩素苛性スラッジ混合物を、セメントの混和材料、コンクリート及びモルタルの鉱物混和材料、エンジニアリングソイル、充填剤、排煙脱硫剤、土壌処理剤、吸着剤並びに担体として利用する応用方法。
(Appendix 5)
A dechlorinated caustic sludge mixture prepared by the method according to any one of appendices 1 to 4 is mixed with cement admixture, concrete and mortar mineral admixture, engineering soil, filler, flue gas desulfurization agent, soil treatment Application method used as an agent, adsorbent and carrier.

(付記6)
前記脱塩素苛性スラッジ混合物を、セメントの混和材料、コンクリート及びモルタルの鉱物混和材料、エンジニアリングソイル、充填剤、排煙脱硫剤、土壌処理剤、吸着剤並びに担体として利用する時に、まず乾燥し破砕して、そして研削加工を行い、粉末状の脱塩素苛性スラッジ混合物を獲得することを特徴とする、付記5に記載の応用方法。
(Appendix 6)
When the dechlorinated caustic sludge mixture is used as a cement admixture, concrete and mortar mineral admixture, engineering soil, filler, flue gas desulfurization agent, soil treatment agent, adsorbent and carrier, it is first dried and crushed. And applying a grinding process to obtain a powdered dechlorinated caustic sludge mixture.

(付記7)
前記脱塩素苛性スラッジ混合物を、セメントの混和材料、コンクリート及びモルタルの鉱物混和材料として利用する時に、前記脱塩素苛性スラッジ混合物が30%未満又は30%のゲル材料に替えられることを特徴とする、付記5に記載の応用方法。
(Appendix 7)
When the dechlorinated caustic sludge mixture is used as a cement admixture, concrete and mortar mineral admixture, the dechlorinated caustic sludge mixture is replaced with less than 30% or 30% gel material, Application method according to appendix 5.

Claims (7)

ステップ1、戻り砂石を破砕し研磨して、戻り砂石粉を得ることと、
ステップ2、焼成した酸化カルシウムを消化させるように、前記戻り砂石粉を水中に0.5から14日間浸し、そして、消化後の戻り砂石粉と、苛性スラッジ及び水とを混合し、そこでは、各材料の質量比として、消化後の戻り砂石粉と苛性スラッジとの乾燥質量比は2:8乃至5:5であり、水の質量は消化後の戻り砂石粉及び苛性スラッジの合計乾燥質量の1.5乃至8倍であること、
或いは、
焼成した酸化カルシウムを消化させるように、前記戻り砂石粉と、苛性スラッジ及び水とを混合し、水中に0.5から14日間浸し、そこでは、各材料の質量比として、消化後の戻り砂石粉と苛性スラッジとの乾燥質量比は2:8乃至5:5であり、水の質量は消化後の戻り砂石粉及び苛性スラッジの合計乾燥質量の1.5乃至8倍であることと、
ステップ3、加圧濾過処理を行い、塩素イオン含有量が、混合物中の固体の合計質量の0.30%未満である脱塩素苛性スラッジ混合物を獲得することと、を含むことを特徴とする、
アンモニアソーダ法による苛性スラッジから脱塩素苛性スラッジ混合物を調製する方法。
Step 1, crushing and polishing the return sandstone to obtain the return sandstone powder,
Step 2, soaking the returned sandstone powder in water for 0.5 to 14 days to digest the calcined calcium oxide, and mixing the digested return sandstone powder with caustic sludge and water, As the mass ratio of each material, the dry mass ratio of the return sandstone powder and caustic sludge after digestion is 2: 8 to 5: 5, and the mass of water is the total dry mass of the return sandstone powder and caustic sludge after digestion. 1.5 to 8 times,
Or
In order to digest the calcined calcium oxide, the return sandstone powder, caustic sludge and water are mixed and immersed in water for 0.5 to 14 days, where the mass ratio of each material is the return sand after digestion. The dry mass ratio of stone powder to caustic sludge is 2: 8 to 5: 5, and the mass of water is 1.5 to 8 times the total dry mass of return sandstone powder and caustic sludge after digestion,
Performing a pressure filtration treatment to obtain a dechlorinated caustic sludge mixture in which the chloride ion content is less than 0.30% of the total mass of solids in the mixture,
A method for preparing a dechlorinated caustic sludge mixture from caustic sludge by the ammonia soda method.
前記ステップ2において、前記戻り砂石粉を浸しながら、断続的に攪拌することを特徴とする、請求項1に記載のアンモニアソーダ法による苛性スラッジから脱塩素苛性スラッジ混合物を調製する方法。   The method for preparing a dechlorinated caustic sludge mixture from caustic sludge by the ammonia soda method according to claim 1, wherein in the step 2, the returned sandstone powder is intermittently stirred while being soaked. 前記ステップ2において、前記戻り砂石粉の50%以下を、フライアッシュ、石灰石粉、炉スラグ粉、鉱スラグ粉、鉄鋼スラグ粉、粉末フライのうちの1種又は1種以上で替えることを特徴とする、請求項1又は2に記載のアンモニアソーダ法による苛性スラッジから脱塩素苛性スラッジ混合物を調製する方法。   In the step 2, 50% or less of the returned sandstone powder is replaced with one or more of fly ash, limestone powder, furnace slag powder, mineral slag powder, steel slag powder, and powdered fly. A method for preparing a dechlorinated caustic sludge mixture from caustic sludge by the ammonia soda method according to claim 1 or 2. 前記ステップ2の第1の態様は、更に、消化後の戻り砂石粉中の水酸化カルシウムを先に分離回収して、純炭酸ソーダの生産に用いるステップを含むことを特徴とする、請求項1に記載のアンモニアソーダ法による苛性スラッジから脱塩素苛性スラッジ混合物を調製する方法。   The first aspect of the step 2 further includes a step of separating and recovering calcium hydroxide in the return sandstone powder after digestion and using it for the production of pure sodium carbonate. A method of preparing a dechlorinated caustic sludge mixture from caustic sludge by the ammonia soda method described in 1. 請求項1乃至4の何れか1項に記載の方法によって調製される脱塩素苛性スラッジ混合物を、セメントの混和材料、コンクリート及びモルタルの鉱物混和材料、エンジニアリングソイル、充填剤、排煙脱硫剤、土壌処理剤、吸着剤並びに担体として利用する応用方法。   A dechlorinated caustic sludge mixture prepared by the method according to any one of claims 1 to 4 is mixed with cement admixture, concrete and mortar mineral admixture, engineering soil, filler, flue gas desulfurization agent, soil. Application method used as treatment agent, adsorbent and carrier. 前記脱塩素苛性スラッジ混合物を、セメントの混和材料、コンクリート及びモルタルの鉱物混和材料、エンジニアリングソイル、充填剤、排煙脱硫剤、土壌処理剤、吸着剤並びに担体として利用する時に、まず乾燥し破砕して、そして研削加工を行い、粉末状の脱塩素苛性スラッジ混合物を獲得することを特徴とする、請求項5に記載の応用方法。   When the dechlorinated caustic sludge mixture is used as a cement admixture, concrete and mortar mineral admixture, engineering soil, filler, flue gas desulfurization agent, soil treatment agent, adsorbent and carrier, it is first dried and crushed. And applying a grinding process to obtain a powdery dechlorinated caustic sludge mixture. 前記脱塩素苛性スラッジ混合物を、セメントの混和材料、コンクリート及びモルタルの鉱物混和材料として利用する時に、前記脱塩素苛性スラッジ混合物が30%未満又は30%のゲル材料に替えられることを特徴とする、請求項5に記載の応用方法。   When the dechlorinated caustic sludge mixture is used as a cement admixture, concrete and mortar mineral admixture, the dechlorinated caustic sludge mixture is replaced with less than 30% or 30% gel material, The application method according to claim 5.
JP2016568449A 2014-08-06 2015-07-06 Method of preparing dechlorinated caustic sludge mixture from caustic sludge by ammonia soda method and its application Expired - Fee Related JP6404948B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201410383247.6A CN104190690B (en) 2014-08-06 2014-08-06 A kind of method and application that utilizes ammonia-soda process alkaline residue to prepare dechlorination alkaline residue mixture
CN201410383247.6 2014-08-06
PCT/CN2015/083350 WO2016019774A1 (en) 2014-08-06 2015-07-06 Method for preparing chlorine-removal alkali residue mixture by utilizing alkali residues through ammonia-soda process and application thereof

Publications (2)

Publication Number Publication Date
JP2017520391A true JP2017520391A (en) 2017-07-27
JP6404948B2 JP6404948B2 (en) 2018-10-17

Family

ID=52076137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016568449A Expired - Fee Related JP6404948B2 (en) 2014-08-06 2015-07-06 Method of preparing dechlorinated caustic sludge mixture from caustic sludge by ammonia soda method and its application

Country Status (3)

Country Link
JP (1) JP6404948B2 (en)
CN (1) CN104190690B (en)
WO (1) WO2016019774A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104190690B (en) * 2014-08-06 2016-05-04 华南理工大学 A kind of method and application that utilizes ammonia-soda process alkaline residue to prepare dechlorination alkaline residue mixture
CN105060828A (en) * 2015-07-16 2015-11-18 浙江大学宁波理工学院 Dechlorinated alkali residue solidified soil for road engineering
CN105330488B (en) * 2015-12-08 2019-01-18 华北理工大学 One kind composite soil conditioner containing humic acid and its preparation method and application
CN106186767A (en) * 2016-07-15 2016-12-07 华南理工大学 A kind of inorganic particle water-retaining agent and preparation method and application
CN106167362B (en) * 2016-07-15 2019-01-18 华南理工大学 A kind of alkaline residue water-retaining agent and the preparation method and application thereof
CN106220018B (en) * 2016-07-15 2018-09-14 华南理工大学 Revolution drying preparation method and the application of a kind of inorganic particle water-retaining agent
CN106186769B (en) * 2016-07-15 2019-01-15 华南理工大学 A kind of alkaline residue water-retaining agent and its revolution drying preparation method and application
CN108863118A (en) * 2018-08-15 2018-11-23 淮安市水泥厂有限公司 A kind of alkaline residue cement superfine powder and preparation method thereof
CN111454003A (en) * 2020-04-29 2020-07-28 山东海天生物化工有限公司 Method for recycling return sand in soda production
CN111848034B (en) * 2020-07-16 2022-05-10 广州大学 Wet-mixed mortar and preparation process thereof
CN112573553B (en) * 2020-10-26 2023-02-03 山东海天生物化工有限公司 Method for recycling return sand in sodium carbonate production
CN112723842A (en) * 2021-01-07 2021-04-30 广州大学 Autoclaved aerated concrete block and preparation method thereof
CN113082846A (en) * 2021-03-26 2021-07-09 路德环境科技股份有限公司 Impurity-removing and purifying process and purifying device for alkaline residue of ammonia-soda plant
CN114768603A (en) * 2022-05-27 2022-07-22 路德环境科技股份有限公司 Loess slurrying system applied to alkali residue treatment process
CN116119999A (en) * 2022-10-12 2023-05-16 东南大学 Alkaline residue light soil and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148261A (en) * 1975-06-04 1976-12-20 Ici Ltd Method of processing brine mud
JPS5645824A (en) * 1979-09-19 1981-04-25 Central Glass Co Ltd Treatment of ammonia soda process waste
JPH11100243A (en) * 1997-07-14 1999-04-13 Taiheiyo Cement Corp Conversion treatment of waste into cement raw material
JP2002068791A (en) * 2000-08-23 2002-03-08 Tokuyama Corp Method of recycling slurry
JP2005279370A (en) * 2004-03-29 2005-10-13 Ebara Corp Method and apparatus for washing incinerated ash and cement kiln dust with water
JP2007069185A (en) * 2005-09-09 2007-03-22 Unitika Ltd Method for washing inorganic matter
JP2012115767A (en) * 2010-11-30 2012-06-21 Mitsubishi Materials Corp Method for washing sludge
JP2013176740A (en) * 2012-02-29 2013-09-09 Taiheiyo Cement Corp Treatment method and treatment apparatus for refuse incineration ash

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2459210A1 (en) * 1979-06-19 1981-01-09 Solvay Mfg. hydraulic mortar and building blocks - using cement distn. residue from ammonia soda process, siliceous additive and porophore
CN1182646A (en) * 1996-11-14 1998-05-27 乔希海 Method for making silicified basic slag soil
CN1141270C (en) * 1996-11-29 2004-03-10 天津渤海化工有限责任公司天津碱厂 Production process of caustic sludge soil
JP3737459B2 (en) * 2002-07-02 2006-01-18 太平洋セメント株式会社 Waste recycling method
CN101780464B (en) * 2010-02-02 2012-02-01 山东海化集团有限公司 Method for removing ammoniasoda process calcined soda waste residue chloride ion
CN101966999B (en) * 2010-11-11 2012-11-21 中国地质大学(北京) Method for extracting aluminum oxide and white carbon black through two-step alkaline leaching method by adopting high-alumina fly ash
CN102070287B (en) * 2010-12-03 2013-07-03 广州市天益三和能源环保有限公司 Process for reducing chloride ions in white mud from ammonia soda plants
CN103769407B (en) * 2012-10-26 2016-12-21 中国石油化工股份有限公司 A kind of renovation process of sulfur-bearing alkaline residue
CN103157652B (en) * 2013-04-09 2015-03-11 东莞市嘉汇环保科技有限公司 Method for preparing desulfurizer from solid waste generated in soda ash plant industry
CN103664242B (en) * 2013-09-18 2015-07-22 薛彦辉 Caustic sludge treatment method
CN104192881A (en) * 2014-08-06 2014-12-10 华南理工大学 Method for preparing multipurpose solid waste slag by using return sand and return stone and application of solid waste slag
CN104190690B (en) * 2014-08-06 2016-05-04 华南理工大学 A kind of method and application that utilizes ammonia-soda process alkaline residue to prepare dechlorination alkaline residue mixture

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148261A (en) * 1975-06-04 1976-12-20 Ici Ltd Method of processing brine mud
US4210626A (en) * 1975-06-04 1980-07-01 Imperial Chemical Industries Limited Manufacture of magnesium carbonate and calcium sulphate from brine mud
JPS5645824A (en) * 1979-09-19 1981-04-25 Central Glass Co Ltd Treatment of ammonia soda process waste
JPH11100243A (en) * 1997-07-14 1999-04-13 Taiheiyo Cement Corp Conversion treatment of waste into cement raw material
JP2002068791A (en) * 2000-08-23 2002-03-08 Tokuyama Corp Method of recycling slurry
JP2005279370A (en) * 2004-03-29 2005-10-13 Ebara Corp Method and apparatus for washing incinerated ash and cement kiln dust with water
JP2007069185A (en) * 2005-09-09 2007-03-22 Unitika Ltd Method for washing inorganic matter
JP2012115767A (en) * 2010-11-30 2012-06-21 Mitsubishi Materials Corp Method for washing sludge
JP2013176740A (en) * 2012-02-29 2013-09-09 Taiheiyo Cement Corp Treatment method and treatment apparatus for refuse incineration ash

Also Published As

Publication number Publication date
JP6404948B2 (en) 2018-10-17
CN104190690A (en) 2014-12-10
CN104190690B (en) 2016-05-04
WO2016019774A1 (en) 2016-02-11

Similar Documents

Publication Publication Date Title
JP6404948B2 (en) Method of preparing dechlorinated caustic sludge mixture from caustic sludge by ammonia soda method and its application
Luo et al. Utilization of coal fly ash in China: a mini-review on challenges and future directions
CN104193202B (en) A kind of high-moisture-retention cement
Ercikdi et al. Utilization of granulated marble wastes and waste bricks as mineral admixture in cemented paste backfill of sulphide-rich tailings
CN110759680B (en) Red mud utilization method based on cooperative treatment of industrial tail gas, sewage treatment and green high-performance civil functional material
CN105800971B (en) The complementary cementitious material made of the fine powder in regeneration concrete shattering process
CN102899048B (en) Desulfurated plaster caustic sludge soil soil curing agent
CN111138099A (en) Curing agent for phosphogypsum waste residues and curing method thereof
CN103086618B (en) Construction waste micro-powder solidifying agent for solidifying soil mass
CN109502937B (en) Method for solidifying sludge and sludge solidifying agent utilizing titanium extraction slag
Sedira et al. A review on mineral waste for chemical-activated binders: mineralogical and chemical characteristics
Sahu et al. The use of fly ash and lime sludge as partial replacement of cement in mortar
CN104129934A (en) Cementing material containing silicon-calcium slag and preparation method thereof
CN113135727A (en) Red mud-based material for roadbed water stabilization layer and preparation method thereof
CN109456027B (en) Titanium slag extraction lime stabilized macadam material and preparation method thereof
CN103588405B (en) Slag is utilized to wash the method for ball milling mud production geology polymkeric substance
Guo et al. Effects of steel slag powder on workability and durability of concrete
CN108675751A (en) A kind of environment-friendly type mud composite curing agent
CN106478012A (en) A kind of sludge curing agent and preparation method thereof
CN104692720A (en) Copper tailing baking-free brick and preparation method thereof
CN104192881A (en) Method for preparing multipurpose solid waste slag by using return sand and return stone and application of solid waste slag
CN107488019A (en) A kind of non-sintered gold tailings brick and its preparation technology
CN113149589A (en) Soil body curing agent doped with sludge incineration ash and preparation method thereof
CN101412595A (en) Method for preparing concrete admixture from kaoline tailing
CN103553464B (en) A kind of solidifying agent containing modified nano calcium carbonate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180913

R150 Certificate of patent or registration of utility model

Ref document number: 6404948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees