JP2017514687A - 下降二相流を有するベッセル用のスケール収集および事前分配トレイ - Google Patents

下降二相流を有するベッセル用のスケール収集および事前分配トレイ Download PDF

Info

Publication number
JP2017514687A
JP2017514687A JP2016574487A JP2016574487A JP2017514687A JP 2017514687 A JP2017514687 A JP 2017514687A JP 2016574487 A JP2016574487 A JP 2016574487A JP 2016574487 A JP2016574487 A JP 2016574487A JP 2017514687 A JP2017514687 A JP 2017514687A
Authority
JP
Japan
Prior art keywords
liquid
tray
scale collection
distribution tray
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016574487A
Other languages
English (en)
Other versions
JP6560267B2 (ja
Inventor
モーテン ミューラー,
モーテン ミューラー,
Original Assignee
モーテン・ミューラー・リミテッド・アンパルトセルスカブ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by モーテン・ミューラー・リミテッド・アンパルトセルスカブ filed Critical モーテン・ミューラー・リミテッド・アンパルトセルスカブ
Publication of JP2017514687A publication Critical patent/JP2017514687A/ja
Application granted granted Critical
Publication of JP6560267B2 publication Critical patent/JP6560267B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G75/00Inhibiting corrosion or fouling in apparatus for treatment or conversion of hydrocarbon oils, in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0068General arrangements, e.g. flowsheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0039Settling tanks provided with contact surfaces, e.g. baffles, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/007Separating solid material from the gas/liquid stream by sedimentation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/0085Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction promoting uninterrupted fluid flow, e.g. by filtering out particles in front of the catalyst layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/025Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0278Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0492Feeding reactive fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/002Apparatus for fixed bed hydrotreatment processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00938Flow distribution elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

蒸気および液体が垂直ベッセルを並流下降する。水平のスケール収集および事前分配トレイは、固体混入物を除去し、そして液体を微細分配トレイに再分配するためにベッセル内に設置される。スケール収集および事前分配トレイは、固体混入物が沈降し、そして堆積するスケール収集ゾーンを有するトレイプレートからなる。一つの態様では垂直の透過性壁がスケール収集ゾーンを形成し、そして液体は透過性の壁を通る時に濾過され、透過性壁の上流にトラップされた固体混入物が残る。この事前分配トレイはスロット型の堰が提供された縁を有する。スケール収集ゾーンからの液体は、透過性壁と堰との間に配置されるトラフとの間に液体レベルを形成する。トラフ内の均一な液体レベルにより、堰内のスロットを通過する液体の流速はほぼ等しい。多角形のトレイにより、液体は微細分配トレイ上の分配ユニット間に定めたレーンに沿った方向にスロットを出て、分配ユニットの蒸気入口に入る液体量は少ない。蒸気は、反応槽壁と透過性壁の間の領域を通り、そして反応槽壁と堰との間の領域を通ってスケール収集および事前分配トレイをバイパスして微細分配トレイに行く。スケール収集および事前分配トレイは、微細分配トレイおよび触媒床を汚れから保護し、液体を微細分配トレイに事前分配してこのトレイ上のレベルの勾配を最少とし、そして流速を下げて微細分配トレイ上に静かな流れの条件を確実にする。【選択図】図3

Description

本発明は、スケール収集機能(scale collection functionality)を有する事前分配トレイ(predistribution tray)に関する。事前分配トレイは一般に、蒸気相および液体相が並流下降して流れているベッセル内の微細(fine)分配トレイ上に設置される。このトレイの主目的は液体の微細分配トレイへの事前分配を提供し、より大きなスケールおよび他のより大きい固体混入物をプロセスストリーム(process stream)から除去し、そしてストリームが微細分配トレイに到達する前にプロセスストリームの高い速度を下げることである。事前分配トレイは限定するわけではないが、水素化処理または水素化分解反応槽のようなトリクルベット反応槽または水素化処理反応槽の入口で、高温の水素が豊富な処理ガス(treatgas)および高温の炭化水素液体の事前分配の応用に適している。
過剰な圧力降下および/または見かけの触媒活性の低下を引き起こす触媒床内または微細分配トレイ上に集まるフィードストリーム中の固体混入物を回避するために、ならびに微細分配トレイを高速ストリームから保護するために、トリクルベット触媒反応槽のような二相並流下降流ベッセル内でのスケール収集または濾過用の、および液体を微細な液体分配トレイに事前分配するための幾つかの取り組みおよびデバイスが提案されてきた。これらの取り組みまたはデバイスの多くが、以下に述べる5つのグループの1つに属する。
グループ1:汚染床の流体バイパス
この取り組みの一例は特許文献1に与えられている。上部触媒床22にバイパス管23および24が設けられている。上部触媒床が清浄で、したがってこの床を渡る圧力降下が低い時、少量の蒸気および液体が管23および24を通ってバイパスするように請求されている。上部触媒床は次第に汚染されるようになり、そして床を渡る圧力降下が増すと、大量の蒸気および液体が床をバイパスすることになる。その結果、全体的な反応槽の圧力降下は減少し、そして反応槽の圧力降下がプロセスユニット中のポンプおよびコンプレッサーからの利用可能な圧力を越える前に、プロセスユニットはより長期間、作動状態となる可能性がある。この汚染床の流体バイパスの取り組みは、活性触媒がバイパスされるので、反応物質の生成物への転換が減少する欠点を有する。また、水素化処理反応槽中で、水素が触媒床をまわってバイパスすれば、その触媒床中でコーク生成率が上がる。コーク生成は高率の触媒不活性化、および床圧降下の上昇をもたらす。
汚染触媒床の流体バイパスの別の例は特許文献2に与えられ、ここで流体はバイパス管1を通って、穿孔9を有するケージ2に、触媒床5の下部へとバイパスされる。
グループ2:触媒床に浸漬されたバスケット
これは、より大きなスケールおよび固体混入物が触媒床入口で詰まることを防止するために、水素化処理反応槽で使用された最初の取り組みであった。触媒床に浸漬されたバスケットの例は、特許文献3に与えられている。バスケット30はセラミックボール32のように不活性なトッピング層下、そして活性な主触媒床34の下に浸漬される。バスケット30の上部の端は通常、不活性なトッピング層32の上部と同一平面になる。バスケット30は床への流体流が可能になる流量範囲を上げ、これにより床へ流体が入るための圧力降下を下げる。したがって床の入口が汚染されるようになると、バスケット30が無い床よりもバスケット30を有する床の圧力降下の上昇は低い。
床の入口にバスケットを使用する重大な欠点は、バスケット30が微細分配トレイ18
により提供される流体分配を有意に悪化する点である。さらに反応物質は、触媒の上部層を渡るバスケットを通ってバイパスされる。その結果、床圧低下を減少するために触媒床の入口でバスケットが使用される場合、見かけの触媒活性が低下する。
グループ3:段階的ガード床(graded guard bed)
固定触媒床を固体混入物から保護するために、今日、恐らく最も広く使用されている工業的方法は、反応槽の入口に不活性または触媒粒子の段階的ガード床を使用することによる。一般に粒子サイズ、形状および触媒活性が段階的であるので、粒子サイズおよびボイド画分が次第に減少し、そして粒子の触媒活性は反応槽中の下降流体流の方向で次第に増加する。
段階的ガード床の例は特許文献4に与えられている。反応槽1は、主触媒床を固体混入物から保護するために粒子2,3,4,5および6の段階的層を有する。より上層は粒子間の流体流のために広い流路を持つ大きい粒子であり、そしてより下層は、粒子間の流体流のために狭い流路を持つ小さい粒子である。これらの段階的な層を有することにより、固体混入物はそれらが床のさらに下方に移動した後に狭い流路にトラップされることになる。また上層は一般に高いボイド画分を有する。このような二つの理由から、粒子間の空間で固体混入物の堆積に利用できる全容積が上がり、その結果、反応槽の圧低下の上昇速度は段階的ガード床が使用される場合に、より低い。
フィード中の固体混入物の蓄積に関して、段階的ガード床を使用する欠点は、ガード床が反応槽1の直線部分でかなりの高さを占めるという点である。主触媒床を保護するために使用される粒子の段階的層は、触媒活性が低いかまたは触媒活性が無く、結果として反応槽1での反応物質の生成物への転換が低下する。
グループ1、2および3の取り組みおよびデバイスは、微細分配トレイから下方に設置され、すなわち液体の微細分配トレイへの事前分配を提供せず、それらはまた微細分配トレイを汚染または高速ストリームに対して保護することもない。
グループ4:蒸気バイパスが無い濾過トレイ
蒸気バイパスが無い濾過トレイの例は特許文献5に与えられている。全体的なプロセスストリームは強制的にフィルターユニット4を通って流される。蒸気バイパスが無い濾過トレイは固体混入物を除去し、したがって固定触媒床を汚染から保護するので、触媒床を渡る圧力降下の上昇は減少する。代わりに濾過トレイ自体を渡って生じる圧力降下の増加が、増加した反応槽圧低下を生じ、いずれかの時点でフィルターユニットの交換または洗浄のために反応槽の作業停止が必要である。9−15行、カラム4を参照にされたい。反応槽の作業停止および水素化処理ユニットの反応槽への人的介入は、この操作に時間がかかり、しかも経費もかかることから、通常は触媒の交換時のみに行われる。設計に関する別の欠点は、濾過トレイが液体を微細分配トレイ3に正しい事前分配を提供しない点である。したがって液体がこのトレイの1つの領域から別の領域へ流れる時に、微細液体分配トレイ3上に液体レベルの勾配が生じる恐れがある。これらの液体レベルの勾配は、微細分配トレイの分配性能を下げることになる。
蒸気バイパスが無い濾過トレイの別の例は特許文献6に与えられている。この濾過トレイは粒子4,6および7の環状床を有する。全プロセスストリームは強制的にこれらの粒子床を通って流され、そして固体混入物が粒子床から上流およびその中に堆積することになる。このトレイは特許文献5について述べた欠点と同じ欠点を有する。
グループ5:蒸気バイパスを有する濾過トレイ
蒸気バイパスを有する全ての濾過トレイの利点は、たとえフィルターが詰まっているか
(plugged)、または満たされて(full)いても、プロセスストリームがトレイを通って流れることができる点である。トレイを渡る圧力降下は、たとえフィルターが満たされている場合でも低い。
蒸気バイパスを有する濾過トレイの第一例は、特許文献7に与えられている。濾過トレイ5には、トレイの中心に蒸気開口が提供されている。堰7がこの蒸気開口を囲み、したがって蒸気チムニー(chimney)を形成する。トレイ5にはワイヤーメッシュバスケット6が提供されている。操作中、蒸気は蒸気チムニーを通って流れ、液体は堰7の後のトレイ5に集まり、そしてバスケット6に流れ、そしてワイヤーメッシュまたはスクリーン47を通る。スケールおよび固体混入物はこのようにバスケット6に集められる。この特別な設計の欠点は、濾過トレイが液体の微細分配トレイ40への良くない事前分配を提供する点である。したがって液体がトレイの一つの領域から別の領域へ流れると、液体レベルの勾配が微細液体分配トレイ40上で発生する恐れがある。これらの液体レベルの勾配は、微細分配トレイ40の分配性能を下げることになる。別の欠点は、スケールおよび粒子の収集に必要なバスケット容積を提供するために、濾過トレイの高さが高くならなければならない点である。濾過トレイを収容するために、反応槽の高さは上がらなければならず、これには莫大な追加経費が伴う。
蒸気バイパスを有する濾過トレイの第二例は、特許文献8に与えられている。濾過トレイは、粒子I,II,IIIおよびIVの異なる層を含んでなる濾過床を有する有穴トレイ1からなる(図1)。蒸気チムニー3は、粒子層および有穴トレイ1を通るように道筋を付けられる。操作中、蒸気はチムニー3を通過し、一方、液体は濾過床を通り、そしてトレイ1の穿孔7を通って滴り落ちる。より大きい固体混入物は濾過床の粒子間のボイド空間に蓄積することになる。ある時点で、液体はもはや濾過床を通過できない可能性があり、そして液体は中央管4から微細分配トレイ10に溢れることになる。ここでもこの設計の欠点は、濾過トレイが液体の微細分配トレイ40へ良くない分配を提供する点である。これは濾過床が幾つかの領域で固体混入物により詰まり、そしてこの領域を通る液体流が止まる場合に、まさにそうである。濾過トレイが満たされ、したがって液体がオーバーフローパイプ4を通過する場合、全ての液体フィードは反応槽の中心線付近の微細分配トレイ10に入ることができる。この状況は、反応槽の中心線付近での放射状外側への液体の質量輸送(liquid mass flux)が大変大きくなるので、微細分配トレイ10上に大きな液体レベルの勾配を生じることが知られている。液体レベルの勾配は、微細分配トレイ10の分配性能を下げることになる。別の欠点は、スケールおよび固体混入物の堆積のために、濾過粒子間のボイド空間に必要な容積を提供するために、濾過トレイの高さが高くなければならない点である。濾過トレイを収容するために、反応槽の高さを上げなければならず、これには莫大な追加経費が伴う。
蒸気バイパスを有する濾過トレイの第三の例は、特許文献9および10に与えられている。この濾過トレイは穿孔12を有するトレイからなる。3つの異なる層を含む粒状濾過床は、有穴トレイ上にある。このトレイには、蒸気開口6および液体スロット4を有するチムニー3が備えられ、そして円筒状スクリーン8により囲まれている。操作中、蒸気は蒸気開口6およびチムニー3を通って濾過床をバイパスして活性触媒床10に入る。このサイクルの開始では、濾過床が清浄である時、液体は濾過床そして穿孔12を通過して活性触媒床10に入る。濾過床が詰まってくると、液体流は詰まった領域で止まり、そして代わりに液体は液体スロット4およびチムニー3を通過して活性触媒床10に入る。この濾過トレイの欠点は、濾過床のある部分が詰まるようになると、これらの領域を流れる液体流れは止まり、そして濾過トレイの詰まった領域の下に設置された活性触媒が液体フィードを受けられない点である。
チムニートレイは、触媒床に液体を均一に分配するために広く使用されているが、チム
ニートレイからの均一な液体分配には、全てのチムニーがほぼ同じ液体レベルに暴露される必要がある。上記例で開示された濾過トレイでは、濾過床の流れ抵抗により、ならびに濾過床の幾つかの領域が他の領域よりも汚染されるようになり、そしてこれが床の流れ抵抗をさらに上げるので、全てのチムニーが同じ液体レベルに暴露されることはない。濾過床の大きい流れ抵抗により、上から大量の液体を受けている領域に設置されたチムニー3は、大量の液体を床10に通すことになり、そして上から少量の液体を受けている領域に配置されたチムニー3は、少量の液体を床10に通すことになる。活性触媒床10への不均一な液体フィード分配の結果は、反応物質の生成物への全体的に低い転換、および活性触媒床10中の放射状の温度差となる。濾過トレイの別の欠点は、特許文献9の図1に示すようにトレイを反応槽の直線部分に設置しなければならない点、ならびにスケールおよび固体混入物の堆積のために、濾過粒子間のボイド空間に必要な容積を提供するために、濾過トレイの高さが高くなければならない点である。水素化処理反応槽のいかなる追加の高さも、莫大な追加経費が伴う。
米国特許第4,380,529号明細書 米国特許第6,692,705号明細書 米国特許第3,112,256号明細書 米国特許第4,615,796号明細書 米国特許第3,958,952号明細書 米国特許第4,239,614号明細書 米国特許第3,824,081号明細書 米国特許第8,487,151号明細書 米国特許第8,329,974号明細書 米国特許出願第US2013/0064727A1号明細書
本発明によるスケール収集および事前分配トレイは、蒸気および液体の下降並流を有するベッセル内で、微細分配トレイから上流で使用するためのものである。本発明のトレイは上記のグループ5:蒸気バイパスを有する濾過トレイに分類することができる。
本発明の収集および事前分配トレイの3つの主目的は:
1.微細分配トレイおよび触媒床入口の汚染および詰まりを防止するために、微細分配トレイおよび触媒床から上流のプロセスストリームからスケールおよび他のより大きい固体混入物を除去すること。
2.液体が微細分配トレイの一領域から別の領域へ水平方向に流動している時、微細分配トレイ上の液体レベルの勾配を減らすために、液体の微細分配トレイへの事前分配。
3.微細な液体分配トレイへの入口で、高い流体の流速を解消し(break up)(下げ)、そして低い流体の流速を提供すること。
本発明のトレイは、蒸気バイパスを有するグループ5の濾過トレイの上記利点を有するが、蒸気バイパスを有するグループ5の既存の濾過トレイは、微細分配トレイへの液体の適切な事前分配を提供しないが、本発明のトレイは提供する。またバイパスを有するグループ5の既存の濾過トレイとは異なり、本発明のトレイはスケールおよび固体混入物の堆積用に湾曲したベッセルヘッド内の容積の良好な利用性を可能とし、したがってそのようなトレイの使用は通常、ベッセル外装に必要となる高さおよび経費を増加しない。
本発明の一つの態様は、トレイの縁にスロット型の直立した堰を有する多角形の無穴トレイである。反応槽の中心線とスロット型の堰との間に、スクリーン、フィルターまたは
ワイヤーメッシュ壁のような直立したスケール収集壁が設置される。各スロットを通る等しい液体流速を確実にするため、液体レベルを均一化するためのスケール収集壁とスロット型の堰との間の液体トラフがこのように形成される。スロット型の堰のスロットは、好ましくは微細な液体分配トレイ上の分配ユニット間のレーンに沿った方向に液体を出すので、スロットからの液体は微細な液体分配トレイ上の分配ユニットの蒸気入口には入らない。スロット型の堰から反応槽の壁に向かって外側に延びる垂直の液体ガイド板は、スロットからの液体を微細分配トレイ上の液体プールに下向けるために使用することができる。トップノズルを通ってベッセルに入るプロセスストリーム、そして特にこのプロセスストリームの液体画分は、好ましくは入口流路を通って無穴トレイ付近の位置に下げられる。
本発明のトレイは、全ての液体が透過性のスケール収集壁を通過しなければならないように設計されている。透過性壁の開口のサイズより大きいスケールおよび粒子は、壁から上流のスケール収集ゾーンに堆積することになる。液体は透過性壁を通過し、そして安定かつ水平の液体レベルが確立される液体トラフに入る。液体トラフからの液体は、スロット型の堰中のスロットを通って微細分配トレイに分配される。入口流路からの蒸気は、上方に、そしてスケール収集壁を越えて、次いでスロット型の堰を越えて、そして多角形トレイと反応槽壁との間の開放領域を通って微細分配トレイへと流すことにより、スケール収集および事前分配トレイをバイパスする。
水素化処理トリクルベット反応槽のやや概略的な断面図であり、二床の固体触媒粒子を有する反応槽中の触媒および内部構成要素の典型的な配置、ならびに反応槽の上部ヘッド内のスケール収集および事前分配トレイの典型的な位置を表す。 図2A、2B、2C、2Dおよび2Eは、反応槽ベッセルの上部ヘッドに設置された本発明のスケール収集および事前分配トレイの一態様の概略図である。図2Aは図2BのA−A線に沿って取った上部反応槽ヘッドの垂直面断面図である。図2Bは図2AのB−B線に沿って取った反応槽ヘッドの水平断面図である。図2Cは図2BのC−C線に沿って取った液体ガイドの側面図である。図2Dは図2BのD−D線に沿って取った液体ガイドの側面図である。図2Eは図2Aに示すスロット型の堰の二つのスロットの拡大側面図である。 操作中、図2Aに示す構造のやや概略的な表示である。 全ての液体が反応槽壁付近に供給された時に、反応槽の直径および反応槽中の液体体積流量の関数としての米国特許第7,506,861号明細書の微細分配トレイの最大のレベル差のプロットである。 図5A、5Bおよび5Cは、本発明のスケール収集および事前分配トレイのスロット型の堰およびトレイプレート中の異なる種類の開口部の側面図である。 トレイの形が方形である本発明のスケール収集および事前分配トレイの態様の上面図である。 トレイの形が六角形である本発明のスケール収集および事前分配トレイの態様の上面図である。 図8Aおよび8Bは、反応槽ベッセルの上部ヘッドに設置された本発明のスケール収集および事前分配トレイの一態様の概略図である。図8Aは上部反応槽ヘッドの垂直面断面図である。図8Bはスロット型の堰の二つのスロットの拡大側面図である。 図9Aおよび9Bは、反応槽ベッセルの上部ヘッドに設置された本発明のスケール収集および事前分配トレイの一態様の概略図である。図9Aは上部反応槽ヘッドの垂直面断面図である。図9Bはスロット型の堰の二つのスロットの拡大側面図である。
本発明の別の態様には、限定するわけではないが図面に示す設計を含む。
詳細な説明
水素化処理トリクルベット反応槽で起こる反応は発熱性である。したがって反応物質が水素化処理触媒の存在下、高温および圧で生成物へ転換される時、反応中に熱が放出され、そして温度の上昇を引き起こす。
工業用の水素化処理反応槽では、反応物質の二相混合物が固体触媒粒子の床を通って流れる。そのような反応槽中での理想的な流れのパターンは栓流であり、この場合、液体は反応槽の断面積の全ての点で(空の反応槽に基づき)同じ速度で下方に流れている。理想的な栓流の場合では、これは蒸気相にもあてはまる。蒸気は反応槽の断面積の全ての点で(空の反応槽に基づき)同一速度で下方に流れている。
工業用の反応槽では、栓流は床入口での理想的ではない液体分布、不均一な触媒の負荷、および/または触媒粒子間のボイド空間での堆積/コークの存在により達成されない。
トリクルベット反応槽へのフィードストリームは、上流の炉管およびフィード/エフルエント(feed/effluent)熱交換器管からのコークスケール、上流の配管および装置からの硫化鉄のような腐食産物、および上流のプロセスシステムからの他の粒状不純物を含む。これらの固体混入物は微細分配トレイ上に集まる傾向があり、このトレイの開口部に詰まり、そして触媒床への蒸気および液体の不均一な分配を引き起こす。また固体混入物は、触媒床の上にも堆積し、二つの望ましくない結果をもたらす:
1.床のある領域への入口の部分的な詰まりは、さらに触媒床への蒸気および液体の分配を悪化する。
2.床の圧力低下の増加。
触媒床での蒸気および液体の不均一な分配は、以下の結果をもたらす:触媒床のある領域では液体流速は平均より高く、そして蒸気速度は平均より低い。蒸気に対して高い液体の熱容量により、温度上昇(例えば流路1メートルあたりの℃で)はこれらの領域で低い。触媒床の他の領域でも同様に、液体流速は平均より低く、そして蒸気速度は平均より高い。ここでも蒸気に対して高い液体の熱容量により、温度上昇(例えば流路1メートルあたりの℃で)はこれらの領域で高い。
その結果、たとえ反応槽の入口で反応物質の混合物が均一な温度を有しても、流体が床を通過している時、触媒床のある領域では他よりも高くなる。さらに反応速度は温度が上がると高くなるので、この効果は加速される傾向がある。触媒床の高温領域は高い反応速度を有し、そしてこれらの領域では低温領域よりもさらに一層
熱が放出される。
触媒床の高温領域と低温領域の間での反応速度の差異により、流体の化学組成の差異も発生する。
水平面での温度および化学組成の非均一性は、幾つかの悪い効果を有する:
全ての水素化処理触媒が操作中に不活性化する。触媒の活性低下を補うために、操作中、平均床温度が上げられる。ある時点で、操作の終了時に、触媒床のピーク温度がその最高許容値に達する。この点で、全てのプロセスユニットはシャットダウンされる必要があり、そして触媒は再生または置き換えられなければならない。ここで今、水平板の温度が不均一であると、操作の終了はより早期段階に、しかも低い平均床温度で起こることになる。不均一な温度により生じるより頻繁なシャットダウンは、生産の損失、触媒消費および追加の労働力と言う意味でリファイナーに対して高い経費がかかる。
非均一性の別の影響は、化学的転換の程度が不均一な点である。反応物質のある画分は高い程度で転換されることになるが、反応物質の残りの画分は転換される程度が低い。この結果は、より低い全体的な製品品質を招くことが多い。
固体混入物での床の入口の部分的な詰まりにより生じる触媒床の圧力降下の増加は、リサイクルガスループの圧力降下を増し、したがってリサイクルガスコンプレッサーおよび供給ポンプに必要なヘッドを上げる。幾つかの点で、この回転機械装置に関する設計上の限界に達する可能性があり、プロセスユニットの不十分(premature)なシャットダウンで、触媒のスキミング、再生または交換に必要になる。上に述べたように、不十分なシャットダウンは生産の損失、触媒消費の増加および追加の労働力と言う意味でリファイナーに対して高い経費がかかる。
触媒床の水平面での温度および化学組成の非均一性、および高まる床の圧力降下は、工業用の水素化処理反応槽では避けられない。しかし非均一性および高まる圧力降下は、適切な反応槽の内部構造(internals)を設置することにより最少にすることができる。
フィード/反応物質が最初に入る第一の触媒床については、フィードストリームからより大きな固体混入物を除去するために、反応槽への入口ストリームの高い速度を解消する(下げる)ために、そして液体を事前分配するために良好なスケール収集および事前分配トレイが必要である。触媒床の断面上に液体および蒸気の等しい分配を確実にするために、良好な微細分配トレイが、スケール収集および事前分配トレイの下に備えられる必要がある。
任意に続く触媒床(1もしくは複数)についても、反応槽の断面上に液体および蒸気の均一分配を確実にするための良好な微細分配トレイが必要である。しかし続く触媒床への入口ストリームは、上流の触媒床からの出口ストリームであり、ここでは床の出口に非均一な温度および化学組成が存在することになる。したがって上流の触媒床と微細分配トレイとの間に配置される混合デバイスを有することが必須となる。そうしなければ温度および化学組成の非均一性は、1つの床から次の床へと進み、悪化するかもしれない。混合デバイスの目的は、温度および組成に関して平衡化された出口ストリームを生成することである。
反応槽内側の流体よりも低温の急冷流体は、1つの触媒床からの高温の流出液が次の床に入る前に冷却するために、二つの隣接する触媒床の間で水素化処理反応槽に注入されることが多い。これにより等温条件に近い反応槽の操作が可能となり、これは作動時間の上昇および生成物の品質向上という点で幾つかの利点を有する。この場合、混合デバイスのさらなる目的は、低温の急冷ストリームを一つの触媒床からの流出液と混合して、ストリームが次の触媒床へ入る前に熱および組成の平衡化を達成することである。
これから図面に言及し、図1は壁2、上部湾曲ヘッド3、下部湾曲ヘッド4、触媒粒子
の第一または上部床5、および触媒粒子の第二または下部床6を有する一般的な水素化処理反応槽1の見取り図を表す。図1は、触媒床および他の反応槽の内部構造に対して本発明のスケール収集および事前分配トレイ10の典型的な位置を定めることを意図している。反応物質は入口ノズル7を通って反応槽1に入る。流体は、より大きな固体混入物を除去し、そして米国特許第7,506,861号明細書の分配トレイのような微細分配トレイ11に液体を事前分配するスケール収集および事前分配トレイ10に入る。微細分配トレイ11は蒸気および液体を、スクリーンまたは触媒支持グリッド12上にある第一触媒床5の断面にわたって均一に分配する。触媒の大重量により、そして触媒床を通る流体流により導入される力により、大きい力が通常、触媒スクリーンまたは支持グリッド12に作用している。したがって支持梁13は通常、これらの力を吸収するために必要とされる。触媒支持システムの下に、米国特許7,276,215明細書の混合デバイスのような混合デバイス15が設置される。急冷流体は急冷ノズル8および急冷分散器14を通して加えることができる。ミキサーの下の衝突デバイス16は混合デバイス15を出るジェットの高速を解消する(下げる)ために使用され、そして第二の事前分配トレイ17を液体の事前分配のために衝突デバイス16の下に設置することができる。ミキサー15の下に、米国特許第7,506,861号明細書の分配トレイのような第二の微細分配トレイ18が設置され、これは蒸気および液体を、通常は下部反応槽ヘッド4に乗っている不活性粒子またはボール(示さず)上にある第二触媒床6の断面にわたって均一に分配する。反応槽からの生成物は出口ノズル9を通って出る。
反応槽1は二つの触媒床5,6を用いて表すが、水素化処理反応槽は唯一の触媒床のみを有してもよい。同様に、水素化処理反応槽に使用される触媒床の数は2より多くてもよい。
図2A、2B、2C、2Dおよび2Eは、本発明のスケール収集および事前分配トレイの一態様を有する上部反応槽ヘッドを簡略化した図面である。反応槽ベッセルは円筒状の壁23、および湾曲上部ヘッド22を有する。反応槽はベッセルへの人的介入のための人道25、およびベッセルへの流体導入のための入口ノズル21を有する。碁盤目配列上に配列された複数の分配ユニット34を有する微細分配トレイ33が反応槽に設置される。各分配ユニットは蒸気入口45を有する。スケール収集および事前分配トレイ20は、微細分配トレイ33の上流に設置され、そして複数のスロット35が提供された直立した垂直スロット型の堰31を備えた八角形の無穴トレイ板32からなる。円形の無穴底板29を備えた円筒状入口流路26を使用して、入口ノズル21からの液体をできる限りトレイ板32近くに向ける。円形のそらせ板24を使用して、入口ノズル21を通って反応槽に入る二相ストリームの高速を解消する(下げる)。環状リング27は、液体を入口流路26のできる限り下で得るために、液体を入口流路26の中心に向けるために使用される。入口流路26には穿孔28が提供されて蒸気および液体が入口流路26を放射方向に出ることができるようになる。
入口流路26とスロット型の堰31との間に、任意のスケール収集壁30を設置してもよく、この壁の上流にスケール収集ゾーンを形成する。スケール収集壁30が存在する場合、それはスクリーンまたはワイヤーメッシュスケール収集壁のように透過性壁である。スケール収集壁30(存在する場合)と上部反応槽ヘッド22との間、およびスロット型の堰31と上部ヘッド22との間に、蒸気流をバイパスするための自由空間が提供されなければならない。トレイ板32と分配ユニット34との間で内側放射状の蒸気流を可能とするために、トレイ板32は分配ユニット34の上で十分な高さに上げられなければならない。
液体が分配ユニット34の蒸気入口45に入ると、その分配ユニットを通る液体流は通常、過大となり、そして図1の上部触媒床5への液体の不均等分布を生じることになる。
したがってトレイ32の形状は好ましくは、そして有利には八角形であり、スロット35を通る液体流の方向36が微細分配トレイ33上の分配ユニット34間のレーンに沿うようにする。この設計で、分配ユニット34の蒸気入口45に入る液体の量は有意に減少し、したがって微細分配トレイ33の分配性能が向上する。
分配ユニット34の蒸気入口45に入る液体量をさらに減少することは、任意の液体ガイド37(図2Cおよび2D)の使用により達成され得る。液体ガイド37は、スロット型壁31の外側でスロット35の両側に配置される二つの垂直板38および39からなる。この板38および39は各分配ユニット34の蒸気入口45の下に下がって伸び、したがって板38および39はスロット35から出る液体を微細分配トレイ33上の液体プールへ導く。底板36は各スロット35から落ちる液体の垂直速度を解消または下げるために、そして設計の機械的強度を上げるために使用することができる。液体ガイド37は、スロット型の堰31と上部反応槽ヘッド22との間の下降方向、および事前分配トレイ20と微細分配トレイ33との間の放射状内側方向の蒸気流のために開いているように設計された。
図3は操作中の図2Aの装置の概略図である。二相のフィードストリームが入口ノズル21を通って反応槽に入る。高速の入口ストリームはそらせ板24に衝突し、そして垂直の速度成分が減少する。入口流路26は、二相ストリームをスケール収集および事前分配トレイ20のトレイ板32に向けて下降させる。環状リング27は液体を入口流路26の中心に向け、そして液体は入口流路26の底に向かって導かれる。二相ストリームは穿孔28を通って入口流路26を出る。入口流路26とスケール収集壁30との間の容積では、蒸気が液体41および固体混入物40から分けられる。蒸気はスケール収集壁30の上を越えて、そしてスロット型の堰31の上を越えて、道44に沿って微細分配トレイ33へと流れる。
液体41および固体混入物40は、スケール収集壁30から上流のスケール収集ゾーンのトレイ板32に集まる。スケールおよび固体混入物40はスケール収集ゾーンで重力により沈降する傾向があり、そして透過性のスケール収集壁30の上部は液体流のために開いている。液体41は透過性スケール収集壁30を通って濾過され、スケールおよび固体混入物40がスケール収集ゾーンにトラップされ残る。スケール収集壁30からの液体は液体トラフ42に集まり、そして安定で、しかもほぼ水平の液体レベルが液体トラフ42で樹立される。液体トラフ42からの液体は、スロット型の堰31のスロットを通って微細分配トレイ33上の液体プール43に流れる。液体トラフ42での安定で、しかもほぼ水平の液体レベルにより、スロットを通る液体の流速は同一に近い。スロットからの液体ストリームは、分配ユニット34間の微細分配トレイ33上の液体プール43に入るので、液体は蒸気開口45には入らない。
図2および3で説明するように、液体は反応槽壁23付近の微細分配トレイ33に供給され、そして液体は続いて微細分配トレイ33を内側放射状方向にわたって、トレイ板32の下に設置された分配ユニット34に流れなければならない。しかし図4に示すように、微細分配トレイ33上の反応槽壁23から微細分配トレイ33の中心に向けての液体の内側放射状の流れの方向は、微細分配トレイ33上にいかなる有意な液体レベルの勾配も生じないことが示された。図4は全ての液体が反応槽壁23に隣接する領域に均一に分配された場合、反応槽1の直径の関数として、および反応槽1中の体積液体流量(volumetric liquid flux)の関数として、米国特許第7,506,861号明細書に従い設計された微細分配トレイ33上の最大液体レベル差のプロットである。グラフから分かるように、微細分配トレイ33をわたって流れる液体による最大液体レベルの差異は、全ての標準的な水素化処理の応用について1mm未満であり、これは製造および取り付け公差から生じる、および液体プール43上の蒸気空間での圧力差から生じる
微細分配トレイ33上のレベル差と比較して無視できる。
微細分配トレイ33上の液体レベルの低い差は、スケール収集および事前分配トレイ20から微細分配トレイ33への液体の良好な事前分配の結果である。入口ノズル21からの液体が微細分配トレイ33の狭い領域に供給される場合、有意なレベルの勾配が生じることになり、そしてこのようなレベルの勾配は微細分配トレイ33の液体分配性能を悪化することになる。より高い液体レベルに暴露された分配ユニット34は、より低い液体レベルに暴露された分配ユニット34よりも一般に多くの液体を第一または上部の触媒床5に通すことになる。トレイ板32の液体開口またはチムニーは、液体をスケール収集および事前分配トレイ20の下に設置された微細分配トレイ33の領域に分配するために使用することができる。しかしそのような開口またはチムニーは、トレイ板32に堆積する固体混入物40で詰まり易く、そして図4から分かるように、そのような液体開口またはチムニーは微細分配トレイ33上の液体レベル差がすでに低いので必要ではない。
堰31の開口は、図2Eに示すように必ずしも長方形スロット35である必要はない。図5A,5Bおよび5Cに示すように他の形状を使用することもできる。異なるサイズ、そして異なる高さに配置された円形の穴46、およびV−字形の刻み目47は、堰31内の可能な開口の他の例である。またトレイ板32を通る液体流用の開口48は単独で、または堰31内の開口49と組み合わせて使用することができる。
図2および3では、スケール収集壁30およびスロット型の堰31が垂直に示されている。しかし上部反応槽ヘッド22内で利用可能な容積をより良く利用するために、角度付または湾曲のような他の形状の収集壁30および堰31も使用することができる。
図2Bでは、トレイ板32が八角形で示されている。しかし高い蒸気流を有する反応槽については、スロット型の堰31と上部反応槽ヘッド22との間の蒸気流領域を上げるために、図6に示すように方形のトレイ板32が使用されることになる。八角形または方形のトレイ板32は、分配ユニット34が碁盤目配列に配列されている場合に最も適している。それというのもこの場合はスロット型の堰31が分配ユニット34の間のレーンに対して垂直になるからである。これによりこれらのレーンに沿っているスロット35を通る液体流の方向56が可能になるので、スロット35からの液体は分配ユニット34の蒸気入口45にはほとんど入らないか、全く入らない。
トレイ板32は他の形状を有してもよい。例えば分配ユニット34が三角形配列に配列されるならば、スロット35を通る液体流の方向56が微細分配トレイ33の分配ユニット34間のレーンに確実に沿うようにするために、図7に示すように六角形のトレイ板32が最適になる。ここでもこれはスロット35からの液体が分配ユニット34の蒸気入口45に入ることを防ぐためである。
スケール収集壁30もまた異なる形状を有してよい。これらの形状には図2Bおよび6に示すような多角形、図7に示すような円形または他の形状を含む。
図2および3に示す態様では、スケールおよび固体混入物40が集められるスケール収集ゾーンは透過性のスケール収集壁30から上流のゾーンである。しかしスケール収集ゾーンは図8および9に説明するような静かな流れのゾーン(calm flow zone)50であることもできる。静かな流れのゾーン50は、バッフル、グリッド、ワイヤーメッシュ、粒子の充填層、または不規則もしくは構造化緩衝材のような緩衝材のような流れの制限の使用により、流速および乱流が低減するゾーンである。静かな流れのゾーン50での低い流速は、粒状の混入物がそこに沈降し、そして堆積できるようにする。図8の態様は、反応槽中での蒸気の流速が高い場合、または反応槽が半球状の反応槽ヘッド代
わりに楕円形の上部反応槽ヘッド22を有する場合に、スケール収集壁30のために上部反応槽ヘッド22で利用できる容積が不十分な反応槽で使用することができる。
これから図8Aおよび8Bについて言及し、反応槽は円筒状壁23および楕円形の上部ヘッド22を有する。上部ヘッド22には人道25および入口ノズル21が提供されている。円筒形の入口流路26は入口ノズル21からの入口ストリームをスケール収集および事前分配トレイ20付近の場所にまで下降するように向ける。円形のそらせ板51が入口流路26の下に設置されて入口ストリームの高い速度を解消するかまたは減じる。スケール収集および事前分配トレイ20は、垂直のスロット型の堰31を有する方形トレイ板32からなる。堰31の上の部分に液体流のために意図された長方形のスロット35が提供されている。トレイ32付近の流体の流速および乱流を減じて粒状不純物がトレイ板32上のワイヤーメッシュに沈降し、そして堆積できるようにするために、ワイヤーメッシュが充填された静かな流れのゾーン50がトレイ板32に提供される。液体が分配ユニット34の蒸気入口45に入ることを防ぐために、分配ユニット34間のレーンに沿った方向に液体がスロット35を出るように、トレイ板32およびスロット35は配置され、そして方向付けられる。
図9Aおよび図9Bについて言及し、反応槽は円筒状壁23および半球状の上部ヘッド22を有する。このヘッド22には人道25および入口ノズル21が提供されている。円筒状の入口流路26は入口ノズル21からの入口ストリームを、円筒状の壁52および無穴の円形底板54からなる入口バスケット55の中に下降させる。円筒状の壁52はスロット53により穿孔されている。スケール収集および事前分配トレイ20は方形トレイ板32および垂直にスロットを切った堰31からなる。堰31の上の部分には液体流を意図した長方形のスロット35が提供されている。トレイ板32付近の流体の流速および乱流を減らし、粒状不純物がワイヤーメッシュ内およびトレイ板32上に沈降そして堆積できるようにするために、ワイヤーメッシュからなる静かな流れのゾーン50がトレイ板32上に提供されている。入口流路26およびバスケット55の目的は、液体を静かな流れのゾーン50に下降させることであり、一方、蒸気のほとんどは入口流路26から微細分配トレイ33へと道44を取ることになる。安定で、しかもほぼ水平の液体レベルが液体トラフ42で樹立され、そして個々のスロット35への液体の等しい分配が確実となる。トレイ板32およびスロット35は、液体が分配ユニット34の蒸気入口45に入ることを防ぐために、液体が分配ユニット34間のレーンに沿った方向にスロットを出るように設置され、そして方向付けられる。
図2A、8Aおよび9Aに説明するように、関連する衝突デバイスを有する入口流路26を設計する幾つかの方法がある。重要な設計上の観点は、蒸気、液体および固体を事前分配トレイ20上で分離できるようにするために、そして固体混入物がトレイ板32上に沈降そして堆積できるようにするために、入口ノズル21からの流体をスケール収集および事前分配トレイ20のできる限り近くに運ぶこと、および流体をできる限り低い速度で事前分配トレイ20に出すことである。一般に入口流路26を出る流体ストリームの垂直速度成分は、第二またはより下のそらせ板29(図2A)、51(図8A)、54(図9A)の使用により減じられ、そして水平の速度成分は流体ストリームが通過しなければならない入口流路壁26またはバスケット52中の穿孔28および53の使用により減じることができる。好ましくは液体および固体混入物はできる限り事前分配トレイ20近くに向けられるべきであり、一方、蒸気は、好ましくは蒸気が道44を介して事前分配トレイ20をバイパスできるように、より高い高度の入口流路から出るべきである。これは図2Aの環状リング27の中央開口からの膨張(expansion)からの下降流(downstream)、または図9Aのバスケット52への入口流路26からの膨張からの下降流のような入口通路の膨張から蒸気の下降流用の開口を設けることにより達成することができる。これらの膨張では、より高い密度により液体は垂直下降方向に進む傾向を有し
、一方、蒸気はより容易に逸れ、そして図2Aの開口28の上部を通過するか、あるいは図9Aの入口流路26とバスケット52との間の環状領域を通過する。
図2A、8Aおよび9Aのトレイ32は、一般に水平に近い。図2A、8Aおよび9Aの堰31の高さは、一般に100から400mmの間である。図2E、8Bおよび9Bのスロット35の高さは、一般に50から300mmの間である。図2E、8Bおよび9Bのスロット35の幅は、一般に5から50mmの間である。図2Aのスケール収集壁30の高さは、一般に200から1200mmの間である。図8Aおよび9Aの静かな流れのゾーン50の高さは、一般に100から1200mmの間である。入口流路26の直径または幅は、一般に150から1000mmの間である。

Claims (30)

  1. 蒸気および液体の並流下降流を有する触媒反応槽ベッセル中での固体混入物の除去、および液体の微細分配トレイへの事前分配のための方法であって:
    該触媒反応槽ベッセル内にスケール収集および事前分配トレイを備え;
    該固体混入物が沈降し、そして堆積するために、該スケール収集および事前分配トレイ上のスケール収集ゾーンに該液体を通し;
    該スケール収集ゾーンからの該液体を、該スケール収集および事前分配トレイの縁に位置する堰に向け;
    該液体を、該微細分配トレイへの開口部に通し;そして
    蒸気を、該スケール収集および事前分配トレイ上の空間から、該スケール収集ゾーンと該ベッセルの壁との間の流量範囲、および該堰と該ベッセルの壁との間の流量範囲を通して該微細分配トレイに通す;
    工程を含んでなる上記方法。
  2. 上記のスケール収集および事前分配トレイが、反応槽の高さを確保するために該触媒反応槽の上部ヘッドの内側に設置されている請求項1に記載の方法。
  3. 上記のスケール収集および事前分配トレイの全部または一部が、反応槽の高さを確保するために該触媒反応槽の上部接線上に設置されている請求項1に記載の方法。
  4. 入口流路が備えられ、そして上記反応槽の上に入るプロセスストリームを上記スケール収集および事前分配トレイに下降させるために使用される請求項2に記載の方法。
  5. そらせ板が、上記の入口流路の上記プロセスストリームの垂直流速成分を下げるために上記スケール収集ゾーンに入る前に使用される請求項4に記載の方法。
  6. 上記プロセスストリームが、上記スケール収集ゾーンに入る前に該プロセスストリームの水平流速成分を下げるため、上記の入口流路から有穴壁またはバスケットを通って流れるように向けられる請求項5に記載の方法。
  7. 上記プロセスストリームが、上記のスケール収集ゾーンを通り、上記の堰に向かって放射状外側の全体的な流れの方向に向けられる請求項1に記載の方法。
  8. 上記の各開口部上に等しい液体高を得るために、液体トラフが上記スケール収集ゾーンと上記堰との間に設けられ、そして液体レベルの差異を均一にするために使用される請求項1に記載の方法。
  9. 上記の開口部が上記の堰に設けられている請求項1に記載の方法。
  10. 上記の開口部が長方形のスロットである請求項9に記載の方法。
  11. 上記のスケール収集および事前分配トレイが無穴である請求項1に記載の方法。
  12. 透過性の直立壁が上記のスケール収集ゾーンを形成し、そして上記液体が該透過性の直立壁を通過すると濾過される請求項1に記載の方法。
  13. 上記のスケール収集ゾーンが、バッフル、グリッド、ワイヤーメッシュ、粒子の充填床、または不規則もしくは構造化緩衝材のような緩衝材のような流れの制限を備え、上記の固体混入物が該スケール収集ゾーンで沈降し、そして堆積できるようにする低い流速およ
    び低い乱流を有する静かな流れのゾーンを提供する請求項1に記載の方法。
  14. 上記開口部から上記の最終分配トレイ上の分配ユニット間のレーンに沿った液体の出口方向を可能にするために、上記のスケール収集および事前分配トレイが多角形を有し、そして上記の堰が該レーンに対して垂直である請求項1に記載の方法。
  15. 液体ガイド板が、液体を上記開口部から上記の微細分配トレイの液体プールに降ろすために使用される請求項1に記載の方法。
  16. 上記のスケール収集および事前分配トレイが、二つの触媒床の間の反応槽区に設置される請求項1に記載の方法。
  17. 固体混入物の除去、そして液体の微細分配トレイへの事前分配のためのスケール収集および事前分配デバイスを備えた蒸気および液体の並流下降流を有する触媒反応槽ベッセルであって、該デバイスが:
    該微細分配トレイ上に設置された水平トレイ;
    該固体混入物が沈降し、そして堆積できる該水平トレイ上のスケール収集ゾーン;
    該水平トレイの縁で、液体レベルを確立するためにトレイの上の上方に延びる堰および該堰の上流の液体トラフ;
    該水平トレイ上の空間から該微細分配トレイへ蒸気を通すために、該反応槽の壁と該堰との間の該蒸気用の通路;および
    液体を該液体トラフから該微細分配トレイに通すための開口部;
    を備えた上記触媒反応槽ベッセル。
  18. 湾曲ヘッドを有し、そして反応槽の高さを確保するために、上記水平トレイが反応槽ベッセルの上部接線上の該湾曲ヘッドに設置される、請求項17に記載の反応槽。
  19. 入口流路が備えられ、そして上記反応槽の上から入る上記プロセスストリームを上記水平トレイに下降させるために使用される請求項18に記載の反応槽。
  20. 上記の入口流路の上記プロセスストリームが上記スケール収集ゾーンに入る前に垂直流速成分を下げるために、そらせ板が提供され、そして使用される請求項19に記載の反応槽。
  21. 有穴壁またはバスケットが備えられ、それを通る上記プロセスストリームが上記スケール収集ゾーンに入る前に該プロセスストリームの水平流速成分を下げるために流れるように向けられる請求項20に記載の反応槽。
  22. 上記プロセスストリームが上記のスケール収集ゾーンを通って、上記の堰に向かう放射状外側の全体的な流れの方向に向けられる請求項17に記載の反応槽。
  23. 上記の開口部が上記の堰に設けられている請求項17に記載の反応槽。
  24. 上記の開口部が長方形のスロットである請求項23に記載の反応槽。
  25. 上記の水平トレイが無穴である請求項17に記載の反応槽。
  26. 上記スケール収集ゾーンが上記水平トレイから上方に延びる透過性の壁を備え、上記液体が該透過性壁を通過して濾過され、そして上記の固体混入物が該透過性壁の上流に堆積する請求項17に記載の反応槽。
  27. 上記のスケール収集ゾーンがバッフル、グリッド、ワイヤーメッシュ、粒子の充填床、または不規則もしくは構造化緩衝材のような緩衝材のような流れの制限を備え、上記の固体混入物が該スケール収集ゾーンで沈降し、そして堆積できるようにする低い流速および低い乱流を有する静かな流れのゾーンを提供する請求項17に記載の反応槽。
  28. 上記開口部から上記の最終分配トレイ上の分配ユニット間のレーンに沿った液体の出口方向を可能にするために、上記の水平トレイが多角形を有し、そして上記の堰が該レーンに対して垂直である請求項17に記載の反応槽。
  29. 上記開口部からの液体を方向付け、そして上記の微細分配トレイの液体プールに降ろすために液体ガイド板が使用される請求項17に記載の反応槽。
  30. 上記液体ガイド板が平らであり、そして垂直板である請求項29に記載の反応槽。
JP2016574487A 2014-03-14 2015-03-13 下降二相流を有するベッセル用のスケール収集および事前分配トレイ Active JP6560267B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201461953067P 2014-03-14 2014-03-14
EP14159895.3 2014-03-14
US61/953,067 2014-03-14
EP14159895.3A EP2918332A1 (en) 2014-03-14 2014-03-14 Scale collection and predistribution tray for vessel with downwards two-phase flow
PCT/EP2015/055261 WO2015136066A1 (en) 2014-03-14 2015-03-13 Scale collection and predistribution tray for vessel with downward two-phase flow

Publications (2)

Publication Number Publication Date
JP2017514687A true JP2017514687A (ja) 2017-06-08
JP6560267B2 JP6560267B2 (ja) 2019-08-14

Family

ID=50277079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016574487A Active JP6560267B2 (ja) 2014-03-14 2015-03-13 下降二相流を有するベッセル用のスケール収集および事前分配トレイ

Country Status (8)

Country Link
US (1) US10214699B2 (ja)
EP (2) EP2918332A1 (ja)
JP (1) JP6560267B2 (ja)
CN (1) CN106132528B (ja)
CA (1) CA2942719C (ja)
EA (1) EA033011B1 (ja)
ES (1) ES2962245T3 (ja)
WO (1) WO2015136066A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018505773A (ja) * 2014-12-23 2018-03-01 ハルドール・トプサー・アクチエゼルスカベット 粒子分離触媒化学反応器及び粒子分離器
JP2021501052A (ja) * 2017-11-01 2021-01-14 ハルドール・トプサー・アクチエゼルスカベット 粒子保持装置及び設置方法
WO2022138286A1 (ja) * 2020-12-21 2022-06-30 昭和電工株式会社 固定床反応器

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018077096B1 (pt) * 2016-06-28 2022-10-25 Haldor Topsøe A/S Reator químico catalítico compreendendo uma bandeja flutuante
CN108114670B (zh) * 2016-11-30 2021-12-07 中国石油化工股份有限公司 一种套筒式减冲均流盘
RU2765477C2 (ru) * 2017-08-15 2022-01-31 Чайна Петролеум Энд Кемикал Корпорейшн Устройство для разделения
FR3072306B1 (fr) * 2017-10-12 2019-10-18 IFP Energies Nouvelles Dispositif de melange et de distribution avec ouverture longitudinale
FR3072305B1 (fr) * 2017-10-18 2022-05-06 Ifp Energies Now Panier amovible pour reacteur catalytique
US10576439B2 (en) 2017-12-21 2020-03-03 Uop Llc Scale collection device for downflow reactors
US11224849B2 (en) 2017-12-21 2022-01-18 Uop Llc Scale collection device for downflow reactors
US10537866B2 (en) * 2017-12-21 2020-01-21 Uop Llc Scale collection device for downflow reactors
US10549249B2 (en) * 2017-12-21 2020-02-04 Uop Llc Scale collection device for downflow reactors
US10556212B2 (en) * 2017-12-21 2020-02-11 Uop Llc Scale collection device for downflow reactors
US11298669B2 (en) * 2017-12-21 2022-04-12 Uop Llc Scale collection device for downflow reactors
CN111375352B (zh) * 2018-12-30 2021-10-08 中国石油化工股份有限公司 一种固定床上流式反应器及其应用
US10589244B1 (en) * 2019-02-07 2020-03-17 Uop Llc Hydroprocessing reactor internals having reduced height
CN109908632B (zh) * 2019-04-22 2024-04-26 北京泽华化学工程有限公司 沉降塔盘及塔内组件
CN115397541A (zh) * 2020-04-27 2022-11-25 国际壳牌研究有限公司 气相沉积(gps)塔盘
CN114425208B (zh) * 2020-09-17 2022-11-11 中国石油化工股份有限公司 积垢盘和含尘气体净化装置
CN114618390B (zh) * 2020-12-08 2024-02-20 江苏万盛大伟化学有限公司 一种用于连续法生产n-甲基吗啉的固定床反应器
AU2022271829A1 (en) 2021-05-13 2023-10-26 Shell Internationale Research Maatschappij B.V. Process for hydroprocessing materials from renewable sources
CN113385109B (zh) * 2021-06-24 2023-04-28 江苏万盛大伟化学有限公司 一种五甲基二乙烯三胺和三甲基羟乙基乙二胺联产的装置及方法
CN114534642A (zh) * 2022-03-25 2022-05-27 新疆恒有能源科技股份有限公司 一种液化气制芳烃油的反应装置
WO2024126368A1 (en) * 2022-12-13 2024-06-20 Topsoe A/S Multiple-bed catalytic reactor comprising a distribution device with cyclone type fine distributors

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808350A (en) * 1987-08-26 1989-02-28 The Dow Chemical Company Liquid distributor apparatus for high turndown ratios and minimum fouling
JPH0457251U (ja) * 1990-09-25 1992-05-15
EP0716881A1 (en) * 1994-08-23 1996-06-19 Shell Internationale Researchmaatschappij B.V. Distributor device for multiple-bed downflow reactors
JP2004524137A (ja) * 2000-12-11 2004-08-12 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 混合用渦巻き装置を含む混合装置
JP2004531596A (ja) * 2001-03-01 2004-10-14 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 自己支持型の反応器内部構造物
US20060163758A1 (en) * 2005-01-21 2006-07-27 Morten Muller Ltd. Aps Distribution device for two-phase concurrent downflow vessels

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3112256A (en) * 1960-01-11 1963-11-26 Union Oil Co Distribution of vapor-liquid feeds in fixed-bed reactors
US3824081A (en) * 1972-04-27 1974-07-16 Texaco Inc Vertical reactor for two-phase vapor-liquid reaction charge
GB1475082A (en) * 1973-05-16 1977-06-01 Shell Int Research Process and apparatus for the catalyric treatment of materials containing solid contaminants
US4239614A (en) * 1978-12-11 1980-12-16 Uop Inc. Hydrocarbon conversion process with annular guard beds
US4380529A (en) * 1980-12-04 1983-04-19 Exxon Research And Engineering Co. Hydroprocessing reactor with extended operating life
US4615796A (en) * 1981-10-29 1986-10-07 Chevron Research Company Method for contacting solids-containing feeds in a layered bed reactor
US4937051A (en) * 1985-11-07 1990-06-26 Mobil Oil Corporation Catalytic reactor with liquid recycle
US5061407A (en) * 1990-08-08 1991-10-29 Nutter Dale E Liquid distributor for gas-liquid contact apparatus
US5192465A (en) * 1991-02-05 1993-03-09 Glitsch, Inc. Method of and apparatus for liquid distribution
US5484578A (en) * 1994-06-20 1996-01-16 Mobil Oil Corporation Two-phase distributor system for downflow reactors
US5635145A (en) * 1994-08-23 1997-06-03 Shell Oil Company Multi-bed downflow reactor
JP3676437B2 (ja) * 1995-07-10 2005-07-27 新日本石油株式会社 反応塔
DE19729514C1 (de) * 1997-07-10 1998-11-19 Balcke Duerr Gmbh Dampfbeheizte Vorrichtung zur Verdampfung oder Eindickung von Flüssigkeiten
US6692705B2 (en) * 1999-07-13 2004-02-17 Exxonmobil Research And Engineering Company Fouling tolerant fixed bed reactor with multi-tier bypass device
CA2379558C (en) * 2001-05-23 2006-10-03 Sulzer Chemtech Ag A liquid distributor for columns
US7276215B2 (en) * 2002-11-08 2007-10-02 Morten Muller Ltd. Aps Mixing device for two-phase concurrent vessels
FR2883200B1 (fr) * 2005-03-17 2007-05-11 Inst Francais Du Petrole Dispositif pour le melange et la repartition d'un gaz et d' un liquide en amont d'un lit granulaire
FR2889973B1 (fr) * 2005-08-26 2007-11-09 Inst Francais Du Petrole Plateau filtrant pour reacteur a lit a co courant descendant de gaz liquide
JP5276098B2 (ja) * 2007-06-21 2013-08-28 ビーエーエスエフ ソシエタス・ヨーロピア 触媒床上で液相及び気相の三相反応を実行するための反応器
FR2924950B1 (fr) * 2007-12-17 2012-02-24 Inst Francais Du Petrole Plateau filtrant de predistribution avec tube deverseur pour reacteur a lit fixe a co-courant descendant de gaz et de liquide
FR2932698B1 (fr) * 2008-06-23 2010-08-13 Total France Dispositif de filtration et de predistribution pour reacteur a lit catalytique fixe et son utilisation.
US8181942B2 (en) * 2008-06-26 2012-05-22 Uop Llc Liquid redistribution device for multibed reactors
RU2543013C2 (ru) * 2009-09-23 2015-02-27 Борд Оф Сьюпервайзорз Оф Луизиана Стэйт Юниверсити Энд Эгрикалчурал Энд Мекэникал Колледж Устройство для уменьшения турбулентности
US9597650B2 (en) * 2011-04-18 2017-03-21 Gtc Technology Us Llc System for improved reactant mixing and distribution
WO2013130743A1 (en) * 2012-02-28 2013-09-06 Phillips 66 Company Modifying flow of a reactor inlet distributor
US9861947B2 (en) * 2012-02-28 2018-01-09 Phillips 66 Company Reactor inlet vapor velocity equalizer and distributor
EA034637B1 (ru) * 2013-02-19 2020-03-02 Мортен Мюллер Лтд. Апс Смешивающее устройство с тангенциальными впусками для емкостей с двухфазным потоком
CN106659943A (zh) * 2014-08-26 2017-05-10 普莱克斯技术有限公司 接触装置和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808350A (en) * 1987-08-26 1989-02-28 The Dow Chemical Company Liquid distributor apparatus for high turndown ratios and minimum fouling
JPH0457251U (ja) * 1990-09-25 1992-05-15
EP0716881A1 (en) * 1994-08-23 1996-06-19 Shell Internationale Researchmaatschappij B.V. Distributor device for multiple-bed downflow reactors
JP2004524137A (ja) * 2000-12-11 2004-08-12 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 混合用渦巻き装置を含む混合装置
JP2004531596A (ja) * 2001-03-01 2004-10-14 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 自己支持型の反応器内部構造物
US20060163758A1 (en) * 2005-01-21 2006-07-27 Morten Muller Ltd. Aps Distribution device for two-phase concurrent downflow vessels

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018505773A (ja) * 2014-12-23 2018-03-01 ハルドール・トプサー・アクチエゼルスカベット 粒子分離触媒化学反応器及び粒子分離器
JP2021501052A (ja) * 2017-11-01 2021-01-14 ハルドール・トプサー・アクチエゼルスカベット 粒子保持装置及び設置方法
JP7248690B2 (ja) 2017-11-01 2023-03-29 トプソー・アクチエゼルスカベット 粒子保持装置及び設置方法
WO2022138286A1 (ja) * 2020-12-21 2022-06-30 昭和電工株式会社 固定床反応器

Also Published As

Publication number Publication date
CA2942719C (en) 2022-08-30
CN106132528B (zh) 2019-05-03
JP6560267B2 (ja) 2019-08-14
CA2942719A1 (en) 2015-09-17
CN106132528A (zh) 2016-11-16
US20170015917A1 (en) 2017-01-19
EP3116638A1 (en) 2017-01-18
EA033011B1 (ru) 2019-08-30
EP3116638C0 (en) 2023-10-04
WO2015136066A1 (en) 2015-09-17
EP2918332A1 (en) 2015-09-16
EA201691615A1 (ru) 2017-02-28
EP3116638B1 (en) 2023-10-04
ES2962245T3 (es) 2024-03-18
US10214699B2 (en) 2019-02-26

Similar Documents

Publication Publication Date Title
JP6560267B2 (ja) 下降二相流を有するベッセル用のスケール収集および事前分配トレイ
JP5663128B2 (ja) 2相下降並流ベッセル用分配装置
CA2431271C (en) Multiple bed downflow reactor
US7506861B2 (en) Distribution device for two-phase concurrent downflow vessels
US7601310B2 (en) Distributor system for downflow reactors
US8728403B2 (en) Filtration tray for fixed bed reactor with a co-current down-flow of gas and liquid
JP6387224B2 (ja) 重質閉塞性仕込原料処理用の気体および液体の下降並流を有する固定床反応器に供給するためのろ過分配プレート
JP2008528248A5 (ja)
EP2767333A9 (en) Mixing device with tangential inlets for two-phase concurrent vessels
DK3013467T3 (en) FLUID DISTRIBUTION DEVICE AND PROCEDURE FOR MULTI-LEARNING ACTORS
EP3658267B1 (en) Methods for fluid contacting in a downflow vessel
CA3085352C (en) Scale collection device for downflow reactors
RU2771726C2 (ru) Съемная корзина для каталитического реактора

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190213

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190718

R150 Certificate of patent or registration of utility model

Ref document number: 6560267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250