JP2017508162A - 合成アンテナビームを形成するための合成アンテナソナーおよび方法 - Google Patents

合成アンテナビームを形成するための合成アンテナソナーおよび方法 Download PDF

Info

Publication number
JP2017508162A
JP2017508162A JP2016557020A JP2016557020A JP2017508162A JP 2017508162 A JP2017508162 A JP 2017508162A JP 2016557020 A JP2016557020 A JP 2016557020A JP 2016557020 A JP2016557020 A JP 2016557020A JP 2017508162 A JP2017508162 A JP 2017508162A
Authority
JP
Japan
Prior art keywords
sector
sonar
antenna
synthetic aperture
elevation angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016557020A
Other languages
English (en)
Other versions
JP6655022B2 (ja
Inventor
ビュルレ,ニコラ
マンデレール,ニコラ
グットマン,ピエール
Original Assignee
タレス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タレス filed Critical タレス
Publication of JP2017508162A publication Critical patent/JP2017508162A/ja
Application granted granted Critical
Publication of JP6655022B2 publication Critical patent/JP6655022B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8902Side-looking sonar
    • G01S15/8904Side-looking sonar using synthetic aperture techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating

Abstract

本発明は、ソナー画像処理の分野にそして合成開口ソナーを用いた目標物の検出および分類に関する。合成開口ソナー(1)は、第1の軸(X1)に沿って動くように意図される。ソナー(1)は、少なくとも1つのセクタを含むセクタのセットにおける被観測区域に向けて少なくとも1つの音響パルスを、各々のピングにおいて、放射するように構成された放射装置(2)を備える。ソナー(1)は、後方散乱信号の測定値を獲得することを可能にする第1の軸(X1)に沿って延在する第1の物理受信アンテナ(3)と、被観測区域によって後方散乱された、および前記セクタに放射された音響パルスによって生成された、信号の測定値から合成開口ビームを、セクタのセットの各々のセクタに対して、R個のピングに関して、形成するように構成された処理装置とを備える。ソナー(1)は、少なくとも1つのジャイロメータを備える。処理装置は、連続したピングの相互相関によって自動較正を行うことによって、セクタの前記セットの合成開口ビームの形成の間の第1の受信アンテナの運動における変動を補正するように構成される

Description

本発明は、ソナー画像処理の分野にそして合成開口ソナーを用いた目標物の検出および分類に関する。それはより具体的には、地雷戦にそして合成開口ソナーを用いた地雷の検出および分類に関する。
目標物の分類の問題は、特に、ざらつきのある海底に置かれた底部地雷に対して、またはステルス地雷に対して、解決することが難しい問題である。非常に高分解能のサイドスキャン合成開口ソナーモードでのソナーの使用は、この問題への1つの応答であるが、不満足なままのものである。「サイドスキャンソナー」によって意味されることは、実質的に90度に等しい方位角を有する照準軸に沿って音響パルスを放射する、すなわち、その舷側にソナーが設置されるキャリアの経路に実質的に垂直な、ソナーである。ソナーは、水中に沈められるフィッシュまたはキャリアの側面の1つに位置している。キャリアは自律的とするかまたは水上艦艇によって曳航することができる。「非常に高分解能」によって、一般的に意味されることは、100kHzより高い周波数を有するソナーに対する10cm未満の分解能である。
合成開口ソナーの目的は、受信アンテナの長さ寸法を増やすことなく、所与の距離範囲で、分解能を改善することである。合成開口ソナーの原理は、N個のトランスデューサの直線配列によって形成された物理アンテナを使用することにある。このタイプのソナーでは、キャリアの進行の間に、放射装置、または放射アンテナは、キャリアに対して固定された基本セクタにP個の連続したパルスを放射する。P個の時点において、したがってP個の連続した場所で、物理受信アンテナのN個のトランスデューサによって受信される信号は、合成アンテナのビームを形成するために使用される。取得される画像の分解能、すなわち合成アンテナのビームの分解能は、これらのP個の連続した時点の間に物理アンテナが移動した長さの約2倍に対応する長さの仮想アンテナの分解能と実質的に等価である。
合成アンテナのビームは、「合成開口処理方法」と呼ばれる、アンテナによって測定された後方散乱信号を処理するための方法によって構築される。このタイプの方法は当該技術分野で公知である。ソナーの合成アンテナのビームを形成するために、受信アンテナによって測定された信号は、形成されるビームの方向に、およびアンテナのトランスデューサのさまざまな場所に対応する遅延を使用して加算され、それらの場所は、物理アンテナにおけるトランスデューサの位置に、および物理アンテナの運動に依存する。
合成アンテナ原理を適用するとき経験される主な困難は、ビーム形成で使用されるべき遅延の定量に存在する。従来のアンテナでこれらの遅延が照準点の距離および方向にのみ依存するのに対して、合成アンテナの遅延は、形成時間の間のキャリアの運動に依存する。この形成時間が長いほど、すなわち、より良い分解能と密接に関連している、ピングの数が高いほど、これらの遅延を定量することはより難しい。
公開番号仏国特許第2769372号明細書を有する特許出願の基礎は、INSを装備されたキャリアの空間位置の測定での誤差が大きすぎるので、受信アンテナの位置の測定で必要とされる精度が慣性航法システム(INS)で取得可能ではないという所見である。さらに、この出願では、アンテナによって測定されるさまざまな信号の処理によってアンテナの位置を取得することを可能にする、いわゆる自動較正または自動焦点プロセスで、2つのピングの間のアンテナの回転角の精度がプロセスの精度を限定する要因であると述べられている。これらの欠点を是正するために、したがってそれは、合成開口ソナーにおける寄生アンテナ運動の影響を補正するための、すなわちアンテナの角度変動に起因する影響を補正するための方法を提案し、その方法において合成アンテナはソナーのM個のピングに関して形成され、物理アンテナの運動における変動は、アンテナの回転の測定値を使用して連続したピングの相互相関によって自動較正を行うことによって補正され、アンテナの回転の測定値は、ジャイロメータを用いて、および物理アンテナに垂直な補助アンテナで後方散乱信号の仰角を測定することによって取得される。この方法は、合成開口ビームを通して取得されるソナー画像の分解能を実質的に改善することを可能にする。
仏国特許出願公開第2769372号明細書
公開番号仏国特許第2769372号明細書を有する特許出願で説明された方法は、物理アンテナに垂直な補助アンテナをソナーに装備する必要がある。
本発明の1つの目的は、補助アンテナを省略することを可能にするソナーを提供することである。
この目的を達成するために、本発明の1つの主題は、第1の軸に沿って動くように意図された合成開口ソナーであって、ソナーは、少なくとも1つのセクタを含むセクタのセットにおける被観測区域に向けて少なくとも1つの音響パルスを、各々のピングにおいて、放射するように構成された放射装置を備え、ソナーは、前記パルスによって生成された後方散乱信号の測定値を獲得することを可能にする第1の軸に沿って延在する第1の物理受信アンテナと、被観測区域によって後方散乱された、および前記セクタに放射された音響パルスによって生成された、信号の測定値から合成開口ビームを、セクタのセットの各々のセクタに対して、R個のピングに関して、形成するように構成された処理装置とを備え、ソナーは、少なくとも1つのジャイロメータを備え、前記処理装置は、前記少なくとも1つのジャイロメータを用いて取得される第1の受信アンテナの回転の測定値を使用して、ならびに後方散乱信号の画像平面を決定するためにおよび前記回転測定値を前記画像平面に投影するために後方散乱信号の仰角の推定を使用して、取得された投影が自動較正を行うために使用されて、連続したピングの相互相関によって自動較正を行うことによってセクタの前記セットの合成開口ビームの形成の間の第1の受信アンテナの運動における変動を補正するように構成されることを特徴とし、ソナーにおいて、測深セクタと呼ばれる、セクタのセットのうちの少なくとも1つのセクタの合成開口ビームの形成の間に、後方散乱信号の仰角の推定が使用され、前記推定は、被観測区域の複数のポイントの、地球基準座標系で規定された、3次元位置を含む測深図から取得される。
有利には、放射装置は、それぞれ、異なる方位角を有する第1の照準軸および第2の照準軸に沿って、被観測区域に向けて識別可能な音響パルスを、第1のセクタおよび少なくとも1つの第2のセクタを含む異なるそれぞれのセクタに、各々のピングにおいて、放射するように構成され、前記少なくとも1つの測深セクタは、少なくとも1つの第2のセクタを含み、測深図は、前記第1のセクタに放射された音響パルスによって生成された第1の後方散乱信号の第1の仰角の測定値から取得される。
ソナーは、第1の軸に垂直な第2の軸に沿って分布している複数のトランスデューサを備えるトランスデューサの配列を備えることができ、前記トランスデューサは、トランスデューサの受信ローブが第1のセクタをカバーするように、しかし前記少なくとも1つの第2のセクタが少なくとも部分的にトランスデューサの受信ローブを越えて位置しているように、寸法を決められ構成された、トランスデューサの配列を形成し、第1の後方散乱信号は、トランスデューサの配列を用いて獲得される。
より正確には、物理受信アンテナは、第1のトランスデューサの受信ローブが第1のセクタをカバーするように、しかし前記少なくとも1つの第2のセクタが少なくとも部分的に第1のトランスデューサの受信ローブを越えて位置しているように、寸法を決められ構成された、第1のトランスデューサから形成される第1の基本物理アンテナを含むことができる。ソナーは、第2のトランスデューサの受信ローブが第1のおよび第2のセクタをカバーするように、寸法を決められ構成された、第2のトランスデューサから形成される第2の基本物理アンテナを備える。処理装置は、第1のセクタで生成され第1の基本アンテナを用いて獲得された第1の後方散乱信号の測定値から第1の合成アンテナのビームを、そして前記第2のセクタに放射されたパルスによって生成され第2の基本アンテナを用いて獲得された第2の後方散乱信号の測定値から第2の合成アンテナのビームを、合成開口ビームの形成の間に、形成するように構成される。
有利には、トランスデューサの配列は、第1の基本アンテナ、および、第1の基本アンテナと同じであり第2の軸に沿って第1の基本物理アンテナの上に重ねられる別のアンテナによって形成される。
有利には、測深図は、被観測区域が画像化される前にソナーのメモリに格納される。
本発明の別の主題は、本発明のソナーと、キャリアとを備え、ソナーはキャリアに設置される、ソナーシステムである。
本発明の別の主題は、ソナーのR個のピングに関してソナーの合成開口ビームを形成するための方法であって、ソナーは、第1の軸に沿って動くように意図され、ソナーは、少なくとも1つのセクタを含むセクタのセットにおける被観測区域に向けて少なくとも1つの音響パルスを、各々のピングにおいて、放射するように構成された放射装置を備え、ソナーは、前記少なくとも1つのパルスによって生成された後方散乱信号の測定値を獲得することを可能にする第1の軸に沿って延在する第1の物理受信アンテナと、被観測区域によって後方散乱された、および前記セクタに放射された音響パルスによって生成された、信号の測定値から合成開口ビームを、セクタのセットの各々のセクタに対して、R個のピングに関して、形成するように構成された処理装置とを備え、ソナーは、少なくとも1つのジャイロメータを備え、方法は、形成ステップであって、そのステップにおいて、各々のセクタに対してR個のピングに関して、被観測区域によって後方散乱された、および前記セクタに放射された音響パルスによって生成された、信号の測定値から合成開口ビームが形成され、そのステップにおいて、前記少なくとも1つのジャイロメータを用いて取得される、第1の受信アンテナの回転の測定値を使用して、ならびに後方散乱信号の画像平面を決定するためにおよび前記回転測定値を前記画像平面に投影するために後方散乱信号の仰角の推定を使用して、取得された投影が自動較正を行うために使用されて、連続したピングの相互相関によって自動較正を行うことによってセクタの前記セットの合成開口ビームの形成の間の第1の受信アンテナの運動における変動が補正され、そのステップにおいて、測深セクタと呼ばれる、セクタのセットのうちの少なくとも1つのセクタの合成開口ビームの形成の間に、後方散乱信号の仰角の推定が使用され、前記推定は被観測区域の複数のポイントの3次元位置を含む測深図から取得される、形成ステップを備える。
有利には、放射装置は、それぞれ、異なる方位角を有する第1の照準軸および第2の照準軸に沿って、被観測区域に向けて識別可能な音響パルスを、第1のセクタおよび少なくとも1つの第2のセクタを含む異なるそれぞれのセクタに、各々のピングにおいて、放射するように構成される。前記少なくとも1つの測深セクタは、少なくとも1つの第2のセクタを含む。測深図は、前記第1のセクタに放射された音響パルスによって生成された第1の後方散乱信号の第1の仰角の測定値から取得される。
有利には、ソナーは、第1の軸に垂直な第2の軸に沿って分布している複数の基本トランスデューサを備えるトランスデューサの配列を備え、前記トランスデューサは、トランスデューサの受信ローブが第1のセクタをカバーするように、しかし前記少なくとも1つの第2のセクタが少なくとも部分的にトランスデューサの受信ローブを越えて位置しているように、寸法を決められ構成される、トランスデューサの配列を形成し、第1の後方散乱信号は、トランスデューサの配列を用いて獲得され、方法は有利には、トランスデューサの配列を用いて第1の後方散乱信号の第1の仰角を測定するステップと、第1の仰角の測定値を地球基準座標系に転置するものである、第1の仰角の推定を計算するステップとを含む。方法は、第1の仰角の推定から測深図を作り出すステップをさらに含み、測深図は、第1の後方散乱信号を後方散乱したプローブポイントの、地球基準座標系における、3次元座標を含む。
有利には、方法は、前記測深セクタに放射されたパルスによって生成された後方散乱信号の仰角を、測深図から、推定するステップを含む。方法は、後方散乱信号を生成したプローブポイントからアンテナを分離する距離に対応する、アンテナからの距離で、他の照準軸上に位置しているポイントBを、第1の軸の周りに、回転することによって取得される円Cpの部分に最も接近している、測深図のそのポイントMpの位置を計算するステップと、測深図と最接近ポイントMpに基づく円Cpの部分との間の第1の交点Ipを計算するステップと、交点の仰角を、地球基準座標系において、計算する第1のステップとを、後方散乱信号の各々に対して含む。
交点Ipは、最接近ポイントMpを通過する、地球基準座標系における、水平面と、円Cpの部分との間の交点とすることができる。
有利には、方法は、最接近ポイントMpおよび測深図の他のポイントに基づいて、測深図と円Cpの部分との間の第2の交点Ipを計算する第2のステップ、ならびに、第2の交点が取得される場合、第2の交点の仰角を計算する第2のステップを含む。
物理受信アンテナは、第1のトランスデューサの受信ローブが第1のセクタをカバーするように、しかし前記少なくとも1つの第2のセクタが少なくとも部分的に第1のトランスデューサの受信ローブを越えて位置しているように、寸法を決められ構成された、第1のトランスデューサから形成される第1の基本物理アンテナを含むことができる。ビームを形成するステップはそれから、前記第1のセクタに放射されたパルスによって生成され第1の基本アンテナを用いて獲得される後方散乱信号の測定値から第1の合成アンテナのビームを形成するステップを含み、そのステップにおいて、後方散乱信号の画像平面を決定するためにおよび前記回転測定値を前記画像平面に投影するために使用される後方散乱信号仰角の推定は、第1の後方散乱信号の第1の仰角の推定であり、第1の後方散乱信号は、前記第1のセクタに放射されたパルスによって生成され、第1の仰角の推定は、第1の仰角の測定値の地球基準座標系への転置である。
本発明の最後の主題は、プログラムがコンピュータ上で実行されるとき本発明による方法のステップを実行するためのプログラミングコード命令を含むコンピュータプログラム製品である。
提案された発明は、補助アンテナを省略することを可能にする。それは同様に合成開口ソナーの分解能を低下させないことを可能にする、すなわち、その検出および分類能力を低下させることなく可能にする。換言すれば、取得される分解能は、文献仏国特許第2769372号明細書に説明された方法を用いて取得された分解能に、すなわち、アンテナの寄生運動が補正される自動焦点プロセスを使用する方法を用いて取得される分解能に匹敵する。
本発明の他の特徴および利点は、非限定的な実施例として添付の図面を参照して与えられる、以下の詳細な説明を読めば明らかになるであろう。
本発明による例示的なソナーの構成要素を概略的に示す。 3つのセクタへの音響パルスの放射の間に上から見たキャリアに設置された図1のソナーを概略的に示す。 図1のソナーの第1の物理受信アンテナおよび第2の受信アンテナを側面から概略的に示す。 本発明による方法で計算され使用されるような、物標Aによって後方散乱される信号の仰角を概略的に示す。 本発明による例示的な方法のブロック図を示す。 測深図の作図を概略的に示す。 第2の仰角に対するプローブポイントの位置の計算を概略的に示す。
1つの図から次の図まで、同じ要素は同じ参照符号によって参照されている。
本発明は、単視点または多視点の合成開口ソナーに関する。「単視点合成開口ソナー」によって、意味されることは、第1の軸に沿って動くように意図された合成開口ソナーであって、ソナーは、単一セクタの被観測区域に向けて音響パルスを、各々のピングにおいて、放射するように構成された放射装置を備え、ソナーは、前記パルスによって生成された後方散乱信号の測定値を獲得することを可能にする第1の物理受信アンテナと、前記セクタに放射された音響パルスによって生成される、被観測区域によって後方散乱される信号の測定値から、合成開口ビームを、R個のピングに関して、形成するように構成された処理装置とを備える。音響パルスは、単一照準軸に沿って、照準軸を囲む単一セクタに放射される。この照準軸は、アンテナに取り付けることができ、または、例えば安定化装置を用いて、地球基準座標系で固定方向に方向付けることができる。「音響パルスが放射されるセクタ」によって、意味されることは、放射音響パルスの主ローブが放射される−3dB開口のセクタである。
単視点合成開口ソナーの性能は、ソナー画像で検出される目標物を分類するステップにおいて不十分であることが分かる。「分類する」によって、意味されることは、画像の中に検出される目標物の性質の特徴付け(例えば目標物のサイズおよび/またはその形状、さらには地雷または地雷でないという目標物の特徴付けなど)である。分類性能を改善するために、検出目標物の視点が増やされる。異なる角度における所与の目標物の観測の数が大きいほど、この目標物を分類することが容易である。視点を増やすために、1つの解決策は多視点合成開口ソナーを使用することにある。この解決策は、ソナーが異なる経路に沿って複数回観測領域上を通過させられることを必要としない。それはさらに、低電力消費量を有する。したがって、この解決策は自律的な潜水艦艇への設置に適している。それは、キャリアの絶対位置が高精度で知られていることも、所与の目標物のさまざまなビューを一緒に関連付けるために位置合せ技術が実施されることも必要としない。それはさらに、ソナー画像における目標物の検出の速度を改善することを可能にする。
図1は、本発明による例示的なソナー1の構成要素を示す。この実施例において、ソナーは多視点ソナーである。それは、1つまたは複数の放射アンテナを備える放射装置2を備える。放射装置2は、被観測区域、例えば海底に向けて音響パルスを、各々のピングにおいて、放射するように構成される。1つのピングにおいて放射されるパルスは、複数のセクタを含むセクタのセットに放射される。各々のピングにおいて、それぞれのセクタに放射される放射物は識別可能である。例えば、それぞれのセクタに放射されるパルスは、互いに異なる、すなわち別個の周波数帯に位置しているキャリアで放射される。変形形態として、パルスは、1つの同じキャリア周波数を有するキャリアで放射されるが、直交符号によって、すなわち直交変調によって、互いに区別される。海底によって後方散乱される、およびさまざまなセクタから発生する信号は、それで、これらのさまざまなセクタに放射されるパルスと同じ方法で、例えばフィルタリングまたは逆多重化によって、識別可能である。各々のピングにおいて、さまざまなセクタに放射されるパルスは、例えば、同時にまたは実質的に同時に放射される。
図2は、本発明によるソナーの放射装置2が各々のピングにおいて音響パルスを放射する、セクタS1、S2およびS3を示す。放射装置2は、それぞれの照準軸v1、v2、v3に沿って各々のピングにおいて3つのそれぞれのセクタS1、S2、S3に3個のパルスを放射する。ソナー1は、連続したピングにおける音響パルスの放射の間に第1の軸X1に沿って動くように意図される。ソナー1はキャリアPOに取り付けられる。図中の実施形態において、第1の軸X1は、キャリアPOの運動の方向Xと平行である。照準軸v1、v2、v3は、第1の軸X1と、異なるそれぞれの方位角θ1、θ2、θ3をなす。有利には、照準軸v1、v2、v3は、同じ仰角を有し、仰角は地球基準座標系で規定される。変形形態として、照準軸は、ソナーと関連付けられた基準座標系で同じいわゆる局所仰角を有し、すなわちそれらは、軸X1と平行でかつトランスデューサの有効領域によって形成される平面に垂直な平面と、同じ角度をなす。
照準軸v1、v2、v3は、第1の軸X1に実質的に垂直な側方照準軸v1と、進行方向Xに垂直で軸v1を通過する対称面について互いに対称な2つのさらなる照準軸v2およびv3とを含む。換言すれば、軸v1の方位角θ1は、90度と等しい。それは、以下で側方照準軸と呼ばれる。軸v2およびv3は、例えば、軸v1とそれぞれ−35度および35度の方位角θsをなす。変形形態として、さらなる照準軸は、対称面について互いに対称ではない。軸v2は、前方照準軸と呼ばれ、照準軸v3は、後方照準軸と呼ばれる。第1の軸v1に対する照準軸v2およびv3の偏向は、電子的にまたは機械的に達成される。後者の場合、放射装置は、3つの異なる照準軸に沿って向けられた3つの放射アンテナを備える。
図2の実施例において、セクタS1、S2、S3は、隣接しない。2つの隣り合ったセクタの開口度は、基準面において2つの隣り合ったセクタの間でなされる角度より小さい。有利には、各々のセクタの開口角は小さく、すなわち、10度より小さい。これらの特性は、ソナーの総有効右回りカバレッジを最大化すると同時に音波照射されるセクタの総サイズを限定することによって後方散乱信号処理コストを限定することを可能にする。一般に、セクタの開口度は、ソナーの放射周波数で望ましい分解能を取得するのに十分に大きくなければならない。音波照射されるセクタの幅を限定することは、第1の受信アンテナのハイドロホン間の間隔幅、したがってそれらの数およびコストを限定することを可能にする。変形形態として、セクタは、対として隣接するかまたは部分的に重なる。セクタS1からS3は、例えば、同じ方位角方向開口度および同じ仰角方向開口度を有する。変形形態として、セクタは、異なる方位角方向開口度および/または仰角方向開口度を有する。
セクタの数は、変形形態として3と異なり、例えば5または2と等しい。重要なことは、各々のピングにおいて、放射装置2が、少なくとも1つの第1のセクタおよび第1のセクタと異なる別のセクタを含むそれぞれのセクタに、識別可能な音響パルスを放射することである。
ソナー1は、海底によって後方散乱された、および各々のピングにおいてさまざまなセクタに放射された音響パルスによって生成された、信号を測定することを可能にする、第1の物理受信アンテナ3を備える。ソナー1は、セクタの各々に対して合成アンテナのビームを形成するように構成された、例えば少なくとも1つのコンピュータを備える、処理装置4を同様に備える。換言すれば、処理装置4は合成開口ビームを形成するように構成され、これは、問題のセクタに放射された音響パルスによって生成される後方散乱信号の測定値から、すなわち問題のセクタの被観測区域によって後方散乱された信号の測定値から、合成アンテナのビームを、各々のセクタに対して形成することにある。処理装置4は、第1のセクタS1に放射された音響パルスによって生成された後方散乱信号の測定値から第1の合成アンテナのビームを、そして、各々の他の合成アンテナのビームを他のセクタの1つに放射された音響パルスによって生成された後方散乱信号の測定値から形成して、少なくとも1つの他の合成アンテナのビームを、R個のピングに関して形成するように構成される。使用される後方散乱信号の測定値は、第1の受信アンテナ3によって行われた測定値である。図2に示す事例では、処理装置4は、したがって、セクタS1、S2、S3の各々のためのものである、3つの合成アンテナのビームを形成する。
図2において、第1の受信アンテナ3は、右舷側に置かれ、放射装置2は、右舷側で音響パルスを放射する。変形形態として、ソナーは、1つは左舷側に放射し1つは右舷側に放射する、2つの放射装置、および、1つは左舷側にそして1つは右舷側に、2つの受信アンテナを備える。
第1の受信アンテナ3は、第1の軸X1に沿って直線的に延在する長手方向のアンテナである。第1の軸X1は、キャリアPOの進行の方向Xと実質的に平行である。受信アンテナは、N+M個のセンサを備える。それは、一般に、1つまたは複数の基本物理受信アンテナを備える。
図3は、本発明によるソナーの受信アンテナの側面図を示す。第1の受信アンテナ3は、N+M個のトランスデューサの直線配列から形成される複合アンテナである。それは、第1の軸X1に沿って間隔をあけて配置されたM個(ここでは4個)の同じ第1のトランスデューサT5の直線配列を備える第1の基本アンテナ5と、第1の軸X1に沿って間隔をあけて配置されたN個(ここでは4個)の同じ第2のトランスデューサT6の直線配列を備える第2の基本アンテナ6とを備える。第1のトランスデューサT5は、第1の軸X1に沿って第2のトランスデューサT6によって対として分離され、第2のトランスデューサT6は、軸X1に沿って第1のトランスデューサT5によって対として分離される。換言すれば、軸X1に沿ったN+M個のトランスデューサの直線配列は、第1のトランスデューサそして次に第2のトランスデューサを、第1の軸X1に沿って、交互に備える。連続的なトランスデューサは、第1のトランスデューサ間の第1の間隔幅P5が第2のトランスデューサ間の第2の間隔幅P6と等しいように、第1の軸に沿って設定長さeを有する間隔で分離される。
図3の実施形態において、第1のトランスデューサT5は、第1の軸X1に沿って第2のトランスデューサT6の幅L6より大きい幅L5を有する。したがって、第1の基本アンテナ5の第1のトランスデューサT5の受信ローブの方位角方向開口度は、第2の基本アンテナ6の第2のトランスデューサT6の受信ローブの方位角方向開口度より小さい。有利には、第1のトランスデューサT5は、第1のセクタS1だけが第1のトランスデューサT5の受信ローブに含まれるように、そして他のセクタS2、S3が第1の基本アンテナ5を形成する第1のトランスデューサT5の受信ローブの外に位置しているように、寸法を決められ、構成される。換言すれば、第1のトランスデューサは、第1のアンテナ5が第1のセクタS1を画像化することを可能にするが、他のセクタが同時に画像化されることを可能にしない、指向性を有する。これに対して、第1の基本アンテナの信号対雑音比は、第2のアンテナの信号対雑音比より高い。第1の基本アンテナ5のトランスデューサの方位角方向開口度は、有利には、第1のセクタS1の方位角方向開口度と実質的に等しい。変形形態として、第1のトランスデューサT5は、第1のセクタが第1の基本アンテナ5の第1のトランスデューサT5の受信ローブに含まれるように、そして他のセクタS2、S3が第1の基本アンテナの第1のトランスデューサT5の受信ローブに少なくとも部分的に含まれるように、寸法を決められ、構成される。この変形形態は、より悪い信号対雑音比だがより低いコストを有する合成の第1のアンテナを生成する。
基本アンテナ5、6は、各々、放射装置2によって1つのピングにおいて放射されたすべてのパルスによって生成された後方散乱信号を測定することを可能にする。処理装置4は、海底によって後方散乱される、およびそれぞれのパルスから発生する、信号の測定値を区別して、3つの合成アンテナのビームを生成するように、構成される。処理装置4は、後方散乱信号の測定値をそれらが生成された音響パルスセクタ、すなわち信号を後方散乱した物標が見いだされるセクタに応じて区別することを可能にする第1のモジュール40と、合成アンテナのビームをそれぞれのセクタで後方散乱された信号の測定値から生成することを可能にする第2のモジュール41とを備える。第2のモジュール41は、被観測区域によって後方散乱された、および第1のセクタS1に放射されたパルスによって生成された、第1の信号の第1の測定値から第1の合成アンテナのビームを生成するように構成され、前記第1の測定値は第1の基本アンテナ5によって獲得される。第2のモジュール41は、海底によって後方散乱された、ならびに第2のおよび第3のセクタS2およびS3に放射されたパルスによって生成された信号の第2の測定値から第2のおよび第3の合成アンテナのビームを生成するように構成され、第2の測定値は第2の基本アンテナ6によって獲得される。この構成および関連処理モードは、受信アンテナを過度にサンプリングすることを必要とせずに、すなわち、使用される音響パルスの波長の約半分の値でトランスデューサ間の間隔幅を設けることを必要とせずに、高分解能のそして非常に良好な信号対雑音比を有する第1の合成アンテナならびに非常に高い分解能を有する他の合成アンテナを取得することを可能にする。このことは、トランスデューサの必要とされる数を限定することを可能にし、これはコストおよび電力消費量の見地から利点を有する。
処理装置4は、各々の合成アンテナの合成開口ビームを表す画像を生成することを同様に可能にする。これらの合成画像は、例えば、しかし必然的にではなく、ウォーターフォール型画像である。それらは、R個のピングに関する合成アンテナのビームを表し、R+1番目のピングにおいて、インデックス1のピングは、R+1番目のピングの表現が現れることを可能にするために画面から消える。これらの画像は、地心基準座標系における特定のポイントに焦点を合わせられていない。それらはしたがって、単に前に検出された目標物を分類することだけでなく、目標物を検出することを可能にするという利点を有する。それらは、セクタの数と等しい被観測区域の視点の数を表し、視点は実質的に同時に獲得される。本発明によるソナー1は、前記合成画像を同時に表示することを可能にする表示装置10を備える。それは、オペレータが被観測区域のさまざまな同期された視点を同時に観測することを可能にし、それにより目標物検出および分類作業を彼にとってより易しくする。
モジュールは、例えば所与のコンピュータまたは異なるコンピュータの計算機能である。第1のモジュールは、フィルタおよび/またはデマルチプレクサを備え得る。
単視点ソナーについては、多視点ソナーの合成アンテナの分解能は、直線的で一様な航行経路からの受信アンテナの逸脱によって限定される。したがって、合成アンテナの各々のビームの形成は、特許出願仏国特許第2769372号明細書で説明された補正原理を使用して受信アンテナ3の寄生運動の影響を補正している間に行われる。処理装置4は、連続したピング間の受信アンテナの回転の測定値を使用して、連続したピングの相互相関によって自動較正を遂行することによって、各々の合成アンテナに対して、第1の物理受信アンテナ3の運動における変動が補正されるように構成され、前記測定値は、少なくとも1つのジャイロメータ9を用いて、およびこれらの2つのピング間に後方散乱される信号の仰角の、地球基準座標系における推定を使用して、取得される。各々のジャイロメータは、例えば慣性航法システム9の一部を形成する。ジャイロメータは、連携して有利には慣性航法システムを形成する。
図4は、地球基準座標系で垂直方向を表す地球基準座標系x、y、zおよび同じ基準座標系で水平面を表す平面(x、y)を示す。物標Aによって後方散乱された信号の仰角φ、すなわち地球基準座標系で規定された仰角は、本特許出願では、物標Aおよび第1の軸X1を包含する平面である画像平面PIと水平面(x、y)との間になされる角度である。後方散乱信号の仰角または仰角方向の傾きは、これらの後方散乱信号を生成した照準点に対して規定される、アンテナの画像平面または照準平面の仰角に対応する。
本発明によるソナーでは、各々のピングにおいて、後方散乱信号の仰角の推定は、後方散乱信号の画像平面を規定するために、そして特許出願仏国特許第2769372号明細書に説明されるように、ジャイロメータを用いて取得された回転測定値を取得された画像平面に投影するために使用される。次に、取得された回転測定値の投影に基づいて、従来の自動較正プロセスによって各々の合成アンテナに対してパラメータIおよびτが推定され、τは、2つの連続したピング間の、被観測区域(ここでは海底)における反射の所与のポイントに対するソナーパルスの往復伝搬時間の差分であり、Iは、2つの連続したピング間の、第1の軸X1に沿った、受信アンテナの長手方向の運動である。これらのパラメータは、合成アンテナのビームの形成の間の物理アンテナの運動における変動を補正することを可能にする。同じプロセスが単視点ソナーの場合に使用される。
「自動較正プロセス」によって、意味されることは、受信アンテナによって獲得された後方散乱信号の測定値からこれらの係数を決定するプロセスである。このようなプロセスの中で、2つの連続したピングに関してのアンテナを通した音場の相互相関を利用するプロセスが特に知られている。2つのピングの間の長手方向の運動が受信アンテナの長さの半分より小さいとき、第1のピングの前端における場は、後端における場と強く相関している。アンテナの場の相関する両端の長さLcは、そのとき式Lc=L−2.V.Trによって与えられる。このようなプロセスは、2つのピングの間の、長手方向の運動I、海底からの反射の所与のポイントに対するソナーパルスの往復伝搬時間における差分τ、および照準方向の回転βを推定するためにこの相関を利用する。このような方法の1つの実施例は、米国特許第A−4244036号明細書(Raven)で説明される。
さまざまな合成アンテナのビームを形成するための後方散乱信号の仰角の使用は、したがって、非常に高い分解能を有する合成開口ビームおよび合成画像を取得することを可能にする。
要約すると、後方散乱信号の仰角の推定は、ジャイロメータによって取得された回転測定値を後方散乱信号の画像平面に投影するために使用され、取得される投影は自動較正を行うために使用される。画像平面への回転測定値の投影は、自動較正された合成アンテナを生成するために必要とされる唯一のデータである。画像平面への回転測定値の投影の使用は、ジャイロメータを用いて取得された回転測定値が使用されるときより良好な分解能を有する合成開口ビームを取得することを可能にする。この方法は、合成開口ビームから取得されたソナー画像の分解能を改善することを可能にする。仰角は、地球基準座標系で規定される。
本発明によれば、測深セクタと呼ばれる、セクタのセットのうちの少なくとも1つのセクタの合成開口ビームの形成の間に、後方散乱信号の仰角の推定が使用され、その推定は、合成アンテナのうちの少なくとも1つのビームの形成の間に使用される前記仰角推定の中からとられる。これらの推定は、被観測区域のそれぞれのポイントの地球基準座標系で規定された3次元位置を含む測深図から取得される。
本発明によれば、例えば、すべての音波照射されるセクタが測深セクタであるように、または本当に唯一の音波照射されるセクタ(単視点の場合)が測深セクタであるように規定を設けることが可能である。
本発明は、第1の受信アンテナの軸に垂直な軸に沿って分布している複数のセンサを備える、特許出願仏国特許第2769372号明細書に説明されたような、補助アンテナを省略することを可能にするという利点を有する。例えば、被観測区域が画像化される前にソナーのメモリに格納される、被観測区域の既存の測深図を使用することが可能である。この測深図は、測深図の地図帳から、または水路測量船による測量によって取得することができる。変形形態として、測深図は、例えば測深能力を持たない、マルチビームプローブもしくは別のサイドスキャンソナーを用いて、または、被観測区域が一定の高度を有すると想定して、ソナーの高度を測定するための装置を用いて取得することができる。後者の3つの場合に、測深図は、ソナーのR個のピングの間に、またはR個のピングの前に、作図することができる。要約すると、測深図は、本発明によるソナーの外部のシステムを用いて取得することができる。有利には、ソナーは、第1の受信アンテナの軸に垂直な軸に沿って分布している複数のセンサを備える補助アンテナを持っていない。このようなソナーは、低いハードウェアコストおよび低い処理コストの両方、低容積、低重量を有し、処理コストの減少ならびに容積および重量の減少のためにほとんど電力を消費しない。
変形形態として、本発明によるソナーは、特許出願仏国特許第2769372号明細書に説明されたような補助アンテナを備える。
上述のような多視点ソナーに関連した1つの特定の実施形態によれば、測深図から取得される仰角推定は、セクタS2およびS3の、またはこれらの2つのセクタのうちの少なくとも1つの、ビームの形成の間の第1の受信アンテナの運動における変動を補正するために使用される。
測深図は、さまざまな手段によって、例えばソナーの外部の装置を用いて、作図することができる。
有利には、仰角を推定するために使用される第1の仰角の測定値は、第1のセクタから発生する、すなわち第1のセクタに放射された音響パルスによって生成される、後方散乱信号の第1の仰角の測定値である。第1のセクタに放射された音響パルスによって生成された後方散乱信号に対して測定された第1の仰角に基づいて、セクタS2およびS3に放射されたパルスによって生成された後方散乱信号の仰角を推定することは、これらのセクタに対応する合成アンテナのビームの形成の間の受信アンテナの寄生運動を補正する必要なく、これらのセクタS2、S3に対してずっと良い分解能を有する合成画像を取得することを可能にし、これらの画像は、これらのセクタをカバーする受信ローブを有する補助アンテナによって直接取得される仰角測定値が使用された場合に取得されることになる画像と類似している。
1つの特定の実施形態によれば、測深図は、第1のセクタS1で獲得される第1の後方散乱信号の第1の仰角の測定値から取得される。第1の仰角の測定値は、第1の物理受信アンテナ3に垂直な、すなわち第1の軸X1に垂直な、第2の軸Z2に沿って分布している複数のトランスデューサを含むトランスデューサT5、T7の配列11を用いて取得される後方散乱信号の測定値を用いて取得される。換言すれば、配列11は、方向Z2にトランスデューサのスタックを備える。トランスデューサの配列11が軸Z2に沿って指向性を有するので、このようなトランスデューサの分布は、後方散乱信号の第1の仰角の測定を行うことを可能にする。このアンテナによって遂行される仰角測定の信号対雑音比は、受信アンテナ3で取得される仰角測定の信号対雑音比より明らかに高い。軸Z2は、第1の軸X1に垂直であり、第1の物理アンテナの平面に、すなわちトランスデューサ5、6のメンブレンによって形成される平面に、平行である。受信アンテナ3の仰角がゼロであるとき、軸Z2は、地球基準座標系で規定された鉛直軸zに平行である。好ましくは、配列11は、第1の受信アンテナ3の高さより大きい高さを、軸Z2に沿って有する。
有利には、トランスデューサの配列11を形成するトランスデューサT5、T7は、第1のセクタS1だけがそれらの受信ローブに完全に含まれるように、寸法を決められ、構成される。これは非常に高分解能の合成画像および合成開口ビームを取得することを可能にすると同時に、センサの必要とされる数、したがってソナーのコストを限定することを可能にすることがわかる。
「トランスデューサの構成」によって、意味されることは、受信アンテナに対するそれらの位置およびそれらの照準方向である。換言すれば、トランスデューサの配列11のトランスデューサは、第1のセクタS1が、方位角方向に、それらの主受信ローブに含まれるように、そして他のセクタS2、S3が少なくとも部分的に、方位角方向に、それらの主受信ローブの外に位置しているように、寸法を決められ、構成される。有利には、配列11のトランスデューサの受信ローブの方位角方向開口度は、第1のセクタS1の方位角方向開口度と実質的に等しい。
図3の実施形態において、他のセクタS2、S3は、トランスデューサの配列11を形成するトランスデューサの主ローブの完全に外に位置している。この図で、本発明によるソナー1は、第2の受信アンテナ12を備える。この第2の受信アンテナ12は、第1の基本アンテナ5と同じ物理アンテナであり、第2の軸Z2に沿って第1の基本アンテナ5の上に重ねられる。それは、第1の軸X1と平行な第3の軸X3に沿って分布している第3のトランスデューサT7を備える。第3のトランスデューサT7は、トランスデューサT5と同じであり、軸X1に沿って同じ間隔幅で間隔をあけて配置される。それを用いて第1の仰角が測定されるトランスデューサの配列11は、第1の基本アンテナ5のトランスデューサおよび第2の基本アンテナ12のトランスデューサを備える。換言すれば、トランスデューサの配列11は、第1の基本受信アンテナ5によって、および第2の受信アンテナ12によって形成される。これらの2つのアンテナは、干渉計アンテナを形成する。
変形形態として、第2の受信アンテナ12は、第1の受信アンテナに比べて、軸X1に沿って、短い。換言すれば、それは、軸X1に沿って、より少ないセンサを備える。別の変形形態において、第2の受信アンテナ12は、第1のトランスデューサT5に比べて、方向X1で、および/または方向Z2で、異なるサイズを有するトランスデューサを備える。
別の変形形態において、トランスデューサの配列11は、方向X1におけるただ1つのトランスデューサおよび軸Z2に沿って間隔をあけて配置されたトランスデューサの直線配列を備える。トランスデューサの配列は、任意選択で、第1の受信アンテナ3のトランスデューサの1つを備える。しかしながら、これらのアンテナは、方位角方向に選択的でなく、より低い方位角方向分解能の合成開口ビームを取得することを可能にするだけである。
配列11を形成するトランスデューサは、第2の軸Z2に沿って直線的に延在することができ、または円筒状の船体の曲率に従うが第2の軸Z2に沿って広がりを有して曲面を本当に形成することができる。
要約すると、トランスデューサの配列11を形成するトランスデューサは、配列11が、セクタS1、S2、S3のすべてではなくただ1つに位置している物標によって後方散乱された信号の仰角を直接推定することを可能にするように、構成され、寸法を決められる。本特許出願の非限定的な実施例において、このセクタはセクタS1、すなわちサイドスキャンセクタである。この解決策は、すべてのセクタをカバーすることを可能にするトランスデューサの配列を用意することを必要としないので、ソフトウェアの観点およびハードウェアの観点から経済的である。それは例えば、第1の受信アンテナおよび方向Z2で第1の受信アンテナの上に重ねられる第2の同じ受信アンテナから干渉計アンテナを形成することに本質がある解決策よりも経済的である。第2の受信アンテナのトランスデューサの数はそのとき、本発明によるソナーの第2の受信アンテナのトランスデューサの数の2倍となり、これはハードウェアの観点から、およびデータ処理の観点からより高価となり、容積を増加させることになる。これに対して、本発明による干渉計アンテナ配列11に基づく提案された解決策は、第1の受信アンテナ3および別の同じアンテナを重ねることによって取得される干渉計アンテナの分解能と同一の分解能で、第1のセクタS1で、仰角を取得することを可能にする。提案された解決策は、高価なそして軸X1に沿ってオーバーサンプリングされる干渉計アンテナを必要としない。
本発明は同様に、ソナーのR個のピングに関して本発明に従ってソナーの合成アンテナを形成するための方法に関する。上述のソナーは、本発明による方法を実施することが可能である。図5は、この方法のブロック図を示す。
ビームはR個のピングから取得される測定信号から形成される。
方法は、r=1からRである、各々のピングrで、
− 軸X1に沿って進行するソナー1として、放射装置2を用いて、各々のセクタS1、S2、S3に識別可能な音響パルスを放射するステップ100、
− 第1の受信アンテナ3を用いて、被観測区域によって後方散乱された信号の測定値を獲得するステップ101、
− おそらくステップ103の後に行われる、例えば第1のモジュール40を用いて、第1の受信アンテナによって獲得された信号の測定値を区別するステップ102、
− 例えば第1のメモリ70に、第1の受信アンテナ3によって獲得された信号の測定値を格納するステップ103、
− 少なくとも1つのジャイロメータを用いて、第1の受信アンテナの、またはキャリアPOの(ロール、ピッチおよびヨー)回転を測定するステップ104、
− 任意選択で第1のメモリであってもよいが、例えば第2のメモリ71に、回転測定値を格納するステップ105、
− 位置を測定するための装置72を用いて地球基準座標系で、キャリアの、または受信アンテナ3の位置を測定するステップ106。このステップは、緯度、経度および深さにおけるキャリアPOの位置を地球基準座標系で測定することを可能にする、
− 任意選択で第1のメモリおよび/または第2のメモリであってもよいが、例えば第3のメモリ73に、ソナーの位置の測定値を格納するステップ107、
を含む。
方法は、ソナー1のR個の連続したピングに関して第1の受信アンテナ3によって獲得された後方散乱信号の測定値から合成アンテナのビームを形成するステップ120、121、122を同様に含む。方法は、それぞれのステップ130、131、132でそれぞれの合成アンテナのビームから合成画像I1、I2、I3を形成するステップ130、131、132を同様に含む。
単視点ソナーの場合、ステップ102は実施されず、ステップ120、121、122は1つの合成アンテナのビームを形成するステップであり、ステップ130、131、132は関連合成画像を形成するステップである。
本発明は、被観測区域によって後方散乱された、および問題の各々の部分に放射された音響パルスによって生成された、信号の測定値からビームを、R個のピングに関して、および問題のソナーの各々の対応する合成アンテナに対して、形成するステップ120、121、122を含む方法に関する。このステップにおいて、合成アンテナのビームの形成の間の第1の受信アンテナの運動における変動は、上で説明したように補正される。本発明によれば、少なくとも1つの合成アンテナのビームの形成の間に、後方散乱信号の仰角の推定が使用され、これらの推定は、被観測区域の複数のポイントの3次元位置を含む測深図から取得される。
次に、トランスデューサの配列11を用いて取得される、第1の仰角の測定値から取得される測深図から、第2のおよび第3のセクタに対応する合成アンテナのビームが構築される、多視点ソナーの場合における本発明による方法の他のステップを説明する。
本発明は、ステップ120、121、122で対応する合成アンテナのビームを形成するための方法に関する。R個の連続したピングに関して合成アンテナのビームを形成するステップ120、121、122は、第1のセクタS1で生成された第1の後方散乱信号の測定値から第1の合成アンテナのビームを形成するステップ120と、第2のおよび第3のセクタにそれぞれ放射された音響パルスによって生成された第2のおよび第3の後方散乱信号のそれぞれの第2の測定値から2つの他の合成アンテナのビームを形成するステップ121、122とを含み、これらのステップにおいて、第1の受信アンテナの運動における変動は、前記少なくとも1つのジャイロメータを用いて取得される、受信アンテナの回転の測定値を使用して、ならびに測深図から計算される後方散乱信号の第2のおよび第3の仰角のそれぞれの推定を第2のおよび第3の画像平面を決定するために使用して、連続したピングの相互相関によって自動較正を行うことによって補正される。回転測定値はそのとき、第2のおよび第3の画像平面に投影され、第2のおよび第3の合成アンテナとそれぞれ関連付けられた自動較正を行うために使用される。測深図は例えば第1の仰角の測定値から取得される。ステップ120から122は、第2のモジュール41によって行われる。ステップ120、121、122は、信号が生成される音響パルスセクタに応じて信号の測定値を区別するための、第1のモジュール40を用いて行われる、区別するステップによって先行される。各々のステップ120、121、122は、第1の物理アンテナ3によって測定された信号から問題の合成アンテナのビームを形成するために必要とされる信号を選択するステップ(図示せず)を含む。
方法は、個数Pのプローブ時間tpにおいて後方散乱された第1の信号の第1の仰角を測定する、各々のピングに対して行われるステップ108を、ステップ120、121、122の前に同様に含み、ここでp=1からPであり、このプローブ時間は、関連音響パルスの放射の時間の後の、そして所定の継続時間Dで関連音響パルスから間隔をあけて配置される、第1のプローブ時間t1で始まり所定の基本期間Tで対として間隔をあけて配置される。換言すれば、各々のピングにおいて、P個のプローブポイントPpによって後方散乱された第1の信号の第1の仰角は、第1の信号が第1の受信アンテナ3によって測定されて、P個のプローブ時間tpにおいて測定される。これらの測定は、配列11によって配列11の基準座標系で行われる。図3の事例では、第1の仰角は、1つのピングにおいて、第1の基本アンテナ5によって遂行される、第1の後方散乱信号の第1の測定に基づいて、および、第2の受信アンテナ12によって行われる、第1の後方散乱信号のさらなる測定に基づいて推定される。
第1の合成アンテナのビームを形成するステップ120は、R個のピングの間に第1のセクタに放射されたパルスによって生成された第1の後方散乱信号の第1の測定値に基づいて行われる。第1の測定は、第1の基本受信アンテナ5を用いて、図示された実施形態で行われる。このステップにおいて、受信アンテナの運動における変動は、連続したピングの相互相関によって自動較正を行うことによって補正される。これらの変動を補正するために、前記少なくとも1つのジャイロメータで取得される、受信アンテナの回転の測定値が使用され、第1の合成アンテナの自動較正を行うために使用される投影を取得するために、ジャイロメータを用いて取得された回転測定値が投影されなければならない第1の画像平面を決定するために、第1のセクタS1に放射された音響パルスによって生成された第1の後方散乱信号の第1の仰角の推定が使用される。第1の仰角の推定は、トランスデューサの配列11によって行われ、ステップ104および106で行われたソナーの位置および回転の測定に基づいて地球基準座標系にステップ110で転置された、第1の仰角の測定値に対応する。この方法は、従来の合成アンテナであって、その物理アンテナの運動における変動が特許出願仏国特許第2769372号明細書に説明された方法を用いて補正される、従来の合成アンテナのビームと同一の非常に高い分解能を有するビームを、第1の合成アンテナに対して、取得することを可能にする。
方法は、被観測区域の測深図を、R個のピングの間に取得される、第1の仰角の推定から、作り出すステップ111aと、例えば第4のメモリ74に、測深図を格納するステップ111bとを含む。測深図は、地球基準座標系でプローブポイントPpの3次元位置のセットを含む。
ステップ111は、問題のピングに対して測定された第1の後方散乱信号をもたらしたプローブポイントを、地球基準座標系で、各々のピングに対して、位置決めすることにあり、この位置決めは、ステップ108で行われる第1の仰角の測定に基づいて、およびステップ104、106で行われる測定された位置および回転の測定に基づいて、または、地球基準座標系での第1の仰角のステップ110で取得される推定に本当に基づいて行われる。図6は、地球基準座標系x、y、zで、p=1から6である、プローブポイントPpの各々のピングに対する位置を円で示し、キャリアPOの経路TSおよび各々のピングr(r=1から5)に対するキャリアPOの位置を示す。より明確にするために、偶数のピングと関連付けられた円は白く塗られ、奇数のピングと関連付けられた円はグレーに塗られる。各々のピングに対して、第1の照準軸v1を包含する鉛直面y、zにおける第1のセクタS1の境界は、実線で表されており、この平面に包含され前記ピングに対して取得されたプローブポイントPpを通過する線lr(ここでl=1から5)は、点線で表されている。キャリアの経路は正確に直線的ではないので、さまざまなピングに対応する点線lrは、互いに平行ではない。プローブポイントによって形成される3次元メッシュは、キャリアの回転および/または速度変更のため、x、y平面で必ずしも規則的ではない。より明確にするために、プローブポイントPpの位置は、第1のピングに対して参照されただけである。
方法は、P個のプローブ時間tpにおいて第2の基本アンテナ6によって測定される第2の後方散乱信号の第2の仰角を、各々のピングに対して、推定するステップ112を含み、ここでp=1からPであり、そのプローブ時間は、対応する第2の音響パルスの放射の時間の後の、そして継続時間Dで対応する第2の音響パルスから分離される、第1のプローブ時間t1で始まり所定の基本期間Tで対として間隔をあけて配置される。それは、P個のプローブ時間tpにおいて第2の基本アンテナ6によって測定される第3の後方散乱信号の第3の仰角を推定するステップ113を同様に含み、ここでp=1からPであり、このプローブ時間は、対応する第3の音響パルスの放射の時間の後の、そして継続時間Dで対応する第3の音響パルスから分離される、第1のプローブ時間t1で始まり所定の基本期間Tで対として間隔をあけて配置される。これらのステップは、測深図にならびにR個のピングの間のキャリアの位置および姿勢の測定に基づいて行われ、これらの測定は、対応するピングのステップ104および106で行われる。ステップ121および122は、ジャイロメータによって取得される、回転の測定値の精度を改善するために第2のおよび第3の仰角の推定をそれぞれ使用する。
次に、第2の仰角を推定するステップ112を説明する。第3の仰角を推定するステップ113は、同じ方法で、しかし第3のセクタS3で生成された後方散乱信号に基づいて、行われる。それは詳細に説明されない。ステップ112は、プローブ時間tpにおいて第2のセクタS2に放射され第1の受信アンテナ3によって測定された音響パルスの第2の後方散乱信号の第2の仰角を推定するステップ112pを、各々のピングに対しておよび各々のプローブ時間tpに対して含む。このステップ112pは、
− 第1の軸X1の周りに第2の照準軸v2に沿って受信アンテナ3の中心Oから距離ρに位置しているポイントBを回転することによって取得される円Cpの部分に最も接近している、測深図のそのポイントの位置を決定することによって、第2の後方散乱信号を生成したプローブポイントPpの位置に最も接近している、測深図のそのポイントMpの位置を計算するステップ112aであって、距離ρは、第1の受信アンテナがプローブ時間tpにおいてプローブポイントPpによって後方散乱された第2の信号を測定するために、プローブポイントPpが第1の受信アンテナ3の中心Oから分離される必要がある距離である、ステップ112a、
− ポイントMpに基づいて測深図と円Cpの部分との間の交点Ipを計算するステップ112bであって、ポイントIpは、第2の信号を後方散乱したプローブポイントの推定位置に対応する、ステップ112b、
− Ipの位置に基づいて、キャリアPOのまたは受信アンテナ3の位置の測定値そして特に海底に対するその高度に基づいて、ならびに距離ρに基づいて、地球基準座標系で、ポイントIpの仰角を計算するステップ112c、
を含む。
円Cpは、軸X1に垂直な平面PCに位置している。図7は、アンテナの中心Oから距離ρに位置し55度の方位角θpを有するポイントを包含する円Cp、最接近ポイントMp、およびCpと測深図CBとの間の交差点Ipを示す。測深図CBの既知のポイントは、グリッドQの交点である。円の使用される部分は、右舷側に位置している円の部分であるが、円Cpの全体が同様に使用され得る。円Cpは、第2の後方散乱信号をもたらしたプローブポイントPpの可能な位置の場所の推定である。それは、軸がX1であり母線が第2の照準軸v2の方位角と等しい方位角を有する円錐体上のすべてのポイントの問題であり、これらのポイントは平面PC内に位置している。換言すれば、これは、第2の照準軸v2、θ2に沿って放射された音響パルスによって生成され、受信アンテナ3の中心から距離ρに位置している、第2の後方散乱信号の第2の仰角を、ステップ112で推定することになる。
測深図は、第3の仰角を推定するステップにおいて(すなわち後方モードに対する仰角を推定するステップにおいて)現在のピングのPpプローブポイントを位置決めすることを可能にするピングの最小数Nmにわたってメモリに格納されなければならない。この数は、ソナーの経路上でソナーの平均回転がゼロであり、ソナーが最小速度Vmin(最も好ましくない場合)で進行するとき、必要とされるピングの数である。
Figure 2017508162
ρmaxは、ソナーの最大距離範囲であり(それは斜距離と呼ばれるアンテナの中心に対する最大距離である)、θsは、第1の照準軸v1と後方照準軸v3との間の相対方位角である。Trは、2つの連続したピング間の時間間隔である。Nm個のピングに対して測深図が作り出された時点で、後方モードについての現在のピングに対する仰角の推定および、これらの仰角を使用して行われる、現在のピングに対する第3の合成アンテナのビームの形成は、始まることができる。前方モード(第2の合成アンテナのビームの形成)については、第2の照準軸v2に沿ってソナーによって観測される区域は、(v1に沿って)サイドスキャンモードで調査される区域の前に位置しているので、仰角の計算は直ちに始まることができない。位置の、回転の、および後方散乱信号のすべての測定値は、現在のピングにおいて第2の軸v2で観測される区域に対応する測深図が作図されるまで、Nm個のピングにわたってメモリに保持されなければならない。
有利には、ステップ112は、測深図より小さい測深図の部分を抽出する(図示せず)ステップを、ステップ112aの前に、各々のピングに対して、および1より高い順序の各々の時間tpに対して含み、ステップ112aおよび112bは、それから測深図の部分に基づいて行われる。このステップは、処理時間を早めることを可能にする。1つの非限定的な実施例において、p=1であるときtpに対して全体の測深図が使用され、それから、より高い順序の時間tpに対して、より低い順序の時間に取得された交点から事前設定閾値未満の水平距離に位置している測深図の部分が使用される。
ステップ112aは、測深図の(または下位の測深図の)各々のポイントと円(または円弧)との間の距離を計算することによって行われる。したがって、円Cpの問題の部分に最も接近している、測深図のそのポイントであるポイントMpが取得される。ステップ112bは、例えば、ポイントMpを通過する(平面(x、y)と平行な)水平面と円Cpの部分との間の交点Ipを計算することによって行われる。これは、Mpの近傍の水平面によって測深図を近似することになる。このステップは、Mpの近傍の測深図によって形成される表面を推定するために測深図の複数のポイントを使用して、より正確に行われ得る。
第1の実施形態において、第2の仰角の推定は、ステップ112cで計算される角度である。
1つの変形形態(図示せず)において、ステップ112は、第1のポイントMpを計算するステップ112a、第1の交点Ipを計算する第1のステップ112b、および第1の仰角を計算する第1のステップ112cを含み、これらのステップにおいて、ポイントIpは、ポイントMを通過する水平面から計算される。ステップ112は、第2の交点を計算する第2のステップ112bを同様に含み、このステップにおいて、ポイントIpの位置決めの精度を改善するために、円Cpの第2の部分とポイントMおよび測深図の他のポイントから形成される表面との間の第2の交点が探索され、このステップが収束する場合、第2の交点の地球基準座標系での仰角を計算する第2のステップを同様に含む。第2の仰角はそれで、第2の交点に対して計算された仰角である。この方法は、仰角のより正確な推定を取得することを可能にする。
有利には、ステップ112pは、開始時間に始まって、最後の時間(p=P)まで昇順に時間を走査する間に、および、開始時間に先行する時間から、第1の時間(p=1)まで降順に時間を走査する間に、各々の時間tpに対して行われ、開始時間は第1の時間および最後の時間と異なる。この方法は、ロバスト性を向上させることを可能にする。
本発明の別の主題は、プログラムがコンピュータ上で実行されるとき本発明による方法のステップを実行するためのプログラミングコード命令を含むコンピュータプログラム製品である。
説明されたプロセスのステップは、入力データ(特に後方散乱信号、ジャイロメータデータおよび測深図)に作用することおよび出力データ(合成開口ビーム)を生成することによって本発明の機能を遂行するためにコンピュータプログラムを実行する1つまたは複数のプログラム可能なプロセッサを用いて実施することができる。コンピュータプログラムは、コンパイルされたまたは解釈されたプログラム言語を含む、任意の形のプログラミング言語で書くことができ、コンピュータプログラムは、自律的プログラムまたはサブルーチン、プログラム可能な環境で使用可能な構成要素または別のユニットとして含む任意の形でデプロイすることができる。コンピュータプログラムは、1つのコンピュータ上で、または、1つのサイト上の、もしくは複数のサイトにわたって分散され通信ネットワークによって相互接続される、複数のコンピュータ上で実行するようにデプロイすることができる。

Claims (15)

  1. 第1の軸(X1)に沿って動くように意図された合成開口ソナー(1)であって、前記ソナー(1)は、少なくとも1つのセクタを含むセクタのセットにおける被観測区域に向けて少なくとも1つの音響パルスを、各々のピングにおいて、放射するように構成された放射装置(2)を備え、前記ソナー(1)は、前記パルスによって生成された後方散乱信号の測定値を獲得することを可能にする、前記第1の軸(X1)に沿って延在する第1の物理受信アンテナ(3)と、前記被観測区域によって後方散乱された、および前記セクタに放射された音響パルスによって生成された、信号の測定値から合成開口ビームを、セクタの前記セットの各々のセクタに対して、R個のピングに関して、形成するように構成された処理装置(4)と、を備え、前記ソナー(1)は、少なくとも1つのジャイロメータを備え、前記処理装置(4)は、前記少なくとも1つのジャイロメータを用いて取得される、前記第1の受信アンテナ(3)の回転の測定値を使用して、ならびに前記後方散乱信号の画像平面を決定するためにおよび前記画像平面に前記回転測定値を投影するために前記後方散乱信号の仰角の推定を使用して、前記取得された投影が自動較正を遂行するために使用されて、前記連続したピングの相互相関によって前記自動較正を行うことによってセクタの前記セットの前記合成開口ビームの前記形成の間の前記第1の受信アンテナの前記運動における変動を補正するように構成されることを特徴とし、
    前記ソナーにおいて、測深セクタと呼ばれる、セクタの前記セットのうちの少なくとも1つのセクタの前記合成開口ビームの前記形成の間に、後方散乱信号の仰角の推定が使用され、前記推定は、前記被観測区域の複数のポイントの、前記地球基準座標系で規定された、前記3次元位置を含む測深図から取得される、
    合成開口ソナー(1)。
  2. 前記放射装置(2)は、それぞれ、異なる方位角を有する第1の照準軸(v1)および第2の照準軸(v2、v3)に沿って、被観測区域に向けて識別可能な音響パルスを、第1のセクタ(S1)および少なくとも1つの第2のセクタ(S2、S3)を含む異なるそれぞれのセクタ(S1、S2、S3)に、各々のピングにおいて、放射するように構成され、前記少なくとも1つの測深セクタは、少なくとも1つの第2のセクタを含み、前記測深図は、前記第1のセクタに放射された音響パルスによって生成された第1の後方散乱信号の第1の仰角の測定から取得される、請求項1に記載の合成開口ソナー。
  3. 前記第1の軸(X1)に垂直な第2の軸(Z2)に沿って分布している複数のトランスデューサを備えるトランスデューサの配列(11)を備え、前記トランスデューサは、前記トランスデューサの受信ローブが前記第1のセクタ(S1)をカバーするように、しかし前記少なくとも1つの第2のセクタ(S2)が少なくとも部分的に前記トランスデューサの受信ローブを越えて位置しているように、寸法を決められ構成される、トランスデューサの前記配列を形成し、前記第1の後方散乱信号は、トランスデューサの前記配列(11)を用いて獲得される、請求項2に記載の合成開口ソナー。
  4. 前記物理受信アンテナ(3)は、第1のトランスデューサ(T5)の受信ローブが前記第1のセクタ(S1)をカバーするように、しかし前記少なくとも1つの第2のセクタ(S2)が少なくとも部分的に前記第1のトランスデューサ(T5)の受信ローブを越えて位置しているように、寸法を決められ構成された、前記第1のトランスデューサ(T5)から形成される第1の基本物理アンテナ(5)を備え、前記ソナー(1)は、第2のトランスデューサ(T6)の受信ローブが前記第1のおよび第2のセクタ(S1、S2)をカバーするように、寸法を決められ構成された、前記第2のトランスデューサ(T6)から形成される第2の基本物理アンテナ(6)を備え、前記処理装置(4)は、前記第1のセクタ(S1)で生成され前記第1の基本アンテナ(5)を用いて獲得された第1の後方散乱信号の測定値から第1の合成アンテナのビームを、そして前記第2のセクタ(S2、S3)に放射されたパルスによって生成され前記第2の基本アンテナ(6)を用いて獲得された第2の後方散乱信号の測定値から第2の合成アンテナのビームを、前記合成開口ビームの前記形成の間に、形成するように構成される、請求項3に記載の合成開口ソナー。
  5. トランスデューサの前記配列(11)は、第1の基本アンテナ(5)、および、前記第1の基本アンテナ(5)と同じであり前記第2の軸(Z2)に沿って前記第1の基本物理アンテナ(5)の上に重ねられる別のアンテナ(12)によって形成される、請求項1〜4のいずれか一項に記載の合成開口ソナー。
  6. 前記測深図は、前記被観測区域が画像化される前に前記ソナーのメモリに格納される、請求項1または2に記載の合成開口ソナー。
  7. 請求項1〜6のいずれか一項に記載のソナー(1)と、キャリア(PO)と、を備え、前記ソナー(1)は、前記キヤリア(PO)に設置される、ソナーシステム。
  8. ソナーのR個のピングに関して前記ソナーの合成開口ビームを形成するための方法であって、前記ソナー(1)は、第1の軸(X1)に沿って動くように意図され、前記ソナー(1)は、少なくとも1つのセクタを含むセクタのセットにおける被観測区域に向けて少なくとも1つの音響パルスを、各々のピングにおいて、放射するように構成された放射装置(2)を備え、前記ソナー(1)は、前記少なくとも1つのパルスによって生成された後方散乱信号の測定値を獲得することを可能にする前記第1の軸(X1)に沿って延在する第1の物理受信アンテナ(3)と、前記被観測区域によって後方散乱された、および前記セクタに放射された音響パルスによって生成された、信号の測定値から合成開口ビームを、セクタの前記セットの各々のセクタに対して、R個のピングに関して、形成するように構成された処理装置(4)と、を備え、前記ソナー(1)は、少なくとも1つのジャイロメータを備え、前記方法は、形成ステップ(120、121、122)であって、前記形成ステップにおいて、各々のセクタに対してR個のピングに関して、前記被観測区域によって後方散乱された、および前記セクタに放射された音響パルスによって生成された、信号の測定値から合成開口ビームが形成され、前記ステップにおいて、前記少なくとも1つのジャイロメータを用いて取得される、前記第1の受信アンテナ(3)の回転の測定値を使用して、ならびに前記後方散乱信号の画像平面を決定するためにおよび前記回転測定値を前記画像平面に投影するために前記後方散乱信号の仰角の推定を使用して、前記取得された投影が自動較正を行うために使用されて、連続したピングの相互相関によって前記自動較正を行うことによってセクタの前記セットの前記合成開口ビームの前記形成の間の前記第1の受信アンテナの前記運動における変動が補正され、前記ステップにおいて、測深セクタと呼ばれる、セクタの前記セットのうちの少なくとも1つのセクタの前記合成開口ビームの前記形成の間に、後方散乱信号の仰角の推定が使用され、前記推定は前記被観測区域の複数のポイントの3次元位置を含む測深図から取得される、形成ステップ(120、121、122)を備える、合成開口ビームを形成するための方法。
  9. 前記放射装置(2)は、それぞれ、異なる方位角を有する第1の照準軸(v1)および第2の照準軸(v2、v3)に沿って、被観測区域に向けて識別可能な音響パルスを、第1のセクタ(S1)および少なくとも1つの第2のセクタ(S2、S3)を含む異なるそれぞれのセクタ(S1、S2、S3)に、各々のピングにおいて、放射するように構成され、前記少なくとも1つの測深セクタは、少なくとも1つの第2のセクタを含み、前記測深図は、前記第1のセクタ(S1)に放射された音響パルスによって生成された第1の後方散乱信号の第1の仰角の測定値から取得される、請求項8に記載の合成開口ビームを形成するための方法。
  10. 前記ソナーは、前記第1の軸(X1)に垂直な第2の軸(Z2)に沿って分布している複数の基本トランスデューサを備えるトランスデューサの配列(11)を備え、前記トランスデューサは、前記トランスデューサの受信ローブが前記第1のセクタ(S1)をカバーするように、しかし前記少なくとも1つの第2のセクタ(S2)が少なくとも部分的に前記トランスデューサの受信ローブを越えて位置しているように、寸法を決められ構成される、トランスデューサの前記配列を形成し、前記第1の後方散乱信号は、トランスデューサの前記配列(11)を用いて獲得され、前記方法は、トランスデューサの前記配列(11)を用いて第1の後方散乱信号の第1の仰角を測定するステップ(108)と、第1の仰角の前記測定値を地球基準座標系に転置するものである、第1の仰角の推定を計算するステップ(110)と、を含み、前記方法は、前記第1の仰角の前記推定から前記測深図を作り出すステップ(111)を含み、前記測深図は、前記第1の後方散乱信号を後方散乱したプローブポイントの、前記地球基準座標系における、3次元座標を含む、請求項9に記載の合成開口ビームを形成するための方法。
  11. 前記測深セクタに放射されたパルスによって生成された前記後方散乱信号の前記仰角を、前記測深図から、推定するステップ(112)であって、前記後方散乱信号を生成したプローブポイントから前記アンテナを分離する距離に対応する、前記アンテナからの前記距離で、前記他の照準軸(v2)上に位置しているポイントBを、前記第1の軸(X1)の周りに、回転することによって取得される円Cpの部分に最も接近している、前記測深図のそのポイントMpの前記位置を計算するステップ(112a)と、前記測深図と前記最接近ポイントMpに基づく前記円Cpの前記部分との間の第1の交点Ipを計算するステップ(112b)と、前記交点の前記仰角を、前記地球基準座標系において、計算する(112c)第1のステップ(112c)と、を前記後方散乱信号の各々に対して含む、ステップ(112)を含む、請求項8〜10のいずれか一項に記載の合成開口ビームを形成するための方法。
  12. 前記交点Ipは、前記最接近ポイントMpを通過する、前記地球基準座標系における、水平面と、前記円Cpの前記部分との間の前記交点である、請求項8〜11のいずれか一項に記載の合成開口ビームを形成するための方法。
  13. 前記最接近ポイントMpおよび前記測深図の他のポイントに基づいて、前記測深図と前記円Cpの前記部分との間の第2の交点Ipを計算する第2のステップ、ならびに、第2の交点が取得される場合、前記第2の交点の前記仰角を計算する(112c)第2のステップ(112c)を含む、請求項11に記載の合成開口ビームを形成するための方法。
  14. 前記物理受信アンテナ(3)は、第1のトランスデューサ(T5)の受信ローブが前記第1のセクタ(S1)をカバーするように、しかし前記少なくとも1つの第2のセクタ(S2)が少なくとも部分的に前記第1のトランスデューサ(T5)の受信ローブを越えて位置しているように、寸法を決められ構成された、前記第1のトランスデューサ(T5)から形成される第1の基本物理アンテナ(5)を備え、ビームを形成する前記ステップ(120、121、122)は、前記第1のセクタ(S1)に放射されたパルスによって生成され前記第1の基本アンテナ(5)を用いて獲得される後方散乱信号の測定値から第1の合成アンテナのビームを形成するステップ(120)を含み、前記ステップにおいて、前記後方散乱信号の前記画像平面を決定するためにおよび前記回転測定値を前記画像平面に投影するために使用される後方散乱信号仰角の前記推定は、前記第1の後方散乱信号の第1の仰角の推定であり、前記第1の後方散乱信号は、前記第1のセクタに放射されたパルスによって生成され、前記第1の仰角の前記推定は、前記第1の仰角の前記測定値の前記地球基準座標系への転置である、請求項9〜13のいずれか一項に記載の合成開口ビームを形成するための方法。
  15. プログラムがコンピュータ上で実行されるとき請求項8〜14のいずれか一項に記載の方法の前記ステップを実行するためのプログラミングコード命令を含む、コンピュータプログラム製品。
JP2016557020A 2014-03-14 2015-03-13 合成アンテナビームを形成するための合成アンテナソナーおよび方法 Active JP6655022B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1400614A FR3018611B1 (fr) 2014-03-14 2014-03-14 Sonar a antenne synthetique et procede de formation de voies d'antenne synthetique
FR1400614 2014-03-14
PCT/EP2015/055334 WO2015136089A1 (fr) 2014-03-14 2015-03-13 Sonar a antenne synthetique et procede de formation de voies d'antenne synthetique

Publications (2)

Publication Number Publication Date
JP2017508162A true JP2017508162A (ja) 2017-03-23
JP6655022B2 JP6655022B2 (ja) 2020-02-26

Family

ID=51688091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016557020A Active JP6655022B2 (ja) 2014-03-14 2015-03-13 合成アンテナビームを形成するための合成アンテナソナーおよび方法

Country Status (8)

Country Link
US (1) US11112499B2 (ja)
EP (1) EP3117237B1 (ja)
JP (1) JP6655022B2 (ja)
AU (1) AU2015228768B2 (ja)
CA (1) CA2943759C (ja)
FR (1) FR3018611B1 (ja)
SG (1) SG11201607442SA (ja)
WO (1) WO2015136089A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179705A1 (ja) * 2017-03-31 2018-10-04 株式会社荏原製作所 工業用内視鏡、観察方法、観察装置、水中機械、ポンプ点検システム、水中ロボット制御システム及び水中ロボット制御方法
JP2018203192A (ja) * 2017-06-09 2018-12-27 株式会社荏原製作所 水中ロボット制御システム及び水中ロボット制御方法
KR20190142099A (ko) * 2018-06-15 2019-12-26 국방과학연구소 비협동 양상태 소나에서 자동으로 펄스를 식별하는 장치 및 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6758411B2 (en) 2002-08-09 2004-07-06 S. C. Johnson & Son, Inc. Dual bottle for even dispensing of two flowable compositions
US10132924B2 (en) * 2016-04-29 2018-11-20 R2Sonic, Llc Multimission and multispectral sonar
CN106886017B (zh) * 2017-01-11 2020-02-07 浙江大学 基于双频识别声呐的水下目标空间位置计算方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994020865A1 (fr) * 1993-03-09 1994-09-15 Thomson-Csf Sonar pour detecter les objets enfouis
US6130641A (en) * 1998-09-04 2000-10-10 Simon Fraser University Imaging methods and apparatus using model-based array signal processing
US6304513B1 (en) * 1997-10-07 2001-10-16 Thomson Marconi Sonar S.A.S. Method for correcting effects of an antenna interfering movements in a sonar with synthetic antenna
JP2012108122A (ja) * 2010-10-28 2012-06-07 Univ Of Tokyo 海底音響映像システム
US20130016584A1 (en) * 2011-07-15 2013-01-17 Teledyne Scientific & Imaging Llc Methods and apparatus for obtaining sensor motion and position data from underwater acoustic signals
US20140010048A1 (en) * 2012-07-06 2014-01-09 Navico Holding As Sonar System Using Frequency Bursts

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4244036A (en) * 1978-12-21 1981-01-06 Westinghouse Electric Corp. Electronic stabilization for displaced phase center systems
WO1995024657A1 (en) * 1994-03-07 1995-09-14 Bofors Underwater Systems Ab Improvements in digital time-delay acoustic imaging
FR2769732B1 (fr) * 1997-10-14 1999-12-31 Muller Bem Systeme de controle de vehicule automobile
FR2901364B1 (fr) * 2006-05-16 2008-08-22 Ixsea Soc Par Actions Simplifi Systeme d'imagerie sonar a ouverture synthetique
JP5790221B2 (ja) * 2011-07-12 2015-10-07 アイシン精機株式会社 車両用ルーフ装置
US8934318B2 (en) 2012-07-18 2015-01-13 Reelsonar, Inc. System and method for fish finding using a sonar device and a remote computing device
US9383444B2 (en) * 2012-07-18 2016-07-05 Alexander Lebedev System and method for finding fish using a sonar fishing float wirelessly coupled to a remote computing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994020865A1 (fr) * 1993-03-09 1994-09-15 Thomson-Csf Sonar pour detecter les objets enfouis
US6304513B1 (en) * 1997-10-07 2001-10-16 Thomson Marconi Sonar S.A.S. Method for correcting effects of an antenna interfering movements in a sonar with synthetic antenna
US6130641A (en) * 1998-09-04 2000-10-10 Simon Fraser University Imaging methods and apparatus using model-based array signal processing
JP2012108122A (ja) * 2010-10-28 2012-06-07 Univ Of Tokyo 海底音響映像システム
US20130016584A1 (en) * 2011-07-15 2013-01-17 Teledyne Scientific & Imaging Llc Methods and apparatus for obtaining sensor motion and position data from underwater acoustic signals
US20140010048A1 (en) * 2012-07-06 2014-01-09 Navico Holding As Sonar System Using Frequency Bursts

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179705A1 (ja) * 2017-03-31 2018-10-04 株式会社荏原製作所 工業用内視鏡、観察方法、観察装置、水中機械、ポンプ点検システム、水中ロボット制御システム及び水中ロボット制御方法
US11391940B2 (en) 2017-03-31 2022-07-19 Ebara Corporation Industrial endoscope, observation method, observation device, underwater machine, pump inspection system, underwater robot control system, and underwater robot control method
JP2018203192A (ja) * 2017-06-09 2018-12-27 株式会社荏原製作所 水中ロボット制御システム及び水中ロボット制御方法
JP7053170B2 (ja) 2017-06-09 2022-04-12 株式会社荏原製作所 水中ロボット制御システム及び水中ロボット制御方法
KR20190142099A (ko) * 2018-06-15 2019-12-26 국방과학연구소 비협동 양상태 소나에서 자동으로 펄스를 식별하는 장치 및 방법
KR102100912B1 (ko) * 2018-06-15 2020-04-14 국방과학연구소 비협동 양상태 소나에서 자동으로 펄스를 식별하는 장치 및 방법

Also Published As

Publication number Publication date
CA2943759A1 (en) 2015-09-17
EP3117237B1 (fr) 2019-10-30
EP3117237A1 (fr) 2017-01-18
FR3018611A1 (fr) 2015-09-18
CA2943759C (en) 2022-05-10
SG11201607442SA (en) 2016-10-28
WO2015136089A1 (fr) 2015-09-17
AU2015228768A1 (en) 2016-09-29
US11112499B2 (en) 2021-09-07
AU2015228768B2 (en) 2019-02-07
US20170059706A1 (en) 2017-03-02
JP6655022B2 (ja) 2020-02-26
FR3018611B1 (fr) 2016-02-26

Similar Documents

Publication Publication Date Title
JP6655022B2 (ja) 合成アンテナビームを形成するための合成アンテナソナーおよび方法
JP7446262B2 (ja) 合成開口ソナーのためのシステムおよび方法
JP6656302B2 (ja) 自律型無人潜水機をナビゲートするためのシステムおよび方法
JP6444319B2 (ja) 統合されたソナーデバイスおよび方法
Hughes Clarke Multibeam echosounders
JP4518828B2 (ja) 計量用魚群探知機および計量用魚群探知方法
US10006997B2 (en) Laser synthetic aperture sonar for buried object detection
CN109975815B (zh) 一种水下目标多波束声纳探测系统及方法
JP6054435B2 (ja) 強化された撮像システム
EP3273264B1 (en) Underwater detection apparatus
RU2012153734A (ru) Способ съемки рельефа дна акватории и устройство для съемки рельефа дна акватории
US11199624B2 (en) Bathymetric system and bathymetry method corrected for altitude errors
Ånonsen et al. Autonomous mapping with AUVs using relative terrain navigation
WO2014144774A1 (en) Method and apparatus for three dimensional wavenumber-frequency analysis
JP2002168952A (ja) 海底三次元構造の再構成方法
JP2006208110A (ja) 水中探知装置および水中探知装置の表示制御方法
Hagen et al. Toward autonomous mapping with AUVs-Line-to-line terrain navigation
KR101331333B1 (ko) 바닥 지형을 측량하는 방법 및 장치
RU2480790C1 (ru) Способ определения местоположения измеренных глубин звуковыми сигналами
Yufit et al. 3D forward looking sonar technology for surface ships and AUV: Example of design and bathymetry application
JP7259503B2 (ja) ソーナー画像処理装置、ソーナー画像処理方法及びプログラム
RU2529207C1 (ru) Система навигации буксируемого подводного аппарата
JP2015141173A (ja) 水中航走体の高度検出方法及び装置
Kojima et al. 3D Acoustic imagery generation by interferometric analysis of long baseline using Interferometric Real Aperture Sonar
JP2022138365A (ja) 音響測深装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200131

R150 Certificate of patent or registration of utility model

Ref document number: 6655022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250