JP2017507240A - 改善された疲労特性を持つアルミニウム−銅−リチウム合金製品 - Google Patents

改善された疲労特性を持つアルミニウム−銅−リチウム合金製品 Download PDF

Info

Publication number
JP2017507240A
JP2017507240A JP2016538512A JP2016538512A JP2017507240A JP 2017507240 A JP2017507240 A JP 2017507240A JP 2016538512 A JP2016538512 A JP 2016538512A JP 2016538512 A JP2016538512 A JP 2016538512A JP 2017507240 A JP2017507240 A JP 2017507240A
Authority
JP
Japan
Prior art keywords
less
weight
sheet metal
mpa
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016538512A
Other languages
English (en)
Other versions
JP6683611B2 (ja
JP2017507240A5 (ja
Inventor
ダニエル,アルメル
ブレ,ソワジック
ジャリ,フィリップ
リボー,オリヴィエ
ヴァランタン,ベルナール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Constellium Issoire SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50780503&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2017507240(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Constellium Issoire SAS filed Critical Constellium Issoire SAS
Publication of JP2017507240A publication Critical patent/JP2017507240A/ja
Publication of JP2017507240A5 publication Critical patent/JP2017507240A5/ja
Application granted granted Critical
Publication of JP6683611B2 publication Critical patent/JP6683611B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/21Presses specially adapted for extruding metal
    • B21C23/212Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/003Aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/0408Moulds for casting thin slabs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/041Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/103Distributing the molten metal, e.g. using runners, floats, distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/116Refining the metal
    • B22D11/119Refining the metal by filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/001Aluminium or its alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Continuous Casting (AREA)
  • Conductive Materials (AREA)
  • Metal Rolling (AREA)
  • Air Bags (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本発明は、厚みが少なくとも80mmの、アルミニウム合金製のシートメタルに関しており、該シートメタルは、重量%でCu:2.0〜6.0、Li:0.5〜2.0、Mg:0〜1.0、Ag:0〜0.7、Zn:0〜1.0、ならびにZr、Mn、Cr、Sc、HfおよびTiの中から少なくとも一つの元素が選択され、選択されたときの前記元素の量がZrでは0.05〜0.20重量%、Mnでは0.05〜0.8重量%、CrおよびScではそれぞれ0.05〜0.3重量%、Hfでは0.05〜0.5重量%、およびTiでは0.01〜0.15重量%であり、Siは0.1以下、Feは0.1以下、その他の元素はそれぞれ0.05以下および全体で0.15以下を含むものであり、焼戻しされた状態で、平滑試験片で、方向TLにおいて半分の厚みのところで、最大応力振幅242MPa、周波数50Hz、応力比R=0.1で測定されたその疲労対数平均が、少なくとも250000サイクルであることを特徴とする。本発明による製品は、特に鋳造条件が特有の方法によって得られる。航空機の構造要素、好ましくは翼桁、リブまたはフレームを作製するための本発明によるシートメタルの使用法が有利である。【選択図】図5a

Description

本発明は、アルミニウム−銅−リチウム合金製の圧延製品、より詳細には特に航空および航空宇宙構造物用のこのような製品、それらの製造方法、および使用方法に関する。
アルミニウム合金製の圧延製品は、特に航空産業および航空宇宙産業用の構造部材を製造するために開発されている。
アルミニウム−銅−リチウム合金は、このタイプの製品を製造するのに特に有望である。航空産業によって課されている疲労耐性についての仕様は、高度なものである。厚みのある製品については、それは達成するのが特に困難である。実際、鋳造スラブが取り得る厚みを考慮すると、熱間変形による厚みの減少はかなり少なく、したがって疲労亀裂が起こる鋳造に関連する部分には、熱間変形中に大きさの減少は認められない。
リチウムは特に酸化しやすいので、一般にアルミニウム−銅−リチウム合金の鋳造は、リチウムを含まない2XXXタイプの合金、または7XXXタイプの合金よりも多数の疲労亀裂開始箇所をもたらす。したがって、リチウムを含まない2XXXタイプの合金、または7XXXタイプの合金製の厚い圧延製品を得るために通常見られる解決案では、アルミニウム−銅−リチウム合金に十分な疲労特性を得ることができない。
Al−Cu−Li合金製の厚みのある製品は、米国特許出願公開第2005/0006008号明細書、および米国特許出願公開第2009/0159159号明細書において特に記述されている。
国際公開第2012/110717号において、特に少なくとも0.1%のMg、および/または0.1%のLiを含むアルミニウム合金の特性、特に疲労特性を改善するために、鋳造の際に超音波処理を実施することが提案されている。しかしながらこのタイプの処理は、厚みのあるシートメタルの製造に必要な量に対して、実行するのが困難なままである。
米国特許出願公開第2009/0142222号明細書は、Cuを3.4〜4.2重量%、Liを0.9〜1.4重量%、Agを0.3〜0.7重量%、Mgを0.1〜0.6重量%、Znを0.2〜0.8重量%、Mnを0.1〜0.6重量%、および少なくとも結晶粒組織制御元素を0.01〜0.6重量%含むことができ、残余がアルミニウム、付随的元素および不純物である合金を記述している。
米国特許出願公開第2005/0006008号明細書 米国特許出願公開第2009/0159159号明細書 国際公開第2012/110717号 米国特許出願公開第2009/0142222号明細書
有利な靭性特性および静的機械的耐性特性を有しつつ、特に疲労特性の面で、公知の製品と比較して改善された特性を有するアルミニウム−銅−リチウム合金製の厚みのある製品に対するニーズが存在する。さらに、これらの製品の単純で経済的な獲得方法に対するニーズが存在する。
本発明の第一の目的は、厚みが少なくとも80mmのアルミニウム合金製のシートメタルの製造方法であって、以下の工程を含む。
(a)重量%でCu:2.0〜6.0、Li:0.5〜2.0、Mg:0〜1.0、Ag:0〜0.7、Zn:0〜1.0、ならびにZr、Mn、Cr、Sc、HfおよびTiの中から少なくとも一つの元素が選択され、選択されたときの前記元素の量がZrでは0.05〜0.20重量%、Mnでは0.05〜0.8重量%、CrおよびScではそれぞれ0.05〜0.3重量%、Hfでは0.05〜0.5重量%、およびTiでは0.01〜0.15重量%であり、Siは0.1以下、Feは0.1以下、その他の元素はそれぞれ0.05以下および全体で0.15以下を含む合金製の溶融金属浴を調製する工程、
(b)前記合金を垂直半連続鋳造によって鋳造し、凝固の際に、以下であるように厚みTおよび幅Wのスラブを得る工程、
−前記溶融金属浴(1)の水素含有量が、0.4ml/100g未満である、
−液体表面(14、15)の上で測定される酸素含有量が、0.5体積%未満である、
−鋳造用に用いられる分配器(7)が、主として炭素を含むファブリックで作製され、該分配器が、下部面(76)と、溶融金属が導入される開口部を画定する上部面(71)と、実質的に長方形の断面の壁とを含み、該壁が、幅Wに平行な二つの長手方向部分(720、721)と、厚みTに平行な二つの横方向部分(730、731)とを含み、前記横方向部分および長手方向部分が、鋳造の間の分配器の形状保持を確保するほぼふさがれてかつ半剛性の第一のファブリック(77)と、液体の通過および濾過を可能にするふさがれていない第二のファブリック(78)である少なくとも二つのファブリックから形成され、前記第一および第二のファブリックが、重なり合うことなくまたは重なり合って、それらを隔てる隙間なく互いに接合しており、前記第一のファブリックが、連続的に前記壁部分(720、721、730、731)の表面の少なくとも30%を覆い、また液体表面が断面の全体にわたって第一のファブリックと接触するように位置づけられている、
(c)熱間変形が可能な圧延用スラブを得るために、前記スラブを任意に機械加工する前または後に、均質化する工程、
(d)厚みが少なくとも80mmであるシートメタルを得るために、このように均質化された前記圧延用スラブを熱間圧延、および任意に冷間圧延する工程、
(e)前記シートメタルを溶体化処理、および焼入れする工程、
(f)任意には、このように溶体化処理された前記シートメタルに、少なくとも1%の変形を伴う塑性変形による応力除去を行う工程、
(g)このように溶体化処理され、また任意に応力除去の行われた前記シートメタルを焼戻しする工程。
本発明の別の目的は、本発明による方法によって得ることができる、厚みが少なくとも80mmのシートメタルであって、重量%でCu:2.0〜6.0、Li:0.5〜2.0、Mg:0〜1.0、Ag:0〜0.7、Zn:0〜1.0、ならびにZr、Mn、Cr、Sc、HfおよびTiの中から少なくとも1つの元素が選択され、選択されたときの前記元素の量がZrでは0.05〜0.20重量%、Mnでは0.05〜0.8重量%、CrおよびScではそれぞれ0.05〜0.3重量%、Hfでは0.05〜0.5重量%、およびTiでは0.01〜0.15重量%であり、Siは0.1以下、Feは0.1以下、その他の元素はそれぞれ0.05以下および全体で0.15以下を含むアルミニウム合金製のシートメタルであって、焼戻しされた状態で、図1aによる平滑試験片で、方向TLにおいて半分の厚みのところで、最大応力振幅242MPa、周波数50Hz、応力比R=0.1で測定されたその疲労対数平均が、少なくとも250000サイクルであることを特徴とする、シートメタルである。
本発明のさらに別の目的は、航空機の構造要素、好ましくは翼桁、リブまたはフレームを作製するための、本発明によるシートメタルの使用法である。
疲労試験のために使用される平滑試験片(図1a)および切欠き試験片(図1b)の概略図である。寸法は、mmで示されている。 本発明の一実施形態において使用される凝固装置の全体的な概略図である。 本発明による方法において使用される分配器の全体的な概略図である。 本発明の一実施形態による分配器の底、ならびに壁の側面部分および長手方向部分の図を示している。 平滑試験片での疲労性能と、凝固の際の溶融金属浴の水素含有量との関係を示している。 平滑試験片での疲労性能と、凝固の際に液体表面上で測定された酸素含有量との関係を示している。 方向L−Tにおいて、試験3、7および8によって得られるヴェーラー曲線を示している。 方向T−Lにおいて、試験3、7および8によって得られるヴェーラー曲線を示している。
異なる記載がなければ、合金の化学組成に関する全ての表示は、合金の総重量に基づく重量パーセンテージとして表記される。1.4Cuという表記は、重量%で表示された銅の含有量に1.4乗じることを意味する。合金の名称は、当業者には公知のアルミニウム協会の規則に従ったものとなっている。異なる記載がなければ、欧州規格EN 515において示されている質別の定義が適用される。
引張りにおける静的機械的特徴、言い換えると破断強度Rm、0.2%伸びの慣例の弾性限界Rp0.2、および破断伸びA%は、NF EN ISO 6892−1規格による引張り試験によって測定され、試験のサンプリングおよび試験の趣旨は、EN 485−1規格によって定義されている。
応力拡大係数(K1C)は、ASTM E399規格にしたがって決定する。
平滑試験片での疲労特性は、方向TLにおいてシートメタルの半分の幅および半分の厚みのところで採取される図1aで示されるような試験片で、周囲空気で、最大応力振幅242MPa、周波数50Hz、応力比R=0.1で測定される。試験の条件は、ASTM E466規格にしたがう。少なくとも4つの試験片で得られる結果の対数平均を測定する。
切欠き試験片での疲労特性は、方向L−TおよびT−Lにおいてシートメタルの中心および半分の厚みのところで採取される、Kt=2.3である図1bで示されるような試験片で、周囲空気で、さまざまな応力レベルについて、周波数50Hz、応力比R=0.1で、測定される。ウォーカーの方程式が、100000サイクルで50%が破断しないことを表す最大応力値を決定するために用いられた。そのために、疲労品質指標(FQI)が、ヴェーラー曲線の各点について式
Figure 2017507240
を用いて計算される。式内のσmaxは、所与のサンプルに適用された最大応力であり、Nは破断に至るまでのサイクル数であり、N0は100000に等しく、n=−4.5である。中央値、すなわち100000サイクルで50%の破断に相当するFQIが報告される。
本発明の範囲において、鍛造された厚みのあるシートメタルは、厚みが少なくとも80mm、好ましくは少なくとも100mmの製品である。本発明の一実施形態において、シートメタルの厚みは少なくとも120mm、または好ましくは140mmである。本発明による厚みのあるシートメタルの厚みは、典型的には最大で240mmであり、一般的には最大で220mm、好ましくは最大で180mmである。
異なる記載がなければ、EN 12258規格の定義が適用される。特にシートメタルとは、本発明によると、厚みが一定で少なくとも6mmであり、かつ幅の10分の1を超えることのない、長方形の横断面の圧延製品である。
本明細書において、機械構造物の「構成要素」または「構造要素」と呼ばれるのは、静的および/または動的機械的特性が構造の性能にとって特に重要であり、また通常構造計算が規定または実現されている機械部品である。典型的にはそれは、その不具合が前記構造物、その利用者、その使用者、または他者の安全を危険に曝す可能性のある要素である。航空機についてはこれらの構造要素は、特に胴体を構成する要素(胴体の外板(英語でfuselage skin)、胴体のスティフナまたはストリンガ(stringers)、気密隔壁(bulkheads)、胴体フレーム(circumferential frames)など)、主翼(翼外板(wing skin)、スティフナ(stringersまたはstiffeners)、リブ(ribs)および翼桁(spars)など)、特に水平安定板および垂直安定板(horizontal or vertical stabilisers)から成る尾翼、並びにフロアビーム(floor beams)、シートトラックレール(seat tracks)、扉を含む。
本明細書において「鋳造設備全体」と呼ばれるのは、任意の形状の金属を、液相を経て、未加工の半製品に機械加工することを可能にする装置の全体である。鋳造設備は、金属の溶融に必要な炉(「溶解炉」)および/またはその温度維持に必要な炉(「保持炉」)および/または溶融金属の調製作業や組成の調整作業に必要な炉(「生産炉」)である単数または複数の炉、溶融金属中に溶解している、および/または懸濁状態にある不純物の除去処理を行うための単数または複数の槽(または「取鍋」)、といった多数の装置を含むことができ、この処理は「濾過用取鍋」内で濾材を通して溶融金属を濾過すること、あるいは「脱ガス用取鍋」内で不活性または反応性であり得るいわゆる「処理用」ガスを浴に導入することからなり得るものであり、ならびに、鋳型(または「鋳塊鋳型」)、溶融金属供給装置(または「とりべ」)、冷却システムなどの装置を含むことができる鋳造用穴内における直接冷却による垂直半連続鋳造による溶融金属の凝固装置(または「鋳造作業機」)を含むことができ、これらの多様な炉、槽および凝固装置は、溶融金属をその中で運ぶことができる「樋」と呼ばれる移動装置、または出湯樋で互いに連結されている。
本発明者たちは驚くべきことに、以下の方法を用いてこれらのシートメタルを調製することにより、改善された疲労性能を有するアルミニウム−銅−リチウム合金製の厚みのあるシートメタルを得ることができることを確認した。
第一の工程において、重量%でCu:2.0〜6.0、Li:0.5〜2.0、Mg:0〜1.0、Ag:0〜0.7、Zn:0〜1.0、ならびにZr、Mn、Cr、Sc、HfおよびTiの中から少なくとも一つの元素が選択され、選択されたときの前記元素の量がZrでは0.05〜0.20重量%、Mnでは0.05〜0.8重量%、CrおよびScではそれぞれ0.05〜0.3重量%、Hfでは0.05〜0.5重量%、およびTiでは0.01〜0.15重量%であり、Siは0.1以下、Feは0.1以下、その他の元素はそれぞれ0.05以下および全体で0.15以下を含み、残余がアルミニウムである合金製の溶融金属浴を調製する。
本発明による方法にとって有利な合金は、重量%でCu:3.0〜3.9、Li:0.7〜1.3、Mg:0.1〜1.0、ならびにZr、MnおよびTiの中から少なくとも一つの元素が選択され、選択されたときの前記元素の量がZrでは0.06〜0.15重量%、Mnでは0.05〜0.8重量%、Tiでは0.01〜0.15重量%であり、Ag:0〜0.7、Znは0.25以下、Siは0.08以下、Feは0.10以下、その他の元素はそれぞれ0.05以下および全体で0.15以下を含み、残余がアルミニウムである。
有利には、銅含有量は、少なくとも3.2重量%である。リチウム含有量は、好ましくは0.85〜1.15重量%、また好ましくは0.90〜1.10重量%である。マグネシウム含有量は、好ましくは0.20〜0.6重量%ある。マンガンおよびジルコニウムの同時添加が、一般的に有利である。
好ましくは、マンガン含有量は、0.20〜0.50重量%であり、またジルコニウム含有量は、0.06〜0.14重量%である。有利には、銀含有量は、0.20〜0.7重量%である。銀含有量が少なくとも0.1重量%であることが有利である。本発明の一実施形態において、銀含有量は、少なくとも0.20重量%である。別の実施形態において、銀含有量は0.15重量%に制限され、また亜鉛含有量は少なくとも0.3重量%である。
好ましくは、銀含有量は、最大で0.5重量%である。本発明の一実施形態において、銀含有量は0.3重量%に制限される。好ましくは、ケイ素含有量は最大で0.05重量%であり、鉄含有量は最大で0.06重量%である。有利には、チタン含有量は0.01〜0.08重量%である。
本発明の一実施形態において、亜鉛含有量は、最大で0.15重量%である。好ましいアルミニウム−銅−リチウム合金は、AA2050合金である。
この溶融金属浴は、鋳造設備の炉内で調製される。例えば米国特許第5415220号明細書で、鋳造設備への合金の移動の際に合金を不動態化するために、溶解炉内で、混合物KCl/LiClのようなリチウムを含む溶融塩を使用することが公知である。本発明者たちはしかしながら、溶解炉内でリチウムを含む溶融塩を使用するのではなく、酸素含有量の少ない雰囲気をこの炉内に維持することによって、厚みのあるシートメタルについての優れた疲労特性を得ており、溶解炉内の塩の存在が、特定の場合において厚みのある鍛造製品の疲労特性に有害な影響を与える可能性があり得ると考えている。有利には、鋳造設備全体において、リチウムを含む溶融塩は使用されない。
有利な一実施形態において、鋳造設備全体において溶融塩は使用されない。好ましくは、鋳造設備の単数または複数の炉内で、酸素含有量を0.5体積%未満、好ましくは0.3体積%未満に維持する。しかしながら、鋳造設備の単数または複数の炉内で、少なくとも0.05体積%の酸素含有量、また少なくとも0.1体積%の酸素含有量でさえも容認することができ、これは本方法の経済的側面にとって特に有利である。有利には、鋳造設備の単数または複数の炉は誘導炉である。本発明者たちは、このタイプの炉が、誘導加熱によって発生する混合にもかかわらず有利であることを確認した。
この溶融金属浴は次に、脱ガス用取鍋内および濾過用取鍋内で処理され、特にその水素含有量が0.4ml/100g未満、好ましくは0.35ml/100g未満になる。溶融金属の水素含有量は、当業者にとって公知の商標ALSCANTMの名称で商品化されている器具のような商業機器を使って測定され、プローブは、窒素スイープ下で維持される。有利には、溶解炉内において、脱ガス、濾過工程の際に溶融金属浴と接触する雰囲気の酸素含有量は、0.5体積%未満、好ましくは0.3体積%未満である。好ましくは、溶融金属浴と接触する雰囲気の酸素含有量は、鋳造設備全体に対して0.5体積%未満、好ましくは0.3体積%未満である。しかしながら、鋳造設備全体に対して、少なくとも0.05体積%の酸素含有量、そして少なくとも0.1体積%の酸素含有量さえも容認することができ、これは本方法の経済的側面にとって特に有利である。
溶融金属浴は次に、スラブ形状に凝固される。スラブは、長さL、幅W、および厚みTの、実質的に平行6面体形状のアルミニウムブロックである。凝固の際に、液体表面上の雰囲気が制御される。凝固の際に液体表面上の雰囲気の制御を可能にする装置の例が、図2に示されている。
この適切な装置の例において、樋(63)からの溶融金属は、上下移動(81)できるストッパーロッド(8)によって制御されるとりべ(4)の中を通って、擬似底(21)の上に置かれた鋳塊鋳型(31)の中に導入される。アルミニウム合金は、直接冷却(5)によって凝固する。アルミニウム合金(1)は、少なくとも一つの固体表面(11、12、13)、および少なくとも一つの液体表面(14、15)を有する。昇降機(2)は、液体表面(14、15)の高さをほぼ一定に保つことを可能にする。分配器(7)は、溶融金属の分配を可能にする。蓋(62)は、液体表面をすっかり覆う。蓋は、鋳造用テーブル(32)との気密性を確保するためにパッキン(61)を含むことができる。樋(63)の中の溶融金属は、有利には蓋(64)によって保護されることができる。不活性ガス(9)が、蓋と鋳造用テーブルとの間に区画された室(65)の中に導入される。不活性ガスは有利には、希ガス、窒素、および二酸化炭素、またはこれらのガスの混合物の中から選択される。好ましい不活性ガスは、アルゴンである。酸素含有量が、室(65)の中で液体表面の上で測定される。不活性ガスの流量は、所望の酸素含有量に達するように調整され得る。しかしながら、ポンプ(101)でもって鋳造用穴(10)内に十分な吸引力を保つことが有利である。実際、本発明者たちは、一般に鋳塊鋳型(31)と凝固金属(5)との間に十分な気密性は存在せず、これにより鋳造用穴(10)から室(65)への雰囲気の拡散が導かれることを確認した。有利にはポンプ(101)の吸引力は、囲い(10)内の圧力を室(65)内の圧力よりも低くなるようにするものであり、これは好ましくは、鋳造用穴の開いた表面を介して、少なくとも2m/秒、好ましくは少なくとも2.5m/秒の雰囲気の速度を課すことによって得られる。典型的には、室(65)内の圧力は大気圧に近く、また囲い(10)内の圧力は大気圧より低く、典型的には大気圧の0.95倍である。本発明による方法を用いると、記述されている装置により、室(65)内は、酸素含有量0.5体積%未満、好ましくは0.3体積%未満に保たれる。
本発明による方法の分配器(7)の一例が、図3および図4に示されている。本発明による方法の分配器は、主として炭素を含むファブリックで作製され、該分配器は、下部面(76)と、溶融金属を導入する開口部を画定する典型的には空いている上部面(71)と、典型的には実質的に一定の実質的に長方形の断面および典型的には実質的に一定の高さhをもつ壁とを含み、該壁は、スラブの幅Wに平行な二つの長手方向部分(720、721)とスラブの厚みTに平行な二つの横方向部分(730、731)とを含み、前記横方向部分および長手方向部分は、鋳造の間の分配器の形状保持を確保するほぼふさがれてかつ半剛性の第一のファブリック(77)と、液体の通過および濾過を可能にするふさがれていない第二のファブリック(78)である少なくとも二つのファブリックから形成され、前記第一および第二のファブリックは、重なり合うことなくまたは重なり合って、それらを隔てる隙間なく互いに接合しており、前記第一のファブリックは、連続的に前記壁部分(720、721、730、731)の表面の少なくとも30%を覆い、また液体表面が分配器の断面の全体にわたって第一のファブリックと接触するように位置づけられている。本発明の一実施形態において、分配器の壁の断面は、高さhに対応して直線状に、典型的には分配器の下部面の表面が分配器の上部面の表面より最大で10%大きいかまたは小さくなるように変化する。このように、側面壁と垂直線との間に形成される角度は、およそ5°にまで達することができる。第一および第二のファブリックが重なり合うことなく、または重なり合って、かつそれらを隔てる隙間なく、すなわち接触するように互いに縫い合わされているので、溶融金属は、例えば国際公開第99/44719号パンフレットの図2から図5において記述されているようなコンボバッグにおける場合のように、第一のファブリックを通過することはできないが、第二のファブリックの方にそれることができる。第一のファブリックによって確保される保持により、分配器は半剛性であり、鋳造の際に変形することはほとんどない。有利な一実施形態において、第一のファブリックは高さh1を有するが、この高さは、壁(720、721、730、731)の周囲の上部面を起点にして測定され、h1≧0.3h、好ましくはh1≧0.5hのようなものであり、ここでhは分配器の壁の総高さを意味する。
液体表面が、ふさがれている前記第一のファブリックと接触しているため、溶融金属は、壁の各部分の特定の方向における液体表面下でしか分配器を通過しない。好ましくは、第一のファブリックによって覆われている、分配器(7)の壁(720、721、730、731)の溶融金属中に浸っている高さは、浸っている壁の総高さの少なくとも20%、好ましくは40%、より好ましくは60%に等しい。
図4は、底部および長手方向の壁部分を示している。底部(76)は、典型的には第一および/または第二のファブリックで覆われている。有利には、第一のファブリックは、少なくとも底部(76)の中心部分において長さL1に渡って、ならびに/または長手方向部分(720)および(721)の中心部分において高さh全体および長さL2に渡って、位置している。
有利には、第一のファブリックによって覆われる表面部分は、長手方向部分(720)および(721)については30〜90%、好ましくは50〜80%、ならびに/または側面部分(730、731)については30〜70%、好ましくは40〜60%、ならびに/または底部(76)については30〜100%、好ましくは50〜80%である。
底部(76)に位置する第一のファブリックの長さL1が、長手方向壁(720)および(721)の部分に位置する第一のファブリックの、底部と接触している長さL2を超えることが有利である。
本発明者らは、分配器の幾何学形状により、特に溶融金属の流れの質の改善、乱流の減少、ならびに温度の分配の改善が可能になると考えている。
第一のファブリックおよび第二のファブリックは、有利には、主として炭素を含むワイヤーの製織によって得られる。グラファイトワイヤーの製織が、特に有利である。ファブリックは、典型的には互いに縫い合わされている。第一および第二のファブリックに代わって、多少なりとも高密度の、少なくとも二つの製織領域を有するただ一つのファブリック製ディフューザーを使用することもまた可能である。
製織を容易にするために、炭素を含むワイヤーが、滑りを容易にする層でコーティングされていることが有利である。この層は、例えばテフロン(登録商標)のようなフッ素ポリマー、またはキシロンのようなポリアミドを含むことができる。
第一のファブリックは、ほぼふさがれている。典型的には、それは0.5mm未満、好ましくは0.2mm未満のメッシュサイズを有するファブリックである。第二のファブリックはふさがれておらず、溶融金属の通過を可能にする。典型的には、それは1〜5mm、好ましくは2mm〜4mmのメッシュサイズを有するファブリックである。本発明の一実施形態において、第一のファブリックは、二つのファブリックの間に隙間を残さないように密接に接触して、第二のファブリックを局所的に覆っている。
このようにして得られたスラブは、任意に機械加工する前または後に均質化され、熱間変形することができる形状を得る。スラブは圧延用スラブの形状に機械加工され、続いて圧延によって熱間変形される。好ましくは均質化は、470〜540℃の温度で、継続時間2〜30時間で実現される。
このように均質化された前記圧延用スラブは、厚みが少なくとも80mmである鍛造製品を得るために、熱間圧延、また任意に冷間圧延される。熱間圧延の温度は、有利には少なくとも350℃、好ましくは少なくとも400℃である。熱間変形率、また任意には冷間変形率、すなわち変形前だが場合によってはあり得る機械加工の後の最初の厚みと最終的な厚みとの間の差と、最初の厚みとの間の比率は、85%未満、好ましくは80%未満である。一実施形態において、変形の際の変形率は、75%未満、好ましくは70%未満である。
このようにして得られた鍛造製品は、次に溶体化処理され、焼入れされる。溶体化処理の温度は、有利には470〜540℃、好ましくは490〜530℃であり、継続時間は製品の厚みに適合している。
任意には、このように溶体化処理された前記鍛造製品に、少なくとも1%の変形を伴う塑性変形による応力除去を行う。このように溶体化処理された前記鍛造製品に、制御された引張りによる応力除去を、少なくとも1%の、好ましくは2〜5%の永久ひずみを伴って行うことが有利である。
最後に、このように溶体化処理されまた任意に応力除去された製品に焼戻しを行う。焼戻しは、有利には130〜160℃の温度で、継続時間5〜60時間、単数または複数の段階で実行される。好ましくは、焼戻しのあとに、特にT851、T83、T84またはT85のような、質別T8が得られる。
本発明による方法によって得られる厚みが少なくとも80mmのシートメタルは、有利な特性を有する。
図1aによる平滑試験片で方向TLにおいて半分の厚みのところで、最大応力振幅242MPa、周波数50Hz、応力比R=0.1で測定される、本発明による方法によって得られる厚みが少なくとも80mmのシートメタルの疲労の対数平均は、少なくとも250000サイクルであり、有利には疲労特性は、厚みが少なくとも100mm、好ましくは少なくとも120mmで少なくとも140mmでさえある、本発明による方法によって得られる鍛造製品に対して得られる。
少なくとも80mmの厚みの本発明によるシートメタルはまた、切欠き試験片についても有利な疲労特性を示し、そして周波数50Hzで、周囲空気で、R値=0.1で、図1bによるKt=2.3の切欠き試験片で得られる疲労品質指標FQIは、方向T−Lにおいて少なくとも180MPaであり、好ましくは少なくとも190MPaである。
さらに、本発明による方法によって得られるシートメタルは、有利な静的機械的特徴を有する。このように、重量%でCu:3.0〜3.9、Li:0.7〜1.3、Mg:0.1〜1.0、ならびにZr、MnおよびTiの中から少なくとも一つの元素が選択され、選択されたときの前記元素の量がZrでは0.06〜0.15重量%、Mnでは0.05〜0.8重量%、およびTiでは0.01〜0.15重量%であり、Ag:0〜0.7、Znは0.25以下、Siは0.08以下、Feは0.10以下、その他の元素はそれぞれ0.05以下および全体で0.15以下を含み、残余がアルミニウムである、厚みが少なくとも80mmであるシートメタルについて、方向Lにおいて4分の1の厚みのところで測定される弾性限界は、少なくとも450MPa、好ましくは少なくとも470MPaであり、および/または測定される破断強度は、少なくとも480MPa、好ましくは少なくとも500MPaであり、および/または伸びは、少なくとも5%、好ましくは少なくとも6%である。好ましくは、4分の1の厚みのところで測定される、厚みが少なくとも80mmの本発明によるシートメタルの靭性は、K1C(L−T)が少なくとも25MPa√m、好ましくは少なくとも27MPa√mであり、K1C(T−L)が少なくとも23MPa√m、好ましくは少なくとも25MPa√mであり、K1C(S−L)が少なくとも19MPa√m、好ましくは少なくとも21MPa√mであるようなものである。
本発明によるシートメタルは、構成要素、好ましくは航空機の構成要素を作製するために有利に利用されることができる。航空機の好ましい構成要素は、翼桁、リブまたは胴体フレームである。本発明は、航空機の主翼の製造のために、ならびに本発明による製品の特性が有利である任意の他の用途のために特に利用される、全体的な機械加工によって得られる複雑な形状の部品に対して、特に有利である。
(実施例)
この実施例において、AA2050合金製の厚みのあるシートメタルが調製された。AA2050合金製スラブを、直接冷却式の垂直型半連続鋳造によって鋳造した。合金は、溶解炉内で調製された。実施例1〜7については、溶解炉内で溶融金属の表面にKCL/LiCl混合物が使用された。実施例8および9については、溶解炉内で塩を使用しなかった。実施例8および9について、溶融金属と接触する雰囲気は、鋳造設備全体に対して0.3体積%未満の酸素含有量であった。鋳造設備は、酸素含有量を制限することを可能にする、鋳造用穴の上に配置されるフードを含んでいた。試験8および9について、さらに、囲い(10)内の圧力が室(65)内の圧力より低くなるように、また鋳造用穴の開いた表面を介した雰囲気の速度が少なくとも2m/秒になるように、吸引システム(101)が使用された。酸素含有量が、鋳造の際に、酸素濃度計を用いて測定された。さらに液体アルミニウム中の水素含有量が、窒素スイープ下で、AlscanTMタイプのプローブを使って測定された。二つのタイプの溶融金属分配器が使用された。例えば国際公開第99/44719号の図2から6に記載されているような「コンボバッグ」タイプの第一の分配器は、主として炭素を含むファブリックで作製されており、以下で「分配器A」と称され、また以下で「分配器B」と称される、図3に記載されているような第二の分配器は、グラファイトワイヤーのファブリックで作製されている。
実施されたさまざまな試験の鋳造条件が、表1に示される。
Figure 2017507240
スラブを、505℃で12時間均質化し、およそ365mmの厚みになるまで機械加工し、最終的な厚みが154〜158mmのシートメタルになるまで熱間圧延し、504℃で溶体化処理し、焼入れし、そして3.5%の永久ひずみを伴う制御された引張りによって応力除去を行った。このようにして得られたシートメタルを、155℃で18時間焼き戻しをした。
静的機械的特性および靭性が、4分の1の厚みのところで特徴付けられた。
静的機械的特性および靭性が、表2に示される。
Figure 2017507240
疲労特性が、半分の厚みのところで採取された特定のサンプルに対して、平滑試験片および切欠き試験片で特徴付けられた。
平滑試験片での疲労特性評価について、図1aで概要が示されている四つの試験片が方向TLにおいて半分の厚み、半分の幅のところで試験され、試験条件は、σ=242MPa、R=0.1であった。200000サイクルの後に中断された試験と、300000サイクルの後に中断された試験がある。
切欠き試験片での疲労特性評価について、Kt値が2.3である、図1bに図示されている試験片が使用された。試験片は、周波数50Hz、周囲空気、R値=0.1で試験された。対応するヴェーラー曲線が、図6aおよび図6bに示されている。疲労品質指標FQIが計算された。
Figure 2017507240
水素含有量0.4ml/100g未満と、液体表面上で測定される酸素含有量0.3体積%未満と、分配器Bとを組合せることより、優れた疲労性能レベルに達することができる。これらの結果は図5に示されている。特定の点の上に位置づけられている矢印は、試験が破断まで続けられなかったことから、それが最小値であることを示している。
1 アルミニウム合金
2 昇降機
4 とりべ
7 分配器
8 ストッパーロッド
9 不活性ガス
10 鋳造用穴、囲い
11、12、13 固体表面
14、15 液体表面
21 擬似底
31 鋳塊鋳型
32 鋳造用テーブル
61 パッキン
62 蓋
63 樋
64 蓋
65 室
71 上部面
76 下部面
77 第一のファブリック
78 第二のファブリック
81 上下移動
101 ポンプ
720、721 長手方向部分
730、731 横方向部分

Claims (16)

  1. 厚みが少なくとも80mmのアルミニウム合金製のシートメタルの製造方法であって、以下の工程、すなわち
    (a)重量%でCu:2.0〜6.0、Li:0.5〜2.0、Mg:0〜1.0、Ag:0〜0.7、Zn:0〜1.0、ならびにZr、Mn、Cr、Sc、HfおよびTiの中から少なくとも一つの元素が選択され、選択されたときの前記元素の量がZrでは0.05〜0.20重量%、Mnでは0.05〜0.8重量%、CrおよびScではそれぞれ0.05〜0.3重量%、Hfでは0.05〜0.5重量%、およびTiでは0.01〜0.15重量%であり、Siは0.1以下、Feは0.1以下、その他の元素がそれぞれ0.05以下および全体で0.15以下を含む合金製の溶融金属浴を調製する工程、
    (b)前記合金を垂直半連続鋳造によって鋳造し、凝固の際に、以下であるように、厚みTおよび幅Wのスラブを得る工程、
    −前記溶融金属浴(1)の水素含有量が、0.4ml/100g未満である、
    −液体表面(14、15)の上で測定される酸素含有量が、0.5体積%未満である、
    −鋳造用に用いられる分配器(7)が、主として炭素を含むファブリックで作製され、該分配器が、下部面(76)と、溶融金属が導入される開口部を画定する上部面(71)と、実質的に長方形の断面の壁とを含み、該壁が、幅Wに平行な二つの長手方向部分(720、721)と、厚みTに平行な二つの横方向部分(730、731)とを含み、前記横方向部分および長手方向部分が、鋳造の間の分配器の形状保持を確保するほぼふさがれてかつ半剛性の第一のファブリック(77)と、液体の通過および濾過を可能にするふさがれていない第二のファブリック(78)である少なくとも二つのファブリックから形成され、前記第一および第二のファブリックが、重なり合うことなくまたは重なり合って、それらを隔てる隙間なく互いに接合しており、前記第一のファブリックが、連続的に前記壁部分(720、721、730、731)の表面の少なくとも30%を覆い、また液体表面が断面の全体にわたって第一のファブリックと接触するように位置づけられている、
    (c)熱間変形が可能な圧延用スラブを得るために、前記スラブを任意に機械加工する前または後に、均質化する工程、
    (d)厚みが少なくとも80mmであるシートメタルを得るために、このように均質化された前記圧延用スラブを熱間圧延、および任意に冷間圧延する工程、
    (e)前記シートメタルを溶体化処理、および焼入れする工程、
    (f)任意には、このように溶体化処理された前記シートメタルに、少なくとも1%の変形を伴う塑性変形による応力除去を行う工程、
    (g)このように溶体化処理され、また任意に応力除去の行われた前記シートメタルを焼戻しする工程、
    を含むアルミニウム合金製のシートメタルの製造方法。
  2. 溶解炉内において、脱ガス、濾過工程の際に溶融金属浴と接触する雰囲気の酸素含有量が0.5体積%未満であり、好ましくは溶融金属浴と接触する雰囲気の酸素含有量が、鋳造設備全体に対して0.5体積%未満である、請求項1に記載の方法。
  3. 蓋(62)が、凝固の際に液体表面(14、15)をすっかり覆い、前記蓋が、好ましくは鋳造用テーブル(32)との気密性を確保するためにパッキン(61)を含み、また不活性ガス(9)が、蓋と鋳造用テーブルとの間に区画された室(65)の中に導入され、また好ましくは囲い(10)内の圧力が室(65)内の圧力より低くなるように、ポンプ(101)でもって鋳造用穴(10)内に吸引力を保つ、請求項1または2に記載の方法。
  4. 鋳造設備全体において、リチウムを含む溶融塩を使用しない、請求項1から3のいずれか一つに記載の方法。
  5. 前記分配器(7)の第一のファブリックの高さh1が、壁(720、721、730、731)の周囲の上部面を起点にして測定され、h1≧0.3h、好ましくはh1≧0.5hのようなものであり、ここでhは分配器の壁の総高さを意味する、請求項1から4のいずれか一つに記載の方法。
  6. 第一のファブリックによって覆われている分配器(7)の溶融金属中に浸っている壁(720、721、730、731)の高さが、浸っている壁の総高さの少なくとも20%、好ましくは40%、より好ましくは60%である、請求項1から5のいずれか一つに記載の方法。
  7. 第一のファブリックによって覆われる表面部分が、長手方向部分(720)および(721)については30〜90%、好ましくは50〜80%、ならびに/または側面部分(730、731)については30〜70%、好ましくは40〜60%、ならびに/または底部(76)については30〜100%、好ましくは50〜80%である、請求項1から6のいずれか一つに記載の方法。
  8. 工程(d)の際の変形率が、85%未満、好ましくは80%未満である、請求項1から7のいずれか一つに記載の方法。
  9. 合金が、重量%でCu:3.0〜3.9、Li:0.7〜1.3、Mg:0.1〜1.0、Zr、MnおよびTiの中から少なくとも一つの元素が選択され、選択されたときの前記元素の量がZrでは0.06〜0.15重量%、Mnでは0.05〜0.8重量%、およびTiでは0.01〜0.15重量%であり、Ag:0〜0.7、Znは0.25以下、Siは0.08以下、Feは0.10以下、その他の元素はそれぞれ0.05以下および全体で0.15以下を含む、請求項1から8のいずれか一つに記載の方法。
  10. 請求項1から9のいずれか一つに記載の方法によって得ることができる、厚みが少なくとも80mmのシートメタルであって、重量%でCu:2.0〜6.0、Li:0.5〜2.0、Mg:0〜1.0、Ag:0〜0.7、Zn:0〜1.0、ならびにZr、Mn、Cr、Sc、HfおよびTiの中から少なくとも1つの元素が選択され、選択されたときの前記元素の量がZrでは0.05〜0.20重量%、Mnでは0.05〜0.8重量%、CrおよびScではそれぞれ0.05〜0.3重量%、Hfでは0.05〜0.5重量%、およびTiでは0.01〜0.15重量%であり、Siは0.1以下、Feは0.1以下、その他の元素はそれぞれ0.05以下および全体で0.15以下を含むアルミニウム合金製のシートメタルであって、焼戻しされた状態で、図1aによる平滑試験片で、方向TLにおいて半分の厚みのところで、最大応力振幅242MPa、周波数50Hz、応力比R=0.1で測定されたその疲労対数平均が、少なくとも250000サイクルであることを特徴とする、シートメタル。
  11. 厚みが少なくとも100mm、好ましくは少なくとも120mmである、請求項10に記載のシートメタル。
  12. 重量%でCu:3.0〜3.9、Li:0.7〜1.3、Mg:0.1〜1.0、ならびにZr、MnおよびTiの中から少なくとも一つの元素が選択され、選択されたときの前記元素の量がZrでは0.06〜0.15重量%、Mnでは0.05〜0.8重量%、およびTiでは0.01〜0.15重量%であり、Ag:0〜0.7、Znは0.25以下、Siは0.08以下、Feは0.10以下、その他の元素はそれぞれ0.05以下および全体で0.15以下を含むシートメタルであって、方向Lにおいて4分の1の厚みのところで測定される弾性限界が、少なくとも450MPa、好ましくは少なくとも470MPaであることを特徴とする、請求項10または11に記載のシートメタル。
  13. 4分の1の厚みのところで測定される靭性が、K1C(L−T)が少なくとも25MPa√m、好ましくは少なくとも27MPa√mであり、K1C(T−L)が少なくとも23MPa√m、好ましくは少なくとも25MPa√mであり、K1C(S−L)が少なくとも19MPa√m、好ましくは少なくとも21MPa√mを示す、請求項10から12のいずれか一つに記載のシートメタル。
  14. 周波数50Hzで、周囲空気で、R値=0.1で、Kt=2.3の切欠き試験片で得られる疲労品質指標FQIが、方向T−Lにおいて少なくとも180MPaであり、好ましくは少なくとも190MPaである、請求項10から13のいずれか一つに記載のシートメタル。
  15. アルミニウム合金が、AA2050合金である、請求項10から14のいずれか一つに記載のシートメタル。
  16. 航空機の構造要素、好ましくは翼桁、リブまたは胴体フレームを作製するための、請求項10から15のいずれか一つに記載のシートメタルの利用法。
JP2016538512A 2013-12-13 2014-12-11 改善された疲労特性を持つアルミニウム−銅−リチウム合金製品 Active JP6683611B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR13/02932 2013-12-13
FR1302932A FR3014905B1 (fr) 2013-12-13 2013-12-13 Produits en alliage d'aluminium-cuivre-lithium a proprietes en fatigue ameliorees
PCT/FR2014/000271 WO2015086921A2 (fr) 2013-12-13 2014-12-11 Produits en alliage d'aluminium - cuivre - lithium à propriétés en fatigue améliorées

Publications (3)

Publication Number Publication Date
JP2017507240A true JP2017507240A (ja) 2017-03-16
JP2017507240A5 JP2017507240A5 (ja) 2019-05-16
JP6683611B2 JP6683611B2 (ja) 2020-04-22

Family

ID=50780503

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016538512A Active JP6683611B2 (ja) 2013-12-13 2014-12-11 改善された疲労特性を持つアルミニウム−銅−リチウム合金製品
JP2016538701A Active JP6604949B2 (ja) 2013-12-13 2014-12-11 改善された疲労特性を持つアルミニウム−銅−リチウム合金製品の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016538701A Active JP6604949B2 (ja) 2013-12-13 2014-12-11 改善された疲労特性を持つアルミニウム−銅−リチウム合金製品の製造方法

Country Status (10)

Country Link
US (2) US10415129B2 (ja)
EP (2) EP3080317B1 (ja)
JP (2) JP6683611B2 (ja)
CN (2) CN106170573B (ja)
BR (1) BR112016012288B1 (ja)
CA (2) CA2932991C (ja)
DE (2) DE14825363T1 (ja)
FR (1) FR3014905B1 (ja)
RU (2) RU2674789C1 (ja)
WO (2) WO2015086922A2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3014448B1 (fr) * 2013-12-05 2016-04-15 Constellium France Produit en alliage aluminium-cuivre-lithium pour element d'intrados a proprietes ameliorees
FR3014905B1 (fr) 2013-12-13 2015-12-11 Constellium France Produits en alliage d'aluminium-cuivre-lithium a proprietes en fatigue ameliorees
FR3048902B1 (fr) 2016-03-18 2018-03-02 Constellium Issoire Enceinte a dispositif d'etancheite pour installation de coulee
MX2019001802A (es) 2016-08-26 2019-07-04 Shape Corp Proceso de modelacion en caliente y aparato para flexion transversal de una viga de aluminio extrudida para modelar en caliente un componente estructural del vehiculo.
EP3529394A4 (en) 2016-10-24 2020-06-24 Shape Corp. MULTI-STAGE MOLDING OF ALUMINUM ALLOYS AND THERMAL TREATMENT METHOD FOR PRODUCING VEHICLE COMPONENTS
MX2019004840A (es) 2016-10-27 2019-06-20 Novelis Inc Sistemas y metodos para fabricar articulos de aleacion de aluminio de calibre grueso.
US11821065B2 (en) 2016-10-27 2023-11-21 Novelis Inc. High strength 6XXX series aluminum alloys and methods of making the same
ES2905306T3 (es) * 2016-10-27 2022-04-07 Novelis Inc Aleaciones de aluminio serie 7xxx de alta resistencia y procedimientos para fabricar las mismas
CN106521270B (zh) * 2016-12-07 2018-08-03 中国航空工业集团公司北京航空材料研究院 一种改善铝锂合金耐腐蚀性能的热处理工艺
FR3065011B1 (fr) * 2017-04-10 2019-04-12 Constellium Issoire Produits en alliage aluminium-cuivre-lithium
FR3065012B1 (fr) 2017-04-10 2022-03-18 Constellium Issoire Produits en alliage aluminium-cuivre-lithium a faible densite
FR3067044B1 (fr) 2017-06-06 2019-06-28 Constellium Issoire Alliage d'aluminium comprenant du lithium a proprietes en fatigue ameliorees
US20190233921A1 (en) * 2018-02-01 2019-08-01 Kaiser Aluminum Fabricated Products, Llc Low Cost, Low Density, Substantially Ag-Free and Zn-Free Aluminum-Lithium Plate Alloy for Aerospace Application
FR3080860B1 (fr) * 2018-05-02 2020-04-17 Constellium Issoire Alliage aluminium cuivre lithium a resistance en compression et tenacite ameliorees
CN109182807B (zh) * 2018-09-20 2020-06-30 北京新立机械有限责任公司 一种高强度铝锂合金及其制备方法
FR3087206B1 (fr) * 2018-10-10 2022-02-11 Constellium Issoire Tôle en alliage 2XXX à haute performance pour fuselage d’avion
CN111590041B (zh) * 2020-06-29 2021-10-12 上海大学 一种使用铝锂合金板材的生产装置的热处理方法
KR102494830B1 (ko) * 2022-03-22 2023-02-06 국방과학연구소 다단 시효처리를 이용한 Al-Li 합금의 제조방법
CN114540679B (zh) * 2022-04-26 2022-08-02 北京理工大学 一种微量元素复合强化高强度铝锂合金及制备方法
CN114778255B (zh) * 2022-06-13 2022-08-26 中铝材料应用研究院有限公司 高通量平面应变试样的制备装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158835A (ja) * 1986-01-07 1987-07-14 Mitsui Eng & Shipbuild Co Ltd Al−Li系合金の溶製方法
JPH06297100A (ja) * 1993-04-16 1994-10-25 Arishiumu:Kk 金属の竪型連続鋳造方法及びその装置
JPH09141393A (ja) * 1995-11-15 1997-06-03 Sumitomo Light Metal Ind Ltd 圧延用アルミニウムインゴットの連続鋳造方法
WO1998033947A1 (en) * 1997-01-31 1998-08-06 Reynolds Metals Company Method of improving fracture toughness in aluminum-lithium alloys
US6270717B1 (en) * 1998-03-04 2001-08-07 Les Produits Industriels De Haute Temperature Pyrotek Inc. Molten metal filtration and distribution device and method for manufacturing the same
JP2002097529A (ja) * 2000-09-22 2002-04-02 Kobe Steel Ltd アルミニウム合金溶湯の脱ガス方法
US20050006008A1 (en) * 2003-05-28 2005-01-13 Pechiney Rolled Products New Al-Cu-Li-Mg-Ag-Mn-Zr alloy for use as structural members requiring high strength and high fracture toughness
JP2007167863A (ja) * 2005-12-19 2007-07-05 Kobe Steel Ltd アルミニウム鋳塊の製造方法、アルミニウム鋳塊、およびアルミニウム鋳塊の製造用保護ガス
US20120225271A1 (en) * 2011-02-17 2012-09-06 Alcoa Inc. 2xxx series aluminum lithium alloys

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769158A (en) 1986-12-08 1988-09-06 Aluminum Company Of America Molten metal filtration system using continuous media filter
US5032359A (en) * 1987-08-10 1991-07-16 Martin Marietta Corporation Ultra high strength weldable aluminum-lithium alloys
US5207974A (en) 1991-07-29 1993-05-04 Aluminum Company Of America Partitioned receptacle for distributing molten metal from a spout to form an ingot
US5383986A (en) * 1993-03-12 1995-01-24 Reynolds Metals Company Method of improving transverse direction mechanical properties of aluminum-lithium alloy wrought product using multiple stretching steps
US5415220A (en) * 1993-03-22 1995-05-16 Reynolds Metals Company Direct chill casting of aluminum-lithium alloys under salt cover
FR2757422B1 (fr) 1996-12-24 1999-03-05 Stevtiss Articles textiles et filtres diffuseurs pour la filtration de metaux en fusion, notamment aluminium
US5871660A (en) 1997-03-26 1999-02-16 The Regents Of The University Of California Liquid metal delivery system for continuous casting
GB2352992B (en) 1999-08-05 2002-01-09 Pyrotek Engineering Materials Distributor device
RU2180930C1 (ru) * 2000-08-01 2002-03-27 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Сплав на основе алюминия и способ изготовления полуфабрикатов из этого сплава
CN1323780C (zh) * 2002-07-22 2007-07-04 昭和电工株式会社 连铸铝合金棒材及其生产方法和装置
EP2017361A1 (fr) * 2005-06-06 2009-01-21 Alcan Rhenalu Tôle en aluminium-cuivre-lithium à haute ténacité pour fuselage d'avion
FR2894985B1 (fr) * 2005-12-20 2008-01-18 Alcan Rhenalu Sa Tole en aluminium-cuivre-lithium a haute tenacite pour fuselage d'avion
EP1996353B1 (en) * 2006-03-20 2010-06-16 Aleris Aluminum Koblenz GmbH Distributor device for use in metal casting
US9019300B2 (en) 2006-08-04 2015-04-28 Apple Inc. Framework for graphics animation and compositing operations
CN201077859Y (zh) 2007-07-05 2008-06-25 包头铝业股份有限公司 在线除气过滤机构
CA2707311C (en) * 2007-12-04 2017-09-05 Alcoa Inc. Improved aluminum-copper-lithium alloys
FR2925523B1 (fr) 2007-12-21 2010-05-21 Alcan Rhenalu Produit lamine ameliore en alliage aluminium-lithium pour applications aeronautiques
US20110003085A1 (en) * 2008-04-04 2011-01-06 Carrier Corporation Production Of Tailored Metal Oxide Materials Using A Reaction Sol-Gel Approach
WO2010014358A2 (en) 2008-07-27 2010-02-04 Rambus Inc. Method and system for balancing receive-side supply load
FR2938553B1 (fr) * 2008-11-14 2010-12-31 Alcan Rhenalu Produits en alliage aluminium-cuivre-lithium
CN102105393A (zh) 2009-04-03 2011-06-22 开利公司 使用反应溶胶-凝胶法制备特制金属氧化物材料
FR2947282B1 (fr) * 2009-06-25 2011-08-05 Alcan Rhenalu Alliage aluminium cuivre lithium a resistance mecanique et tenacite ameliorees
FR2969177B1 (fr) * 2010-12-20 2012-12-21 Alcan Rhenalu Alliage aluminium cuivre lithium a resistance en compression et tenacite ameliorees
FR2971793B1 (fr) 2011-02-18 2017-12-22 Alcan Rhenalu Demi-produit en alliage d'aluminium a microporosite amelioree et procede de fabrication
US8365808B1 (en) 2012-05-17 2013-02-05 Almex USA, Inc. Process and apparatus for minimizing the potential for explosions in the direct chill casting of aluminum lithium alloys
WO2015003934A1 (en) * 2013-07-11 2015-01-15 Aleris Rolled Products Germany Gmbh Method of producing aluminium alloys containing lithium
FR3014905B1 (fr) 2013-12-13 2015-12-11 Constellium France Produits en alliage d'aluminium-cuivre-lithium a proprietes en fatigue ameliorees

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158835A (ja) * 1986-01-07 1987-07-14 Mitsui Eng & Shipbuild Co Ltd Al−Li系合金の溶製方法
JPH06297100A (ja) * 1993-04-16 1994-10-25 Arishiumu:Kk 金属の竪型連続鋳造方法及びその装置
JPH09141393A (ja) * 1995-11-15 1997-06-03 Sumitomo Light Metal Ind Ltd 圧延用アルミニウムインゴットの連続鋳造方法
WO1998033947A1 (en) * 1997-01-31 1998-08-06 Reynolds Metals Company Method of improving fracture toughness in aluminum-lithium alloys
US6270717B1 (en) * 1998-03-04 2001-08-07 Les Produits Industriels De Haute Temperature Pyrotek Inc. Molten metal filtration and distribution device and method for manufacturing the same
JP2002097529A (ja) * 2000-09-22 2002-04-02 Kobe Steel Ltd アルミニウム合金溶湯の脱ガス方法
US20050006008A1 (en) * 2003-05-28 2005-01-13 Pechiney Rolled Products New Al-Cu-Li-Mg-Ag-Mn-Zr alloy for use as structural members requiring high strength and high fracture toughness
JP2007167863A (ja) * 2005-12-19 2007-07-05 Kobe Steel Ltd アルミニウム鋳塊の製造方法、アルミニウム鋳塊、およびアルミニウム鋳塊の製造用保護ガス
US20120225271A1 (en) * 2011-02-17 2012-09-06 Alcoa Inc. 2xxx series aluminum lithium alloys

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JISハンドブック 3 非鉄, JPN6018042292, 19 January 2007 (2007-01-19), pages 1201 - 1209, ISSN: 0003908352 *

Also Published As

Publication number Publication date
US10689739B2 (en) 2020-06-23
EP3080318B1 (fr) 2018-10-24
FR3014905B1 (fr) 2015-12-11
JP2017505378A (ja) 2017-02-16
EP3080317A2 (fr) 2016-10-19
WO2015086922A3 (fr) 2015-08-27
WO2015086922A2 (fr) 2015-06-18
DE14828176T1 (de) 2017-01-05
EP3080317B1 (fr) 2018-09-19
US20160355916A1 (en) 2016-12-08
CN105814222B (zh) 2019-07-23
WO2015086921A3 (fr) 2015-08-20
EP3080318B2 (fr) 2023-09-13
CN106170573A (zh) 2016-11-30
WO2015086921A2 (fr) 2015-06-18
CA2932991A1 (fr) 2015-06-18
RU2674789C1 (ru) 2018-12-13
FR3014905A1 (fr) 2015-06-19
CN106170573B (zh) 2018-12-21
US20160237532A1 (en) 2016-08-18
EP3080318A2 (fr) 2016-10-19
CN105814222A (zh) 2016-07-27
RU2674790C1 (ru) 2018-12-13
DE14825363T1 (de) 2017-01-12
JP6683611B2 (ja) 2020-04-22
BR112016012288A8 (pt) 2020-05-05
CA2932991C (fr) 2021-10-26
BR112016012288B1 (pt) 2021-05-04
CA2932989C (fr) 2021-10-26
US10415129B2 (en) 2019-09-17
JP6604949B2 (ja) 2019-11-13
CA2932989A1 (fr) 2015-06-18

Similar Documents

Publication Publication Date Title
JP6604949B2 (ja) 改善された疲労特性を持つアルミニウム−銅−リチウム合金製品の製造方法
JP2017505378A5 (ja)
JP2017507240A5 (ja)
US9670567B2 (en) Manufacturing method of making aluminum alloy semi-finished product with improved microporosity
Ceschini et al. Microstructure, tensile and fatigue properties of the Al–10% Si–2% Cu alloy with different Fe and Mn content cast under controlled conditions
KR102580143B1 (ko) 7xxx-시리즈 알루미늄 합금 제품
EP3124633A1 (en) Forged aluminum alloy material and method for producing same
KR20210038656A (ko) 피로 파괴 저항성이 개선된 2xxx-시리즈 알루미늄 합금판 제품을 제작하는 방법
KR20210078537A (ko) 7xxx-시리즈 알루미늄 합금 제품
CA2928685A1 (en) High strength 7xxx series aluminum alloy products and methods of making such products
CN112262223A (zh) 制造耐疲劳失效性改善的7xxx系列铝合金板产品的方法
Chatterjee et al. Influence of Ru addition on microstructure, creep and rupture properties of nickel based DS superalloy
EP4076788B1 (en) A 7xxx series aluminum alloys ingot and a method for direct chill casting
CN110536972A (zh) 铝-铜-锂合金产品
Zaki On the performance of low pressure die-cast Al-Cu based automotive alloys: role of additives
Chiesa et al. Distribution of the Quality Index in AlSiMg Castings Produced by Different Processes: Reality vs Prediction
Ismagilov et al. Effect of the Porosity Ran ge and its Nature on Mechanical Properties of Magnesium Alloys Mg-Al-Zn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171010

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20180817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190204

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20190405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200117

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200326

R150 Certificate of patent or registration of utility model

Ref document number: 6683611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250